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Abstract

Differential privacy is a particular data privacy-preserving technology which enables syn-
thetic data or statistical analysis results to be released with a minimum disclosure of private
information from individual records. The tradeoff between privacy-preserving and utility
guarantee is always a challenge for differential privacy technology, especially for synthetic
data generation. In this paper, we propose a differentially private data synthesis algorithm
for mixed-type data with correlation based on latent factor models. The proposed method
can add a relatively small amount of noise to synthetic data under a given level of privacy
protection while capturing correlation information. Moreover, the proposed algorithm can
generate synthetic data preserving the same data type as mixed-type original data, which
greatly improves the utility of synthetic data. The key idea of our method is to perturb the
factor matrix and factor loading matrix to construct a synthetic data generation model,
and to utilize link functions with privacy protection to ensure consistency of synthetic data
type with original data. The proposed method can generate privacy-preserving synthetic
data at low computation cost even when the original data is high-dimensional. In theory,
we establish differentially private properties of the proposed method. Our numerical stud-
ies also demonstrate superb performance of the proposed method on the utility guarantee
of the statistical analysis based on privacy-preserved synthetic data.
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1. Introduction

With the rapid development of multimodal data collection in knowledge discovery, there is
a growing need for sharing datasets for reproducibility purposes and public usage. However,
datasets could contain confidential or sensitive information of individuals, for example, in-
formation on personal health, income, and racial or ethnic origin. Moreover, datasets could
have highly correlated attributes and mixed-data types containing continuous, ordinal and
nominal data. Directly sharing such datasets might violate individual privacy. Therefore,
protecting data privacy while ensuring data utility has become essential for sharing datasets.
Differentially private synthetic data plays an important role in generating new datasets for
sharing the same statistical properties as the original data, as well as preserving individual
privacy of the original data.

Specifically, differential privacy (DP) (Dwork et al., 2006) is a notion that quantifies
the privacy of a system using a solid mathematical formulation, and provides a probability
definition of the degree of privacy loss in measuring the privacy guarantee of an algorithm.
There are different variants of the DP including approximate DP (Dwork et al., 2006; Cai
et al., 2021; Liu et al., 2021), local DP (Evfimievski et al., 2003; Duchi et al., 2013; Rohde and
Steinberger, 2020), random DP (Hall et al., 2013), Renyi DP (Mironov, 2017), and Gaussian
DP (Dong et al., 2019; Zheng et al., 2021). Moreover, the principle of a DP algorithm is
to reject random noise to ensure privacy protection in that the released data information
does not change much if one individual in the dataset changes. The DP algorithms have
been deployed at large scales in practice by organizations such as Apple, Google and the
U.S. Census Bureau. Usage of DP mainly focuses on releasing certain data analysis results
with privacy protection (Dwork and Smith, 2010; Duchi et al., 2018; Bu et al., 2020; Avella-
Medina, 2021; Awan and Slavković, 2021), and releasing privacy-preserving synthetic data
(Hardt and Rothblum, 2010; Ping et al., 2017; Abay et al., 2018; Mckenna et al., 2019;
McKenna et al., 2021). The former has to pre-specify certain analyses and thus makes data
sharing more restrictive; whereas the latter offers privacy-preserving data releasing so that
the releasing dataset grants analysts more freedom to perform any analysis with their own
methods and models. One big challenge of privacy-preserving data release is the balance
between differential privacy and utility guarantee.

Many techniques for differentially private data release have been developed, including
probabilistic sampling-based generation methods (Li et al., 2014; Chen et al., 2015; Zhang
et al., 2017), generative adversarial networks algorithms (Yoon et al., 2019; Acs et al., 2019;
Chen et al., 2020), data release methods based on projection or transformers (Zhou et al.,
2009; Xiao et al., 2011; Blocki et al., 2012; Xu et al., 2017; Upadhyay, 2018; Arora et al.,
2018; Chanyaswad et al., 2019; Gondara and Wang, 2020), and synthetic data algorithms
based on Bayesian networks (Ping et al., 2017; Zhang et al., 2017; Bao et al., 2021). However,
these methods treat original data as continuous data regardless of the original data type,
and only guarantee the generation of continuous synthetic data. Consequently, the relative
consistency of data type between synthetic data and original data is ignored. This could
affect the utility of synthetic data in downstream data analyses, data interpretation and
machine learning algorithms.

Preserving the same types of the release data as the original data is quite essential in
data curation and analyses. Existing literature on DP synthetic data methods incorporating
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consistency of the data type of release data include Jiang et al. (2013) based on principle
components analysis (PCA), Frigerio et al. (2019) and Tantipongpipat et al. (2021) based
on the generative adversarial networks algorithm, Mckenna et al. (2019) and McKenna
et al. (2021) based on discrete graphical models, and Bi and Shen (2022) and Shen et al.
(2022) using inverse cumulative distribution functions of continuous and discrete variables to
generate privatized data. Jiang et al. (2013), Frigerio et al. (2019) and Tantipongpipat et al.
(2021) used one-hot encoding for discrete variables; but cannot incorporate the correlation
dependency among categorical variables, which could also increase the dimension of the
input data. Furthermore, the methods based on discrete graphical models such as Mckenna
et al. (2019) and McKenna et al. (2021), require that all attributes in the original data
are discrete and only deal with discrete variables, although the released data can preserve
discrete type similar to the original data. In addition, the construction of inverse joint
cumulative distribution functions in Bi and Shen (2022) and Shen et al. (2022) could be
very complex for high-dimensional correlated data.

In this paper, we build a novel differentially private data release algorithm for mixed-type
data based on a latent factor model. The proposed method utilizes a Laplace mechanism to
perturb the factor matrix and loading loading matrix for synthetic datasets while achieving
specified privacy requirements. Specifically, we transform categorical data from the original
data to be continuous data via certain link functions before constructing the latent factor
model. Then, we assign a privacy budget to factor matrix and eigenvectors associated with
the original data information. Furthermore, through the Laplace mechanism, we obtain
a new privacy-preserving eigenvectors matrix via adding weighted noise and a perturbed
factor matrix. Through the latent factor model we construct a synthetic data generation
model. We assign a privacy budget to construct reverse transformations of link functions
with privacy protection, and obtain synthetic data with the same data type as the original
data through such reverse transformations. In theory, we show that the proposed algorithm
achieves the differential privacy requirement, and we establish the upper bound of differences
between synthetic data and original data.

The proposed method has three significant contributions. First, the main advantage
of the proposed method due to the latent factor model is its capability of preserving the
main information of correlated variables and generating high-utility synthetic data without
leaking sensitive information. In fact, achieving privacy protection while preserving the cor-
related information of original data is critically important. For example, an individual with
highly correlated features is particularly at risk of being identified. Second, the proposed
method can preserve the original data type, that is, the generated synthetic data has the
same data type as the original data. This could be essential in the process of data curation
and data release. Our method is to preserve the data structure of the original data without
losing essential information, and to preserve the correlated information among the categor-
ical variables. Third, the proposed method only requires adding a small amount of noise
to ensure the privacy guarantee of original data. Since the factor matrix is a projection
under lower dimensional space, our perturbation on the factor matrix controls the noise
intensity added to the data matrix to achieve noise reduction of the synthetic data. Thus,
our method can maintain most of the utility of the release data.

The remainder of the paper is organized as follows. Section 2 introduces the notation and
background on differential privacy. Section 3 presents the proposed method and theoretical
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properties. Section 4 presents simulation studies to assess the performance of the proposed
approach. In Section 5, we apply the proposed method to real datasets. Concluding remarks
and discussion are provided in Section 6.

2. Background of Differential Privacy

In this section, we first provide some preliminaries on differential privacy. Differential
privacy is proposed for publicly sharing information of a dataset while protecting every
individual’s information in the dataset. Consider a set of data points X = {x1, . . . ,xn} ∈
X n, where X = Rp and xi ∈ Rp(i = 1, . . . , n) is the record of an individual. We first give
the definition of ϵ-differential privacy.

Definition 1 (ϵ-differential privacy) A randomized algorithm M : X n → T satisfies ϵ-
differential privacy if Pr{M(X) ∈ D} ≤ eϵ Pr{M(X ′) ∈ D} for all sets of possible outputs
D ∈ T and all inputs X ∈ X n and X ′ ∈ X n differing in a single record.

Definition 1 provides a description of probability as to whether an algorithm can protect
individual privacy, that is, whether including or excluding a particular subject sample in
the dataset could change the probability of a particular outcome. The term ϵ > 0 is
called the privacy budget and controls the amount of output difference from an algorithm
between two adjacent databases. This also captures lots of privacy when an algorithm is
implemented to databases. A smaller ϵ ensures less privacy loss and corresponds to higher
privacy protection. The ϵ-differential privacy has the following important properties.

Proposition 2 (Composition) Let Mi : X n → Ti be an ϵi-differentially private algorithm
for i = 1, 2, . . . , k. If M[k] : X n →

∏k
i=1 Ti is defined as M[k](x) = (M1(x), . . . ,Mk(x)),

then M[k] is
∑k

i=1 ϵi-differentially private.

Proposition 2 provides the composition property of differential privacy, that is, the joint
distribution of the outputs from differentially private algorithms also satisfies differential
privacy. Based on this composition property, we can divide the budget ϵ over sequential
algorithms to ensure that these algorithms are ϵi-differentially private, respectively. Under-
standing the behavior of differentially private algorithms under the composition property
allows most of the design and analysis of complex differentially private algorithms to pre-
serve simpler differentially private building blocks.

Proposition 3 (Post-Processing) Let M : X n → T be a randomized algorithm that
is ϵ-differentially private. Let f : T → T′ be an arbitrary randomized mapping. Then
f ◦M : X n → T′ is ϵ-differentially private.

Proposition 3 implies that differential privacy is not sensitive to post-processing. That is,
without additional knowledge about the private data, one cannot derive any function of an
output of a differentially private algorithm M to break the differential privacy constraint
or increase privacy loss. Due to the post-processing property of differential privacy, we
can design a complex differentially private algorithm based on some differentially private
mechanisms. Classical mechanisms for designing differentially private algorithms include the
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Laplace mechanism (Dwork et al., 2006), the Gaussian mechanism (Dwork and Roth, 2014)
and the exponential mechanism (McSherry and Talwar, 2007). The Laplace mechanism is
defined as follows.

Definition 4 (Laplace Mechanism) For any function f : X n → Rk, the Laplace mech-
anism is defined as M(f(x), ϵ) = f(x) + (e1, · · · , ek), where ei are i.i.d. random variables
from a Laplace distribution with a zero location parameter and a scale parameter ∆f/ϵ,
denoted as Lap(∆f/ϵ), in which ∆f is the ℓ1-sensitivity of f(·).

The ℓ1-sensitivity of f(·) is ∆f = max|x−x′|1=1 ∥f(x) − f(x′)∥1, where |x − x′|1 = 1
denotes that x and x′ differ in at most one element, and ∥f(x) − f(x′)∥1 denotes the ℓ1
norm of f(x) − f(x′). The ℓ1-sensitivity of a function captures the magnitude by which a
single individual’s data can change the function in the worst case, requiring us to introduce
uncertainty in the response in order to mask the participation of single individuals. Based
on the framework of Dwork et al. (2006), the Laplace mechanism satisfies the ε-differential
privacy restraint.

3. Proposed Method

This section describes the proposed differentially private synthetic data generation approach
based on the factor model and the Laplace mechanism. We first introduce synthetic data
generation approach via factor models. Then, we propose the differentially private synthetic
data generation approach for mixed-type original data. In addition, we present the privacy
guarantee and utility guarantee of the proposed method.

3.1 Synthetic Data via Factor Models

A factor model is an effective way of extracting information from an original dataset. In
a linear factor model, the original dataset can be represented as a linear combination of a
set of independent latent factors and idiosyncratic noise, where the linear combination has
nearly the same correlations as the original dataset. Specifically, we consider an original
dataset X = (x1,x2, . . . ,xn)

⊤ ∈ Rn×p, where xi ∈ Rp is the i-th sample and correlations
exist among the p-dimensional variables. We define a linear factor model based on the
original dataset as follows:

X = WΛ⊤+E, (1)

where W ∈ Rn×r is a matrix of latent factors, Λ ∈ Rp×r is a factor loading matrix, r is
the number of factors, and E ∈ Rn×p is a random error matrix. Here, each column of W
is an independent latent factor, and the factor loading matrix Λ captures the relationship
of the original data and latent factors. One advantage of the factor model is summarizing
the information of the original data into low-dimensional latent factors. For a fixed number
of factors, once obtaining the estimators Ŵ and Λ̂ of W and Λ in model (1), we can then

generate synthetic data approximating the original data through the equation X̂ = ŴΛ̂
⊤
.
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The key to generating synthetic data via the above low-rank approximation is to estimate
W and Λ. Generally, they can be estimated by minimizing the following objective function:

Q(Λ,W) =
n∑

i=1

p∑
j=1

(xij −w⊤
iλj)

2 = tr
{
(X −WΛ⊤)⊤(X −WΛ⊤)

}
. (2)

For the identification of W and Λ, normalization restrictions on W and Λ are needed in op-
timizing (2). Specifically, based on the framework of Bai (2003), we impose the requirements
that Λ⊤Λ = Ir and W⊤W is diagonal. Through normalization Λ⊤Λ = Ir and concentrating
W, solving (2) is identical to maximizing tr {Λ⊤(X⊤X)Λ}. The solution is the estimated
factor loading matrix Λ̂ where the j-th column of Λ̂ is the eigenvector µj corresponding to

the j-th largest eigenvalue νj of the matrix X⊤X, that is, Λ̂ = V = (µ1,µ2, · · · ,µr). The

corresponding factor matrix estimator Ŵ = XΛ̂(Λ̂
⊤
Λ̂)−1 = XΛ̂. Thus, synthetic data can

be generated via X̂ = ŴΛ̂
⊤
= XV V⊤ to resemble the original data.

The above factor model transforms the correlated variables of original data to linearly
independent factor variables, and all the essential information from the original data is
captured while the dimensionality of the original data is reduced. Based on eigenvalue de-
composition, the amount of information of original data is measured by sample covariance
X⊤X/n, where eigenvectors reflect the directions of the spread of original data, and eigen-
values are the magnitudes of the spreads of the corresponding direction. Therefore, a larger
νj indicates that the corresponding eigenvector represents more variations and information
from the original dataset. Consequently, the eigenvectors corresponding to the first r largest
eigenvalues represent most of the information of the matrix X⊤X.

Based on the above estimation, we can select a proper number of eigenvalues to construct
the estimator Λ̃ storing most of the information of the original data. There are many
methods for determining the number of factors, for example, cumulative information ratio,
panel Cp information criteria (Bai and Ng, 2002), empirical distribution of eigenvalues
(Onatski, 2010), and through maximizing the ratios of two adjacent eigenvalues (Ahn and
Horenstein, 2013; Wu, 2016; Xia et al., 2017). We set the number of factors based on the
cumulative information ratio, that is,

r(c) = arg min
1≤k<q

{
k :

∑k
j=1 νj∑q
j=1 νj

> c

}
, (3)

where q = min{n, p} and c ∈ (0, 1) is a given threshold, e.g., c = 0.8 or 0.9.

Although we can release synthetic data via the above factor model, such synthetic data
do not necessarily possess a low level of disclosure risk. Privacy leakage can still occur since
the synthetic data X̂ = XV V⊤ is not random and could be still sensitive to the original
data. The potential privacy leakage motivates the design of the data releasing algorithm
with differential privacy guarantee in the following subsection.

3.2 Differentially Private Synthetic Data via Factor Models

We consider a data matrix X = (x1, . . . ,xn)
⊤∈ Rn×p and assume that xi satisfies ∥xi∥2 ≤

1. Building a factor model (1) is through calculating eigenvectors of the matrix X⊤X.
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Before constructing the differentially private algorithm, we first establish the sensitivities
of the eigenvectors.

Lemma 5 Denote µi : Rn×p → Rp for i = 1, 2, . . . , q as the i-th eigenvector corresponding
to the i-th largest eigenvalue of the matrix X⊤X, where X ∈ Rn×p. Then the ℓ1-sensitivity
of the eigenvector µi satisfies

∆µi = max
X ′

:|X−X ′|1=1

∥µi(X)− µi(X
′)∥1 ≤ 2

√
p,

where |X −X ′|1 = 1 denotes that X and X ′ contain at most one different record.

Lemma 5 provides the sensitivity of each eigenvector of the matrix X⊤X. Although
eigenvectors corresponding to different eigenvalues represent varying levels of variation and
information of the original data, the sensitivities of all eigenvectors have a uniform upper
bound which does not depend on the magnitude of eigenvalues.

Lemma 6 Denote W(X) = XT for any fixed matrix T = (µ1, · · · ,µr), where µk is a
fixed unit vector for k = 1, . . . , r and X = (x1, . . . ,xn)

⊤ ∈ Rn×p satisfies ∥xi∥2 ≤ 1 for
i = 1, · · · , n. Then the ℓ1-sensitivity of the vector function W(·) satisfies

∆W = max
X ′

:|X−X ′|1=1

∥W(X)−W(X ′)∥1 ≤ 2r,

where |X −X ′|1 = 1 denotes that X and X ′ contain at most one different record, and the
ℓ1-norm of a matrix A ∈ Rn×p is ∥A∥1 =

∑n
i=1

∑p
j=1 |aij |.

Lemma 6 provides the sensitivity of the function W(X) given any fixed matrix with
unit column vector. When the unit column vector µk is any one of eigenvectors of the
matrix X⊤X, the matrix W(X) is an estimated factor matrix in the model (1).

Based on the above sensitivities, we design noise-adding methods in the factor matrix
and loading matrix to obtain synthetic data with differential privacy. Specifically, we con-
struct a perturbed factor model for synthetic data generation as follows:

X̃ = W̃Λ̃
⊤
:= (X · g(V +B) +C) · g(V +B)⊤, (4)

where Λ̃ = g(V + B) is the perturbed loading matrix, W̃ = (X · g(V +B) +C) is the
perturbed factor matrix, V is the eigenvector matrix corresponding to the first r largest
eigenvalues of the matrix X⊤X in a decreasing order, B is a p × r noise matrix, C is a
n × r noise matrix, and g(V + B) is the top r left-singular-vector matrix of the matrix
V +B for obtaining a unit orthonormal loading matrix. Based on Definition 4 and Lemma
5, we construct the noise matrix B with each entry of the i-th column from Lap(2

√
p/ϵ1i)

for i = 1, . . . , n, where ϵ1i = ωiϵ1, ωi > 0 and
∑r

i=1 ωi = 1. Thus, the matrix V + B
is a perturbed eigenvector matrix. To construct a perturbed loading matrix satisfying
the restriction of Λ⊤Λ = Ir, we consider singular value decomposition of the perturbed
eigenvector matrix. That is, V + B = SQR, where Q is a p × r rectangular diagonal
matrix with the singular values of V +B in decreasing order on the diagonal, R is a r × r
unit orthogonal matrix with each column being the corresponding right-singular vector, and
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S is a p× p unit orthogonal matrix with each column being the corresponding left-singular
vector. Then the perturbed loading matrix is g(V + B) = Sr, where Sr is a p × r unit
orthogonal matrix with the columns being the top r left-singular vectors. Note that the
orthonormalization of the perturbed loading matrix is necessary to construct a perturbed
factor matrix based on Lemma 6. Based on Definition 4 and Lemma 6, we construct the
noise matrix C with each entry from Lap(2r/ϵ2). Thus, W̃ = X · g(V + B) + C is
a perturbed factor matrix. Based on Definition 1, we can show that the synthetic data
X̃ generated from the model (4) satisfies the differential privacy requirement indicated in
Theorem 10. The details of the synthetic data generation algorithm based on model (4) are
summarized as follows.

Algorithm 1 Differentially private data-releasing algorithm based on factor models

Input:
Original data X (n× p), privacy budget ϵ = ϵ1 + ϵ2 and the number of factors r;

Output:
Synthesized data X̃;

1: Calculate matrix A = X⊤X and V = (µ1,µ2, · · · ,µr) with the columns being the
eigenvectors corresponding to the first r largest eigenvalues ν = (ν1, . . . , νr)

⊤ of the
matrix A in decreasing order;

2: Construct the perturbed eigenvector matrix Ṽ :
(i) Generate a p×r random matrix B and calculate the perturbed matrix V ∗ = V +B,
where B = (b1, · · · ,br) ∈ Rp×r, each entry of the vector bi is from Lap(2

√
p/ϵ1i),

ϵ1i = ωiϵ1, ωi > 0 and
∑r

i=1 ωi = 1;

(ii) Calculate the orthogonal matrix Ṽ ∈ Rp×r of the matrix V ∗ by singular value
decomposition;

3: Calculate the estimators of the factor matrix and factor loading matrix:
(I) Generate a n × r random matrix C, where each entry of C is sampled from a
Lap(2r/ϵ2);

(II) Calculate factor loading matrix Λ̃ = Ṽ and factor matrix W̃ = XṼ +C;

4: Return: Synthesized data X̃ = W̃Λ̃
⊤
.

Note that in Step 2 (i), we can consider different weights ωi for the allocation of the
privacy budget ϵ1 for example, ωi = 1/r or ωi = νi/

∑r
j=1 νj incorporating the magnitudes

of the eigenvalues, where νj is the j-th largest eigenvalue of the matrix X⊤X. Based on
the tail bound for an ensemble matrix in Tao (2012), we have Frobenius norms of the noise
matrices B in Step 2 (i) and C in Step 3 (I) for the given r satisfying ∥B∥F = O(p/ϵ) and
∥C∥F = O(

√
n/ϵ) with a high probability, which are important for the utility guarantees.

3.3 Implementation for Mixed-type Data

In the following, we consider mixed-type data containing continuous, ordinal categorical,
and nominal categorical data and try to keep their original data types in the released data.
To this end, we import data type conversion into the proposed differential privacy method
for data-type consistency.
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We consider an original dataset X = (x1, · · · ,xn)
⊤ with mixed-type data including

continuous, ordinal and nominal categorical variables. Denote the ith sample as

xi = (yi,1, . . . , yi,p1 , zi,p1+1, . . . , zi,p1+p2 , ui,p1+p2+1, . . . , ui,p1+p2+p3)
⊤

for i = 1, . . . , n, where yi,j , zi,j and ui,j denote continuous, ordinal and nominal categorical
variables, respectively. The classical factor model (1) mostly focuses on continuous variables
(Bai and Ng, 2002; Bai, 2003), which brings limitations to handle mixed-type data. As the
observed data contain discrete data, the generalized factor model (Skrondal and Rabe-
Hesketh, 2004; Goldstein and Browne, 2005) or link functions between continuous and
discrete variables (Song et al., 2013) are considered. To provide a unified factor model
framework for different types of data, we adopt link functions between continuous and
discrete variables and transform mixed-type data to continuous data before implementing
the above proposed algorithm.

Based on the framework of Song et al. (2013), we construct an underlying vector

x∗
i = (y∗i,1, . . . , y

∗
i,p1 , z

∗
i,p1+1, . . . , z

∗
i,p1+p2 ,u

∗⊤
i,p1+p2+1, . . . ,u

∗⊤
i,p1+p2+p3)

⊤,

which is linked to the original vector data xi as follows:
yij = h1j(y

∗
ij), j = 1, . . . , p1,

zij = h2j(z
∗
ij), j = p1 + 1, . . . , p1 + p2,

uij = h3j(u
∗
ij), j = p1 + p2 + 1, . . . , p1 + p2 + p3,

(5)

where h1j , h2j and h3j ’s correspond to identity, threshold and multinomial probit link func-
tions, respectively. The identity link function h1j(·) keeps the continuous variables yij
invariant, that is, yij = h1j(y

∗
ij) = y∗ij .

For nominal categorical variables uij with Mj categories, we assume that uij takes
values from {0, 1, . . . ,Mj − 1}. The uij is transformed to a continuous vector u∗

ij =

(u∗ij,1, . . . , u
∗
ij,Mj−1)

⊤∈ RMj−1 via the following multinomial probit link function

uij = h3j(u
∗
ij) =

{
0, if max(u∗

ij) ≤ 0,

l, if max(u∗
ij) = u∗ij,l > 0,

(6)

where each element of u∗
ij is sampled from a truncated standard normal distribution with

the truncation range (−∞, 0) if uij = 0, and each element of u∗
ij is sampled from a standard

normal distribution so that max(u∗
ij) = u∗ijl > 0 if uij = l. Based on the continuous

vector u∗
ij for i = 1, . . . , n; j = p1 + p2 + 1, . . . , p1 + p2 + p3, the proposed differentially

private algorithm can generate continuous synthetic data, denoted as ũ∗
ij . Based on the

link function (6), we can obtain the nominal synthetic data ũij from the index and sign of
the largest component of ũ∗

ij . Since the transformation of the continuous vectors ũ∗
i,j to

nominal values ũij only depends on the index and the sign of the largest component of the
synthetic data ũ∗

ij with privacy protection, the transformation does not impose the risk of
leakage.

For ordinal variables zij with integer values in {0, 1, . . . , Lj−1}, a threshold link function
h2j(·) is defined as the following:

zij = h2j(z
∗
ij) =

Lj−1∑
l=0

l · I(τj,l ≤ z∗ij < τj,l+1), (7)
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where I(·) is an indicator function, and takes a value of 1 if τj,l ≤ z∗ij < τj,l+1 and 0
otherwise. Here, {−∞ = τj,0 < τj,1 < · · · < τj,Lj = +∞} is a set of thresholds defining
the Lj categories. The set of thresholds can be estimated by converting the cumulative
proportions of the observed data zij (Song et al., 2013). That is, τj,l = Φ−1(fj,l) for
l = 1, 2, . . . , Lj − 1, where Φ(·) is the cumulative distribution function of the standard
normal N(0, 1), and fj,l is the cumulative frequency of categories with zij < l. With the
set of estimated thresholds, if zij = l, z∗ij is generated from a truncated standard normal
distribution with the truncation range (τj,l, τj,l+1) as a continuous transformation of zij .

With the continuous data z∗ij for i = 1, . . . , n; j = p1 + 1, . . . , p1 + p2, the proposed
differentially private algorithm can generate continuous synthetic data, denoted as z̃∗ij . Since
the set of thresholds in the link function (7) are constructed based on the cumulative
frequency of the original variables zij , we need to build differentially private cumulative
frequencies for the privacy-protecting transformation from the continuous synthetic value
z̃∗ij to ordinal value via the link function (7). There are many methods for frequency or
cumulative frequency estimation with privacy protection, for example Wang et al. (2017),
Cormode et al. (2021), and Arcolezi (2022). However, these methods are locally differentially
private for frequency estimation. Alternatively, we build a differential privacy approach for
cumulative frequency based on the Laplace mechanism. First, we establish the sensitivity
of the cumulative frequency as follow.

Lemma 7 Denote f j : Rn → RLj+1 for j = p1+1, p1+2, . . . , p1+p2 as the cumulative fre-
quencies of ordinal categories, where f j(zj) = (fj0(zj), fj1(zj), · · · , fj,Lj−1(zj), fj,Lj (zj)),
fjl(zj) =

∑n
i=1 I(zij < l)/n and zj ∈ Rn. Then the l1-sensitivity of the cumulative fre-

quency function f j satisfies

∆f j = max
zj :|zj−z′

j |1=1
∥f j(zj)− f j(z

′
j)∥1 ≤ (Lj − 1)/n,

where |zj − z′
j |1 = 1 denotes that zj and z′

j contain at most one different record.

Lemma 7 provides the sensitivity of the cumulative frequency function. Based on the
Laplace mechanism and the above lemma, we construct the cumulative frequency with
privacy protection for each ordinal variable via the following Algorithm 2, which is proved
to be differentially private. See Lemma 13.

10
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Algorithm 2 Differentially private cumulative frequency functions releasing algorithm

Input:
Original data zj ∈ Rn and privacy budget ϵ;

Output:
Perturbed cumulative frequency f̃ j(zj);

1: Calculate cumlative frequencies f j(zj) = (fj0(zj), fj1(zj), · · · , fj,Lj−1(zj), fj,Lj (zj)),
where fjl(zj) =

∑n
i=1 I(zij < l)/n;

2: Construct the perturbed cumulative frequency f̃ j with privacy protection:
(i) Construct a noise vector e = (e0, e1, · · · , eLj ) with ascending entries from
Lap(∆f j/ϵ), where e0 ≤ e1 ≤ e2 ≤ · · · ≤ eLj ;
(ii) Construct the perturbed cumulative frequency

f̃ j(zj) =
(f j(zj) + e)−min{f j(zj) + e}

max{f j(zj) + e} −min{f j(zj) + e}
;

3: Return: Perturbed cumulative frequency f̃ j(zj).

Note that the perturbed cumulative frequency f̃ j(zj) still satisfies 0 = fj0 ≤ fj1 ≤ · · · ≤
fj,Lj−1 ≤ fj,Lj = 1. We utilize the cumulative frequencies f̃j,l with privacy protection to

obtain a set of thresholds, that is, τ̃j,l = Φ−1(f̃j,l). Based on the post-processing property,
the set of thresholds is ϵ-differentially private, and the transformation based on the following
link function (8) is also privacy-protected.

z̃ij = h̃2j(z
∗
ij) =

Lj−1∑
l=0

l · I(τ̃j,l ≤ z∗ij < τ̃j,l+1). (8)

Combining with the link functions (5)-(8), we build the following differentially private data-
releasing algorithm for mixed-type data, which can obtain final release data with the same
data types as the original data.

Algorithm 3 Differentially private data-releasing algorithm for mixed-type data

Input:
Original data X, privacy budget ϵ = ϵ1 + ϵ2 + ϵ3 and the number of factors r;

Output:
Synthesized data X̃;

1: Construct link functions (5) based on X and generate continuous data X∗ via link
functions (5);

2: Execute Algorithm 1 on the data X∗ with privacy budget ϵ1 and ϵ2, and obtain

continuous synthetic data X̃
∗
;

3: Execute Algorithm 2 with privacy budget ϵ3, and construct the threshold link func-
tion (8);

4: Transform the data X̃
∗
to mixed-type synthetic data X̃ via the link functions (6)-(8);

5: Return: Synthesized data X̃.

11
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Note that Algorithm 3 involves privacy budget allocation, that is, ϵ1, ϵ2 and ϵ3. Based
on the composition property, Algorithm 3 is always ϵ-differentially private for any privacy
budget allocation. Moreover, the utility of the synthetic data obtained from Algorithm 3 is
also relatively robust for the budget allocation. See the numerical studies in Section 4.

3.4 Privacy Guarantee and Utility Guarantee

In this subsection, we provide the theoretical properties of Algorithm 1-Algorithm 3, which
consist of the privacy guarantees and the utility guarantee. The privacy guarantee is the
basic requirement of a differential privacy algorithm, and the utility guarantee indicates how
effective the algorithm is against the non-private version. We firstly present two lemmas
for the privacy guarantee of the proposed algorithms.

Lemma 8 Denote µi : Rn×p → Rp for i = 1, 2, . . . , r as the i-th eigenvector corresponding
to the i-th largest eigenvalue of the matrix X⊤X in decreasing order, where X ∈ Rn×p.
Then µi(X) + b is ϵ1i-differentially private, where b ∈ Rp is from a Laplace distribution
Lap(2

√
p/ϵ1i).

Lemma 8 shows that the perturbed eigenvector is ϵ1i-differentially private and has the
added noise level O(p/ϵ1i) for i = 1, · · · , r. Based on the composition property, we can
prove that the perturbed matrix V ∗ from Step 2 (i) is differentially private in the following
lemma.

Lemma 9 Denote V : Rn×p → Rp×r as the eigenvectors matrix corresponding to the first
r largest eigenvalues of the matrix X⊤X in decreasing order, where X ∈ Rn×p. Then the
algorithm M(X) = V (X) +B is ϵ1-differentially private, where B = (b1, · · · ,br) ∈ Rp×r,
each entry of bi is from a Laplace distribution Lap(2

√
p/ϵ1i) (i = 1, · · · , r), ϵ1i = ωiϵ1,

ωi > 0 and
∑r

i=1 ωi = 1.

Lemma 9 implies that the perturbed eigenvector matrix V ∗ from Step 2 (i) in the
Algorithm 1 satisfies ϵ1-differential privacy. Since B ∈ Rp×r and each entry of bi is from

Lap(2
√
p/ϵ1i) (i = 1, · · · , r), the level of the noise added to V ∗ isO(p

√∑r
i=1 1/ω

2
i /ϵ1). Since

ωi > 0 and
∑r

i=1 ωi = 1, the following inequality holds:
√∑r

i=1 1/ω
2
i ≥ r

√
r/

∑r
i=1 ωj =

r
√
r. The equality holds when ωi = 1/r, and the added noise level reaches the lower bound

O(pr
√
r/ϵ1). If we take the eigenvalues into account and set ωi = νi/

∑r
j=1 νj , then the

level of the noise is O(p(
∑r

j=1 νj)
√∑r

j=1 1/ν
2
j /ϵ1). Based on Lemma 8 and Lemma 9, we

can establish the privacy guarantee of the Algorithm 1 as follow.

Theorem 10 (Privacy guarantee for continuous data) Algorithm 1 above returns a

privacy-preserving matrix X̃ such that X̃ satisfies (ϵ1 + ϵ2)-differential privacy.

Theorem 10 guarantees that Algorithm 1 satisfies differential privacy given a privacy
budget ϵ, where ϵ is split into ϵ1 and ϵ2 for the privacy budget of the factor loading matrix
and the privacy budget of the factor matrix, respectively. It implies that the proposed
method can protect the original data from being identified regardless of whether individual

12
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data contain a particular sample or not. Consequently, the synthetic data have a low risk of
leakage. In the following, we derive an upper bound of the proposed method for the utility
guarantee. Firstly, we present a lemma for the utility guarantee.

Lemma 11 The matrix Ṽ from Algorithm 1 satisfies with a high probability

∥Ṽ Ṽ
⊤
− V V⊤∥F ≤ O(

√
rp/ϵ1).

Lemma 11 establishes the top-r subspace closeness of the matrix Ṽ obtained from
Algorithm 1, which implies that the matrix Ṽ not only captures a large amount of variance,
but is also close to the matrix spanned by the top r eigenvectors subspace V ofX⊤X. Dwork
et al. (2014), Jiang et al. (2016), and Imtiaz and Sarwate (2018) also provided similar upper
bounds of the utility for the perturbed subspace, but they require that the matrix X⊤X
have a large spectrum gap between the r-th singular value and the (r+1)-th singular value,
as otherwise the top r subspace space is not uniquely defined. In comparison, Lemma 11
only requires that the first r eigenvalues satisfy condition (3) in Section 3.1. Based on
Lemma 11, we can derive an upper bound of the utility for Algorithm 1.

Theorem 12 (Upper bound on utility for continuous data) Under the fixed number

of factors r, the matrix X̃ from Algorithm 1 satisfies with a high probability

∥X̃ −X∥F ≤ ∥X̂ −X∥F +O

(
p+

√
n

ϵ

)
≤ O

(√
n+

p+
√
n

ϵ

)
. (9)

Theorem 12 indicates that the utility bound of the releasing data matrix in regard to
the original data depends on sample size, dimension, the number of factors and privacy
budgets. Note that if ∥X̃ − X∥F ≤ ∥X̂ − X∥F + ϕ, we refer to the parameter ϕ as the

additive error of the releasing matrix X̃. If the dimension of variables satisfies p = O(nκ)
and κ ∈ (0, 1/2), then the

√
n/ϵ would dominate the p/ϵ so that the additive error is

O(
√
n/ϵ) which is lower than that of existing differentially private low-rank approximations,

e.g., Arora et al. (2018) or Upadhyay (2018). In addition, Arora et al. (2018) provide
the additive error of the (ϵ, δ)-differentially private low-rank approximation based on the
operator norm of the matrix. Based on the inequality relationship of the Frobenius norm
and the operator norm, their corresponding additive error based on the Frobenius norm is
O(p1/2(n+p)polylog(n) log2(1/δ)/ϵ) for the fixed r. Since the definitions of the neighboring
matrix for Arora et al. (2018) and our approach are rather different, we cannot compare
to their bound directly. If we ignore the definition difference in comparison, it is clear that
their additive error is larger than that of our proposed method.

Moreover, Upadhyay (2018) provide the additive error of their low rank approximation
of the streamed matrix with (ϵ, δ)-differential privacy. That is, O(σmin

√
n+

√
p ln(1/δ)/ϵ),

where σmin = 16 log(1/δ)
√
t(1 + ϕ)(1− ϕ)−1 ln(1/δ)/ϵ, t = O(max(r, α−1)α−1 log(1/δ)),

and ϕ ∈ (0, 1). Similarly, their definition of the neighboring matrix is different from our
proposed method. Moreover, their method deals with the streamed matrix data. If we
ignore the definition difference and streamed matrix data type, their additive error is also
larger than that of the proposed method.

In the following, we derive the privacy guarantees of Algorithm 2-3.

13



Zhang, Xu, Tang and Qu

Lemma 13 Algorithm 2 returns a privacy-preserving perturbed cumulative frequency f̃j(zj)

such that f̃j(zj) satisfies ϵ-differential privacy.

Lemma 13 shows that Algorithm 2 is ϵ-differential privacy, which can be proved based
on the framework of the mLaplace mechanism. The following theorem shows the privacy
guarantee of Algorithm 3.

Theorem 14 (Privacy guarantee for mixed-type data) Algorithm 3 returns a privacy-

preserving matrix X̃ in that X̃ satisfies (ϵ1 + ϵ2 + ϵ3)-differential privacy.

Theorem 14 can be obtained based on privacy guarantees of Algorithms 1 and 2 and
the composition property of differential privacy. Next, we present the utility guarantee of
Algorithm 3 as follows.

Theorem 15 (Upper bound on utility for mixed-type data) Under the assumptions
that the number of factors r is fixed, max1≤j≤p2(Lj−1)2 = O(1) and max1≤j≤p3(Mj−1)2 =

O(1), the matrix X̃ obtained from Algorithm 3 satisfies with a high probability

∥X̃ −X∥F ≤ O

(√
n+

p1 +
√
n

ϵ
+

√
np2 +

√
np3

)
.

Theorem 15 indicates that the utility bound of the releasing mixed-type data in regard to
the original data depends on sample size, dimension, the number of factors, privacy budgets,
and the number of classes for ordinal variables. If p1 = O(nκ), p2 = O(nα), p3 = O(nℓ)
(κ, α, ℓ ∈ (0, 1/2)), the right hand side of the above inequality is O(n(1+max(α,ℓ)/2)+n1/2/ϵ).
Similar to the discussion of Theorem 12, the error bound of the proposed method for mixed-
type data is lower than that of existing low-rank approximation approaches with differential
privacy.

4. Simulation Studies

In this section, we use simulated datasets to evaluate the performance of the proposed
method (DPFM) compared with the data releasing methods based on the PCA, includ-
ing the differential PCA-based privacy preserving data publishing (PCAPPD, Jiang et al.,
2013) and differentially private data release via random projections (DPRP, Gondara and
Wang, 2020). Moreover, we also consider the comparison methods from NIST PSCR, includ-
ing synthetic data algorithms based on Bayesian network (PrivBay, Ping et al., 2017) and
graphical model (PrivPGM, Mckenna et al., 2019; McKenna et al., 2021). The PCAPPD
method uses one-hot encoding to perform the transformation between discrete and continu-
ous variables. The DPRP and PrivBay methods treat all variables as continuous variables.
Since the PrivPGM only deals with discrete data, the continuous variables are discretized
into 100 bins. As a reference, we consider the performance of the original data (Original)
as a baseline.

We consider classification problems to assess the utilities of the dataset released. We
use three classification methods for evaluation including support vector machine (SVM),
random forests (RF) and K-nearest neighbors algorithm (KNN). For evaluating the utility of
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the synthetic data generated via considered differentially private methods, we calculate the
accuracy, F1 score and the area under the precision recall curves (AUC) of each classification
method and calculate the averages for three classifications over different criteria.

To empirically evaluate the quality of the generated dataset, we introduce a synthetic
training set, synthetic testing set and raw validating set. Specifically, we use all raw data
to construct synthetic data and use 80% of the synthetic data into training data and the
remaining 20% into testing data. We use the partial original data corresponding to the test-
ing data as validation data. If the prediction performances on both the original validating
set and the synthetic testing set are high for models trained on the synthetic training set,
we can infer that the synthetic data capture the original data information well.

We consider a dataset X = (X1,X2,X3,X4,X5) = (x1, · · · ,xn)
⊤ ∈ Rn×p, where

continuous data X1 ∈ Rn×p1 are generated from a multivariate normal distribution with
mean 0 and covariance matrix Σ, ordinal data X2 ∈ Rn×p2 randomly from {0, 1, 2}, or-
dinal data X3 ∈ Rn×p3 randomly from {0, 1}, nominal data X4 ∈ Rn×p4 randomly from
{0, 1, 2, 3} and nominal data X5 ∈ Rn×p5 randomly from {0, 1}. For generating labels
y = (y1, y2, · · · , yn)⊤, we transform ordinal and nominal variables into dummy variables,
and generate the label yi from a Bernoulli distribution with a probability Pr(yi = 1) =
exp(β0 + β⊤zi)/(1 + exp(β0 + β⊤zi)), where zi is the ith sample record with dummy vari-
ables after transformation, β = (β⊤1, · · · ,β⊤5)⊤, β1 ∈ Rp1 , β2 ∈ R2p2 , β3 ∈ Rp3 , β4 ∈ R3p4

and β5 ∈ Rp5 .

We consider a covariance matrix Σ with a common marginal variance 1 and correlation
structures: AR-1 with correlation ρ = 0.95 and exchangeable (Exch) with correlation ρ =
0.952. We set sample size n = 200 and consider the following two settings of dimension:

(I) p = 22, where p1 = 6, p2 = 4, p3 = 4, p4 = 4 and p5 = 4. Correspondingly, β0 = 1.5,
β1 = (3, 2.5, 2, 1.5, 1, 0.5)⊤, β2 = (0.3, 1, 0.1, 1, 0.2, 2, 0.5, 3)⊤, β3 = (1.5, 0.8, 0.5, 1.8)⊤, β4 =
(0.5, 1, 3, 0.5, 1, 2, 0.5, 1, 0.3, 0.5, 1, 0.2)⊤, and β5 = (1, 1.5, 0.5, 0.5)⊤.

(II) p = 80, where p1 = 20, p2 = 15, p3 = 15, p4 = 15, and p5 = 15. Correspondingly,
β0 = 1.5, β1 = (3, 2.5, 2, 1.5, 1, 0.5, 0, · · · , 0)⊤, β2 = (0.3, 1, 0.1, 1, 0.2, 2, 0.5, 3, 0, · · · , 0)⊤,
β3 = (1.5, 0.8, 0.5, 1.8, 0, · · · , 0)⊤, β4 = (0.5, 1, 3, 0.5, 1, 2, 0.5, 1, 0.3, 0.5, 1, 0.2, 0, · · · , 0)⊤, and
β5 = (1, 1.5, 0.5, 0.5, 0, · · · , 0)⊤.

For generating synthetic data satisfying various privacy protection requirements, we con-
sider different privacy budgets ϵ ∈ {0.1, 0.5, 1, 1.5, · · · , 5}. For the proposed method, we con-
sider different allocations of the privacy budgets (ϵ1, ϵ2, ϵ3) = ( ϵ3 ,

ϵ
3 ,

ϵ
3), (

2ϵ
3 ,

ϵ
6 ,

ϵ
6), (

ϵ
6 ,

2ϵ
3 ,

ϵ
6)

and ( ϵ6 ,
ϵ
6 ,

2ϵ
3 ), and denote the corresponding methods as DPFM1, DPFM2, DPFM3 and

DPFM4, respectively. For the DPRP method, we fix a small δ = n−5 to be comparable.
We set the threshold c = 0.8 to select the number of factors. A decreasing privacy budget
indicates an increasing privacy protection requirement. The same experiments are repli-
cated 100 times. Figures 1 - 4 show the results for various budgets. Tables 3 and 4 show
the results as ϵ = 0.1 and 5 in the supplementary materials.

From Figures 1 - 4, we can observe that the proposed methods under varying budget
allocations outperform all comparison methods for all settings. The proposed methods
achieve higher accuracy, F1 scores and AUC than other comparing methods for various
privacy budgets. We observe that DPFM1, DPFM2, DPFM3 and DPFM4 have similar
performance for all criteria in setting (I) and (II). These numerical findings imply that
the proposed method is robust to the privacy budget division. Moreover, we can observe
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that the performances of the proposed methods based on three criteria are also robust to
the privacy budget. In contrast, the performances of the four comparison methods based
on three criteria fluctuate around low values. This indicates that the proposed methods,
regardless of the privacy budget divisions, can generate synthetic data with much higher
utility for classification problems for correlated datasets with certain privacy protection
requirements.

Figure 1: Results of three classifiers on testing synthetic data from eight algorithms and
validating data in setting (I) with AR-1 correlation matrix.

Figure 2: Results of three classifiers on testing synthetic data from eight algorithms and
validating data in setting (I) with exchangeable correlation matrix.
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Figure 3: Results of three classifiers on testing synthetic data from eight algorithms and
validating data in setting (II) with AR-1 correlation matrix.

Figure 4: Results of three classifiers on testing synthetic data from eight algorithms and
validating data in setting (II) with exchangeable correlation matrix.
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5. Real Data Examples

In this section, we evaluate the performance of the proposed method for real data exam-
ples through comparison of the PCAPPDP, DPRP, PrivBay and PrivPGM methods similar
to Section 4. We use three datasets from the UCI machine learning repository to evalu-
ate the utility of the synthetic data for classification tasks, including census income data,
absenteeism at work data and breast cancer data. As a reference, we also consider the
performance of the original data (Original) as a baseline. Similar to Section 4, we split
the synthetic training set, synthetic testing set and raw validating set, and consider three
classification methods including SVM, RF and KNN methods. We calculate the accuracy,
F1 score and AUC value to evaluate the utility of the synthetic data based on several
differentially private methods.

Census Income Data: The dataset from the U.S. Census Bureau has been generally
used to predict whether a given adult makes more than $50, 000 a year. In the dataset,
there are 48842 instances containing 23.93% of incomes labeled with more than $50, 000
and 76.07% of incomes below $50, 000. There are 15 features of each instance, including
age, weight, marital status, native country, race, sex, label of income, and so on. After
removing the subjects with missing data, there are 33916 subjects. We use 11 demographic
variables to predict the label of income: whether a person earned more than $50, 000 per
year. The details of the variables are shown in Table 1.

Table 1: Variables from the Census Income Data.

Variable Name Data Type Range

age continuous (17,90)
education-num continuous (1,16)
hour-per-week continuous (1,99)
capital loss ordinal 0,1
capital gain ordinal 0,1

label of income nominal 0,1
marital status nominal Couple, Single
native country nominal US, Non-US

gender nominal Male, Female
work class nominal Govt, Private, Self-employed, Without pay

race nominal White, Amer-Indian-Eskimo,
Asian-Pac-Islander, Black, Other

relationship nominal Unmarried, Wife, Husband, Not-in-family,
Own-child, Other-relative

Absenteeism at Work Data: The dataset is created with records of absenteeism at
work from July 2007 to July 2010 at a courier company in Brazil. In this dataset, there are
740 instances containing 46% of individuals with absenteeism time more than four hours per
month and 54% of individuals with absenteeism time below four hours per month. There
are 21 features of each instance, including individual identification, number of children
(0,1,2,larger than 2), number of pets (0,1,larger than 1), education (high school, graduate,
master or above), day of the week (Monday, Tuesday, Wednesday, Thursday, Friday), and
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so on. We use 19 variables to predict the label of absenteeism time: whether a person is
absent more than four hours per month. The details of the variables are shown in Table 2.

Table 2: Variables from the Absenteeism at Work Data.

Variable Name Data Type Variable Name Data Type Range

Transportation expense continuous Number of children ordinal 0,1,2,3
Distance from Residence continuous Number of pets ordinal 0,1,2

Service time continuous Social drinker nominal 0,1
Age continuous Social smoker nominal 0,1

Work load day continuous Disciplinary failure nominal 0,1
Hit target continuous Education nominal 0,1,2
Weight continuous Seasons nominal 0,1,2,3
Height continuous Day of the week nominal 0, 1, · · · , 4

Body mass index continuous Month of absence nominal 0, 1, · · · , 11
Reason for absence nominal 0, 1, · · · , 15
Absenteeism time nominal 0,1

Breast Cancer Data: The dataset is observed or measured for 64 patients with breast
cancer and 52 healthy controls. A binary variable indicates the presence or absence of breast
cancer. There are 9 continuous variables from anthropometric data and parameters which
can be gathered in routine blood analysis, including age, BMI, glucose, insulin, leptin and
adiponectin, etc. We use 9 variables to predict the label of presence of breast cancer.

For classification problems, all continuous variables of the three datasets are normalized
to get new original datasets. We consider different privacy budgets ϵ ∈ {0.1, 0.5, 1, 1.5, · · · , 5}
with a similar privacy budget split as in Section 4. Based on the results in Section 4, we
consider the average division of privacy budget for the proposed method. For the DPRP
method, we fix a small δ = n−5 to be comparable. We set the threshold c = 0.8 to select the
number of factors. The average results based on 100 experiments are illustrated in Figures
5 - 7. The corresponding results with ϵ = 0.1 and 5 for the three real data analyses are
provided in the supplementary materials. From Figures 5 - 7, we observe that the proposed
method outperforms the comparison methods for three real data analyses. Specifically,
the proposed method has higher accuracy, F1 scores and AUC than the other methods.
Moreover, the performance of the proposed method based on three criteria is robust for
the privacy budget. In contrast, the performances of the four comparison methods fluctu-
ate, especially on raw validating data. It implies that the proposed method can generate
synthetic data with much higher utility for classification problems.
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Figure 5: Results of three classifiers on testing synthetic data from five algorithms and
validating data for the Census Income Data.

Figure 6: Results of three classifiers on testing synthetic data from five algorithms and
validating data for the Absenteeism at Work Data.
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Figure 7: Results of three classifiers on testing synthetic data from five algorithms and
validating data for the Breast Cancer Data.

6. Conclusion

In this paper we propose a novel algorithm for differential privacy synthetic data which
achieves ϵ-differential privacy and provides synthetic data with a high utility guarantee.
The proposed method adapts a factor model to preserve the main information of the corre-
lated variables in generating synthetic data. One unique feature of our method is to utilize
perturbation on the factor matrix and assign weighted privacy budgets to perturb eigen-
vectors associated with the original data based on the Laplace mechanism. Therefore, the
proposed method maintains a low level of noise while maintaining the same level of pri-
vacy protection. Through continuous transformations with privacy protection, we can also
deal with mixed-type data including categorical data and continuous data. Our extensive
numerical studies indicate that the proposed differential privacy data-releasing algorithm
is more effective than state-of-the art counterparts in maintaining data utility for highly
correlated mixed-type data.
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Appendix.

In this appendix we prove the following theorem from Section 3:

A. Proof of Lemma 5

Proof. Let X and X ′ contain at most one different record. Since µi(X) and µi(X
′) are

the i-th eigenvectors, we have

∥µi(X)− µi(X
′)∥1 ≤

√
p∥µi(X)− µi(X

′)∥2 ≤
√
p{∥µi(X)∥2 + ∥µi(X

′)∥2} ≤ 2
√
p.

Thus, we obtain that

∆µi = max
X ′

:|X−X ′|1=1

∥µi(X)− µi(X
′)∥1 ≤ 2

√
p.

The proof of the lemma is completed.

B. Proof of Lemma 6

Proof. Consider any matrices X ∈ Rn×p and X ′ ∈ Rn×p which contain at most one differ-
ent record. Without loss of generality, letX = (x1, . . . ,xn−1,xn)

⊤ andX ′ = (x1, . . . ,xn−1,
x′
n)

⊤, where xn ̸= x′
n, ∥x′

n∥2 ≤ 1, and ∥xi∥2 ≤ 1 (i = 1, · · · , n). Since T = (µ1, · · · ,µr)
is a fixed matrix and µk is a fixed unit vector, based on the Cauchy-Bunyakovsky-Schwarz
inequality we can obtain that

∥W(X)−W(X ′)∥1 = ∥XT−X ′T∥1 = ∥(X −X ′)T∥1 = ∥(xn − x′
n)

⊤T∥1
=

∑r
k=1 |

∑p
j=1(xnj − x′nj)µkj |

≤
∑r

k=1

∑p
j=1 |(xnj − x′nj)µkj |

=
∑r

k=1 ∥(xn − x′
n)

⊤µk∥1
≤

∑r
k=1 ∥xn − x′

n∥2 · ∥µk∥2 ≤ 2r,

where the norm of the matrix A ∈ Rn×p is ∥A∥1 =
∑n

i=1

∑p
j=1 |aij |. Thus, we have the

ℓ1-sensitivity is
∆W = max

X ′
:|X−X ′|1=1

∥W(X)−W(X ′)∥1 ≤ 2r.

The proof of the lemma is completed.

C. Proof of Lemma 7

Proof. Consider any two vectors zj ∈ Rn and z′j ∈ Rn which contain at most one

different record. Without loss of generality, let zj = (z1j , · · · , zn−1,j , znj)
⊤ and z′j =

(z1j , · · · , zn−1,j , z
′
nj)

⊤. Since f j(zj) = (fj0(zj), fj1(zj), · · · , fj,Lj−1(zj), fj,Lj (zj)), fjl(xj) =∑n
i=1 I(xij < l)/n and 0 = fj0(xj) ≤ fj1(xj) ≤ · · · ≤ fj,Lj−1(xj) ≤ fj,Lj (xj) = 1 for any

xj ∈ Rn, we have

∥f j(zj)− f j(z
′
j)∥1 =

∑Lj−1
k=1 |fjk(zj)− fjk(z

′
j)|

=
∑Lj−1

k=1 |I(zjn < k)− I(z′jn < k)|/n
≤

∑Lj−1
k=1 1/n

= (Lj − 1)/n.

The proof of the lemma is completed.

22



Differentially Private Data Release for Mixed-type Data via Latent Factor Models

D. Proof of Lemma 8

Proof. Let two n × p matrices X and X ′ contain at most one different record. Denote
the perturbed eigenvectors µ̃i = µi(X) + b and µ̃′

i = µi(X
′) + b′, where each element

of the vectors b and b′ ∈ Rp is from the Laplace distribution Lap(2
√
p/ϵ1i). Let µ∗ =

(µ∗
1, · · · , µ∗

p)
⊤∈ Rp. Based on Lemma 5, we can obtain that

Pr(µ̃i = µ∗|X)

Pr(µ̃′
i = µ∗|X ′)

=
Pr(b = µ∗ − µi(X)|X)

Pr(b′ = µ∗ − µi(X
′)|X ′)

= exp
{

ϵ1i
2
√
p(∥µ

∗ − µi(X
′)∥1 − ∥µ∗ − µi(X)∥1)

}
≤ exp

{
ϵ1i
2
√
p∥µi(X

′)− µi(X)∥1
}

≤ exp

{
ϵ1i
2
√
p max
X ′

:∥X−X ′∥1=1

∥µi(X
′)− µi(X)∥1

}
≤ exp(ϵ1i).

Thus we have Pr(µ̃i = µ∗|X) ≤ eϵ1i Pr(µ̃′
i = µ∗|X ′) for any µ∗ ∈ Rp. Based on the

definition of ϵ-differential privacy (Dwork and Roth, 2014), the lemma holds.

E. Proof of Lemma 9

Proof. Let V (X) = (µ1, · · · ,µr), where µi is the eigenvector corresponding to the i-th
largest eigenvalue of the matrix X⊤X. We know that

M(X) = V (X) +B = (µ1 + b1, · · · ,µr + br).

Based on Lemma 8 and composition theorem (Dwork and Roth, 2014), we can obtain that
M is

∑r
i=1 ϵ1i-differentially private, that is, ϵ1-differentially private. The proof of the lemma

is completed.

F. Proof of Theorem 10

Proof. Consider any matrices X ∈ Rn×p and X ′ ∈ Rn×p which contain at most one
different record. That is, let X = (x1, . . . ,xn−1,xn)

⊤ and X ′ = (x1, . . . ,xn−1,

x′
n)

⊤, where xn ̸= x′
n, ∥x′

n∥2 ≤ 1, and ∥xi∥2 ≤ 1 (i = 1, · · · , n). Denote X̃ and X̃ ′ as the

matrices released via Algorithm 1 based on X and X ′, respectively. That is, X̃ = W̃Λ̃
⊤
,

and X̃ ′ = W̃′Λ̃′⊤, where Λ̃ and Λ̃′ are the perturbed factor loading matrices from Step 3(II)

of Algorithm1 based on X and X ′, respectively, and W̃ = XΛ̃+C and W̃′ = X ′Λ̃′ +C ′

are the perturbed factor matrices, in which C and C ′ are generated from the Step 3(I) of
Algorithm 1. Denote Z as the range of the synthesized matrix released via Algorithm 1.
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For any Z ∈ Z, the privacy loss satisfies that

Pr(X̃ = Z|X)

Pr(X̃ ′ = Z|X ′)
=

∫
T

∫
N
Pr(W̃Λ̃

⊤
= Z,W̃ = N, Λ̃ = T|X)dNdT∫

T

∫
N
Pr(W̃′Λ̃′⊤= Z,W̃′ = N, Λ̃′ = T|X ′)dNdT

=

∫
T

∫
N
Pr{W̃Λ̃

⊤
= Z|W̃ = N, Λ̃ = T}Pr(XΛ̃+C = N|X, Λ̃ = T) Pr(Λ̃ = T|X)dNdT∫

T

∫
N
Pr{W̃′Λ̃′⊤= Z|W̃′ = N, Λ̃′ = T}Pr(X ′Λ̃′ +C ′ = N|X ′, Λ̃′ = T) Pr(Λ̃′ = T|X ′)dNdT

(10)
where N and T are the ranges of the factor matrix and loading matrix from the Step 3(II)
of Algorithm 1. Based on Step 2(ii) and Step 3(II) of Algorithm 1, we know that T consists
of p × r unit orthogonal matrices. Note that the above integrals represent the multiple
integrals with respect to each entry in the matrix N and T.

Based on Lemma 9, we can show that V ∗ generated via the Step 2(i) of Algorithm 1 is
ϵ1-differentially private. Based on Step 2(ii) in the Algorithm 1, Ṽ = g(V ∗), where g(V ∗)
is a p × r unit orthogonal matrix obtained by the top r left-singular vectors of the matrix
V ∗. That is, V ∗ = SQR and Ṽ = Sr, where Q is a p× r rectangular diagonal matrix with
singular values of V ∗ in decreasing order on the diagonal, R is a r×r unit orthogonal matrix
with each column being the corresponding right-singular vector, S is a p×p unit orthogonal
matrix with each column being the corresponding left-singular vector, and Sr is a p × r
unit orthogonal matrix with the columns being the top r left-singular vectors. Based on
the post-processing property of differential privacy (Dwork and Roth, 2014), Ṽ from Step
2(ii) of Algorithm 1 is also ϵ1-differentially private. Based on the definition of ϵ-differential

privacy (Dwork and Roth, 2014), we have that Pr(Ṽ = T|X) ≤ eϵ1 Pr(Ṽ ′ = T|X ′) for any
T ∈ T. Thus, we have

Pr(Λ̃ = T|X) ≤ eϵ1 Pr(Λ̃′ = T|X ′). (11)

Based on Lemma 6, we have

Pr
(
XΛ̃+C = N|X, Λ̃ = T

)
Pr

(
X ′Λ̃′ +C ′ = N|X ′, Λ̃′ = T

) =
Pr

(
C = N−XΛ̃|X, Λ̃ = T

)
Pr

(
C ′ = N−X ′Λ̃′|X ′, Λ̃′ = T

)
=

Pr
(
C = N−XT|X, Λ̃ = T

)
Pr

(
C ′ = N−X ′T|X ′, Λ̃′ = T

)
= exp

{
ϵ2
2r (∥N−X ′T∥1 − ∥N−XT∥1)

}
≤ exp

{
ϵ2
2r∥(X −X ′)T∥1

}
≤ eϵ2 .

Therefore we have

Pr(XΛ̃+C = N|X, Λ̃ = T) ≤ eϵ2 Pr(X ′Λ̃′ +C ′ = N|X ′, Λ̃′ = T). (12)
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Based on the inequality (11)-(12) and the equality (10), we have

Pr(X̃ = Z|X)

Pr(X̃ ′ = Z|X ′)
≤∫

T

∫
N
Pr{W̃Λ̃

⊤
= Z|W̃ = N, Λ̃ = T}eϵ2 Pr(X ′Λ̃′ +C ′ = N|X ′, Λ̃′ = T)eϵ1 Pr(Λ̃′ = T|X ′)dNdT∫

T

∫
N
Pr{W̃′Λ̃′⊤= Z|W̃′ = N, Λ̃′ = T}Pr(X ′Λ̃′ +C ′ = N|X ′, Λ̃′ = T) Pr(Λ̃′ = T|X ′)dNdT

= eϵ1+ϵ2 .

That is, the privacy loss satisfies

max
Z∈Z

Pr(X̃ = Z|X)

Pr(X̃ ′ = Z|X ′)
≤ eϵ1+ϵ2 .

Thus, Algorithm 1 is ϵ1 + ϵ2-differentially private. The proof of the theorem is completed.

Lemma 16 For any matrices A ∈ Rn×m and D ∈ Rn×m where the rank of A is p and
p = min(m,n),

∥Π(p)
A (I−Π

(p)
D )∥2 ≤ ∥A−D∥2/σp(A),

where Πk
A is the projector to the subspace spanned by the top k left singular vectors of the

matrix A, and Πk
D is also the projector. That is, Π

(p)
A = UU⊤, U is a matrix with the

columns being the first p left singular vectors of A, and σp(A) is the p-th singular value.

Proof. The lemma can be prived based on the proof of the spectral perturbation bound
from matrix perturbation theory (Mcsherry and Karlin, 2004). This proof is inspired by
the proof of the theorem 7 in (Mcsherry and Karlin, 2004). We first start by proving the

bound for symmetric matrices A and D, where Π
(p)
A = Π

(p)

A⊤, and Π
(p)
D = Π

(p)

D⊤, in which

Π
(p)

A⊤ = V V⊤ and V is a matrix with the columns being the first p right singular vectors of
A. At this point, n = m = p. Notice that in this case

Π
(p)
A (A−D)(I−Π

(p)
D ) = Π

(p)
A A(I−Π

(p)
D )−Π

(p)
A D(I−Π

(p)
D )

= AΠ
(p)

A⊤(I−Π
(p)
D )−Π

(p)
A D(I−Π

(p)

D⊤)

= AΠ
(p)
A (I−Π

(p)
D )−Π

(p)
A (I−Π

(p)
D )D.

Recall from its definition that the L2 norm is defined by a unit vector which undergoes

maximum stretch when multiplied by the matrix. Let x be an unit vector such that |Π(p)
A (I−

Π
(p)
D )x| = ∥Π(p)

A (I−Π
(p)
D )∥2. Based on the triangle inequality, we have

|Π(p)
A (A−D)(I−Π

(p)
D )x| ≥ |AΠ

(p)
A (I−Π

(p)
D )x| − |Π(p)

A (I−Π
(p)
D )Dx|.

Note that Π
(p)
A (I−Π

(p)
D )x lies in the space spanned by the first p left singular vectors of A,

and so when multiplied by A its norm increases by at least a factor of σp(A). And Π
(p)
A (I−

Π
(p)
D ) annihilates any aspect of Dx that emerges on the first p left singular vectors of D, and
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so |Π(p)
A (I−Π

(p)
D )Dx| = |Π(p)

A (I−Π
(p)
D )(D−D(p))x| = 0, where D(p) =

∑
i≤p σiuiv

⊤
i = D,

σi is the i-th singular value of D, and ui and vi are the corresponding left and right singular
vectors of D, respectively. Thus, we can obtain that

∥A−D∥2 ≥ σp(A)∥Π(p)
A (I−Π

(p)
D )∥2.

Then, we have

∥Π(p)
A (I−Π

(p)
D )∥2 ≤ ∥A−D∥2/σp(A).

The proof for the case of symmetric A and D is completed. Based on the above result,
the proof for the case of arbitrary matrices can be completed simularly to the proof of the
theorem 7 in Mcsherry and Karlin (2004).

G. Proof of Lemma 11

Proof. Let Π = V V⊤ and Π̃ = Ṽ Ṽ
⊤
. It is easy to obtain the following equation

Π− Π̃ = Π−ΠΠ̃+ΠΠ̃− Π̃ = Π(I− Π̃)− (I−Π)Π̃.

Based on the inequality that ∥A∥F ≤
√
r∥A∥2 where r is the rank of the matrix A and

∥A∥F and ∥A∥2 are the Frobenius norm and the spectral norm respectively, we have

∥Π− Π̃∥F = ∥Π(I− Π̃)− (I−Π)Π̃∥F
≤ ∥Π(I− Π̃)∥F + ∥(I−Π)Π̃∥F
= ∥Π(I− Π̃)∥F + ∥Π̃(I−Π)∥F
≤

√
r(∥Π(I− Π̃)∥2 + ∥Π̃(I−Π)∥2).

Let A = V and D = V +B. Since the V is a p × r unit orthogonal matrix with the
eignvectors as the columns, the singular values of the A are σj(A) = 1 for j = 1, 2, . . . , r,
and the projector to the subspace spanned by the top r singular vectors of the A is Πr(A) =
V V⊤. Based on Step 2(ii) in the Algorithm 1, it is easy to find that the projector to the

subspace spanned by the top r singular vectors of the D is Πr(D) = Ṽ Ṽ
⊤
. Based on the

above lemma 16, we have

∥Π(I− Π̃)∥2 = ∥Πr(A)(I−Πr(D))∥2
≤ ∥A−D∥2/σr(A) = ∥ −B∥2.

Since each entry of the j-th column of B = (b1 · · · ,br) is independent from Lap(2
√
p/ϵ1j),

we have E(∥B∥2F ) =
∑r

j=1E(∥bj∥22) = 8p2
∑r

j=1 1/ϵ
2
1j . Based on Jensen’s inequality, we

have E(∥B∥F ) ≤
√

E(∥B∥2F ) = 2
√
2p

√∑r
j=1 1/ϵ

2
1j . Based on Markov’s inequality, we have

with high probability ∥B∥2 = O(p/ϵ1
√∑r

j=1 1/ω
2
j ). Thus, we have that

∥Π(I− Π̃)∥2 = O(p/ϵ1
√∑r

j=1 1/ω
2
j ).

Let A = V +B and D = V . Based on the above lemma 16, we have

∥Π̃(I−Π)∥2 ≤ ∥A−D∥2/σr(A) = ∥B∥2/σr(A).
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since σr(A) = σr(V +B) ≥ σr(V ) + σr(B) = 1 + σr(B) ≥ 1, we can obtain

∥Π̃(I−Π)∥2 ≤ ∥B∥2/σr(A) ≤ ∥B∥2.

Similarly, we have that

∥Π̃(I−Π)∥2 = O(p/ϵ1
√∑r

j=1 1/ω
2
j ).

Since
∑r

j=1 1/ω
2
j = O(1), we can obtain that

∥V V⊤− Ṽ Ṽ
⊤
∥F = ∥Π− Π̃∥F = O(

√
rp/ϵ1

√∑r
j=1 1/ω

2
j ) = O(

√
rp/ϵ1).

The proof of the lemma is completed.

H. Proof of Theorem 12

Proof. Based on the framework of the factor model, we have X̂ = ŴΛ̂
⊤
= XV V⊤, where

V = (µ1, · · · ,µr) is a p× r matrix and µi (i = 1, · · · , r) is the eigenvector corresponding to
the i-th largest eigenvalue of the matrix A = X⊤X in decreasing order. Based on Algorithm

1, we have X̃ = W̃Λ̃
⊤
= (XṼ +C)Ṽ

⊤
= XṼ Ṽ

⊤
+CṼ

⊤
. Thus, we can obtain

X̃ −X = X̂ −X +X(Ṽ Ṽ
⊤
− V V⊤) +CṼ

⊤
.

Since ∥xi∥2 ≤ 1, we have ∥X∥F ≤
√
n. Since µ̃r is a unit vector, we can obtain that

∥X̃ −X∥F ≤ ∥X̂ −X∥F +
√
n∥Ṽ Ṽ

⊤
− V V⊤∥F + ∥+CṼ

⊤
∥F .

Based on Step 3(I) in Algorithm 1, we know that each entry of C is from Lap(2r/ϵ2). Based
on Jensen’s inequality, we have

E (∥C∥F ) = E
(√∑r

k=1

∑n
j=1 c

2
kj

)
≤

√∑r
k=1

∑n
j=1E(c2kj) = 2r

√
2rn/ϵ2.

Since X has eigenvalues ν1, · · · , νmin(n,p), we have

∥X̂ −X∥F = ∥XV V⊤−X∥F =

√√√√min(n,p)∑
i=r

νi <

√√√√min(n,p)∑
i=1

νi = ∥X∥F ≤
√
n.

Since ϵ1 = cϵ and ϵ2 = (1− c)ϵ for c ∈ (0, 1) and the number r is fixed, based on Theorem
11 and Markov’s inequality, we have with high probability

∥X̃ −X∥F ≤ ∥X̂ −X∥F +O(
√
rp/ϵ1 + r

√
rn/ϵ2)

≤ ∥X̂ −X∥F +O((p+
√
n)/ϵ)

≤ O (
√
n+ (p+

√
n)/ϵ) .

The proof of the theorem is completed.
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I. Proof of Theorem 15

Proof. Let X = (Y ,Z,U) ∈ Rn×p be original data, where Y ∈ Rn×p1 is the continuous
data matrix, Z ∈ Rn×p2 is the ordinal categorical data matrix, andU ∈ Rn×p3 is the nominal
categorical data matrix. Let X̃ = (Ỹ , Z̃, Ũ) ∈ Rn×p be synthetic data from Algorithm 3.
Then we have

∥X̃ −X∥2F = ∥Ỹ − Y ∥2F + ∥Z̃− Z∥2F + ∥Ũ −U∥2F ,

where

∥Z̃− Z∥2F =

n∑
i=1

p2∑
j=1

|z̃ij − zij |2 ≤ n

p2∑
j=1

(Lj − 1)2,

and

∥Ũ −U∥2F =
n∑

i=1

p3∑
j=1

|ũij − uij |2 ≤ n

p3∑
j=1

(Mj − 1)2.

Based on Theorem 12, we have

∥Ỹ − Y ∥F = O (
√
n+ (p1 +

√
n)/ϵ) .

Since max1≤j≤p2(Lj − 1)2 = O(1) and max1≤j≤p3(Mj − 1)2 = O(1), we can obtain that

∥X̃ −X∥F ≤ ∥Ỹ − Y ∥F + ∥Z̃− Z∥F + ∥Ũ −U∥F
= O

(√
n+ (p1 +

√
n)/ϵ+

√
n
∑p2

j=1(Lj − 1)2 +
√
n
∑p3

j=1(Mj − 1)2
)

= O
(√

n+ (p1 +
√
n)/ϵ+

√
np2 +

√
np3

)
.

The proof of the theorem is completed.

J. Simulation results

The results of the simulation studies as ϵ = 0.1 and 5 are reported in Tables 3 and 4. From
Table 3, we find that when p = 22, the maximum discrepancies of the accuracy, AUC and
F1 score of the proposed methods compared with those of the original data are 0.038, 0.058
and 0.020, respectively. However, the maximum discrepancies of the three criteria of the
competing methods from those of the original data are 0.135, 0.544 and 0.081, respectively.
From Table 4, we show that when p = 80, the maximum discrepancies of the three criteria of
the proposed method from those of the original data are 0.065, 0.120 and 0.034, respectively.
However, the maximum discrepancies of the three criteria of the competing methods from
those of the original data are 0.101, 0.540 and 0.060, respectively. This implies that although
the proposed methods also have utility losses in order to satisfy certain privacy protection
requirements, the utility losses are much lower than those of the competing methods in all
of simulation settings.
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Table 3: Average criteria of three classifiers and standard deviation in parentheses for syn-
thetic testing data from eight algorithms and raw validating data in setting (I).

Testing Data Validating Data
accuracy AUC F1 score accuracy AUC F1 score

AR-1:
Original 0.942(0.041) 0.976(0.033) 0.965(0.025) 0.942(0.041) 0.976(0.033) 0.965(0.025)

ϵ = 0.1
DPFM1 0.907(0.048) 0.921(0.068) 0.947(0.029) 0.928(0.042) 0.959(0.040) 0.958(0.026)
DPFM2 0.904(0.048) 0.918(0.075) 0.945(0.029) 0.928(0.042)0.960(0.042)0.958(0.026)
DPFM3 0.904(0.048) 0.923(0.067) 0.945(0.029) 0.928(0.043)0.960(0.043)0.958(0.026)
DPFM4 0.906(0.049) 0.926(0.061) 0.946(0.029) 0.926(0.043) 0.960(0.039) 0.956(0.027)
DPRP 0.826(0.054) 0.479(0.106) 0.904(0.032) 0.824(0.099) 0.518(0.211) 0.884(0.115)

PCAPPD 0.831(0.054) 0.452(0.155) 0.906(0.033) 0.828(0.092) 0.471(0.212) 0.897(0.089)
PrivBay 0.836(0.051) 0.513(0.104) 0.910(0.031) 0.831(0.054) 0.524(0.174) 0.907(0.032)
PrivPGM 0.827(0.056) 0.499(0.116) 0.904(0.034) 0.809(0.077) 0.473(0.198) 0.892(0.050)

ϵ = 5
DPFM1 0.906(0.051) 0.923(0.070) 0.946(0.031) 0.926(0.043) 0.961(0.039) 0.957(0.026)
DPFM2 0.904(0.050) 0.918(0.076) 0.945(0.030) 0.927(0.042) 0.959(0.046) 0.957(0.025)
DPFM3 0.905(0.051) 0.924(0.070) 0.945(0.031) 0.925(0.044) 0.960(0.040) 0.956(0.026)
DPFM4 0.906(0.050) 0.925(0.069)0.946(0.030) 0.927(0.043)0.963(0.036)0.957(0.026)
DPRP 0.827(0.054) 0.498(0.120) 0.904(0.032) 0.841(0.052) 0.557(0.224) 0.913(0.031)

PCAPPD 0.832(0.053) 0.458(0.152) 0.907(0.032) 0.831(0.076) 0.557(0.194) 0.904(0.060)
PrivBay 0.832(0.049) 0.493(0.125) 0.907(0.029) 0.839(0.052) 0.576(0.190) 0.911(0.031)
PrivPGM 0.835(0.054) 0.512(0.138) 0.909(0.033) 0.838(0.052) 0.432(0.183) 0.911(0.031)
Exch:
Original 0.940(0.039) 0.977(0.026) 0.964(0.024) 0.940(0.039) 0.977(0.026) 0.964(0.024)

ϵ = 0.1
DPFM1 0.907(0.047) 0.923(0.068) 0.946(0.028) 0.928(0.039) 0.961(0.039) 0.958(0.024)
DPFM2 0.909(0.0546)0.924(0.066)0.948(0.027) 0.928(0.041) 0.963(0.039) 0.958(0.024)
DPFM3 0.910(0.045) 0.924(0.067)0.948(0.026) 0.929(0.040) 0.962(0.039) 0.958(0.024)
DPFM4 0.909(0.045) 0.924(0.068) 0.947(0.027) 0.929(0.040) 0.962(0.039) 0.959(0.024)
DPRP 0.829(0.054) 0.509(0.116) 0.905(0.033) 0.832(0.082) 0.492(0.203) 0.899(0.089)

PCAPPD 0.833(0.054) 0.463(0.155) 0.908(0.032) 0.828(0.091) 0.454(0.205) 0.897(0.088)
PrivBay 0.835(0.050) 0.497(0.120) 0.909(0.030) 0.833(0.052) 0.514(0.193) 0.908(0.031)
PrivPGM 0.832(0.053) 0.487(0.159) 0.907(0.033) 0.805(0.086) 0.479(0.201) 0.887(0.065)

ϵ = 5
DPFM1 0.908(0.046) 0.925(0.069)0.947(0.028) 0.933(0.039) 0.961(0.041) 0.961(0.024)
DPFM2 0.907(0.046) 0.924(0.068) 0.947(0.027) 0.931(0.041) 0.964(0.037) 0.960(0.025)
DPFM3 0.906(0.048) 0.921(0.069) 0.946(0.029) 0.932(0.039) 0.962(0.039) 0.960(0.023)
DPFM4 0.907(0.048) 0.919(0.070) 0.946(0.028) 0.933(0.038) 0.961(0.040) 0.961(0.023)
DPRP 0.826(0.053) 0.517(0.101) 0.904(0.032) 0.841(0.050) 0.522(0.216) 0.913(0.030)

PCAPPDP 0.833(0.055) 0.460(0.154) 0.907(0.033) 0.830(0.076) 0.547(0.223) 0.903(0.061)
PrivBay 0.832(0.047) 0.512(0.120) 0.907(0.028) 0.835(0.050) 0.559(0.185) 0.909(0.030)
PrivPGM 0.835(0.047) 0.504(0.128) 0.910(0.028) 0.835(0.048) 0.464(0.181) 0.909(0.029)
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Table 4: Average criteria of three classifiers and standard deviation in parentheses for syn-
thetic testing data from eight algorithms and raw validating data in setting (II).

Testing Data Validating Data
accuracy AUC F1 score accuracy AUC F1 score

AR-1:
Original 0.925(0.042) 0.970(0.028) 0.957(0.025) 0.925(0.042) 0.970(0.028) 0.957(0.025)

ϵ = 0.1
DPFM1 0.873(0.047) 0.853(0.102) 0.929(0.027) 0.898(0.046) 0.933(0.058) 0.942(0.027)
DPFM2 0.872(0.049) 0.850(0.104) 0.929(0.029) 0.896(0.047) 0.934(0.057) 0.941(0.027)
DPFM3 0.872(0.049) 0.850(0.103) 0.929(0.029) 0.896(0.047) 0.934(0.057) 0.941(0.027)
DPFM4 0.872(0.048) 0.855(0.100)0.929(0.028) 0.898(0.046) 0.934(0.057) 0.942(0.027)
DPRP 0.843(0.043) 0.518(0.149) 0.914(0.025) 0.856(0.038) 0.510(0.161) 0.922(0.022)

PCAPPD 0.847(0.043) 0.430(0.114) 0.916(0.025) 0.856(0.038) 0.477(0.162) 0.922(0.022)
PrivBay 0.850(0.041) 0.503(0.120) 0.918(0.024) 0.848(0.042) 0.500(0.147) 0.917(0.024)
PrivPGM 0.849(0.039) 0.504(0.135) 0.918(0.023) 0.848(0.042) 0.479(0.142) 0.917(0.026)

ϵ = 5
DPFM1 0.870(0.047) 0.850(0.099) 0.928(0.028) 0.895(0.047) 0.932(0.063) 0.940(0.028)
DPFM2 0.872(0.049)0.856(0.101)0.929(0.029) 0.896(0.048)0.931(0.0461) 0.941(0.028)
DPFM3 0.872(0.049) 0.852(0.103) 0.924(0.029) 0.896(0.048) 0.931(0.064) 0.941(0.028)
DPFM4 0.871(0.046) 0.854(0.100) 0.928(0.027) 0.896(0.048) 0.932(0.064) 0.941(0.028)
DPRP 0.840(0.049) 0.501(0.153) 0.912(0.030) 0.856(0.038) 0.520(0.172) 0.922(0.022)

PCAPPD 0.847(0.042) 0.446(0.111) 0.917(0.025) 0.856(0.038) 0.524(0.179) 0.922(0.022)
PrivBay 0.867(0.094) 0.584(0.218) 0.925(0.051) 0.863(0.088) 0.603(0.155) 0.925(0.051)
PrivPGM 0.851(0.040) 0.486(0.126) 0.919(0.023) 0.850(0.040) 0.496(0.142) 0.919(0.023)
Exch:
Original 0.943(0.038) 0.977(0.033) 0.966(0.023) 0.943(0.038) 0.977(0.033) 0.966(0.023)

ϵ = 0.1
DPFM1 0.882(0.051) 0.880(0.088) 0.934(0.030) 0.912(0.043) 0.952(0.043) 0.949(0.026)
DPFM2 0.881(0.049) 0.883(0.085)0.934(0.029) 0.913(0.045) 0.953(0.042) 0.949(0.027)
DPFM3 0.881(0.049) 0.883(0.085) 0.933(0.029) 0.912(0.045) 0.953(0.042) 0.949(0.027)
DPFM4 0.882(0.048) 0.877(0.088) 0.934(0.028) 0.916(0.043) 0.955(0.045) 0.951(0.026)
DPRP 0.848(0.049) 0.539(0.148) 0.916(0.029) 0.842(0.087) 0.505(0.172) 0.906(0.086)

PCAPPD 0.848(0.049) 0.440(0.119) 0.917(0.029) 0.856(0.044) 0.480(0.169) 0.922(0.027)
PrivBay 0.848(0.049) 0.502(0.162) 0.917(0.029) 0.843(0.055) 0.520(0.169) 0.914(0.034)
PrivPGM 0.847(0.042) 0.506(0.151) 0.917(0.025) 0.849(0.050) 0.466(0.171) 0.917(0.031)

ϵ = 5
DPFM1 0.878(0.048) 0.879(0.086) 0.932(0.028) 0.912(0.047) 0.955(0.044) 0.949(0.028)
DPFM2 0.880(0.050) 0.882(0.086) 0.933(0.029) 0.914(0.046) 0.955(0.045) 0.950(0.027)
DPFM3 0.880(0.049)0.883(0.085)0.933(0.029) 0.913(0.046) 0.954(0.045) 0.950(0.027)
DPFM4 0.879(0.048) 0.882(0.084) 0.932(0.028) 0.911(0.046) 0.952(0.047) 0.948(0.028)
DPRP 0.843(0.049) 0.535(0.161) 0.913(0.029) 0.843(0.087) 0.521(0.190) 0.906(0.086)

PCAPPD 0.847(0.047) 0.448(0.111) 0.917(0.028) 0.856(0.044) 0.517(0.177) 0.922(0.026)
PrivBay 0.850(0.094) 0.610(0.140) 0.917(0.056) 0.846(0.100) 0.538(0.063) 0.915(0.059)
PrivPGM 0.850(0.046) 0.528(0.120) 0.918(0.027) 0.850(0.039) 0.510(0.153) 0.918(0.023)
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K. Real data analysis results

The results of ϵ = 0.1 and 5 for the three real data analyses are shown in Tables 5 - 7. These
results show that the proposed method can generate synthetic data with high utility for
various types of the original data. Specifically, from Table 5, we observe that the maximum
discrepancies of the accuracy, AUC and F1 score of the proposed method compared with
those of the original data are 0.027, 0.054 and 0.015, respectively. In addition, the maximum
discrepancies of the three criteria from other methods compared with those of the original
data are 0.289, 0.368 and 0.080, respectively. From Table 7, we observe that the maximum
discrepancies of the accuracy, AUC and F1 score of the proposed method compared with
those of the original data are 0.120, 0.157 and 0.157, respectively. In addition, the maximum
discrepancies of the three criteria from other methods compared with those of the original
data are 0.263, 0.368 and 0.334, respectively. This indicates that although the proposed
method has utility loss in order to satisfy a certain privacy protection requirement, the
utility loss is lower than that of the competing methods. Tables 6 shows similar performance
results.

Table 5: Average criteria of three classifiers and standard deviation in parentheses for test-
ing synthetic data from five algorithms and validating data from the Census Income
Data.

Testing Data Validating Data
accuracy AUC F1 score accuracy AUC F1 score

Original 0.812(0.027) 0.848(0.035) 0.878(0.018) 0.812(0.027) 0.848(0.035) 0.878(0.018)
ϵ = 0.1

DPFM 0.785(0.031)0.795(0.040)0.864(0.021) 0.802(0.031)0.829(0.035)0.874(0.021)
DPRP 0.713(0.029) 0.513(0.046) 0.828(0.021) 0.523(0.100) 0.523(0.070) 0.798(0.172)

PCAPPD 0.708(0.021) 0.486(0.046) 0.825(0.015) 0.725(0.072) 0.529(0.120) 0.823(0.102)
PrivBay 0.722(0.040) 0.494(0.053) 0.834(0.028) 0.716(0.042) 0.492(0.100) 0.832(0.029)
PrivPGM 0.719(0.039) 0.493(0.070) 0.833(0.027) 0.710(0.051) 0.495(0.112) 0.825(0.038)

ϵ = 5
DPFM 0.785(0.031)0.794(0.042)0.863(0.022) 0.802(0.030)0.828(0.037)0.874(0.021)
DPRP 0.716(0.029) 0.501(0.052) 0.830(0.020) 0.722(0.070) 0.489(0.135) 0.826(0.084)

PCAPPD 0.707(0.022) 0.494(0.043) 0.825(0.015) 0.733(0.041) 0.487(0.115) 0.824(0.032)
PrivBay 0.728(0.037) 0.508(0.066) 0.839(0.025) 0.713(0.039) 0.480(0.096) 0.829(0.027)
PrivPGM 0.709(0.033) 0.486(0.075) 0.824(0.023) 0.699(0.051) 0.490(0.097) 0.816(0.037)
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Table 6: Average criteria of three classifiers and standard deviation in parentheses for test-
ing synthetic data from five algorithms and validating data from the Absenteeism
at Work Data.

Testing Data Validating Data
accuracy AUC F1 score accuracy AUC F1 score

Original 0.752(0.050) 0.831(0.049) 0.730(0.063) 0.766(0.047) 0.840(0.044) 0.733(0.061)
ϵ = 0.1

DPFM 0.632(0.040)0.675(0.046)0.573(0.055) 0.655(0.040)0.717(0.044)0.596(0.055)
DPRP 0.501(0.041) 0.498(0.050) 0.418(0.050) 0.502(0.045) 0.496(0.064) 0.253(0.314)

PCAPPD 0.506(0.036) 0.494(0.045) 0.402(0.052) 0.506(0.046) 0.498(0.059) 0.166(0.280)
PrivBay 0.511(0.068) 0.497(0.086) 0.350(0.104) 0.508(0.066) 0.490(0.077) 0.339(0.135)
PrivPGM 0.498(0.053) 0.492(0.061) 0.276(0.044) 0.503(0.067) 0.490(0.108) 0.298(0.154)

ϵ = 5
DPFM 0.632(0.040)0.674(0.045)0.572(0.055) 0.656(0.041)0.717(0.044)0.597(0.056)
DPRP 0.506(0.043) 0.497(0.050) 0.408(0.061) 0.516(0.046) 0.510(0.068) 0.200(0.296)

PCAPPD 0.505(0.036) 0.494(0.043) 0.396(0.051) 0.512(0.045) 0.512(0.068) 0.199(0.258)
PrivBay 0.508(0.047) 0.489(0.072) 0.358(0.092) 0.515(0.073) 0.512(0.092) 0.357(0.133)
PrivPGM 0.497(0.053) 0.483(0.055) 0.292(0.080) 0.527(0.061) 0.515(0.081) 0.349(0.084)

Table 7: Average criteria of three classifiers and standard deviation in parentheses for test-
ing synthetic data from five algorithms and validating data from the Breast Cancer
Data.

Testing Data Validating Data
accuracy AUC F1 score accuracy AUC F1 score

Original 0.733(0.074) 0.803(0.080) 0.752(0.073) 0.733(0.074) 0.803(0.080) 0.752(0.073)
ϵ = 0.1

DPFM 0.678(0.093)0.735(0.105)0.707(0.085) 0.669(0.103)0.737(0.115)0.711(0.094)
DPRP 0.494(0.100) 0.478(0.131) 0.577(0.097) 0.511(0.085) 0.505(0.148) 0.533(0.303)

PCAPPD 0.503(0.097) 0.483(0.113) 0.563(0.112) 0.519(0.090) 0.523(0.165) 0.418(0.341)
PrivBay 0.527(0.133) 0.531(0.161) 0.588(0.150) 0.508(0.151) 0.511(0.207) 0.553(0.210)
PrivPGM 0.502(0.180) 0.484(0.205) 0.566(0.193) 0.499(0.125) 0.463(0.214) 0.561(0.170)

ϵ = 5
DPFM 0.681(0.093)0.737(0.107)0.710(0.084) 0.673(0.099)0.740(0.114)0.714(0.090)
DPRP 0.495(0.107) 0.487(0.143) 0.578(0.108) 0.531(0.079) 0.505(0.144) 0.538(0.302)

PCAPPD 0.509(0.105) 0.494(0.129) 0.568(0.116) 0.539(0.095) 0.531(0.138) 0.622(0.111)
PrivBay 0.535(0.132) 0.517(0.180) 0.604(0.159) 0.514(0.117) 0.499(0.154) 0.514(0.227)
PrivPGM 0.470(0.155) 0.435(0.205) 0.520(0.218) 0.511(0.124) 0.520(0.190) 0.602(0.158)
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Héber H. Arcolezi. Production of categorical data verifying differential privacy: Conception
and applications to machine learning. arXiv preprint arXiv:2204.00850, 2022.

Raman Arora, Vladimir braverman, and Jalaj Upadhyay. Differentially private robust low-
rank approximation. In Advances in Neural Information Processing Systems, volume 31,
pages 1–9, 2018.

Marco Avella-Medina. Privacy-preserving parametric inference: a case for robust statistics.
Journal of the American Statistical Association, 116(534):969–983, 2021.
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