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Abstract

We analyze the complexity of sampling from a class of heavy-tailed distributions by dis-
cretizing a natural class of Itô diffusions associated with weighted Poincaré inequalities.
Based on a mean-square analysis, we establish the iteration complexity for obtaining a
sample whose distribution is ε close to the target distribution in the Wasserstein-2 metric.
In this paper, our results take the mean-square analysis to its limits, i.e., we invariably
only require that the target density has finite variance, the minimal requirement for a
mean-square analysis. To obtain explicit estimates, we compute upper bounds on certain
moments associated with heavy-tailed targets under various assumptions. We also pro-
vide similar iteration complexity results for the case where only function evaluations of
the unnormalized target density are available by estimating the gradients using a Gaus-
sian smoothing technique. We provide illustrative examples based on the multivariate
t-distribution.

Keywords: Weighted Poincaré inequalities, Itô diffusion, Euler-Marayama discretization,
multivariate t-distribution, Complexity of Sampling.

1. Introduction

The problem of sampling from a given target density π : Rd → R arises in a wide variety
of problems in statistics, machine learning, operations research and applied mathematics.
Markov chain Monte Carlo (MCMC) algorithms are a popular class of algorithms for sam-
pling (Robert and Casella, 1999; Andrieu et al., 2003; Hairer et al., 2006; Brooks et al., 2011;
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Meyn and Tweedie, 2012; Leimkuhler and Matthews, 2016; Douc et al., 2018); a widely used
approach in this domain is to discretize an Itô diffusion that has the target as its stationary
density. A popular choice of diffusion is the overdamped Langevin diffusion,

dXt = ∇ log π(Xt)dt+
√

2dBt, (1)

where Bt is a d-dimensional Brownian motion. For example, the Unadjusted Langevin
Algorithm1 (Rossky et al., 1978), the Metropolis Adjusted Langevin Algorithm (Roberts
and Tweedie, 1996; Roberts and Rosenthal, 1998) and the proximal sampler (Titsias and
Papaspiliopoulos, 2018; Lee et al., 2021; Vono et al., 2022) arise as different discretizations
of (1). Under light-tailed assumptions, i.e. when the density π has exponentially fast decay-
ing tails, the diffusion Xt in (1) converges exponentially fast to π as its stationary density,
which motivates the use of discretizations of (1) as practical algorithms for sampling. In
the last decade, the non-asymptotic iteration complexity of various discretizations have
been well-explored, thereby providing a relatively comprehensive story of sampling from
light-tailed densities.

Motivated by applications in robust statistics (Kotz and Nadarajah, 2004; Jarner and
Roberts, 2007; Kamatani, 2018), multiple comparison procedures (Genz et al., 2004; Genz
and Bretz, 2009), Bayesian statistics (Gelman et al., 2008; Ghosh et al., 2018), and sta-
tistical machine learning (Balcan and Zhang, 2017; Nguyen et al., 2019; Şimşekli et al.,
2020; Diakonikolas et al., 2020), in this work, we are interested in sampling from densities
that have heavy-tails, for example, those with tails that are polynomially decaying. When
the target density π is heavy-tailed, the solution to (1) does not converge exponentially to
its stationary density in various metrics of interest. Indeed, Theorem 2.4 by Roberts and
Tweedie (1996) shows that if |∇ log π(x)| → 0 as |x| → ∞, then the solution to (1) is not
exponentially ergodic. In the other direction, standard results in the literature, for exam-
ple Wang (2006); Bakry et al. (2014) show that the solution to (1) converging exponentially
fast to its equilibrium density in the χ2 metric, is equivalent to the density π satisfying the
Poincaré inequality, which in turn requires π having exponentially decaying tails. Further-
more, when π has polynomially decaying tails, the convergence is only sub-exponential or
polynomial (Wang, 2006, Chapter 4).

Note that the above results are predominantly for the Langevin diffusion. To verify this
phenomenon for ULA, in Figure 1, we plot instantiations of sample paths of ULA with three
different initializations for sampling from the standard multivariate t-distribution with 4
degrees of freedom. For comparison, we also plot the proposed Itô discretization (introduced
later in (10)). The observed results show empirical evidence of a slow-start phenomenon
associated with ULA for heavy-tailed targets. Recently, Mousavi-Hosseini et al. (2023)
characterized the above phenomenon for ULA theoretically by obtaining upper and lower-
bounds on the iteration complexity of the ULA when the target density satisfies weak-
Poincaré inequalities. A canonical heavy-tailed density that satisfies the weak-Poincaré
inequality is the heavy-tailed multivariate t-distribution. Specifically, Mousavi-Hosseini
et al. (2023) showed that as the tail of the target density get heavier, the ULA exhibits
an exponential dependence on the initial density used. In particular, for the multivariate
t-distribution, the exponential dependence on the initializer is unavoidable unless there

1. We refer to it as ULA in this draft.
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Figure 1: Instantiations of the sample paths of ULA and Itô discretization in (10) for
sampling from two-dimensional standard t-distribution with 4 degrees of freedom. The left,
middle and right panel corresponds to initialization being (10, 10), (−16, 1) and (6,−6)
respectively. For all the plots, both algorithms were run for 150 iterations with step-size set
to 0.03. While we provide three illustrative instantiations here, we observed this general
behavior for various other choices of (relatively smaller) step-sizes and initialization as well.
We also refer to Erdogdu et al. (2018) for an empirical demonstration of divergence of ULA
with relatively larger step-sizes. Additional experimental results are provided in Section 7.

is a good initialization. Hence, algorithms like the ULA obtained as discretizations of the
Langevin diffusion in (1) are suited to sampling only from light-tailed exponentially decaying
densities, and are rather inefficient for sampling from heavy-tailed densities.

Our approach to heavy-tailed sampling is hence based on discretizing certain natural Itô
diffusions that arise in the context of the following Weighted Poincaré inequality (Blanchet
et al., 2009; Bobkov and Ledoux, 2009). Such inequalities could be considered generaliza-
tions of the Brascamp-Lieb inequality (established for the class of log-concave densities)
to a class of heavy-tailed densities. We emphasize here that typical analyses of Langevin
diffusions and ULA assumes densities of the form e−V , where V is a potential function.
Below, we consider densities of the form V −β as they are natural in the context of Weighted
Poincaré inequalities.

Theorem 1 (Weighted Poincaré Inequality; Bobkov and Ledoux (2009)) Let the
target density be of the form πβ ∝ V −β with β > d and V ∈ C2(Rd) positive, convex and
with (∇2V )−1(x) well-defined for all x ∈ Rd. For any smooth and πβ-integrable function g
on Rd and G = V g,

(β + 1)V arπβ (g) ≤
∫
Rd

〈(∇2V )−1∇G,∇G〉
V

dπβ +
d

β − d

(∫
Rd
gdπβ

)2

. (2)

A canonical example of a heavy-tailed density that satisfies the conditions in Theorem 1,
and hence (2), is the multivariate t-distribution. In particular, we consider the following
Itô diffusion process

dXt = −(β − 1)∇V (Xt)dt+
√

2V (Xt)dBt, (3)

where (Bt)t≥0 is a standard Brownian motion in Rd. The Itô diffusion in (3) converges
exponentially fast to the target πβ in the χ2-divergence as long as it satisfies the Weighted
Poincaré inequality and additional mild assumptions; see Proposition 4 for details. Hence,
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we study the oracle complexity of the Euler-Maruyama discretization of (3), for sampling
from heavy-tailed densities. Our proofs are based on mean-square analysis techniques, a
popular technique to analyze numerical discretizations of stochastic differential equations;
see, for example, Milstein and Tretyakov (2004) for an overview. Our results in this paper
pushes mean-square analysis to its limits; the heavy-tailed densities we consider invari-
ably need to have only finite variance, which is the minimum requirement when using this
technique.

1.1 Our Contributions

In this work, we make the following contributions:

• In Theorem 5, we provide upper bounds on the number of iterations required by
the Euler-Maruyama discretization of (3) to obtain a sample that is ε-close in the
Wasserstein-2 metric to the target density. The established bounds are in terms of
certain (first and second-order) moments of the target density π. Our proof technique
is based on a mean-squared analysis; we demonstrate that for the case of multivariate
t-distributions, our analysis is non-vacuous as long as the density has finite variance,
a necessary condition to carry out the mean-squared analysis.
• While the result in Theorem 5 assumes access to the exact gradient of the unnormal-

ized target density function (referred to as the first-order setting), in Theorem 16, we
analyze the case when the gradient is estimated based on function evaluations (the
zeroth-order setting) based on a Gaussian smoothing technique.
• We provide several illustrative examples highlighting the differences between the re-

sults in the first and the zeroth-order setting. Specifically, in Section 5 we show that for
the multivariate t-distribution with smaller degrees of freedom, (and hence the truly
heavy-tailed case) the gradient estimation error is dominated by the discretization er-
ror. Whereas, in the case with larger degrees of freedom (and hence the comparatively
moderately heavy-tailed case), the discretization error is of comparable order to the
gradient estimation error. Hence, the zeroth-order algorithm matches the iteration
complexity of the first-order algorithm by using mini-batch gradient estimators.

1.2 Related Work

Non-asymptotic iteration complexity of different discretizations of (1) have been analyzed
extensively in the last decade. The analysis of the Unadjusted Langevin Algorithm (ULA)
under various light-tailed assumptions was carried out, for example, in Dalalyan (2017);
Durmus and Moulines (2017); Dalalyan and Karagulyan (2019); Durmus et al. (2019); Lee
et al. (2020); Shen and Lee (2019); He et al. (2020); Chen et al. (2020); Durmus et al. (2019);
Dalalyan et al. (2022); Li and Erdogdu (2023); Chen et al. (2020); Chewi et al. (2022) and
references therein. In particular, Vempala and Wibisono (2019); Erdogdu and Hosseinzadeh
(2021); Chewi et al. (2022) analyzed the performance of ULA under various functional in-
equalities suited to light-tailed densities. Furthermore, the recent work of Balasubramanian
et al. (2022) analyzed the performance of (averaged) ULA for target densities that are only
Hölder continuous, albeit in the weaker Fisher information metric.

Several works, for example, Dwivedi et al. (2019); Chewi et al. (2021); Wu et al. (2022),
analyzed the Metropolis-Adjusted Langevin Algorithm (MALA) in light-tailed settings. The
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proximal sampler algorithm was analyzed under various light-tailed assumptions in Lee
et al. (2021); Chen et al. (2022); Liang and Chen (2022); Gopi et al. (2022); Fan et al.
(2023); Gopi et al. (2023). The iteration complexity of the widely used Hamiltonian Monte
Carlo algorithm and discretizations of underdamped Langevin diffusions were analyzed,
for example, in Dalalyan and Riou-Durand (2020); Bou-Rabee et al. (2020); Chen et al.
(2020); Ma et al. (2021); Monmarché (2021); Cao et al. (2021); Wang and Wibisono (2022);
Chen and Vempala (2022). We also refer interested readers to Lu and Wang (2022); Ding
and Li (2021) for non-asymptotic analyses of other MCMC algorithms used in practice in
light-tailed settings.

In the context of heavy-tailed sampling, Kamatani (2018) considered the scaling limits
of appropriately modified Metropolis random walk in an asymptotic setting. Johnson and
Geyer (2012) proposed a variable transformation method in the context of Metropolis Ran-
dom Walk algorithms. Here, the heavy-tailed density is converted into a light-tailed one
based on certain invertible transformations so that one can leverage the rich literature on
light-tailed sampling algorithms. Similar ideas were also examined recently in Yang et al.
(2022). It is also worth highlighting that Deligiannidis et al. (2019); Durmus et al. (2020)
and Bierkens et al. (2019) used the transformation approach for proving asymptotic expo-
nential ergodicity of bouncy particle and zig-zag samplers respectively, in the heavy-tailed
setting. We also point out the recent works of Andrieu et al. (2021) and Andrieu et al.
(2022) that establish similar sub-exponential ergodicity results for other sampling methods
such as the piecewise deterministic Markov process Monte Carlo, independent Metropolis-
Hastings sampler and pseudo-marginal methods in the polynomially heavy-tailed setting.
The works of Şimşekli et al. (2020); Huang et al. (2021) and Zhang and Zhang (2023)
established exponential ergodicity results for diffusions driven by α-stable processes with
heavy-tailed densities as its equilibrium in the continuous-time setting. However, the prob-
lem of obtaining convergence results for practical discretizations of these diffusions is still
largely open.

The literature on non-asymptotic oracle complexity analysis of heavy-tailed sampling
is extremely limited. Chandrasekaran et al. (2009) considered the iteration complexity of
Metropolis random walk algorithm for sampling from s-concave distributions. He et al.
(2023) considered ULA on a class of transformed densities (i.e., the heavy-tailed density
is transformed to a light-tailed one with an invertible transformation, similar to Johnson
and Geyer (2012)) and established non-asymptotic oracle complexity results. However,
they focused mainly on the case of isotropic densities. Li et al. (2019) analyzed a class of
discretizations of general Itô diffusions that admit heavy-tailed equilibrium densities. A
detailed comparison to Li et al. (2019) is provided in Section 5.

The recent works by Hsieh et al. (2018); Zhang et al. (2020); Chewi et al. (2020); Ahn and
Chewi (2021); Jiang (2021); Li et al. (2022) also considered sampling based on discretizations
of the Mirror Langevin diffusions. The above-mentioned works mainly focus on sampling
from constrained densities. The continuous-time convergence is analyzed typically under
the so-called mirror Poincaré inequalities, which are generalizations of the Brascamp-Lieb
inequalities in a different direction compared to the Weighted Poincaré inequalities. The
discretization analysis by Li et al. (2022) is based on mean-squared analysis.

As mentioned previously, our work leverages the literature on weighted functional in-
equalities, that are satisfied by heavy-tailed densities. The weighted Poincare inequality was
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introduced in Blanchet et al. (2009) and Bobkov and Ledoux (2009), and using an extension
of the Brascamp-Lieb inequality, is shown to hold for the class of s-concave densities. We
also refer the interested reader to Cattiaux et al. (2010, 2011); Bonnefont et al. (2016);
Cordero-Erausquin and Gozlan (2017); Cattiaux et al. (2019) for various extensions and
improvements of the works of Blanchet et al. (2009) and Bobkov and Ledoux (2009).

1.3 Notation

We use the following notation throughout the rest of the paper.

• 〈·, ·〉 denotes the Euclidean inner product and | · | denotes the Euclidean norm.
• For two matrices A and B, A � B means that B − A is positive semi-definite. The

2-norm of any d× d matrix A is denoted as ‖A‖2. Id is the d× d identity matrix.
• ∆ denotes the Laplacian, and ∇ denotes the gradient of a given function.
• C2(Rd) refers to the set of all real functions on Rd that are twice continuously differ-

entiable. C2
c (Rd) refers to the set of all functions in C2(Rd) with compact support.

• The Wasserstein-2 distance between two probability measures µ and ν on Rd is
given by

W2(µ, ν) := inf
ζ∈C(µ,ν)

(∫
Rd×Rd

|x− y|2ζ(dx, dy)

) 1
2

.

where C(µ, ν) is the set of all measures on Rd × Rd whose marginals are µ and ν
respectively.
• The χ2 divergence from a probability measure ν to a probability measure µ is de-

fined as

χ2(ν|µ) :=

∫
Rd

(
ν(dx)

µ(dx)
− 1

)2

µ(dx).

• The gamma and beta functions are given by:

Γ(z) :=

∫ ∞
0

tz−1e−tdt, ∀ z > 0, and B(x, y) :=

∫ 1

0
tx−1(1− t)y−1dt, ∀ x, y > 0.

• For two positive quantities f(d), g(d) depending on d, we define f(d) = O(g(d)) if
there exists a constant C > 0 such that f(d) ≤ Cg(d) for all d > 1. We define
f(d) = Θ(g(d)) if there exist constants C1, C2 > 0 such that C1g(d) ≤ f(d) ≤ C2g(d)
for all d > 1. We use Õ to hide log factors in the O notation.

1.4 Organization

In Section 2, we first establish the exponential ergodicity of the Itô diffusion in (3) under
certain assumptions that are favorable for the discretization analysis. We next provide our
main results on the non-asymptotic oracle complexity of the Euler-Maruyama discretization
of (3). In Section 3, we provide moment computations in the heavy-tailed setting that are
required to obtain explicit rates from the results in Section 2. In Section 4, we provide
an extension of our results to the zeroth-order setting. In Section 5 we provide several
illustrative examples. We discuss further implications of our assumptions in Section 6. The
proofs are provided in Section 8 and in Appendices A, B and C.
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2. Itô Discretizations and Weighted Poincare inequalities

In this section, our goal is to analyze the Itô diffusion in (3) which admits a specific class
of heavy-tailed densities as its stationary density. Let X0 follow distribution ρ0 and denote
the distribution of Xt by ρt for all t ≥ 0. For any function ψ ∈ C2

c (Rd), the infinitesimal
generator of (3) is given by

Lψ = −(β − 1)〈∇V,∇ψ〉+ V∆ψ. (4)

Hence, the Fokker-Planck equation corresponding to (3) is

∂tρt = ∇ · (βρt∇V + V∇ρt) = ∇ ·
(
ρtV∇ log

ρt
πβ

)
. (5)

It follows that, under the conditions in Theorem 1, πβ ∝ V −β is the unique stationary
density of (3). We next examine the convergence properties of (3) to its stationary density.
To do so, we introduce the following assumption.

Assumption 1 There exists a positive constant CV such that, for all x ∈ Rd,

〈(∇2V )−1(x)∇V (x),∇V (x)〉
V (x)

≤ CV .

When V is radially symmetric, i.e., when V (x) := φ(|x|) for some φ ∈ C2(R+), the
condition in Assumption 1 simplifies as follows. Note that

∇V (x) =
φ′(|x|)
|x|

x, and ∇2V =

(
φ′′(|x|)− φ′(|x|)

|x|

)
x⊗ x
|x|2

+
φ′(|x|)
|x|

Id,

where ⊗ denotes outer-product. Hence, it follows that it is sufficient for φ to satisfy

φ′(r) ≤ (φ′′(r)r) ∧ (CV φ(r)/r), for all r ≥ 0.

For example, this property holds with CV = p if φ is a p-order polynomial with p ≥ 2 and
non-negative coefficients. For convenience, we also define the following quantity,

δ :=
β − 1− 1

4CV d
1
4CV d

. (6)

The condition δ > 0 will be used in Theorem 5. The meaning behind the constant δ and
the positivity condition will be made clear in Remark 6.

We next provide the following corollary to Theorem 1, motivated by the discussion in
Section 2 of Bobkov and Ledoux (2009).

Corollary 2 Consider the setting of Theorem 1 and suppose further that Assumption 1
holds with CV ∈ (0, β + 1), then for any smooth, πβ-integrable function, φ on Rd,

V arπβ (φ) ≤
(√

β + 1−
√
CV

)−2
∫
Rd
〈V (x)(∇2V )−1(x)∇φ(x),∇φ(x)〉πβ(x)dx. (7)
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Proof [Proof] We start from (2), assume that
∫
Rd gdπβ = 0. Then (2) could be rewritten

as

(β + 1)

∫
Rd
g(x)2πβ(x)dx ≤

∫
Rd

〈(∇2V )−1(x)∇(gV )(x),∇(gV )(x)〉
V (x)

πβ(x)dx.

Now, note that we have the following elementary bound

〈A(u+ v), (u+ v)〉 ≤ r〈Au, u〉+
r

r − 1
〈Av, v〉, u, v ∈ Rd, r > 1,

for any arbitrary positive definite symmetric matrix A ∈ Rd×d. Hence, we obtain

(β + 1)

∫
Rd
g(x)2πβ(x)dx ≤ r

∫
Rd

〈(∇2V )−1(x)g(x)∇V (x), g(x)∇V (x)〉
V (x)

πβ(x)dx

+
r

r − 1

∫
Rd

〈(∇2V )−1(x)V (x)∇g(x), V (x)∇g(x)〉
V (x)

πβ(x)dx.

Invoking the condition in Assumption 1, we further obtain

(β + 1)

∫
Rd
g(x)2πβ(x)dx ≤ rCV

∫
Rd
g(x)2πβ(x)dx

+
r

r − 1

∫
Rd
〈V (x)(∇2V )−1(x)∇g(x),∇g(x)〉πβ(x)dx,

which then implies that, for any r ∈ (1, (β + 1)/CV ),∫
Rd
g(x)2πβ(x)dx ≤ r

(r − 1)(β + 1− rCV )

∫
Rd
〈V (x)(∇2V )−1(x)∇g(x),∇g(x)〉πβ(x)dx.

With the choice of r :=
√

β+1
CV

> 1, we get that for all g such that
∫
gdπβ = 0, and∫

Rd
g(x)2πβ(x)dx ≤

(√
β + 1−

√
CV

)−2
∫
Rd
〈V (x)(∇2V )−1(x)∇g(x),∇g(x)〉πβ(x)dx.

For all general φ, letting g = φ−
∫
φdπβ, we get

V arπβ (φ) ≤
(√

β + 1−
√
CV

)−2
∫
Rd
〈V (x)(∇2V )−1(x)∇φ(x),∇φ(x)〉πβ(x)dx.

When V is strongly convex, Assumption 1 holds under the following sufficient condition.

Assumption 2 The function V : Rd → (0,∞) is twice continuously differentiable and V
satisfies

(1) V is α-strongly convex, i.e. ∇2V (x) � αId for all x ∈ Rd.

(2) There exists a positive constant CV such that, for all x ∈ Rd,

〈∇V (x),∇V (x)〉
V (x)

≤ αCV .
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The following result follows immediately from Assumption 2.

Lemma 3 Let β > d. If Assumption 2 holds with CV ∈ (0, β + 1), then for any smooth,
πβ integrable function φ on Rd, we have

Varπβ (φ) ≤ α−1
(√

β + 1−
√
CV

)−2
∫
Rd
V (x)|∇φ(x)|2πβ(x)dx. (8)

With (8), we can show the exponential decay in χ2-divergence along (3). The proof of
the following proposition is standard, and we include it here for completeness.

Proposition 4 Under the conditions in Lemma 3, for (Xt) following diffusion (3) with ρt
being the distribution of Xt, we have

χ2(ρt|πβ) ≤ exp

(
−2α

(√
β + 1−

√
CV

)2
t

)
χ2(ρ0|πβ). (9)

Proof [Proof of Proposition 3] First we can calculate the derivative of χ2(ρt|π) via (5),

d

dt
χ2(ρt|πβ) =

d

dt

∫
Rd

(
ρt(x)

πβ(x)
− 1

)2

πβ(x)dx

= 2

∫
Rd
∂tρt(x)

(
ρt(x)

πβ(x)
− 1

)
dx

= −2

∫
Rd

〈
∇
(
ρt
πβ

)
(x),∇ log

(
ρt
πβ

)
(x)

〉
V (x)ρt(x)dx

= −2

∫
Rd
V (x)

∣∣∣∣∇( ρtπβ
)

(x)

∣∣∣∣2 πβ(x)dx.

According to (8), we get

d

dt
χ2(ρt|πβ) ≤ −2α

(√
β + 1−

√
CV

)2
Varπβ

(
ρt
πβ

)
= −2α

(√
β + 1−

√
CV

)2
χ2(ρt|πβ).

Finally, (9) follows from Gronwall’s inequality.

The above result shows that for the class of πβ satisfying Assumption 2, the Itô diffusion
in (3), converges exponentially fast to its stationary density. Hence, time-discretizations
of (3) provide a practical way of sampling from that class of densities. The Euler-Maruyama
discretization to (3) is given by

xk+1 = xk − h(β − 1)∇V (xk) +
√

2hV (xk)ξk+1, (10)

where h > 0 is the step size and {ξk}∞k=1 is a sequence of i.i.d. standard Gaussian random
vectors in Rd. We now present our main result on the iteration complexity of (10) for
sampling from πβ. We state our discretization result, based on a mean-square analysis, in
the W2 metric. In particular, we highlight that Proposition 4 requires that condition that
β > d, in addition to Assumption 2, whereas Theorem 5 below, does not. In Section 6, we
revisit these conditions and provide additional insights. Obtaining convergence results in
the stronger χ2-divergence is left for future work.
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Theorem 5 Let V be gradient-Lipschitz with parameter L > 0, satisfying Assumption 2.
Recall the definition of δ in (6) and assume that δ > 0. Let (xk)

∞
k=0 be generated from (10)

with νk denoting the distribution of xk, for all k ≥ 0. Then with the step-size,

h < min

(
1

4(β − 1)L
,

2δ

3(1 + δ)α(β − 1)

)
,

the decay of Wasserstein-2 distance along the Markov chain (xk)
∞
k=0 can be described by the

following equation: For all k ≥ 1,

W2(νk, πβ) ≤ (1−A)kW2(ν0, πβ) +
C

A
+

B√
A(2−A)

. (11)

with A,B and C given respectively in (50), (51) and (52).

Remark 6 (Constant δ) We now motivate the definition and the condition on the con-
stant δ based on exponential contractivity arguments. Let Xt, Yt be two different solutions
to the same stochastic differential equation (SDE) with initial conditions x, y respectively.
We say the SDE is W2-exponential contractive if there exists a constant κ > 0, such that

W2(L(Xt), L(Yt)) ≤ e−κt |x− y|,

where, by L(X), we refer to the law of X.

Uniform dissipativity is a sufficient condition for exponential contractivity (Gorham
et al., 2019, Theorem 10). The uniform dissipativity condition for (3) can be represented
as

−(β − 1)〈∇V (x)−∇V (y), x− y〉+
1

2

∥∥∥√2V (x)Id −
√

2V (y)Id

∥∥∥2

F
≤ −κ|x− y|2,

or equivalently as

−(β − 1)〈∇V (x)−∇V (y), x− y〉+ d|
√
V (x)−

√
V (y)|2 ≤ −κ|x− y|2.

When V satisfies Assumption 2, a sufficient condition for the above uniform dissipativity
condition is given by

− α(β − 1)|x− y|2 +
d

4
αCV |x− y|2 ≤ −κ|x− y|2,

or equivalently,

α

(
β − 1− d

4
CV

)
≤ κ.

The sufficient condition coincides with the condition that δ > 0 in Theorem 5, which also
motivates the assumption in Theorem 5.

10
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Remark 7 (Iteration complexity) With Theorem 5, we can calculate the order of the
iteration complexity to reach an ε-accuracy in Wasserstein-2 distance. With (50),(51),(52),
we have

C

A
=

9(δ + 1)L

αδ
d

1
2h

1
2Eπβ [V (X)]

1
2 +

6(δ + 1)L

αδ
(β − 1)hEπβ

[
|∇V (X)|2

] 1
2 ,

B√
A(2−A)

≤ 8(δ + 3)

δ
d

1
2h

1
2Eπβ [V (X)]

1
2 +

8(δ + 3)

δ
(β − 1)hEπβ

[
|∇V (X)|2

] 1
2 .

The above display implies that

C

A
+

B√
A(2−A)

≤ 9(δ + 3)

δ

(
1 +

L

α

)(
d

1
2h

1
2Eπβ [V (X)]

1
2 + (β − 1)hEπβ

[
|∇V (X)|2

] 1
2

)
.

Hence, we get C
A + B√

A(2−A)
< ε/2 if the step-size h satisfies

h < min

 δ2Eπβ [V (X)]−1 ε2

81d(δ + 3)2(1 + L
α )2

,
δEπβ

[
|∇V (X)|2

]− 1
2 ε

81(β − 1)(δ + 3)(1 + L
α )

 . (12)

Defining Kε = log (2W2(ν0, πβ)/ε), we have W2(νk, πβ) < ε for all k ≥ K with

K =
3(1 + δ)

α(β − 1)δh∗
Kε

≤ 273 max

(δ + 3)3(1 + L
α )2dEπβ [V (X)]

αδ3(β − 1)ε2
,
(δ + 3)2(1 + L

α )Eπβ
[
|∇V (X)|2

] 1
2

αδ2ε

Kε.

(13)

Recall the definition of δ in (6). The order of K depends on the order of δ. That is, we
have the following two cases:

• If δ = O(1) and β = O(d), we have that

K = Õ

(
1

αε2

(
1 +

L

α

)2

Eπβ [V (X)] +
1

αε

(
1 +

L

α

)
Eπβ

[
|∇V (X)|2

] 1
2

)
.

• If δ = O(1/d) and β = O(d), we have that

K = Õ

(
d3

αε2

(
1 +

L

α

)2

Eπβ [V (X)] +
d2

αε

(
1 +

L

α

)
Eπβ

[
|∇V (X)|2

] 1
2

)
.

In order to obtain more explicit iteration complexity bounds from Remark 7, it is re-
quired to compute bounds on the following two quantities: Eπβ

[
|∇V (X)|2

]
and Eπβ [V (X)].

11
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3. Moment Bounds

In this section, we compute moment bounds under the conditions in Theorem 5.

3.1 An Example: Multivariate t-distribution

We first start with the isotropic case.

Proposition 8 Let πβ = Z−1
β V −β with β > d/2 + 1, V (x) = 1 + |x|2 and Zβ =

∫
Rd(1 +

|x|2)−βdx. We have

Eπβ [V (X)] =
β − 1

β − 1− d
2

and Eπβ
[
|∇V (X)|2

]
=

2d

β − 1− d
2

. (14)

Proof Let Ad(1) denote the surface area of the unit sphere in d dimensions. By a standard
calculation, we have that, for all β > d

2 ,

Zβ =

∫
Rd

(1 + |x|2)−βdx =

∫ ∞
0

(1 + r2)−βrd−1drAd(1) =
π
d
2

Γ(d2)

∫ ∞
0

(1 +R)−βR
d
2
−1dR

=
π
d
2

Γ(d2)

∫ 1

0
u
d
2
−1(1− u)β−

d
2
−1du =

π
d
2B(d2 , β −

d
2)

Γ(d2)
,

where B is the beta function. In the above calculation, the second identity follows from a
change to polar coordinates. The third identity follows from a substitution with R = r2 and
the fourth identity follows from a substitution u = R/(1 +R). Therefore for all β > d/2+1,
we have that

Eπβ [V (X)] = Z−1
β

∫
Rd

(1 + |x|2)(1 + |x|2)−βdx =
Zβ−1

Zβ
=
π
d
2B(d2 , β − 1− d

2)

Γ(d2)

Γ(d2)

π
d
2B(d2 , β −

d
2)

=
B(d2 , β − 1− d

2)

B(d2 , β −
d
2)

=
Γ(d2)Γ(β − 1− d

2)

Γ(β − 1)

Γ(β)

Γ(d2)Γ(β − d
2)

=
β − 1

β − 1− d
2

.

where the fourth identity follows from the property of Beta function, B(x, y) = Γ(x)Γ(y)
Γ(x+y) and

the fifth identity follows from the property of Γ function, Γ(1 + z) = zΓ(z). For the other
expectation, we have

Eπβ
[
|∇V (X)|2

]
= Z−1

β

∫
Rd
|2x|2(1 + |x|2)−βdx = 4Z−1

β Ad−1(1)

∫ ∞
0

r2(1 + r2)−βrd−1dr

=
4π

d
2

Γ(d2)Zβ

∫ ∞
0

R
d
2 (1 +R)−βdR =

4π
d
2

Γ(d2)Zβ

∫ 1

0
u
d
2 (1− u)β−

d
2
−2du

=
4π

d
2B(d2 + 1, β − d

2 − 1)

Γ(d2)

Γ(d2)

π
d
2B(d2 , β −

d
2)

=
4B(d2 + 1, β − d

2 − 1)

B(d2 , β −
d
2)

= 4
Γ(d2 + 1)Γ(β − d

2 − 1)

Γ(β)

Γ(β)

Γ(d2)Γ(β − d
2)

=
2d

β − d
2 − 1

,

12
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where we apply the same substitutions and properties of Beta functions and Gamma func-
tions in the above calculation.

Remark 9 If πβ is the class of isotropic multivariate t-distributions, with the results in
Proposition 8, the order of the two expectations in terms of the dimension parameter d is
given as follows,

• when β > d
2 + 1 and β − 1− d

2 = O(d), we have

Eπβ [V (X)] = O(1), and Eπβ
[
|∇V (X)|2

]
= O(1).

• when β > d
2 + 1 and β − 1− d

2 = O(1), we have

Eπβ [V (X)] = O(d), and Eπβ
[
|∇V (X)|2

]
= O(d).

For a general class of non-isotropic multivariate t-distribution, we consider πβ = Z−1
β V −β

with V (x) = 1 + xTΣx where Σ is a strictly positive-definite d× d matrix. In Roth (2012),
it’s been shown that for any β > d

2 , the normalization constant is

Zβ =
Γ(ν2 )π

d
2

√
det(Σ)

Γ(ν+d
2 )

=
Γ(β − d

2)π
d
2

√
det(Σ)

Γ(β)
.

Therefore for any β > d
2 + 1, we have

Eπβ [V (X)] =
Zβ−1

Zβ
=

Γ(β)Γ(β − 1− d
2)

Γ(β − 1)Γ(β − d
2)

=
β − 1

β − 1− d
2

,

and

Eπβ
[
|∇V (X)|2

]
= Z−1

β

∫
Rd
〈∇V (x), V (x)−β∇V (x)〉dx

= −Z−1
β

∫
Rd
V (x)∇ ·

(
V (x)−β∇V (x)

)
dx

= βEπβ
[
|∇V (X)|2

]
− Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx.

The above identity implies

Eπβ
[
|∇V (X)|2

]
= (β − 1)−1Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β

∫
Rd

trace(∇2V (x))V (x)−(β−1)dx

≤ trace(Σ)

β − 1
Eπβ [V (X)]

≤ trace(Σ)

β − 1− d
2

where the second inequality follows from the fact that ∇2V (x) = Σ.

13
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Remark 10 If πβ is in the class of non-isotropic multivariate t-distributions, the order of
the two expectations in terms of the dimension parameter d is as follows,

• when β > d
2 + 1 and β − 1− d

2 = O(d), we have

Eπβ [V (X)] = O(1), and Eπβ
[
|∇V (X)|2

]
= O(d−1trace(Σ)).

• when β > d
2 + 1 and β − 1− d

2 = O(1), we have

Eπβ [V (X)] = O(d), and Eπβ
[
|∇V (X)|2

]
= O(trace(Σ)).

3.2 Non-isotropic densities with quadratic-like V outside of a ball

In this section, we estimate the expectations for a class of non-isotropic densities in the
form of πβ ∝ V −β with V satisfying the following Lyapunov condition:

∃ ε,R > 0 such that ∆V (x)− (β − 1)
|∇V (x)|2

V (x)
≤ −ε ∀ |x| ≥ R. (15)

The above Lyapunov condition characterizes the class of V that are ‘quadratic-like’ outside
a ball of radius R. If we assume that V has Lipschitz gradients, then when β is sufficiently
large, the above assumption is satisfied if V satisfies the PL inequality |∇V (x)|2 ≥ a2V (x)
wherever |x| ≥ R with some a > 0 and it is from this inequality that quadratic growth
follows. In particular, if V satisfies the gradient Lipschitz assumption with parameter L,
we have that for all β ≥ 1 + a−2(dL+ ε),

∆V (x)− (β − 1)
|∇V (x)|2

V (x)
≤ dL− (β − 1)a2 ≤ −ε ∀ |x| ≥ R,

thereby leading to the Lyapunov condition in (15).

Proposition 11 If V ∈ C2(Rd) is positive, L-gradient Lipschitz and satisfies (15), then we
have

Eπβ [V (x)] ≤ (dL+ ε) max
|x|≤R

V (x), and Eπβ
[
|∇V (X)|2

]
≤ dL (dL+ ε)

(β − 1)
max
|x|≤R

V (X). (16)

Proof Since L is ergodic with stationary distribution πβ, we have

Eπβ [V (X)] = lim
t→∞

E [V (Xt)] ,

with (Xt)t≥0 being the solution to (3) with initial condition X0 = x. We will first bound
E [V (Xt)] and then take t→∞. Let (Pt)t≥0 be the Markov semigroup of (3), then

d

dt
Eπβ [V (Xt)] =

d

dt
PtV (x) = PtLV (x).

With (4), we have

LV (x) = V (x)

[
∆V (x)− (β − 1)

|∇V (x)|2

V (x)

]
14
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≤ V (x)
(
−ε1|x|≥R + dL1|x|<R

)
≤ −εV (x) + (dL+ ε) max

|x|≤R
V (x),

where the first inequality follows from (15) and the fact that ∆V ≤ d
∥∥∇2V

∥∥
2
. Therefore

we obtain

d

dt
PtV (x) ≤ −εPtV (x) + (dL+ ε) max

|x|≤R
V (x),

and it follows from Gronwall’s inequality that

Eπβ [V (Xt)] = PtV (x) ≤ V (x)e−εt +
(
1− e−εt

)
(dL+ ε) max

|x|≤R
V (x).

We hence have that Eπβ [V (X)] ≤ (dL+ ε) max|x|≤R V (x) by taking t→∞. For the other
expectation, we have

Eπβ
[
|∇V (X)|2

]
= Z−1

β

∫
Rd
〈∇V (x), V (x)−β∇V (x)〉dx

= −Z−1
β

∫
Rd
V (x)∇ ·

(
V (x)−β∇V (x)

)
dx

= βEπβ
[
|∇V (X)|2

]
− Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx.

The above identity implies

Eπβ
[
|∇V (X)|2

]
= (β − 1)−1Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β

∫
Rd

trace(∇2V (x))V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β dL

∫
Rd
V (x)−(β−1)dx

=
dL

β − 1
Eπβ [V (X)]

≤ dL (dL+ ε)

β − 1
max
|x|≤R

V (x).

3.3 General Case

Next we discuss the general case where πβ = Z−1
β V β and V ∈ C2(Rd) is positive such

that there exist constants α,L > 0 and αId � ∇2V (x) � LId for all x ∈ Rd. Since V is
strongly convex, there is a unique x∗ ∈ Rd such that V (x) ≥ V (x∗) > 0 for all x ∈ Rd and
∇V (x∗) = 0. Without loss of generality, we assume x∗ = 0.

15
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Proposition 12 Let β > d
2 +1. If V ∈ C2(Rd) is positive, α-strongly convex and L-gradient

Lipschitz, we have for any r ∈ (0, β − d
2 − 1),

Eπβ [V (X)] ≤
(
L

α

) d
2

β− d2−r V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d2−r

, (17)

Eπβ
[
|∇V (X)|2

]
≤ dL

β − 1

(
L

α

) d
2

β− d2−r V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d2−r

. (18)

Proof For any r ∈ (0, β − d
2 − 1), we have

Eπβ [V (X)] =

∫
Rd V (x)V (x)−βdx

Zβ
=
Zβ−1

Zβ
≤
(
L

α

) d
2

β− d2−r V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d2−r

.

where the last inequality follows from Lemma 25. For the other expectation, we have

Eπβ
[
|∇V (X)|2

]
= Z−1

β

∫
Rd
〈∇V (x), V (x)−β∇V (x)〉dx

= −Z−1
β

∫
Rd
V (x)∇ ·

(
V (x)−β∇V (x)

)
dx

= βEπβ
[
|∇V (X)|2

]
− Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx.

The above identity implies

Eπβ
[
|∇V (X)|2

]
= (β − 1)−1Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β

∫
Rd

trace(∇2V (x))V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β dL

∫
Rd
V (x)−(β−1)dx

=
dL

β − 1

Zβ−1

Zβ

≤ dL

β − 1

(
L

α

) d
2

β− d2−r V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d2−r

.

where the last inequality also follows from Lemma 25.

Remark 13 A ratio between Gamma functions appears in (17) and (18). The ratio can
be written explicitly via properties of Gamma functions.

• When d is an even number and d = 2k for some integer k,

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

=
Γ(r)

Γ(d2 + r)

Γ(β)

Γ(β − d
2)

=
Γ(r)

Γ(r)
∏k
i=1(d2 + r − i)

Γ(β − d
2)
∏k
i=1(β − i)

Γ(β − d
2)

16



Itô Discretizations for Heavy-tailed Sampling

=

∏k
i=1(β − i)∏k

i=1(d2 + r − i)
≤

(
β − d

2

r

) d
2

,

• When d is an odd number with d = 2k − 1 for some integer k,

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

=
Γ(r)

Γ(d2 + r)

Γ(β)

Γ(β − d
2)

=
Γ(r)

Γ(1
2 + r)

∏k−1
i=1 (d2 + r − i)

Γ(β − d
2 + 1

2)
∏k−1
i=1 (β − i)

Γ(β − d
2)

=

∏k−1
i=1 (β − i)∏k−1

i=1 (d2 + r − i)
r−1Γ(r + 1)

Γ(1
2 + r)

Γ(β − d
2 + 1

2)

Γ(β − d
2)

≤

(
β − d

2 + 1
2

r + 1
2

)k−1

r−1(1 + r)
1
2

(
β − d

2
+

1

2

) 1
2

≤
√

1 + r

r

(
β − d

2

r

) d
2

,

where the first inequality follows from Gautschi’s inequality (Ismail and Muldoon, 1994).

Remark 14 With Theorem 12 and the upper bounds in Remark 13, we can get the estima-
tions for Eπβ

[
|∇V (X)|2

]
and Eπβ [V (X)]: for any r ∈ (0, β − d

2 − 1),

Eπβ [V (X)] ≤ V (0)

(
L

α

) d
2

β− d2−r
(

1 + r

r

) 1

2(β− d2−r)

(
β − d

2

r

) d
2

β− d2−r

, (19)

Eπβ
[
|∇V (X)|2

]
≤ V (0)dL

β − 1

(
L

α

) d
2

β− d2−r
(

1 + r

r

) 1

2(β− d2−r)

(
β − d

2

r

) d
2

β− d2−r

. (20)

4. Zeroth-Order Itô Discretization

While previously we consider the case when the gradient of the function V is analytically
available to us, we now consider the case when we have access only to the function eval-
uations. This setting is called the zeroth-order setting and has been recently examined
in the context of complexity of sampling in the works of Dwivedi et al. (2019); Lee et al.
(2021); Roy et al. (2022). In this setting, we construct an approximation to the gradient
via zeroth-order information, i.e., function evaluations. For simplicity, we consider the case
of obtaining exact function evaluations. Based on the Gaussian smoothing technique (Nes-
terov and Spokoiny, 2017; Roy et al., 2022), for any x ∈ Rd, we define the zeroth order
gradient estimator gσ,,m(x) as

gσ,m(x) :=
1

m

m∑
i=1

V (x+ σui)− V (x)

σ
ui (21)

where ui ∼ N (0, Id) are assumed to be independent and identically distributed. The pa-
rameter m is called the batch size parameter. Then the zeroth order algorithm to sample

17
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πβ is given by

xk+1 = xk − h(β − 1)gσ,m(xk) +
√

2V (xk)ξk+1 (22)

where h > 0 is the step size and {ξk+1}∞k=0 is a sequence of independent identically dis-
tributed standard Gaussian random vectors in Rd. From Balasubramanian and Ghadimi
(2022) and Roy et al. (2022), we recall the following property of gσ,m.

Proposition 15 (Roy et al., 2022, Section 8.1) Assume V is L-gradient Lipschitz. Define
ζk = gσ,m(xk)−∇V (xk) with gσ,m defined in (21) and {xk}∞k=0 generated by (22). We have
for any k ≥ 0,

E
[
|E [ζk|xk] |2

]
≤ L2σ2d, (23)

and

E
[
|ζk − E [ζk|xk] |2

]
≤ σ2

2m
L2(d+ 3)3 +

2(d+ 5)

m
E
[
|∇V (xk)|2

]
. (24)

Theorem 16 Suppose V is gradient-Lipschitz with parameter L > 0 and satisfies Assump-
tion 2 with δ in (6). Let gσ,m be as defined in (21) and (xk)

∞
k=0 be generated from (22) with

xk ∼ νk for all k ≥ 0. Then with the time step size

h < min

{
2δ

3(1 + δ)α(β − 1)
,

αmδ

24(1 + δ)(β − 1)(d+ 5)L2
,

1

4(β − 1)L

}
, (25)

the decay of Wasserstein-2 distance along the Markov chain (xk)
∞
k=0 can be described by the

following equation. For all k ≥ 1,

W2(νk, πβ) ≤ (1−A′)kW2(ν0, πβ) +
C ′

A′
+

B′√
A′(2−A′)

. (26)

with A′, B′ and C ′ given respectively in (59), (60) and (61).

Remark 17 With Theorem 16, we can study the iteration complexity to reach an ε-accuracy
in Wasserstein-2 distance. In the following discussion, we focus on the dimension depen-
dence and ε dependence in the iteration complexity. When β = Θ(d) and α,L = Θ(1), and
when h satisfies (25), we have

A′ = O (δdh) ,
C ′

A′
= O

(dhEπβ [V (X)])
1
2 + dhEπβ

[
|∇V (X)|2

] 1
2 + σd

1
2

δ

 ,

B′√
A′(2−A′)

= O

((
dh

δ
+

dh
1
2

(δm)
1
2

)
Eπβ

[
|∇V (X)|2

] 1
2 +

(dh)
1
2

δ
Eπβ [V (X)] +

σd2h
1
2

(δm)
1
2

)
.

To ensure W2(νK , πβ) < ε, we require that each of

(1−A′)KW2(ν0, πβ),
C ′

A′
,

B′√
A′(2−A′)

,

18
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is smaller than ε/3. Setting σ = εδ/
√
d, and

h = O

(
min

{
(εδ)2

d
Eπβ [V (X)]−1 ,

εδ

d
Eπβ

[
|∇V (X)|2

]− 1
2 ,
ε2δm

d2
Eπβ

[
|∇V (X)|2

]−1
})

,

we hence obtain that the iteration complexity K is of order

K = Õ

(
max

{
1

ε2δ3
Eπβ [V (X)] ,

1

εδ2
Eπβ

[
|∇V (X)|2

] 1
2 ,

d

ε2δ2m
Eπβ

[
|∇V (X)|2

]})
. (27)

The number of function evaluations is hence mK.

5. Illustrative Examples

We now provide illustrative examples to highlight the implications of our results. Before we
proceed, we remark that using Mousavi-Hosseini et al. (2023, Corallary 8) and the inequality

ln
(

1 +
W 4

2 (ρ,π)
4Eπ [‖x‖4]

)
≤ R2(ρ|π), we can obtain upper bounds on the oracle complexity of ULA,

with favorable initializations, for sampling from multivariate t-distributions with finite 4-th
moments, in Wasserstein-2 distance. For this class of densities, when the degrees of freedom
ν is small (constant order), the oracle complexity of ULA is of order O(d8+12/νε−4(1+4/ν)).
When the degree of freedom ν is large (i.e., order O(d)), the oracle complexity of ULA is of
order O(d7ε−4). Below, we show that our algorithm admits significantly better dependencies
on the dimension (d) and the inverse accuracy (1/ε).

5.1 Multivariate t-distribution: Large Degree of Freedom

We first consider the isotropic multivariate t-distribution with the degrees of freedom being
d+ 2. We choose V (x) = 1 + |x|2, β = d+ 1 and πβ(x) ∝ V (x)−β = (1 + |x|2)−(d+1). With
this choice of V and β, V satisfies Assumption 2 with α = 2, CV = 2, and V is L-Lipschitz
gradient with L = 2. The constant δ in Theorem 5 becomes δ = 1. Furthermore, according
to proposition 8, Eπβ [V (X)] = 2 and Eπβ [|∇V (X)|2] = 4.

5.1.1 first order algorithm

According to Theorem 5 and (13), to obtain ε-accuracy in Wasserstein-2 distance, the
iteration complexity is of order Õ(1/ε2). With the same choice of V and β, we check the
conditions of Theorem 1 in Li et al. (2019). The diffusion (3) is α′-uniformly dissipative with
α′ = d and the Euler discretization given in (10) has local deviation with order (p1, p2) =
(1, 3/2) and (λ1, λ2) = (Θ(d5),Θ(d4)). The detailed calculation for deriving the constants
above is provided in Appendix B. Hence, by Theorem 1 in Li et al. (2019), to reach an
ε-accuracy in Wasserstein-2 distance, the iteration complexity is of order Õ(d3/ε2). Hence,
in comparison with the result in Li et al. (2019), we obtain a dimension-free iteration
complexity to ensure an ε-accuracy in Wasserstein-2 distance.

5.1.2 zeroth order algorithm

According to Theorem 16 and (27), to obtain ε-accuracy in Wasserstein-2 distance, the
iteration complexity is of order Õ

(
(1 ∨ d/m)/ε2

)
. When m = 1, the iteration complexity
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K ∼ Õ(d/ε2) and the number of functions evaluations mK is also of the same order Õ(d/ε2).
If we choose the batch size m = d, we get a dimension independent iteration complexity
K ∼ Õ(1/ε2) but the number of function evaluations is of order Õ(d/ε2). Hence, we notice
that in the case of multivariate t-distribution distributions with large degrees of freedom,
the cost of estimating the gradient has an effect on the sampling complexities.

5.2 Multivariate t-distribution: Small Degrees of Freedom

We now consider the isotropic multivariate t-distribution with the degrees of freedom being
3. We denote the corresponding density function by πβ. The exact number of 3 is chosen
just for convenience; the results of this example apply to all cases where the degrees of
freedom is strictly larger than 2 which corresponds to the setting where the variance is
finite. We choose V (x) = 1 + |x|2, β = (d+ 3)/2 and πβ(x) ∝ V (x)−β = (1 + |x|2)−(d+3)/2.
With the above choice of V and β, V satisfies Assumption 2 with α = 2, CV = 2 and V is
L-Lipschitz gradient with L = 2. Hence, the constant δ in Theorem 5 is given by δ = 1/d.
According to Proposition 8, Eπβ [V (X)] = d+ 1 and Eπβ [|∇V (X)|2] = 4d.

5.2.1 first order algorithm

According to Theorem 5 and (13), to obtain ε-accuracy in Wasserstein-2 distance, the
iteration complexity is of order Õ(d4/ε2). With the same choice of V and β, we check the
conditions of Theorem 1 in Li et al. (2019). The diffusion (3) is α′-uniformly dissipative with
α′ = 1 and the Euler discretization given in (10) has local deviation with order (p1, p2) =
(1, 3/2) and (λ1, λ2) = (Θ(d5),Θ(d4)). The detailed calculation for deriving the constants
is provided in Appendix B. Hence, according to Theorem 1 in Li et al. (2019), to reach an
ε-accuracy in Wasserstein-2 distance, the iteration complexity is of order Õ(d6/ε2). Even
in this extremely heavy-tail case (i.e., only the variance exists), to ensure an ε-accuracy in
Wasserstein-2 distance, we can obtain an iteration complexity with polynomial dimension
dependence. Furthermore, in comparison to Li et al. (2019), our analysis helps to decrease
the dimension exponent by a factor of 2.

5.2.2 zeroth order algorithm

According to Theorem 16 and (27), to obtain ε-accuracy in Wasserstein-2 distance, the

iteration complexity is of order Õ
(

max{d4/ε2, d
5
2 /ε, d4/ε2m}

)
. Hence, we have that for

any batch size m, the iteration complexity K = Õ(d4/ε2). Picking m = 1, the number of
function evaluations are of the same order, i.e., mK = Õ(d4/ε2).

Remark 18 The example discussed in Section 5.2.2 highlights the following important ob-
servation: Choosing a large batch size does not improve the iteration complexity. To ex-
plain this, we understand both (10) and (22) as approximation to the continuous dynamics
(3). For the first-order algorithm, the error of the approximation only comes from the
Euler-Maruyama discretization. For the zeroth-order algorithm, the error of the approxi-
mation comes from both the Euler-Maruyama discretization and the zeroth-order gradient
estimate=. When the error from the Euler-Maruyama discretization dominates, the optimal
batch size is always 1 and the oracle complexity of the zeroth order algorithm is the same as
the iteration complexity for the first-order algorithm. When the error from the zeroth-order
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Itô Discretizations for Heavy-tailed Sampling

gradient estimate dominates, we need to choose a large batch size depending on d so that the
iteration complexity for the zeroth-order algorithm is the same as the iteration complexity
for the first-order algorithm while the zeroth-order oracle complexity is of order m-times
larger.

6. Further Results and Additional Insights on Assumptions

In Section 2, we provide sufficient conditions on V such that when β > d, πβ ∝ V −β satisfies
the weighted Poincaré inequality with weight V . In this section, we relax the conditions in
Section 2 by introducing the following assumptions.

Assumption 3 The function V : Rd → (0,∞) is twice continuously differentiable and V
satisfies

(1) ∇2V (x) is invertible for all x ∈ Rd.
(2) There exists γ ∈

(
0, β

d+2

]
, such that

sup
x∈Rd

∥∥∥V (x)γ−1
(
∇2Vγ

)−1
(x)
∥∥∥

2
≤ CV (γ),

where Vγ := V γ and CV (γ) is a positive constant depending on γ.

Lemma 19 Under Assumption 3, for any smooth function φ ∈ L2(πβ),

V arπβ (φ) ≤ CWPI

∫
Rd
|∇φ(x)|2V (x)πβ(x)dx, with CWPI = CV (γ)

(
β

γ
− 1

)−1

. (28)

Proof First we define Vγ := V γ . Choose β′ = β − 2γ. For πβ′ ∝ V −β
′
, we can write it as

πβ′ ∝ Vγ−a with

a =
β′

γ
=
β − 2γ

γ
≥ d,

where the inequality follows from the fact that γ ∈
(

0, β
d+2

]
. Therefore we can apply

Theorem 1 to πβ′ ∝ Vγ
−a and get for any smooth, πβ′-square integrable function g with

Eπβ′ [g(X)] = 0 and G = Vγg,

(a+ 1)

∫
Rd
g(x)2πβ′(x)dx ≤

∫
Rd

〈(∇2Vγ)−1(x)∇G(x),∇G(x)〉
Vγ(x)

πβ′(x)dx. (29)

Since β′ = β − 2γ, (29) is equivalent to

(a+ 1)

∫
Rd

|G(x)|2

V (x)
V (x)−(β−1)dx ≤

∫
Rd
〈(∇2Vγ)−1(x)∇G(x),∇G(x)〉V (x)−(β′+γ)dx. (30)

Under Assumption 3, we have∫
Rd
〈(∇2Vγ)−1(x)∇G(x),∇G(x)〉V (x)−(β′+γ)dx
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≤ CV (γ)

∫
Rd
|∇G(x)|2V (x)1−γV (x)−(β′+γ)dx

= CV (γ)

∫
Rd
|∇G(x)|2V (x)−(β−1)dx,

where the last identity follows from the fact that β′ = β − 2γ. Along with (30), we get

(a+ 1)

∫
Rd

|G(x)|2

V (x)
V (x)−(β−1)dx ≤ CV (γ)

∫
Rd
|∇G(x)|2V (x)−(β−1)dx. (31)

Since G = V γg, G is smooth, πβ-square integrable and Eπβ−γ [G(X)] = 0. For any πβ-square
integrable φ, let G = φ− Eπβ−γ [φ(X)] and we get∫

Rd
|φ(x)− Eπβ−γ [φ(X)]|2πβ(x)dx ≤ CV (γ)

a+ 1

∫
Rd
|∇φ(x)|2V (x)πβ(x)dx. (32)

Therefore for any smooth, πβ-square integrable φ,

V arπβ (φ) = inf
c∈R

∫
Rd
|φ(x)− c|2πβ(x)dx ≤ CV (γ)

a+ 1

∫
Rd
|∇φ(x)|2V (x)πβ(x)dx,

which is equivalent to (28) with CWPI = CV (γ)
a+1 = CV (γ)

(
β
γ − 1

)−1
.

Remark 20 Lemma 19 can be applied to the class of multivariate t-distributions with
V (x) = 1 + |x|2. When β ∈

(
d+2

2 , d
]
, with the choice of γ = β

d+2 , Assumption 3 holds
with

CV (γ) =
(d+ 2)2

2β(2β − d− 2)
.

Hence, Lemma 19 implies that the multivariate t-distribution with degree of freedom ν ∈
(2, d] satisfies the weighted Poincaré inequality with weight 1 + |x|2 and with

CWPI =
(d+ 2)2

ν(d+ 1)(d+ ν)
.

The detailed calculation for deriving the above mentioned constants is provided in Ap-
pendix C.

As an immediate consequence of Lemma 19, we have the following χ2 convergence result
for (3).

Proposition 21 Under Assumption 3, with (Xt) satisfying (3) with ρt being the distribu-
tion of Xt, we have

χ2(ρt|πβ) ≤ exp

(
−CV (γ)−1

(
β

γ
− 1

)
t

)
χ2(ρ0|πβ). (33)

For the case of multivariate t-distributions, Proposition 21 allows us to show exponential
convergence of (3) in the χ2 divergence with smaller degrees of freedom (and hence heavier
tails) compared to Proposition 4.
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6.1 Relationship between Lemma 3 and Lemma 19

The result in Lemma 19 complements that in Lemma 3. It can be used to study the WPI
for πβ when β ≤ d. In particular, when β ≤ d, if πβ ∝ V −β and V satisfies Assumption 2
with CV ∈ (0, d+2

d+2−β ), then V satisfies Assumption 3. Therefore πβ satisfies the WPI. In
Proposition 22, this relation is proved formally.

Proposition 22 When β ≤ d, if Assumption 2 holds with CV ∈ (0, d+2
d+2−β ), then Assump-

tion 3 holds.

Proof First ∇2V is invertible because ∇2V � αId. Next we show that there exists
γ ∈ (0, β

d+2 ] such that
∥∥V (x)γ−1(∇2Vγ)−1(x)

∥∥
2
≤ CV (γ) for all x ∈ Rd. It is equivalent to

showing that there exists γ ∈ (0, β
d+2 ] such that

∥∥V (x)1−γ(∇2Vγ)(x)
∥∥

2
> 0 for all x ∈ Rd.

From the calculations in Section C, we have

∇2Vγ(x) = γV (x)γ−1
(
(γ − 1)V (x)−1∇V (x)T∇V (x) +∇2V (x)

)
.

Therefore

V (x)1−γ(∇2Vγ)(x) = γ
(
∇2V (x)− (1− γ)V (x)−1∇V (x)T∇V (x)

)
� αγ (1− (1− γ)CV ) Id,

where the inequality follows from Assumption 2. Last we show that there exists γ ∈ (0, β
d+2 ]

such that 1− (1− γ)CV > 0. Note that

1− (1− γ)CV > 0 =⇒ γ > 1− 1

CV
.

Since CV ∈
(

0, d+2
d+2−β

)
, we have that

1− 1

CV
<

β

d+ 2

Therefore there exists a constant γ ∈
(

0, β
d+2

]
such that

∥∥V (x)1−γ(∇2Vγ)(x)
∥∥

2
> 0 for all

x ∈ Rd.

6.2 Relation between assumptions in Theorem 5 and Proposition 21

Proposition 21 studies the convergence of the continuous dynamics (3) while Theorem 5
studies the convergence of the discretization (10). The assumptions in Theorem 5 can
be shown to imply assumptions in Proposition 21. In Proposition 21 we only assume

Assumption 3. In Theorem 5, we assume (i) Assumption 2, (ii) δ =
β−1− 1

4
CV d

1
4
CV d

> 0, and (iii)

V is gradient Lipschitz. In the following proposition, we show that these three assumptions
together imply Assumption 3.
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Proposition 23 If Assumption 2 holds such that δ =
β−1− 1

4
CV d

1
4
CV d

> 0 and V is L-gradient

Lipschitz, then Assumption 3 holds.

Proof [Proof of Proposition 23] Under Assumption 2 and L-gradient Lipschitzness assump-
tion, we have that V is ‘essential quadratic’. That is, assuming V attains its global minimum
at x∗, for all x ∈ Rd,

V (x∗) +
α

2
|x− x∗|2 ≤ V (x) ≤ V (x∗) +

L

2
|x− x∗|2.

Therefore for all x ∈ Rd,

|∇V (x)|2

V (x)
≤ L2|x− x∗|2

V (x∗) + α
2 |x− x∗|2

≤ 2L2

α
,

which implies that Assumption 2-(2) is satisfied with CV = 2L2

α2 . Furthermore,

V (x)1−γ(∇2Vγ)(x) � αγ (1− (1− γ)CV ) Id = αγ

(
1− 2(1− γ)

L2

α2

)
Id.

The condition δ =
β−1− 1

4
CV d

1
4
CV d

> 0 is equivalent to the condition β > L2

2α2d+ 1. Notice that

for all d ≥ 1, we have (
1− α2

2L2

)
(d+ 2) <

L2

2α2
d+ 1

Therefore for any

β >
L2

2α2
d+ 1 >

(
1− α2

2L2

)
(d+ 2),

we can choose γ = β
d+2 and obtain

V (x)1−γ(∇2Vγ)(x) � 2L2β

α(d+ 2)

(
α2

2L2
+

β

d+ 2
− 1

)
Id

=
2L2β

α(d+ 2)2

(
β −

(
1− α2

2L2

)
(d+ 2)

)
Id

Therefore Assumption 3-(2) is satisfied with γ = β/(d+ 2) and

CV (γ) =
α(d+ 2)2

2L2β

(
β −

(
1− α2

2L2

)
(d+ 2)

)−1

> 0.

The proof is now complete because Assumption 3-(1) is automatically satisfied under As-
sumption 2.
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Figure 2: Decay of the Wasserstein-2 distance versus iterations for sampling from Multi-
variate Student-t targets with 4 degrees of freedom.

7. Numerical Experiments

We now provide simulation results comparing the performance of the ULA and the Itô
discretization in (10). We use the Python Optimal Transport package (Flamary et al.,
2021) for the experiments.

In our first set of experiments, we use the algorithms to sample from multivariate
student-t targets with 4 degrees of freedom and the scaling matrix being the identity ma-
trix. In Figure 2, we examine the cases of dimension being 10, 25 and 50 respectively from
left to right. The initializations are set to (10, · · · , 10) for the case of 10 dimensions and
to (100, · · · , 100) for the other two cases. For the case of 10 and 25 dimensions, both algo-
rithms are run for 100000 iterations in parallel for 100 times, with step-size set to 0.0001.
For the case of 50 dimensions, the algorithm is run for 50000 iterations in parallel for 100
times, with step-size set to 0.0002. We plot the Wasserstein-2 distance along the trajecto-
ries of ULA (blue curve) and the Itô discretization (green curve) for these high-dimensional
student-t targets. The Wasserstein-2 distance is approximated by the empirical Wasserstein-
2 distances between the generated samples and the target samples, which are numerically
computed using the Sinkhorn algorithm. We emphasize here that the restriction on the
dimension is not a consequence of our algorithm (or ULA). It is due to the statistical and
computational inefficiency in computing the Wasserstein distance (Weed and Bach, 2019).
The plots in Figure 2 show that the Itô discretization is efficient in higher dimensions while
ULA is not. Specifically, for the case of 25 and 50 dimensions, the Wasserstein-2 distance
decays fast along the Itô trajectory, while it almost does not decay along the ULA trajectory.

In our second set of experiments, we provide further details for experiments introduced
in Section 1, i.e., sampling from a two-dimensional multivariate student-t target with 4
degrees of freedom and the scaling matrix being the identity matrix. In this case, we
compute the exact Wasserstein-2 distance, instead of the approximate distance used in the
previous set of experiments. Both algorithms are run for 10000 iterations in parallel for
500 times, with step-size set to 0.001. The first row, second row and third row are with
different initializations, (10, 10), (−16, 1) and (6,−6) respectively. In the left two columns
of Figure 3, we plot the averaged first two coordinates’ trajectories along ULA (blue curve)
and the Itô discretization (green curve). The first column and the second column plot the
first coordinate and the second coordinate respectively. The shaded regions characterize the
standard errors over the 500 runs. In the third column of Figure 3, we plot the Wasserstein-2
distance along the trajectories of ULA (blue curve) and the Itô discretization (green curve).
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Figure 3: Convergence of the coordinate-wise trajectories and the decay of the Wasserstein-2
distance for various initializations when sampling from a two-dimensional Student-t distri-
bution.

From the left two columns of Figure 3, we conclude that, with different initializations, the
averaged first two coordinates along the Itô discretization trajectories always converge to
the true first two coordinates’ mean faster than those along the ULA trajectories. The Itô
discretization samples also have smaller standard deviations. The third column in Figure 3
indicates directly that the Itô discretization outperforms ULA in terms of the Wasserstein-2
distance decay for the same experimental setup.

8. Proofs of the Main Results

8.1 Proofs of Theorem 5 and Theorem 16

In this section, we provide the proof of Theorem 5 and Theorem 16 via mean square analysis.
We first start with the following intermediate result.

Proposition 24 Let (Xt)t≥0 follow (3) with Xt ∼ ρt for all t ≥ 0. If V is gradient Lipschitz
with parameter L, then we have

E
[
|Xt −X0|2

]
≤ 4

[
(β − 1)2t2E

[
|∇V (X0)|2

]
+ tdE [V (X0)]

]
exp

(
4(β − 1)2L2t2 + d(β − 1)L2t2 + 2dLt

)
.

(34)
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Proof [Proof of Proposition 24] According to (3), we have

E[|Xt −X0|2] ≤ 2(β − 1)2E

[∣∣∣∣∫ t

0
∇V (Xs)ds

∣∣∣∣2
]

+ 4dE
[∫ t

0
V (Xs)ds

]
,

where

E

[∣∣∣∣∫ t

0
∇V (Xs)ds

∣∣∣∣2
]
≤ 2E

[(∫ t

0
|∇V (Xs)−∇V (X0)|ds

)2
]

+ 2E

[(∫ t

0
|∇V (X0)|ds

)2
]

≤ 2tE
[∫ t

0
|∇V (Xs)−∇V (X0)|2ds

]
+ 2tE

[∫ t

0
|∇V (X0)|2ds

]
≤ 2L2t

∫ t

0
E
[
|Xs −X0|2

]
ds+ 2t2E

[
|∇V (X0)|2

]
, (35)

and

E
[∫ t

0
V (Xs)ds

]
≤ E

[∫ t

0
V (X0) + 〈∇V (X0), Xs −X0〉+

L

2
|Xs −X0|2ds

]
= tE [V (X0)] +

L

2
E
[∫ t

0
|Xs −X0|2ds

]
− (β − 1)E

[∫ t

0

∫ s

0
〈∇V (X0),∇V (Xu)〉duds

]
=tE [V (X0)] +

L

2
E
[∫ t

0
|Xs −X0|2ds

]
− (β − 1)t2

2
E
[
|∇V (X0)|2

]
− (β − 1)E

[∫ t

0

∫ s

0
〈∇V (X0),∇V (Xu)−∇V (X0)〉duds

]
≤ tE [V (X0)] +

L

2
E
[∫ t

0
|Xs −X0|2ds

]
− (β − 1)t2

2
E
[
|∇V (X0)|2

]
+

(β − 1)t2

2
E
[
|∇V (X0)|2

]
+
β − 1

4
E
[∫ t

0

∫ s

0
|∇V (Xu)−∇V (X0)|2duds

]
≤ tE [V (X0)] +

L

2
E
[∫ t

0
|Xs −X0|2ds

]
+

(β − 1)L2

4
E
[∫ t

0

∫ s

0
|Xu −X0|2duds

]
≤ tE [V (X0)] +

(
L

2
+

(β − 1)L2t

4

)
E
[∫ t

0
|Xs −X0|2ds

]
. (36)

In the above, the first and the second last inequalities use that V is gradient-Lipschitz with
parameter L and the second inequality follows from the Young’s inequality, ab ≤ 2a2 + 1

4b
2,

for any a, b ∈ R. With (35) and (36), we get

E[|Xt −X0|2] ≤
∫ t

0

[
4(β − 1)2L2t+ 2dL+ d(β − 1)L2t

]
E
[
|Xs −X0|2

]
ds+ 4dtE [V (X0)]

+ 4(β − 1)2t2E
[
|∇V (X0)|2

]
.

We define

a(t) = 4(β − 1)2L2t+ 2dL+ d(β − 1)L2t,
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b(t) = 4dtE [V (X0)] + 4(β − 1)2t2E
[
|∇V (X0)|2

]
,

h(t) = E[|Xt −X0|2],

and note that for any t ≥ 0 we have,

h(t) ≤ b(t) + a(t)

∫ t

0
h(s)ds.

If we further define H(t) =
∫ t

0 h(s)ds for any t ≥ 0, then for any t ≥ 0,

H ′(t) ≤ b(t) + a(t)H(t),

which implies

d

dt

(
H(t) exp(−

∫ t

0
a(s)ds)

)
≤ b(t) exp(−

∫ t

0
a(s)ds).

Since H(0) = 0, integrate both sides and we get

H(t) ≤
∫ t

0
b(s) exp(

∫ t

s
a(u)du)ds.

Next since h(t) ≤ b(t) + a(t)H(t), we have

H(t) ≤ b(t) + a(t)

∫ t

0
b(s) exp

(∫ t

s
a(t)du

)
ds.

Last since a, b are both positive increasing functions, we have

b(t) + a(t)

∫ t

0
b(s) exp

(∫ t

s
a(t)du

)
ds ≤ b(t) + b(t)

∫ t

0
a(t) exp

(∫ t

s
a(t)du

)
ds

≤ b(t) + b(t)

∫ t

0
d

(
− exp

(∫ t

s
a(t)du

))
= b(t) exp(

∫ t

0
a(t)dt) = b(t) exp(ta(t)).

Therefore, the proof is completed.

Based on the above proposition, we now prove Theorem 5 below.

Proof [Proof of theorem 5] We perform mean square analysis to (10). Let (Xt)t≥0 follow
(3) with X0 ∼ πβ. Since πβ is the unique stationary distribution to (3), Xt ∼ πβ for all
t ≥ 0. With (10), we can calculate the difference between Xh and x1,

Xh − x1

=X0 −
∫ h

0
(β − 1)∇V (Xt)dt+

∫ t

0

√
2V (Xt)dBt −

(
x0 − (β − 1)h∇V (x0) +

√
2hV (x0)ξ1

)
=(X0 − x0)− (β − 1)h (∇V (X0)−∇V (x0))−

∫ h

0
(β − 1) (∇V (Xt)−∇V (X0)) dt
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∫ h

0

(√
2V (Xt)−

√
2V (x0)

)
dBt

:=U1 + U2 + U3,

where

U1 := (X0 − x0)− (β − 1)h (∇V (X0)−∇V (x0)) , (37)

U2 := −
∫ h

0
(β − 1) (∇V (Xt)−∇V (X0)) dt, (38)

U3 :=

∫ h

0

(√
2V (Xt)−

√
2V (x0)

)
dBt. (39)

Therefore according to the Cauchy-Schwartz inequality, we have

E[|Xh − x1|2|]
1
2 = E[|U1 + U2 + U3|2]

1
2

=
(
E[|U1 + U3|2] + E[|U2|2] + 2E[(U1 + U3)U2]

) 1
2

≤
(
E[|U1 + U3|2] + E[|U2|2] + 2E[|U1 + U3|2]

1
2E[|U2|2]

1
2

) 1
2

=E[|U1 + U3|2]
1
2 + E[|U2|2]

1
2 .

Let F0 be the σ-algebra generated by x0, X0, B0. Since U1 is adapted to F0 and E[U3|F0] =
0, we get

E[|U1 + U3|2|F0] = |U1|2 + E[|U3|2|F0]

= |(X0 − x0)− (β − 1)h (∇V (X0)−∇V (x0)) |2

+ E
[∫ h

0

∥∥∥√2V (Xt)Id −
√

2V (x0)Id

∥∥∥2

F
dt|F0

]
.

Since V is α-strongly convex and L-gradient Lipschitz, V̄ (x) := V (x) − α|x|2/2 is convex
and L− α gradient-Lipschitz. and it satisfies the following co-coercivity condition,

1

L− α
|∇V̄ (x)−∇V̄ (y)|2 ≤ 〈x− y, V̄ (x)−∇V̄ (y)〉, ∀ x, y ∈ Rd.

Letting x = X0, y = x0 and rewriting the above condition in terms of V , we have

〈X0 − x0,∇V (X0)−∇V (x0)〉 ≥ αL

α+ L
|X0 − x0|2 +

1

α+ L
|∇V (X0)−∇V (x0)|2.

Therefore when h ≤ 2
(β−1)(α+L) ,

|(X0 − x0)− (β − 1)h (∇V (X0)−∇V (x0)) |2

=|X0 − x0|2 − 2(β − 1)h〈X0 − x0,∇V (X0)−∇V (x0)〉+ (β − 1)2h2|∇V (X0)−∇V (x0)|2

≤
(

1− 2(β − 1)αLh

α+ L

)
|X0 − x0|2 + (β − 1)h

(
(β − 1)h− 2

α+ L

)
|∇V (X0)−∇V (x0)|2
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≤
(

1− 2(β − 1)αLh

α+ L

)
|X0 − x0|2 + (β − 1)h

(
(β − 1)h− 2

α+ L

)
α2|X0 − x0|2

= (1− (β − 1)αh)2 |X0 − x0|2, (40)

where the second inequality follows from the fact that h ≤ 2
(β−1)(α+L) and V is α-strongly

convex. Meanwhile, for arbitrary r > 0, we have

E
[∫ h

0

∥∥∥√2V (Xt)−
√

2V (x0)
∥∥∥2

F
dt

]
=dE

[∫ h

0
|
√

2V (Xt)−
√

2V (x0)|2dt
]

≤d
(
h
(√

2V (X0)−
√

2V (x0)
)2

+ E
[∫ h

0

∣∣∣√2V (Xt)−
√

2V (X0)
∣∣∣2 dt])

+ 2d|
√

2V (X0)−
√

2V (x0)|h
1
2E
[∫ h

0

∣∣∣√2V (Xt)−
√

2V (X0)
∣∣∣2 dt] 1

2

≤d(1 + r)h
(√

2V (X0)−
√

2V (x0)
)2

+ d(1 + r−1)E
[∫ h

0

∣∣∣√2V (Xt)−
√

2V (X0)
∣∣∣2 dt] ,

where the first inequality is a result of Holder’s inequality and the last inequality follows
from Young’s inequality. Notice that under Assumption 2, we have

|∇(
√

2V (x))| =
√

2|∇V (x)|
2
√
V (x)

≤
√

2αCV
2

,

for all x ∈ Rd. Therefore

(
√

2V (X0)−
√

2V (x0))2 ≤ αCV
2
|X0 − x0|2, (41)

and ∫ h

0
|
√

2V (Xt)−
√

2V (X0)|2dt ≤ αCV
2

∫ h

0
|Xt −X0|2dt. (42)

With (41) and (42), we get

E[

∫ h

0

∥∥∥√2V (Xt)−
√

2V (x0)
∥∥∥2

F
dt] ≤ αCV dh(1 + r)

2
E[|X0 − x0|2]

+
αCV d(1 + r−1)

2

∫ h

0
E[|Xt −X0|2]dt.

(43)

Next we apply Proposition 24 to E[|Xt −X0|2]. In particular, when

t ∈ [0, h] and h <
1

4(β − 1)L
,

we have

E[|Xt −X0|2] ≤
(
4dtE [V (X0)] + 4(β − 1)2t2E

[
|∇V (X0)|2

])
exp(1)
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≤ 12dtE [V (X0)] + 12(β − 1)2t2E
[
|∇V (X0)|2

]
. (44)

Combining (43) and (44), when h < 1
4(β−1)L , we have that

E[

∫ h

0

∥∥∥√2V (Xt)−
√

2V (x0)
∥∥∥2

F
dt]

≤1

2
αCV d(1 + r)hE[|X0 − x0|2] (45)

+ 6αCV d(1 + r−1)

∫ h

0

(
dtE [V (X0)] + (β − 1)2t2E

[
|∇V (X0)|2

])
dt

=
1

2
αCV d(1 + r)hE[|X0 − x0|2] (46)

+ 3αCV d
2(1 + r−1)h2E [V (X0)] + 2αCV d(β − 1)2(1 + r−1)h3E

[
|∇V (X0)|2

]
.

With (40) and (45), we get

E[|U1 + U3|2]

≤
(

1− 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

)
E
[
|X0 − x0|2

]
+ 3αCV d

2(1 + r−1)h2E [V (X0)] + 2αCV d(β − 1)2(1 + r−1)h3E
[
|∇V (X0)|2

]
≤
(

1− 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

)
E
[
|X0 − x0|2

]
+ 2αCV d(1 + r−1)h2

(
3dE [V (X0)] + 2(β − 1)2hE

[
|∇V (X0)|2

])
. (47)

Since CV < 4(β−1)
d , denote δ =

(β−1)− 1
4
CV d

1
4
CV d

> 0. We have

1− 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

= 1− 2(β − 1)αh+ (β − 1)2α2h2 + 2(β − 1)α
1 + r

1 + δ
h

=

[
1− α(β − 1)(1− 1 + 2r

1 + δ
)h

]2

+ α2(β − 1)2h2

− 2α(β − 1)
r

1 + δ
h− α2(β − 1)2h2

(
δ − 2r

1 + δ

)2

.

By picking r = δ
3 , we get for any h ∈

(
0, 2δ

3(1+δ)α(β−1)

)
that

1− 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

≤
[
1− α(β − 1)

δ

3(1 + δ)
h

]2

+ α2(β − 1)2h

(
h− 2δ

3(1 + δ)
α−1(β − 1)−1

)
≤
[
1− α(β − 1)

δ

3(1 + δ)
h

]2

.
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With the choice of r = δ/3, (47) could be rewritten as

E[|U1 + U3|2] ≤
(

1− α(β − 1)δ

3(1 + δ)
h

)2

E[|X0 − x0|2]

+
8α(β − 1)(3 + δ)h2

(1 + δ)δ

(
3dE [V (X0)] + 2(β − 1)2hE

[
|∇V (X0)|2

])
. (48)

Next, with the bound in (44), we get when h < 1
4(β−1)L ,

E[|U2|2] ≤ (β − 1)2L2E

[(∫ h

0
|Xt −X0|dt

)2
]

≤ (β − 1)2L2h

∫ h

0
E
[
|Xt −X0|2

]
dt

≤ 6d(β − 1)2L2h3E [V (X0)] + 4(β − 1)4L2h4E
[
|∇V (X0)|2

]
. (49)

With (48) and (49), we get when h < min
(

1
4(β−1)L ,

2δ
3(1+δ)α(β−1)

)
,

E
[
|Xh − x1|2

] 1
2 ≤

[
(1−A)2E

[
|X0 − x0|2

]
+B2

] 1
2 + C,

with

A =
α(β − 1)δ

3(1 + δ)
h, (50)

B =
5α

1
2 (β − 1)

1
2 (3 + δ)

1
2h

(1 + δ)
1
2 δ

1
2

(
d

1
2Eπβ [V (X)]

1
2 + (β − 1)h

1
2Eπβ

[
|∇V (X)|2

] 1
2

)
, (51)

C = 3d
1
2 (β − 1)Lh

3
2Eπβ [V (X)]

1
2 + 2(β − 1)2Lh2Eπβ

[
|∇V (X)|2

] 1
2 . (52)

The above analysis works for each step, therefore we get for all k ≥ 1,

E
[
|Xkh − xk|2

] 1
2 ≤

[
(1−A)2E

[
|X(k−1)h − xk−1|2

]
+B2

] 1
2 + C.

According to (Dalalyan and Karagulyan, 2019, Lemma 9), withA,B,C given in (50),(51),(52),
for all k ≥ 1,

E
[
|Xkh − xk|2

] 1
2 ≤ (1−A)kE

[
|X0 − x0|2

] 1
2 +

C

A
+

B√
A(2−A)

.

Choosing X0 such that W2(ν0, πβ) = E
[
|X0 − x0|2

] 1
2 , we get (11).

We now prove Theorem 16.

Proof [Proof of Theorem 16] Following the same strategy and notation in the proof of
Theorem 5, we have

Xh − x1 = U1 + U2 + U3 + (β − 1)hE[ζ0|x0] + (β − 1)h (ζ0 − E[ζ0|x0]) , (53)
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where U1, U2, U3 are defined in (37),(38),(39) respectively and ζ0 = gσ,m(x0) − ∇V (x0).
Therefore we have

E
[
|Xh − x1|2

] 1
2 ≤ E

[
|U1 + U3 + (β − 1)h (ζ0 − E[ζ0|x0]) |2

] 1
2

+ E
[
|U2|2

] 1
2 + (β − 1)hE

[
|E[ζ0|x0]|2

] 1
2

=
{
E
[
|U1 + U3|2

]
+ (β − 1)2h2E

[
|ζ0 − E[ζ0|x0]|2

]} 1
2

+ E
[
|U2|2

] 1
2 + (β − 1)hE

[
|E[ζ0|x0]|2

] 1
2 .

(54)

From the proof of Theorem 5 and Proposition 15, when

h < min

(
1

4(β − 1)h
,

2δ

3(1 + δ)α(β − 1)

)
,

we have that

E
[
|Xh − x1|2

] 1
2 ≤

{
(1−A)2E

[
|X0 − x0|2

]
+B2 +

σ2

2m
L2(β − 1)2(d+ 3)3h2

+
2(d+ 5)(β − 1)2h2

m
E
[
|∇V (x0)|2

]} 1
2

+ C + Lσ(β − 1)d
1
2h, (55)

where A,B,C are defined in (50),(51),(52). Using the fact that V is gradient Lipshcitz, we
have

E
[
|∇V (x0)|2

]
≤ E

[
(|∇V (X0)|+ L|X0 − x0|)2

]
≤ 2E

[
|∇V (X0)|2

]
+ 2L2E

[
|X0 − x0|2

]
. (56)

Plugging (56) in (55), we get

E
[
|Xh − x1|2

] 1
2 ≤

{
(1−A)2E

[
|X0 − x0|2

]
+

4(d+ 5)(β − 1)2L2h2

m
E
[
|X0 − x0|2

]
+B2

+
σ2

2m
L2(β − 1)2(d+ 3)3h2 +

4(d+ 5)(β − 1)2h2

m
E
[
|∇V (X0)|2

]} 1
2

+ C + Lσ(β − 1)d
1
2h. (57)

When we pick the step-size such that

h < min

{
2(1 + δ)

α(β − 1)δ
,

αmδ

24(1 + δ)(β − 1)(d+ 5)L2

}
,

we have

(1−A)2 +
4(d+ 5)(β − 1)2L2h2

m
≤
(

1− A

2

)2

.

Therefore we have

E
[
|Xh − x1|2

] 1
2 ≤

{
(1−A′)2E

[
|X0 − x0|2

]
+B′

2
} 1

2
+ C ′, (58)
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where

A′ =
α(β − 1)δ

6(1 + δ)
h, (59)

B′ =

(
5
α

1
2 (β − 1)

3
2 (3 + δ)

1
2h

3
2

(1 + δ)
1
2 δ

1
2

+
2(β − 1)(d+ 5)

1
2h

m
1
2

)
Eπβ

[
|∇V (X)|2

] 1
2

+
5α

1
2 (β − 1)

1
2d

1
2 (3 + δ)

1
2h

(1 + δ)
1
2 δ

1
2

Eπβ [V (X)]
1
2 +

σL(β − 1)(d+ 3)
3
2

m
1
2

h, (60)

C ′ = 3L(β − 1)d
1
2h

3
2Eπβ [V (X)]

1
2 + 2L(β − 1)2h2Eπβ

[
|∇V (X)|2

] 1
2 + σL(β − 1)d

1
2h. (61)

The rest of the proof is the same as the proof of Theorem 5, and hence we get (26).
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Fournier, Léo Gautheron, Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotoma-
monjy, Ievgen Redko, Antoine Rolet, Antony Schutz, Vivien Seguy, Danica J. Suther-
land, Romain Tavenard, Alexander Tong, and Titouan Vayer. POT: Python Op-
timal Transport. Journal of Machine Learning Research, 22(78):1–8, 2021. URL
http://jmlr.org/papers/v22/20-451.html.

Andrew Gelman, Aleks Jakulin, Maria Grazia Pittau, and Yu-Sung Su. A weakly infor-
mative default prior distribution for logistic and other regression models. The annals of
applied statistics, 2(4):1360–1383, 2008.

Alan Genz and Frank Bretz. Computation of multivariate normal and t-probabilities, volume
195. Springer Science & Business Media, 2009.

Alan Genz, Frank Bretz, and Yosef Hochberg. Approximations to multivariate t integrals
with application to multiple comparison procedures. In Recent Developments in Multiple
Comparison Procedures, pages 24–32. Institute of Mathematical Statistics, 2004.

Joyee Ghosh, Yingbo Li, and Robin Mitra. On the use of Cauchy prior distributions for
Bayesian logistic regression. Bayesian Analysis, 13(2):359–383, 2018.

Sivakanth Gopi, Yin Tat Lee, and Daogao Liu. Private convex optimization via exponential
mechanism. In Conference on Learning Theory, pages 1948–1989. PMLR, 2022.

37

http://jmlr.org/papers/v22/20-451.html


He, Farghly, Balasubramanian and Erdogdu

Sivakanth Gopi, Yin Tat Lee, Daogao Liu, Ruoqi Shen, and Kevin Tian. Algorithmic aspects
of the log-laplace transform and a non-euclidean proximal sampler. In Proceedings of
Thirty Sixth Conference on Learning Theory, pages 2399–2439, 2023.

Jackson Gorham, Andrew B Duncan, Sebastian J Vollmer, and Lester Mackey. Measuring
sample quality with diffusions. The Annals of Applied Probability, 29(5):2884–2928, 2019.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical integration:
structure-preserving algorithms for ordinary differential equations, volume 31. Springer
Science & Business Media, 2006.

Ye He, Krishnakumar Balasubramanian, and Murat A Erdogdu. On the Ergodicity, Bias
and Asymptotic Normality of Randomized Midpoint Sampling Method. Advances in
Neural Information Processing Systems, 33, 2020.

Ye He, Krishnakumar Balasubramanian, and Murat A Erdogdu. An analysis of trans-
formed unadjusted langevin algorithm for heavy-tailed sampling. IEEE Transactions on
Information Theory, 2023.

Ya-Ping Hsieh, Ali Kavis, Paul Rolland, and Volkan Cevher. Mirrored Langevin Dynamics.
Advances in Neural Information Processing Systems, 31, 2018.

Lu-Jing Huang, Mateusz B Majka, and Jian Wang. Approximation of heavy-tailed distri-
butions via stable-driven SDEs. Bernoulli, 27(3):2040–2068, 2021.

Mourad Ismail and Martin E Muldoon. Inequalities and monotonicity properties for Gamma
and q-Gamma functions. In Approximation and Computation: A Festschrift in Honor of
Walter Gautschi, pages 309–323. Springer, 1994.

Søren Jarner and Gareth Roberts. Convergence of heavy-tailed Monte Carlo Markov Chain
algorithms. Scandinavian Journal of Statistics, 34(4):781–815, 2007.

Qijia Jiang. Mirror Langevin Monte Carlo: the Case Under Isoperimetry. Advances in
Neural Information Processing Systems, 34:715–725, 2021.

Leif T Johnson and Charles J Geyer. Variable transformation to obtain geometric ergodicity
in the Random-Walk Metropolis algorithm. The Annals of Statistics, 40(6):3050–3076,
2012.

Kengo Kamatani. Efficient strategy for the Markov chain Monte Carlo in high-dimension
with heavy-tailed target probability distribution. Bernoulli, 24(4B):3711–3750, 2018.

Samuel Kotz and Saralees Nadarajah. Multivariate t-distributions and their applications.
Cambridge University Press, 2004.

Yin Tat Lee, Ruoqi Shen, and Kevin Tian. Logsmooth gradient concentration and tighter
run-times for Metropolized Hamiltonian Monte Carlo. In Conference on Learning Theory,
pages 2565–2597, 2020.

38
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Appendix A. Computations for Section 3.3

Lemma 25 Let β > d
2 + 1. If V ∈ C2(Rd) is positive, α-strongly convex and L-gradient

Lipschitz, we have for any r ∈ (0, β − d
2 − 1),

Zβ−1

Zβ
≤
(
L

α

) d
2

β− d2−r V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d2−r

. (62)

Proof Since V (x) ≤ V (0) + L
2 |x|

2, we know that for any r ∈ (0, β − d
2 − 1), Z d

2
+r is finite

and π d
2

+r is a probability measure. Therefore

Zβ−1

Zβ
=

∫
Rd V (x)−(β−1)dx∫

Rd V (x)−βdx

=
Z d

2
+r

∫
Rd V (x)−(β− d

2
−1−r)π d

2
+r(x)dx

Z d
2

+r

∫
Rd V (x)−(β− d

2
−r)π d

2
+r(x)dx

≤

(∫
Rd V (x)−(β− d

2
−r)π d

2
+r(x)dx

)β− d2−1−r

β− d2−r∫
Rd V (x)−(β− d

2
−r)π d

2
+r(x)dx

=

(∫
Rd
V (x)−(β− d

2
−r)π d

2
+r(x)dx

)− 1

β− d2−r

=
(
Z d

2
+r

) 1

β− d2−r

(∫
Rd
V (x)−βdx

)− 1

β− d2−r

≤
(
Z d

2
+r

) 1

β− d2−r

(∫
Rd

(V (0) +
L

2
|x|2)−βdx

)− 1

β− d2−r .

For the integral
∫
Rd(V (0) + L

2 |x|
2)−βdx, we can calculate it via change of polar coordinates

and substitutions,∫
Rd

(V (0) +
L

2
|x|2)−βdx = Ad−1(1)

∫ ∞
0

(V (0) +
L

2
R2)−βRd−1dR
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=
π
d
2

Γ(d2)
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−1RL
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,

where the second identity follows from a substitution with RL = LR2/(2V (0)) and the
fourth identity follows from a substitution with u = RL

1+RL
. For Z d

2
+r, we have

Z d
2

+r =
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d
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−rdx

≤
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Therefore, we can further get
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≤
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Appendix B. Computations for Sections 5.1 and 5.2

Let πβ(x) ∝ V (x)−β = (1 + |x|2)−β with β > d+2
2 . The gradient and Hessian of V is

∇V (x) = 2x, ∇2V (x) = 2Id.

Therefore V is α-strongly convex with α = 2 and L-gradient Lipschitz with L = 2. (3)
reduces to

dXt = b(x)dt+ σ(Xt)dBt, (63)

with b(x) = −2(β − 1)x and σ(x) =
√

2(1 + |x|2)
1
2 Id.

Next we look at the uniform dissipativity condition:

〈b(x)− b(y), x− y〉+
1

2

∥∥∥(1 + |x|2)
1
2 Id − (1 + |y|2)

1
2 Id

∥∥∥2

F

=− 2(β − 1)|x− y|2 + d|(1 + |x|2)
1
2 − (1 + |y|2)

1
2 |2

≤− 2(β − 1− d

2
)|x− y|2, (64)

where the inequality follows from the fact that x 7→ (1 + |x|2)
1
2 is 1-Lipschitz. Therefore

diffusion (63) is α′-uniform dissipative with α′ = 2(β − 1 − d
2). In particular, α′ = d when

β = d+ 1 and α′ = 1 when β = d+3
2 .

Last we look at the local deviation for the Euler discretization to (63). We use the same
notations in Li et al. (2019). According to (Li et al., 2019, lemma 29), p1 = 1 and

λ1 = 2
(
µ1(b)2 + µF1 (σ)2

) (
π1,2(b) + πF1,2(σ)

)
(1 + E[|X̃0|2] + 2π1,2(b)α′

−1
).

According to (Li et al., 2019, lemma 29), p2 = 3
2 and

λ2 = µ1(b)
(
π1,2(b) + πF1,2(σ)

)
(1 + E[|X̃0|2] + 2π1,2(b)α′

−1
),

with

µ1(b) := sup
x,y∈Rd,x 6=y

|b(x)− b(y)|
|x− y|

= 2(β − 1),

µF1 (σ) := sup
x,y∈Rd,x 6=y

‖σ(x)− σ(y)‖F
|x− y|

=
√

2d,

π1,2(b) := sup
x∈Rd

|b(x)|2

1 + |x|2
= 4(β − 1)2,

πF1,2(σ) := sup
x∈Rd

‖σ(x)‖2F
1 + |x|2

= 2d.

The order of λ1 and λ2 in dimension parameter d is given by:

λ1 = Θ
((

(β − 1)2 + d
) (

(β − 1)2 + 2d
) (

1 + (β − 1)2α′
−1
))

,

λ2 = Θ
(

(β − 1)
(
(β − 1)2 + 2d

) (
1 + (β − 1)2α′

−1
))

.

Therefore, we have that
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• when β = d+ 1, (λ1, λ2) = (Θ(d5),Θ(d4)),

• when β = d+3
2 , (λ1, λ2) = (Θ(d5),Θ(d4)).

Appendix C. Computations for Remark 20

In the example of Cauchy class distributions, V (x) = 1 + |x|2 and Vγ := V γ . When γ > 1
2 ,

∇Vγ(x) = γV (x)γ−1∇V (x)

∇2Vγ(x) = γ(γ − 1)V (x)γ−2∇V (x)T∇V (x) + γV (x)γ−1∇2V (x)

= γV (x)γ−1
(
(γ − 1)V (x)−1∇V (x)T∇V (x) +∇2V (x)

)
.

Plug in V (x) = 1 + |x|2, we get

∇Vγ(x) = 2γ(1 + |x|2)γ−1x

∇2Vγ(x) = 2γ(1 + |x|2)γ−1

(
Id + 2(γ − 1)

|x|2

1 + |x|2
xTx

|x|2

)
= 2γ(1 + |x|2)γ−1

(
(Id −

xTx

|x|2
) +

(
1− 2(1− γ)

|x|2

1 + |x|2

)
xTx

|x|2

)
,

and

(∇2Vγ)−1(x) =
1

2γ
(1 + |x|2)1−γ

(
(Id −

xTx

|x|2
) +

1 + |x|2

1 + (2γ − 1)|x|2
xTx

|x|2

)
.

When β ∈
(
d+2

2 , d
]
, γ = β

d+2 ∈
(

1
2 , 1
]
,

(∇2Vγ)−1(x) � 1

2γ(2γ − 1)
(1 + |x|2)1−γId =

(d+ 2)2

2β(2β − d− 2)
(1 + |x|2)1−γId.

Therefore Assumption 3 holds with CV (γ) = (d+2)2

2β(2β−d−2) . For the Cauchy distribution

πβ ∝ (1 + |x|2)−β = (1 + |x|2)−
d+ν
2 with β ∈ (d+2

2 , d], i.e. ν ∈ (2, d], according to lemma 19,
πβ satisfies the weighted Poincaré inequality with weight 1 + |x|2 with weighted Poincaré
constant

CWPI = CV (γ)

(
β

γ
− 1

)−1

=
(d+ 2)2

2(d+ 1)β(2β − d− 2)
=

(d+ 2)2

ν(d+ 1)(d+ ν)
.
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