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Abstract

Following the same routine as Shi et al. (2023), we continue to present the theoretical
analysis for stochastic gradient descent with momentum (SGD with momentum) in this
paper. Differently, for SGD with momentum, we demonstrate that the two hyperparam-
eters together, the learning rate and the momentum coefficient, play a significant role in
the linear convergence rate in non-convex optimizations. Our analysis is based on us-
ing a hyperparameters-dependent stochastic differential equation (hp-dependent SDE) that
serves as a continuous surrogate for SGD with momentum. Similarly, we establish the
linear convergence for the continuous-time formulation of SGD with momentum and ob-
tain an explicit expression for the optimal linear rate by analyzing the spectrum of the
Kramers-Fokker-Planck operator. By comparison, we demonstrate how the optimal linear
rate of convergence and the final gap for SGD only about the learning rate varies with
the momentum coefficient increasing from zero to one when the momentum is introduced.
Then, we propose a mathematical interpretation of why, in practice, SGD with momentum
converges faster and is more robust in the learning rate than standard stochastic gradient
descent (SGD). Finally, we show the Nesterov momentum under the presence of noise has
no essential difference from the traditional momentum.

Keywords: nonconvex optimization, stochastic gradient descent with momentum, hp-
dependent SDE, hp-dependent kinetic Fokker-Planck equation, Kramers operator, Kramers-
Fokker-Planck operator, Nesterov momentum

1. Introduction

For a long time, it has been considered a core and fundamental topic to build theories for
optimization algorithms, which leads, in practice, to design new algorithms for accelerating
and improving performance. Recently, with the blossoming of machine learning, people
have spotlighted gradient-based algorithms. However, the mechanism behind them is still
mysterious and undiscovered. Significantly, the non-convex structure brings about new and
urgent challenges for modern theoreticians.
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Recall the minimization problem of a non-convex function f is defined in terms of an
expectation:

f(x) = Eζ [f(x; ζ)],

where the expectation is over the randomness embodied in ζ. Empirical risk minimization,
averaged over n data points, is a simple and special case, shown as

f(x) =
1

n

n∑
i=1

fi(x),

where x denotes a parameter and the datapoint-specific loss, fi(x), is indexed by i. When
n is large, it is prohibitively expensive to compute the full gradient of the objective func-
tion. Hence, the algorithms for gradients with incomplete information (noisy gradient) are
adopted widely in practice.

Recall standard stochastic gradient descent, shortened to SGD,

xk+1 = xk − s∇f(xk) + sξk,

with any initial x0 ∈ Rd, where ξk denotes the noise at the kth iteration. In this paper, we
consider the most popular variant of SGD — SGD with momentum

k + 1 = xk − s∇f(xk) + sξk + α(xk − xk−1)

with any initial x0, x1 ∈ Rd, where α(xk − xk−1) is named as momentum excluded in SGD.
SGD with momentum has been practically proven to be the most effective setting and is
widely adopted in deep learning (He et al., 2016). An experimental comparison between
SGD and SGD with momentum is shown in Figure 1.
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Figure 1: The comparison for the training error between SGD and SGD with momentum. The
setting is a 20-layer convolutional neural network on CIFAR-10 (Krizhevsky, 2009) with
a mini-batch size of 128. Learning Rate: s = 0.01. Momentum Coefficient: α =
0.9. Left: Standard Scale; Right: Logarithmic Scale. See He et al. (2016) for further
investigation of this phenomenon.

In Figure 1, we compare SGD and SGD with momentum using the same learning rate.
For the stable (final) training error (the plateau part in the curve of the training error),
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SGD with momentum is a little larger than SGD; however, for the least epochs arriving at
stabilization, SGD with momentum is far less than SGD. Generally speaking, the momen-
tum coefficient in SGD with momentum is usually set to α = 0.9 or beyond in practice.
Straightforwardly, people will ask:

Why does SGD with momentum under the setting of momentum coeffi-
cient α = 0.9 and beyond often perform well?

Actually, it is still a mystery. Now, we can delve into it with two formal and academic
questions:

• What happens to the iterative behavior of SGD when the momentum is introduced?
Specifically, how does the iterative behavior of SGD with momentum vary with the
momentum coefficient α from 0 to 1 when the learning rate s is fixed?

• How does the iterative behavior of SGD with momentum vary with the learning rate
s when the momentum coefficient α is fixed?

In other words, do we need to investigate the relationship between SGD and SGD with
momentum? Where are the similarities? Where are the differences? In this paper, we will
try to answer the questions above from the continuous surrogate. Before discussing the
property of SGD with momentum about the hyperparameters, the learning rate s and the
momentum coefficient α, we introduce, for convenience, a new mixing parameter as

µ =
(1− α)2

(1 + α)2
· 1

s
∈
(

0,
1

s

)
suchthat α =

1−√µs
1 +
√
µs
∈ (0, 1).

1.1 Continuous-time approximation

The continuous-time approximation, used widely to study the gradient-based optimization
algorithms, is a newly-sprung and vital to assist in the proposal of fundamental new insights
and understandings for the performance (Su et al., 2016). Due to its conceptual simplicity
in the continuous setting, many properties related to them have been discovered and devel-
oped (Shi et al., 2022). Moreover, modern and advanced mathematics and physics methods
can propose profound and powerful analyses for them (Shi et al., 2023).

Now, we construct the continuous surrogate for SGD with momentum as follows. Taking
a small but nonzero learning rate s, let tk = k

√
s (k = 0, 1, 2, . . .) denote a time step

and define xk = Xs,α(tk) for some sufficiently smooth curve Xs,α(t).1 Applying a Taylor
expansion in the power of

√
s, we obtain:

xk+1 = Xs,α(tk+1) = xk + Ẋs,α(tk)
√
s+

1

2
Ẍs,α(tk)s+

1

6

...
Xs,α(tk)(

√
s)3 +O(s2)

xk−1 = Xs,α(tk−1) = xk − Ẋs,α(tk)
√
s+

1

2
Ẍs,α(tk)s−

1

6

...
Xs,α(tk)(

√
s)3 +O(s2)

(1)

1. The subscripts outline Xs,α(t) is dependent on learning rate s and momentum coefficient α.
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Let W be a standard Brownian motion and, for the time being, assume that the noise term
ξk approximately follows the normal distribution with unit variance. Informally, this leads
to

4
√
sξk = W (tk+1)−W (tk) =

√
sẆ (tk) +O(s).2 (2)

Taking the straightforward transform for the SGD with momentum, we have

xk+1 + xk−1 − 2xk
s

+
2
√
µ

1 +
√
µs
· xk − xk−1√

s
+∇f(xk) = ξk.

Then, we plug the previous two displays, (1) and (2), into SGD with momentum and get

Ẍs,α(tk) +O(s) + 2
√
µẊs,α(tk) +O(

√
s) +∇f(xk) = 4

√
sẆ (tk) +O(s

3
4 ).

Considering the O( 4
√
s)-approximation, that is, retaining both O(1) and O( 4

√
s) terms but

ignoring the smaller terms, we obtain a hyperparameter-dependent stochastic differential
equation (hp-dependent SDE)

Ẍs,α + 2
√
µẊs,α +∇f(Xs,α) = 4

√
sẆ , (3)

where the initial condition is the same value Xs,α(0) = x0 and Ẋs,α(0) = (x1 − x0)/
√
s.

Here, we write down the standard form of the hp-dependent SDE (3) as{
dXs,α = Vs,α,

dVs,α = (−2
√
µXs,α −∇f(Xs,α)) dt+ 4

√
sdW.

(4)

More generally, Li et al. (2019) and Chaudhari and Soatto (2018) consider SDEs with
variable-dependent noise covariance as approximating surrogates for SGD with momentum.
The hp-dependent SDE (4) is a convenient simple model that allows for a fine-grained
analysis, as we will show in this paper.

1.2 An intuitive analysis

In Shi et al. (2023), the authors derive the continuous surrogate for SGD, lr-dependent SDE,

dXs = −∇f(Xs)dt+
√
sdW, (5)

where the initial is the same value x0 as its discrete counterpart and W is the standard
Brownian motion. By the corresponding lr-dependent Fokker-Planck equation

∂ρs
∂t

= ∇ · (ρs∇f) +
s

2
∆ρs, (6)

they show the expected excess risk evolves with time as

E[f(Xs(t))]− min
x∈Rd

f(x) = E[f(Xs(t))− f(Xs(∞))] + E[f(Xs(∞))]− min
x∈Rd

f(x)︸ ︷︷ ︸
final gap

, (7)

2. Although a Brownian motion is not differentiable, the notation Ẇ has been used in Evans (2012) and Vil-
lani (2006).
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where the first part E[f(Xs(t))− f(Xs(∞))] converges linearly with the rate as

λs � exp

(
−

2Hf

s

)
and Hf is the height difference (See the detail in Shi et al. (2023, Section 6.2)). Also, the
second part is the final gap, which can be bounded by the learning rate s.

Actually, the lr-dependent SDE (5) is the overdamped limit of the hp-dependent SDE (3).
Assume the learning rate s� 1 or s→ 0, then we can obtain the friction parameter

2
√
µ =

1− α
1 + α

· 2√
s
� 1 or 2

√
µ =

1− α
1 + α

· 2√
s
→∞.

Let us introduce two new variables τ and β and substitute them as

τ =
t

2
√
µ

=
k
√
s

2
√
µ

= k · s(1 + α)

2(1− α)
= kβ(s, α). (8)

With the basic calculations

d2X

dt2
=

1

4µ

d2X

dτ2
,

dX

dt
=

1

2
√
µ

dX

dτ
,

dW (t)

dt
=
dW (2

√
µτ)

d(2
√
µτ)

=

√
1

2
√
µ

dW (τ)

dτ
,

we can obtain the equivalent form for the hp-dependent SDE (4) for the variable τ as

1

4µ
Ẍ + Ẋ +∇f(X) =

√
β(s, α)Ẇ . (9)

Then, we discuss the case of the overdamped friction in (9). In other words, the friction
coefficient µ is oversized. Rigorously speaking, when the friction coefficient approximates
to infinity, µ→∞, the hp-dependent SDE (9) approximates to the following equation as

dX(τ) = −∇f(X(τ))dτ +
√
β(s, α)dW (τ), (10)

which is similar to the lr-dependent SDE (5) and the only difference is that the coefficient
of noise

√
s is replaced by

√
β(s, α). Recall Shi et al. (2023), we can write down the corre-

sponding Fokker-Planck-Smoluchowski equation for the SDE (10) to govern the evolution
of probability density as

∂ρs,α
∂t

= ∇ · (ρs,α∇f) +
β(s, α)

2
∆ρs,α (11)

Hence, we obtain the equilibrium distribution, that is, ∂ρs,α/∂t = 0, as

µs,α =
1

Zs,α
exp

(
− 2f

β(s, α)

)
=

1

Zs,α
exp

(
−2f

s
· 2(1− α)

1 + α

)
(12)

and the rate of linear convergence is

λs,α � exp

(
−

2Hf

β(s, α)

)
= exp

(
−

2Hf

s
· 2(1− α)

1 + α

)
,
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where f is the potential, and Hf is the height difference. Furthermore, we have

λs,ατ � exp

(
−

2Hf

β(s, α)

)
· kβ(s, α) = exp

(
−

2Hf

s
· 2(1− α)

1 + α

)
︸ ︷︷ ︸

exponential part

· 1 + α

2(1− α)
s︸ ︷︷ ︸

linear part

· k. (13)

Recall (8), the parameter β(s, α) is indeed explicitly expressed by the learning rate s
and the momentum coefficient α as

β(s, α) =
1 + α

2(1− α)
· s,

where we can find that the parameter β(s, α) is linearly dependent on the learning rate
s. From (12) and (13), we can also find that the learning rate s here plays the same role
as that in the lr-dependent SDE (5). Furthermore, the momentum coefficient α with the
mathematical expression 1+α

2(1−α) takes the effect on the learning rate s. Hence, we can derive
the following conclusions in detail as:

• When α = 1/3, then both the equilibrium distribution µs,α and the convergence rate
λs,ατ reduces to that in the lr-dependent SDE (5).

• When α < 1/3, then the equilibrium distribution µs,α concentrates and the conver-
gence rate λs,ατ decreases sharply. Practically, we rarely adopt this setting.

• When α > 1/3, then the equilibrium distribution µs,α diverges, but the convergence
rate λs,ατ increases sharply. This is the setting we often adopt in practice. We demon-
strate that the parameter 1+α

2(1−α) vary with the momentum coefficient α in Table 1

and Figure 2, where we can find that the parameter 1+α
2(1−α) does not increas sharply

α 0.5 0.6 0.7 0.8 0.9 0.99 0.999
1+α

2(1−α) 1.5 2 2.83 4.5 9.5 99.5 999.5

Table 1: The parameter 1+α
2(1−α) varies with the momentum coefficient α.

until the momentum coefficient α is close to 0.9. Then, we can find from (13) that
the change of the linear rate is dominated by the exponential part for α < 0.9 and by
the linear part for α > 0.9 since the exponential part is close to 1 when α > 0.9. In
summary, the linear convergence rate always changes dominantly with the momentum
coefficient α.

Back to Figure 1, the convergence behavior of the training error of SGD with momentum
is qualitatively similar to that of SGD in Shi et al. (2023). Concretely, the training error
decreases to some stable value instead of incessant convergence. Actually, this final gap
is caused by the equilibrium distribution µs,α. Recall the evolution behavior of expected
excess risk described in (7), we know that the final gap is characterized as

E[f(Xs(∞))]− min
x∈Rd

f(x) =

∫
x∈Rd

f(x)µs,αdx− min
x∈Rd

f(x).
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Figure 2: The parameter 1+α
2(1−α) varies with the momentum coefficient α. Left: Linear scale; Right:

Logarithmic scale.

Recall Shi et al. (2023, Proposition 3.2), we can bound the final gap with the parameter
β(s, α) instead of the learning rate s as

E[f(Xs(∞))]− min
x∈Rd

f(x) ≤ O(β(s, α)) = O

(
1 + α

2(1− α)
· s
)
. (14)

Here, we can find that the final gap depends linearly on the learning rate s and the parameter
1+α

2(1−α) . In the previous analysis from Table 1 and Figure 2, we know that the parameter
1+α

2(1−α) changes sharply with the momentum coefficient α > 0.9. In other words, when the
momentum coefficient α is larger than 0.9, the final gap grows strikingly by increasing the
momentum coefficient. Hence, in order to avoid the final gap excessive, the momentum
coefficient α set around 0.9 is a reasonable choice.

Based on this intuitive analysis, we know the coefficient of noise is
√
β(s, α) instead

of
√
s in the hp-dependent SDE (4) . Hence, the parameters 1+α

2(1−α) for the momentum
coefficient α is set as the coefficient of learning rate s, which as a whole, conversely influ-
ences the linear rate of convergence and the equilibrium distribution. In Figure 1, we also
find that the momentum coefficient α = 0.9 balances for the two reverse directions. This
paper proposes rigorous proof corresponding to this intuition using modern mathematical
techniques: hypocoercity and semi-classical analysis.

1.3 Related work

Currently, the study of deep learning is a fashionable topic. Finding ways to tune the
parameters is preoccupying the industry. The seminal work (Bengio, 2012) discusses the
significance of the hyperparameters in practice, which not only points out that the learning
rate plays the single most crucial role but also suggests that the added momentum will lead
to faster convergence in some cases. Moreover, in practice, as proposed in He et al. (2016),
the classical Residual Networks adopt SGD with momentum, not SGD, to obtain a sound
performance for image recognition.

Recently, in the field of nonlinear optimization, there has been an emerging method
called continuous-time approximation for discrete algorithms. By taking the approximating

7



Bin Shi

ODEs, we can simplify the discrete algorithms and use a modern form of analysis to obtain
new characteristics, and the formation has not yet been discovered. This method starts
to investigate the acceleration phenomenon generated by Nesterov’s accelerated gradient
methods (Su et al., 2016; Jordan, 2018). Finally, it is solved in Shi et al. (2022) by in-
troducing the high-resolution approximated differential equations based on the dimensional
analysis from physics.

In the stochastic setting, this approach has been recently pursued by various authors
(Chaudhari et al., 2018; Chaudhari and Soatto, 2018; Mandt et al., 2016; Lee et al., 2016;
Caluya and Halder, 2019; Li et al., 2017) to establish the various properties of stochastic
optimization. As a notable advantage, the continuous-time perspective allows us to work
without assumptions on the boundedness of the domain and gradients, as opposed to the
older analyses of SGD (see, for example, Hazan et al. (2008)). Our work is partly motivated
by the recent progress on Langevin dynamics, particularly for nonconvex settings (Villani,
2009; Pavliotis, 2014; Helffer et al., 2004; Bovier et al., 2005). In Langevin dynamics, the
learning rate s in the hp-dependent SDE can be thought of as the temperature parameter
and 2

√
µ as a function of the learning rate s and the momentum coefficient α, can be thought

of as the friction coefficient. In addition, the difference between the strongly convex function
and the nonconvex function for the SGD with momentum is also found in Liu et al. (2020).
However, the theoretical result for the nonconvex function obtained in Liu et al. (2020)
is little related to the observation in practice, since the convergence derived in Liu et al.
(2020) is in terms of the iterative average of the expectation of the stochastic gradient’s
norm square. The convergence of SGD with momentum is also discussed theoretically in Jin
and He (2020). However, there are two strong assumptions in Jin and He (2020), one is
that the noisy gradient is bounded by the real gradient in the sense of expectation and the
other is that the sum of the square of the learning rate is bounded.

1.4 Organization

The remainder of the paper is structured as follows. In Section 2, we introduce the basic
concepts and assumptions employed throughout this paper. Next, Section 3 develops our
main theorems and some comparisons analytically and numerically with SGD with momen-
tum. Section 4 formally proves the linear convergence, and Section 5 further quantifies the
linear rate of convergence. Technical details of the proofs are deferred to the appendices.
We conclude the paper in Section 7 with a few directions for future research.

2. Preliminaries

Throughout this paper, we assume that the objective function f is infinitely differentiable
in Rd; that is, f ∈ C∞(Rd). We use ‖ ·‖ to denote the standard Euclidean norm. Recall the
confining condition for the objective f in Shi et al. (2023, Definition 2.1), also see Markowich
and Villani (1999) and Pavliotis (2014): lim‖x‖→+∞ f(x) = +∞ and exp(−2f/s) is inte-
grable for all s > 0. This condition is quite mild and requires that the function grows
sufficiently rapidly when x is far from the origin. For convenience, we need to define some
Hilbert spaces. For any k = −1, 0, 1, let 〈·, ·〉L2(µks,α) be the inner product in the Hilbert
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space L2(µks,α), defined as

〈g1, g2〉L2(µks,α) =

∫
Rd

∫
Rd
g1g2µ

k
s,αdvdx

with any g1, g2 ∈ L2(µks,α). For any g ∈ L2(µks,α), the norm induced by the inner product is

‖g‖L2(µks,α) =
√
〈g, g〉L2(µks,α).

Recall the hp-dependent SDE (4). Similar as Shi et al. (2023), the probability density
ρs,α(t, ·, ·) of (Xs,α(t), Vs,α(t)) evolves according to the hp-dependent kinetic Fokker-Planck
equation

∂ρs,α
∂t

= −v · ∇xρs,α +∇xf · ∇vρs,α + 2
√
µ∇v · (vρs,α) +

√
s

2
∆vρs,α, (15)

with the initial condition ρs,α(0, ·, ·). Here, ∆v ≡ ∇v ·∇v is the Laplacian. For completeness,
we derive the hp-dependent kinetic Fokker-Planck equation in Appendix A.1 from the hp-
dependent SDE (4) by Itô’s formula and Chapman-Kolmogorov equation. If the objective f
satisfies the confining condition, then the hp-dependent kinetic Fokker-Planck equation (15)
admits a unique invariant Gibbs distribution that takes the form as

µs,α =
1

Zs,α
exp

(
−2f + ‖v‖2

β(s, α)

)
, (16)

where the normalization factor is

Zs,α =

∫
Rd

∫
Rd

exp

(
−2f + ‖v‖2

β(s, α)

)
dvdx.

The proof of existence and uniqueness is shown in Appendix A.2.

Villani conditions To show the solution’s existence and uniqueness to the hp-dependent
kinetic Fokker-Planck equation (15), we still need to introduce the Villani conditions first.

Definition 1 (Villani Conditions (Villani, 2009)) A confining condition f is said to
satisfy the Villani conditions if

(I) When ‖x‖ → ∞, we have
‖∇f‖2

s
−∆f →∞;

(II) For any x ∈ Rd, we have
‖∇2f‖2 ≤ C(1 + ‖∇f‖),

where the matrix 2-norm is ‖∇2f‖2 = |λmax(∇2f)|.

The Villani condition-(I) has been proposed in Shi et al. (2023, Definition 2.3), which
says that the gradient has a sufficiently large squared norm compared with the Laplacian
of the function. Generally speaking, the polynomials of degrees no less than two satisfy
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the Villani condition-(I). For the hp-dependent kinetic Fokker-Planck equation (15), the
existence and uniqueness of the solution are still the Villani condition-(II), which is called
the relative bound in Villani (2009). Actually, we will find the Fokker-Planck-Kramers
operator Ks,α has a compact resolvent under the two Villani conditions together (See Helffer
and Nier (2005, Theorem 5.8, Remark 5.13(a)) and Li (2012)) in Section 5. Hence, taking
any initial probability density ρs,α(0, ·, ·) ∈ L2(µ−1

s,α), we have the following guarantee:

Lemma 2 (Existence and uniqueness of the weak solution) For any confining func-
tion f satisfying the Villani Conditions (Definition 1) and any initial ρs,α(0, ·, ·) ∈ L2(µ−1

s,α),
the hp-dependent SDE (4) admits a weak solution whose probability density in C1

(
[0,+∞), L2(µ−1

s,α)
)

is the unique solution to the hp-dependent kinetic Fokker-Planck equation (15).

Basics of Morse theory Similar as Shi et al. (2023), we also need to assume the objective
function is a Morse function. Here, we will describe the basic concepts briefly. A point x
is called a critical point if the gradient ∇f(x) = 0. A function f is said to be a Morse
function if for any critical point x, the Hessian ∇2f(x) at x is non-degenerate. Note also
a local minimum x• ∈ X • is a critical point with all the eigenvalues of the Hessian at x•

positive and an index-1 saddle point x◦ ∈ X ◦ is a critical point where the Hessian at x◦

has exactly one negative eigenvalue, that is, η1(x◦) ≥ · · · ≥ ηd−1(x◦) > 0, ηd(x
◦) < 0. Let

Kf(x◦) :=
{
x ∈ Rd : f(x) < f(x◦)

}
denote the sublevel set at level f(x◦). If the radius r is

sufficiently small, the set Kf(x◦) ∩ {x : ‖x− x◦‖ < r} can be partitioned into two connected
components, say C1(x◦, r) and C2(x◦, r). Therefore, we can introduce the most important
concept — index-1 separating saddle as follows.

Definition 3 (Index-1 Separating Saddle) Let x◦ be an index-1 saddle point and r > 0
be sufficiently small. If C1(x◦, r) and C2(x◦, r) are contained in two different (maximal)
connected components of the sublevel set Kf(x◦), we call x◦ an index-1 separating saddle
point.

Intuitively speaking, the index-1 separating saddle point x◦ is the bottleneck of any path
connecting the two local minima. More precisely, along a path connecting x•1 and x•2, by
definition the function f must attain a value that is at least as large as f(x◦). For the detail
about the basics of Morse theory, please readers refer to Shi et al. (2023, Section 6.2).

3. Main Results

In this section, we state our main results. Briefly, for SGD with momentum in its contin-
uous formulation, the hp-dependent SDE, we show that the expected excess risk converges
linearly to stationarity and estimate the final excess risk by the hyperparameters in Sec-
tion 3.1. Furthermore, we derive a quantitative expression of the rate of linear convergence
in Section 3.2. Finally, we carry the continuous-time convergence guarantees to the discrete
case in Section 3.3.

3.1 Linear convergence

In this subsection, we are concerned with the expected excess risk, E[f(Xs,α(t))]−f?. Recall
that f? = infx∈Rd f(x).
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Theorem 1 Let f be confined and satisfy the Villani conditions. Then, there exists λs,α > 0
for any learning rate s > 0 and any momentum coefficient α ∈ (0, 1) such that the expected
excess risk satisfies

E[f(Xs,α(t))]− f? ≤ ε(s, α) +D(s, α)e−λs,αt, (17)

for all t ≥ 0. Here ε(s, α) = ε(s, α; f) ≥ 0 increases strictly for the mixing parameter β(s, α)
and depends only on the objective function f , and D(s, α) = D(s, α; f, ρ) ≥ 0 depends only
on s, α, f , and the initial distribution ρs,α(0, ·, ·).

Similar to as Shi et al. (2023), the proof of this theorem is based on the following
decomposition of the expected excess risk:

E[f(Xs,α(t))]− f? = E[f(Xs,α(t))]− E[f(Xs,α(∞))] + E[f(Xs,α(∞))]− f?, (18)

where E[f(Xs,α(∞))] denotes Ex∼µs,α [f(x)] in light of the fact that Xs,α(t) converges weakly
to µs,α as t→ +∞ (see Lemma 11). The question is thus separated into quantifying how fast
E[f(Xs,α(t))] converges weakly to E[f(Xs,α(∞))] as t→ +∞ and how the expected excess
risk at stationarity E[f(Xs,α(∞))] − f? depends on the hyperparameters. The following
two propositions address these two questions. Recall that ρs,α(0, ·, ·) ∈ L2(µ−1

s,α) is the
probability density of the initial iterate in SGD with momentum.

Proposition 4 Under the assumptions of Theorem 1, there exists λs,α > 0 for any learning
rate s and any momentum coefficient α ∈ (0, 1) such that

|E[f(Xs,α(t))]− E[f(Xs,α(∞))]| ≤ C(s, α) ‖ρs,α(0, ·, ·)− µs,α‖L2(µ−1
s,α) e

−λs,αt,

for any t ≥ 0, where the constant C(s, α) depends only s, α and f , and where

‖ρs,α(0, ·, ·)− µs,α‖L2(µ−1
s,α) =

(∫
Rd

∫
Rd

(ρs,α(0, ·, ·)− µs,α)2 µ−1
s,αdvdx

) 1
2

measures the gap between the initialization and the Gibbs invariant distribution.

Loosely speaking, it takes O(1/λs,α) to converge to stationarity from the beginning. In
Theorem 1, D(s, α) can be set to C(s, α)‖ρs,α(0, ·, ·) − µs,α‖L2(µ−1

s,α). Notably, the proof of

Proposition 4 shall reveal that C(s, α) increases as the learning rate s increases. Turning
to the analysis of the second term, E[f(Xs,α(∞))] − f?, we write henceforth ε(s, α) :=
E[f(Xs,α(∞))]− f?.

Proposition 5 Under the assumptions of Theorem 1, the expected excess risk at station-
arity, ε(s, α), is a strictly increasing function β(s, α). Moreover, for any S > 0, there exists
a constant A that depends only on S and f and satisfies

ε(s, α) ≡ E [Xs,α(∞)]− f? ≤ Aβ(s, α) =
A(1 + α)

2(1− α)
· s,

for any learning rate 0 < s ≤ S.

11
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Proposition 5 verifies rigorously our intuitive estimate (14) in Section 1.2. The two
propositions are proved in Section 4. The proof of Theorem 1 is a direct consequence of
Proposition 4 and Proposition 5. More precisely, the two propositions taken together give

Ef(Xs,α(t))− f? ≤ O
(

1 + α

2(1− α)
· s
)

+ C(s, α)e−λs,αt, (19)

for a bounded learning rate s related to the momentum coefficient α. Furthermore, when
α > 0.9, the parameter 1+α

2(1−α) increases strikingly with the increase of the momentum α,
which leads to an oversize training error. The following result gives the iteration complexity
of SGD with momentum in its continuous-time formulation.

Corollary 6 Under the assumptions of Theorem 1, for any ε > 0, if the learning rate

s ≤ min{ε/A · (1− α)/(1 + α), S} and t ≥ 1
λs,α

log
2C(s,α)‖ρs,α(0,·,·)−µs,α‖

L2(µ−1
s,α)

ε , then

E [f(Xs,α(t))]− f? ≤ ε.

3.2 The rate of linear convergence

Now, we turn to the key issue of understanding how the linear rate λs,α depends on the
hyperparameters, the learning rate s, and the momentum coefficient α. Here, we propose
an explicit expression for the linear rate λs,α to interpret this.

Theorem 2 In addition to the assumptions of Theorem 1, assume that the objective f is a
Morse function and has at least two local minima.Then the constant λs,α in (17) satisfies

λs,α =
v(γ + o(s))
√
µ+
√
µ+ v

e
−

2Hf
β(s,α) =

v(γ + o(s))
√
µ+
√
µ+ v

e−
2Hf
s
· 2(1−α)

1+α , (20)

for 0 < s ≤ s0, where s0 > 0, α > 0, Hf > 0 are constants completely depending only on f
and −v is the unique negative eigenvalue of the Hessian at the highest index-1 separating
saddle.

It should here be noted that our assumption of having at least two local minima is
important. Otherwise, there may probably be no saddle points, much less the index-1
separating saddle. Recall Shi et al. (2023, Theorem 2), for the lr-dependent SDE (5), the
exponential decay constant is obtained as

λs = v(γ + o(s))e−
2Hf
s . (21)

Here, we first come to analyze the ratio of two exponential decays, λs,α in (20) and λs
in (21), as

λs,α
λs

=
1

√
µ+
√
µ+ v

e−
2Hf
s
· 1−3α
1+α .

Then, we compute the ratio of the exponential decay constants in (20) with different learning
rates, s1 and s2, as

λs1,α
λs2,α

=

√
s1

s2

(
λs1
λs2

) 2(1−α)
1+α

.

12
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For any α > 1/3, when s, s1, s2 → 0, we can obtain

λs,α
λs
� 1 + α

1− α
· 2
√
se

2Hf
s
· 3α−1
1+α → +∞, (22)

and there exist two constants C1 and C2 in (0, 1) such that(
λs1
λs2

)C1

≤ λs1,α
λs2,α

≤
(
λs1
λs2

)C2

. (23)

From (22), we can find when the learning rate s is sufficiently small, λs,α is larger than
λs. In other words, the SGD with momentum converges faster than SGD. Furthermore,
from (23), the ratio λs1,α/λs2,α is weaker than λs1/λs2 , that is, λs1,α/λs2,α is closer to 1 than
λs1/λs2 . In Shi et al. (2023), we show the exponential decay constant λs changes sharply
with the learning rate s. Here, we can find the exponential decay constant λs,α in SGD
with momentum is more robust with the learning rate s than λs.

Numerical Demonstration We demonstrate a numerical comparison based on the anal-
ysis and description above. Recall (Shi et al., 2023, Figure 7), we compare the iteration
number of lr-dependent SDE for the learning rates s = 0.001 and s = 0.1 as

k0.001 ≈ 2.5× 1047, k0.1 ≈ 2.5× 102, and k0.001/k0.1 ≈ 1045.

From (18), we know that the expected risk is separated into two parts. Theorem 1 char-
acterizes the linear convergence of E[f(Xs,α(t))] − E[f(Xs,α(∞))] and estimates the final
gap E[f(Xs,α(∞))]− f? = 100. Theorem 2 show the explicit form of the linear convergence
rate. Let E[f(Xs,α(0))] − f? = 100 be an idealized case. Then, the idealized risk function
for hp-dependent SDE (4) can be given with the following form as

R(t) = (100− β(s, α)) e
− 1

2
√
µ
·e
− 0.1
β(s,α) t

+ β(s, α),

shown in Figure 3. With the basic calculation, we can obtain that

k0.001,0.9 ≈ 1.5× 109, k0.1,0.9 ≈ 2.5× 101, and k0.001,0.9/k0.1,0.9 ≈ 6× 107.

By comparison of the two cases, without momentum and within momentum, we can obtain
the following results as

(1) The iterative number satisfies k0.001,0.9 < k0.001 and k0.1,0.9 < k0.1, which verifies that
the iteration number for SGD with momentum is far less than that for SGD.

(2) Moreover, the ratio for the iterative number k0.001,0.9/k0.1,0.9 is also far less than
k0.001/k0.1, which manifests the iteration number in SGD with momentum is more
robust (or stable) than SGD.
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Figure 3: Idealized risk function of the form R(t) = (100− β(s, α)) e
− 1

2
√
µ ·e
− 0.1
β(s,α) t

+ β(s, α) with
the identification t = ks, which is adapted from (17). Similar as (Shi et al., 2023, Figure
7), the learning rate is selected as s = 0.1 and 0.001. The right plot is a locally enlarged
image of the left.

3.3 Discretization

This subsection presents the results developed from the continuous perspective of the dis-
crete regime. For the discrete algorithms, we still need to assume f to be L-smooth, that is,
the gradient of f is L-Lipschitz continuous in the sense that ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖
for all x, y ∈ Rd. Therefore, we can restrict the learning rate s to be no larger than 1/L.
The following proposition is the key tool for translation to the discrete regime.

Proposition 7 For any L-smooth objective f and any initialization Xs,α(0) drawn from
a probability density ρs,α(0, ·, ·) ∈ L2(µ−1

s,α), the hp-dependent SDE (4) has a unique global

solution Xs,α in expectation; that is, E[Xs,α(t)] as a function of t in C1([0,+∞);Rd) is
unique. Moreover, there exists B(T ) > 0 such that the SGD with momentum iterates xk
satisfy

max
0≤k≤T/s

|Ef(xk)− Ef(Xs(ks))| ≤ B(T )s,

for any fixed T > 0.

We note a sharp bound on B(T ) in Bally and Talay (1996). For completeness, we also
remark that the convergence can be strengthened to the strong sense:

max
0≤k≤T/s

E ‖xk −Xs(ks)‖ ≤ B′(T )s.

This result has appeared in Mil’shtein (1975); Talay (1982); Pardoux and Talay (1985);
Talay (1984); Kloeden and Platen (1992) and we provide a self-contained proof in Ap-
pendix B.1. We now state the main result of this subsection.

Theorem 3 In addition to the assumptions of Theorem 1, assume that f is L-smooth.
Then, the following two conclusions hold:

14
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(a) For any T > 0 and any learning rate 0 < s ≤ 1/L, the iterates of SGD with momentum
satisfy

Ef(xk)− f? ≤
(
A(1 + α)

2(1− α)
+B(T )

)
s+ C ‖ρ− µs,α‖L2(µ−1

s,α) e−sλs,αk, (24)

for all k ≤ T/s, where λs,α is the exponential decay constant in (17), A as in Proposi-
tion 5 depends only on 1/L and f , C = C1/L is as in Proposition 4, and B(T ) depends
only on the time horizon T and the Lipschitz constant L.

(b) If f is a Morse function with at least two local minima, with λs,α appearing in (24)
being given by (20).

Theorem 3 follows as a direct consequence of Theorem 1 and Proposition 7. Note that
the second part of Theorem 3 is simply a restatement of Theorem 2. Moreover, we also
mention that the dimension parameter d is not essential for characterizing the linear rate
of convergence.

4. Proof of the Linear Convergence

In this section, we prove Proposition 3.1 and Proposition 5, which lead to a complete proof
of Theorem 1.

4.1 Linear operators and convergence

Before proving Proposition 3.1, we first take a simple analysis for the linear operators
derived from the hp-dependent kinetic Fokker-Planck equation (15). Then, we point out
that only the Villani condition-(I) and the Poincaré inequality cannot work here. To obtain
the estimate for the hp-dependent kinetic Fokker-Planck equation (15), we still need to
introduce the Villani condition-(II) and demonstrate a vital inequality, which is named the
relative bound (Villani, 2009).

Basic Property of Linear Operators Similar to the transformation used in (Shi et al.,
2023, Section 5), we obtain the time-evolving probability density over the Gibbs invariant
measure given as

hs,α(t, ·, ·) = ρs,α(t, ·, ·)µ−1
s,α ∈ C1

(
[0,+∞), L2(µs,α)

)
,

which allows us to work in the space L2(µs,α) in place of L2(µ−1
s,α). It is not hard to show

that hs,α satisfies the following differential equation

∂hs,α
∂t

= −Ls,αhs,α, (25)

with the initial hs,α(0, ·, ·) = ρs,α(0, ·, ·)µ−1
s,α ∈ L2(µs,α), where the linear operator is defined

as

Ls,α = v · ∇x −∇xf · ∇v + 2
√
µv · ∇v −

√
s

2
∆v. (26)

Simple observation tells us that the linear operator (26) can be separated into two parts

Ls,α = T + Ds,α (27)
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where the first part T = v · ∇x −∇xf · ∇v is named as transport operator and the second

part Ss,α = 2
√
µv · ∇v −

√
s

2 ∆v is named as diffusion operator.
Let [·, ·] be the commutator operation and the two new operators

As,α = 4

√
s

4
∇v and Cs,α = 4

√
s

4
∇x, (28)

then we can obtain the basic facts described in the following lemma.

Lemma 8 In the Hilbert space L2(µs,α), with the notation of the linear operators above,
we have

(i) The conjugate operators of the linear operators, As,α and Cs,α, are

A ?
s,α = 4

√
s

4

(
−∇v +

2v

β

)
and C ?

s,α = 4

√
s

4

(
−∇x +

2∇xf
β

)
. (29)

Moreover, the diffusion operator is Ds,α = A ?
s,αAs,α.

(ii) The linear operators As,α and A ?
s,α commutes with Cs,α. Also, the commutator between

As,α and A ?
s,α is

[As,α,A
?
s,α] = 2

√
µId×d. (30)

(iii) The transport operator T is anti-symmetric. The commutator between As,α and T
is

[As,α,T ] = Cs,α (31)

and that between Cs,α and T is

[Cs,α,T ] = −∇2
xf ·As,α. (32)

The proof is only based on the basic operations and integration by parts, which is shown
in Appendix C.1.

Convergence to Gibbs invariant measure Similarly as Shi et al. (2023), we need to
claim the function in L2(µ−1

s,α) is integrable, that is, L2(µ−1
s,α) is a subset of L1(Rd).

Lemma 9 Let f satisfy the confining condition. Then, L2(µ−1
s,α) ⊂ L1(Rd).

The proof of Lemma 9 is simple and shown in Appendix C.2. With Lemma 8, we claim the
basic fact as the following lemma.

Lemma 10 The linear operator Ls,α is nonpositive in L2(µs,α). Explicitly, for any g ∈
L2(µs,α), the linear operator Ls,α obeys

〈Ls,αg, g〉L2(µs,α) = 〈Ds,αg, g〉L2(µs,α) = ‖As,αg‖2L2(µs,α) =

√
s

2

∫
Rd

∫
Rd
‖∇vg‖2µs,αdvdx.

With Lemma 10, we can show the solution to the hp-dependent SDE (15) converges to
the Gibbs invariant measure in terms of the dynamics of its probability densities over time.

16



On the Hyperparameters in Stochastic Gradient Descent with Momentum

Lemma 11 Let f satisfy the confining condition and denote the initial distribution as
ρs,α(0, ·, ·) ∈ L2(µ−1

s,α). Then, the unique solution ρs,α(t, ·, ·) ∈ C1
(
[0,+∞), L2(µ−1

s,α)
)

to
the hp-dependent Fokker-Planck equation (15) converges in L2(µ−1

s,α) to the Gibbs invariant
measure µs,α, which is specified by (16).

Proof [Proof of Lemma 11] Taking a derivative for the L2 distance between the time
involving probability density ρs,α(t, ·, ·) and the Gibbs invariant measure µs,α, we have

d

dt
‖ρs,α(t, ·, ·)− µs,α‖2L2(µ−1

s,α)
=

d

dt
‖hs,α(t, ·, ·)− 1‖2L2(µs,α)

=
d

dt

∫
Rd

∫
Rd

(hs,α(t, x, v)− 1)2 µs,αdvdx

=

∫
Rd

∫
Rd
−Ls,α (hs,α(t, x, v)− 1) (hs,α(t, x, v)− 1)µs,αdvdx,

The last equality is due to the equation (25). Next, by use of Lemma 10, we can proceed to

d

dt
‖ρs,α(t, ·, ·)− µs,α‖2L2(µ−1

s,α)
= −
√
s

2

∫
Rd

∫
Rd
‖∇vhs,α(t, x, v)‖2µs,αdvdx ≤ 0. (33)

Thus, ‖ρs,α(t, ·, ·)−µs,α‖2L2(µ−1
s,α)

is decreasing strictly and asymptotically towards the equi-

librium state ∫
Rd

∫
Rd
‖∇vhs,α(t, x, v)‖2dvdx = 0.

This equality holds, however, only if hs,α(t, ·, ·) is constant about v. Back to the differential
equation (25), we have

∂hs,α
∂t

= −v · ∇xhs,α,

of which the solution is hs,α = hs,α(0, x+tv). Furthermore, we can obtain∇vhs,α = t∇xhs,α.
With the time t’s arbitrarity, we know ∇xhs,α = 0. Therefore, we obtain that hs,α(t, ·, ·)
is constant. The fact that both ρs,α(t, ·, ·) and µs,α are probability densities implies that
hs,α(t, ·) ≡ 1; that is, ρs,α(t, ·, ·) ≡ µs,α.

Failure of Poincaré inequality Recall the Villani Condition-(I) in Definition 1

‖∇f‖2

s
−∆f → +∞, with ‖x‖ → +∞.

In Shi et al. (2023, Lemma 5.4), we obtain the Poincaré inequality to derive the linear
convergence, which is based on the technique in Villani (2009, Theorem A.1). Here, for the
differential equation (25), what we consider is not only the potential f(x) itself but is the
Hamiltonian.

H(x, v) = f(x) +
1

2
‖v‖2.

With the new norm ‖∇H‖2 = ‖∇xH‖2 + ‖∇vH‖2, the Villani condition-(I) directly leads
to

‖∇H‖2

β(s, α)
−∆H =

‖∇xf‖2 + ‖v‖2

β(s, α)
−∆xf − d→ +∞ with ‖x‖2 + ‖v‖2 → +∞.
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Based on the same technique in Villani (2009, Theorem A.1), we can obtain the following
Poincaré inequality

‖hs,α − 1‖2L2(µs,α) ≤
∫
Rd

∫
Rd

(
‖∇xhs,α‖2 + ‖∇vhs,α‖2

)
µs,αdxdv. (34)

Different from Shi et al. (2023), this inequality above cannot connect with the equation (33),
because there is only the derivative of hs,α about the variable v on the right-hand side of
the equality (33).

4.2 Proof of Proposition 3.1

To better appreciate the linear convergence of the hp-dependent SDE (3), as established in
Proposition 3.1, we need to show the linear convergence for H1-norm instead of L2-norm,
which is the key difference with the lr-dependent SDE (5) in Shi et al. (2023). The technique
is named hypocoercivity, introduced by Villani (2009).

L2 Convergence

H1 Converegnce

((·, ·)) Convereg-
nce (mixed term)

no ter
m

about ∇x

no perfectsquare

Initial condition bound

Figure 4: The Diagram of the proof framework for L2-convergence.

4.2.1 H1-Norm

Due to the failure of Poincaré inequality, we need to introduce a new Hilbert space H1(µs,α),
where the inner product is

〈g1, g2〉H1(µs,α) = 〈g1, g2〉L2(µs,α) + 〈As,αg1,As,αg2〉L2(µs,α) + 〈Cs,αg1,Cs,αg2〉L2(µs,α)

for any g1, g2 ∈ H1(µs,α). Then, the induced H1-norm for hs,α − 1 is

‖hs,α − 1‖2H1(µs,α) = ‖hs,α − 1‖2L2(µs,α) + ‖As,αhs,α‖2L2(µs,α) + ‖Cs,αhs,α‖2L2(µs,α).

For convenience, we use hs,α instead of hs,α − 1. Then, we can obtain the derivative as

1

2

d

dt
〈hs,α, hs,α〉H1(µs,α) =(1 + 2

√
µ) ‖As,αhs,α‖2L2(µs,α) + ‖A 2

s,αhs,α‖2L2(µs,α)

+ 〈Cs,αhs,α,As,αhs,α〉L2(µs,α) + ‖As,αCs,αhs,α‖2L2(µs,α)

−
〈
∇2
xf ·As,αhs,α,Cs,αhs,α

〉
L2(µs,α)

, (35)
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where the detailed calculation is shown in Appendix C.3. From (35), we can find only the
last term on the right-hand side is negative. The simple Cauchy-Schwartz inequality tells
us that there are two terms needed to be bounded as

−
〈
∇2
xf ·As,αhs,α,Cs,αhs,α

〉
L2(µs,α)

≥ −1

2
‖∇2

xf ·As,αhs,α‖2L2(µs,α)−
1

2
‖Cs,αhs,α‖2L2(µs,α) (36)

The first part needs a bound for ∇2
xf , which requires us to consider the Villani condition-

(II), shown in Section 4.2.2. The second part requires us to consider a mixed term, shown
in Section 4.2.3.

4.2.2 Relative bound

With the introduction of Villani condition-(II), we can obtain a relative bound as

Lemma 12 (Lemma A.24 in Villani (2009)) Let f ∈ C2(Rd) and satisfy the Villani
condition-(II) ∥∥∇2f

∥∥
2
≤ C (1 + ‖∇f‖) ,

Then, for all g ∈ H1(µs,α), we have

(i) ‖(∇xf)g‖2L2(µs,α) ≤ κ1(s, α)
(
‖g‖2L2(µs,α) + ‖∇xg‖2L2(µs,α)

)
;

(ii) ‖‖∇2
xf‖2g‖2L2(µs,α) ≤ κ2(s, α)

(
‖g‖2L2(µs,α) + ‖∇xg‖2L2(µs,α)

)
.

The proof is shown in Appendix C.4. Then, with Lemma 12, we can bound the first term
on the right-hand side of (36) as∥∥∇2

xf ·As,αhs,α
∥∥2

L2(µs,α)
= ‖ [T ,Cs,α]hs,α‖2L2(µs,α)

=

√
s

2
‖∇2

xf · ∇vhs,α‖2L2(µs,α)

≤ κ2(s, α)
√
s

2

(
‖∇x∇vhs,α‖2L2(µs,α) + ‖∇vhs,α‖2L2(µs,α)

)
≤ 2κ2(s, α)√

s
‖As,αCs,αhs,α‖2L2(µs,α) + κ2(s, α)‖As,αhs,α‖2L2(µs,α)

≤ κ3(s, α)

(
‖As,αCs,αhs,α‖2L2(µs,α) + ‖As,αhs,α‖2L2(µs,α)

)
,

where κ3(s, α) = max{2κ2(s, α)/
√
s, κ2(s, α)}.

4.2.3 Mixed term

For the second term on the right-hand side of (36), −‖Cs,αhs,α‖2L2(µs,α), in order to make it

a perfect sum of squares, we need to consider the mixed term

〈As,αhs,α,Cs,αhs,α〉L2(µs,α) ,
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of which the derivative is

d

dt
〈As,αhs,α,Cs,αhs,α〉L2(µs,α)

≥− 2‖A 2
s,αhs,α‖L2(µs,α)‖As,αCs,αhs,α‖L2(µs,α)

− 2
√
µ‖As,αhs,α‖L2(µs,α)‖Cs,αhs,α‖L2(µs,α) + ‖Cs,αhs,α‖2L2(µs,α)

−
√
κ3(s, α)‖As,αhs,α‖L2(µs,α)

(
‖As,αCs,αhs,α‖L2(µs,α) + ‖As,αhs,α‖L2(µs,α)

)
.

(37)

The detailed calculation is shown in Appendix C.5.

4.2.4 New inner product

From (35) and (37), we have obtained the four following squared terms.

‖As,αhs,α‖2L2(µs,α) , ‖A 2
s,αhs,α‖2L2(µs,α), ‖As,αCs,αhs,α‖2L2(µs,α), ‖Cs,αhs,α‖2L2(µs,α).

Intuitively, we can construct a new inner product satisfying

−1

2

d

dt
((hs,α, hs,α)) ≥ λ(s, α) ((hs,α, hs,α)),

where λ(s, α) is some positive constant which depends on the parameters s and α. If b2 ≤ ac,
we can define the new inner product as

((hs,α, hs,α)) = 〈hs,α, hs,α〉L2(µs,α) + a 〈As,αhs,α,As,αhs,α〉L2(µs,α)

+ 2b 〈As,αhs,α,Cs,αhs,α〉L2(µs,α) + c 〈Cs,αhs,α,Cs,αhs,α〉L2(µs,α)

(38)

Apparently, the norm ‖ · ‖((·,·)) induced by the new inner product ((·, ·)) is equivalent to
H1-norm, that is, there exists two positive reals C1 and C2 such that

C1‖hs,α‖2((·,·)) ≤ ‖hs,α‖
2
H1 ≤ C2‖hs,α‖2((·,·)). (39)

Then, from the basic calculations in Section 4.2.1 and Section 4.2.3, we can obtain the
following expression by combining like terms as

−1

2

d

dt
((hs,α, hs,α)) = ((Ls,αhs,α, hs,α))

≥
(

1 + 2a
√
µ− 2b

√
κ3(s, α)

)
‖As,αhs,α‖2L2(µs,α) + a‖A 2

s,αhs,α‖2L2(µs,α)

+c‖As,αCs,αhs,α‖2L2(µs,α) + 2b‖Cs,αhs,α‖2L2(µs,α)

−2b
√
κ3(s, α)‖As,αhs,α‖L2(µs,α)‖As,αCs,αhs,α‖L2(µs,α)

−
(
a+ c

√
κ3(s, α) + 4b

√
µ
)
‖As,αhs,α‖L2(µs,α)‖Cs,αhs,α‖L2(µs,α)

−4b‖A 2
s,αhs,α‖L2(µs,α)‖As,αCs,αhs,α‖L2(µs,α)

−c
√
κ3(s, α) ‖As,αCs,αhs,α‖L2(µs,α) ‖Cs,αhs,α‖L2(µs,α) (40)
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From (40), we can find this problem is transformed to guarantee the following matrix K1

positive definite as

K1 =


1 + 2a

√
µ− 2b

√
κ3(s, α) 0 −b

√
κ3(s, α) −1

2

(
a+ c

√
κ3(s, α) + 4b

√
µ
)

0 a −2b 0

−b
√
κ3(s, α) −2b c −1

2c
√
κ3(s, α)

−1
2

(
a+ c

√
κ3(s, α) + 4b

√
µ
)

0 −1
2c
√
κ3(s, α) 2b

 .

Let M := max{1,√µ,
√
κ3(s, α)} and fix 1 ≥ a ≥ b ≥ 2c, in order to make the matrix K

positive definite, we can make the following matrix K2 positive definite as

K2 =


1− 2Ma 0 −Mb −3Ma

0 a −2Mb 0
−Mb −2Mb c −1

2Mc
−3Ma 0 −1

2Mc 2b

 .

Furthermore, if we assume that M ≤ 1/4a, we here use the matrix L instead of K2 as

L = [lij ] ≡


1
2 0 −Mb −3Ma
0 a −2Mb 0
−Mb −2Mb c −1

2Mc
−3Ma 0 −1

2Mc 2b

 .

Recall the fact that if the element lij of the matrix L satisfies that

|lij | = |lji| ≤
√
liiljj

4
≤ lii + ljj

8
, (41)

the following quadratic inequality will be obtained as

4∑
i=1

4∑
j=1

lijxixj ≥
1

4

d∑
i=1

liix
2
i .

To ensure (41), we require the coefficient M satisfies that

Mb ≤
√
c/2

4
, 2Mb ≤

√
ac

4
, 3Ma ≤

√
b

4
,

1

2
Mc ≤

√
2bc

4
,

that is,

M =

√
min

{
1,

1

4a
,

c

32b2
,
ac

64b2
,

b

144a2
,
b

2c

}
.
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Then, we can obtain the following estimate for (40) as

−1

2

d

dt
((hs,α, hs,α)) = ((Ls,αhs,α, hs,α))

≥ 1

4
min

{
1

2
, 2b

}(
‖As,αhs,α‖2L2(µs,α) + ‖Cs,αhs,α‖2L2(µs,α)

)
≥ 1

8
min

{
1

2
, 2b

}(
‖As,αhs,α‖2L2(µs,α) + ‖Cs,αhs,α‖2L2(µs,α)

)
+

1

8
min

{
1

2
, 2b

}
χs,α‖hs,α‖2L2(µs,α)

≥ min

{
1

8
min

{
1

2
, 2b

}
,
1

8
min

{
1

2
, 2b

}
χs,α

}
‖hs,α‖2H1(µs,α)

where the last but one inequality follows Poincaré inequality (34). With the norm equiva-
lence (39) and taking

λs,α = C1 ·min

{
1

8
min

{
1

2
, 2b

}
,
1

8
min

{
1

2
, 2b

}
χs,α

}
,

we can furthermore obtain the following inequality as

−1

2

d

dt
((hs,α, hs,α)) ≥ λs,α ((hs,α, hs,α)) .

Continuing with the norm equivalence (39), we have

‖hs,α(t, ·, ·)‖2L2(µs,α) ≤ e
−2λs,αt ((hs,α(0), hs,α(0))) ≤ C2e

−2λs,αt‖hs,α(0, ·, ·)‖2H1(µs,α).

Finally, from (Villani, 2009, Theorem A.8), we know that the H1-norm ‖hs,α(t, ·, ·)‖H1(µs,α)

at 0 < t ≤ 1 can be bounded by L2-norm ‖hs,α(0, ·, ·)‖L2(µs,α) at t = 0. Some basic
operations tell us that there exists C3 > 0 such that

‖ρs,α(t, ·, ·)− µs,α‖2L2(µ−1
s,α)
≤ C3e

−2λs,αt ‖ρs,α(0, ·, ·)− µs,α‖2L2(µ−1
s,α)

.

4.3 Proof of Proposition 5

Since the potential, f(x)− f?, is only for x in the proof of Proposition 5, we can integrate
the variable v. Hence, except for the mixing parameter β(s, α) instead of the learning rate
s, the technique here is the same as that used in Shi et al. (2023).

5. Estimate of Exponential Decay Constant

In this section, we complete the proof of Theorem 2 to quantify the linear rate of linear
convergence, the exponential decay constant λs,α. This is crucial for us to understand the
dynamics of SGD with momentum, especially its dependence on the hyperparameters, the
learning rate s and the momentum coefficient α.
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5.1 Connection to a Kramers-Fokker-Planck operators

Similar as Shi et al. (2023), we start to derive the relationship between the hp-dependent
SDE (4) and the Kramers operator. Recall that the probability density ρs,α(t, ·, ·) of the
solution to the hp-dependent SDE (4) is assumed in L2(µ−1

s,α). Here, we consider the trans-
formation

ψs,α(t, ·, ·) =
ρs,α(t, ·, ·)
√
µs,α

∈ L2(Rd,Rd).

With this transformation, we can equivalently rewrite the kinetic Fokker-Planck equa-
tion (15) as

∂ψs,α
∂t

= −
[
v · ∇x −∇xf · ∇v −

√
s

2

(
∆v +

d

β(s, α)
− ‖v‖2

β2(s, α)

)]
(42)

with the initial ψs,α(0, ·, ·) = ρs,α(0, ·, ·)/√µs,α ∈ L2(Rd,Rd). Here, the operator on the
right-hand side of the kinetic Fokker-Planck equation (42) is named as Kramers operator:

Ks,α = v · ∇x −∇xf · ∇v −
√
s

2

(
∆v +

d

β(s, α)
− ‖v‖2

β2(s, α)

)
. (43)

Similarly, we collect some essential facts concerning the spectrum of the Kramers op-
erator Ks,α. Here, we first need to show the spectrum of the Kramers operator Ks,α is
discrete, that is, the unbounded Kramers operator Ks,α has a compact resolvent. Based on
the Villani condition-(I), the unbounded Kramers operator Ks,α has a compact resolvent,
first shown in Helffer and Nier (2005, Corollary 5.10, Remark 5.13). However, it still needs
a polynomial-controlled condition. Until Li (2012), the polynomial-controlled condition has
not been removed. Here, we state the well-known result in spectral theory — that the
unbounded Kramers operator Ks,α has a compact resolvent (Li, 2012).

Lemma 13 (Corollary 1.4 in Li (2012)) Let the potential f(x) satisfy the Villani con-
ditions (Definition 1). The Kramers operator Ks,α has a compact resolvent.

Recall the existence and uniqueness of Gibbs distribution µs,α in Appendix A.2, it is not
hard to show that

√
µs,α is the unique eigenfunction of Ks,α corresponding to the eigenvalue

zero. Taking (33), we can obtain

〈Ks,αψs,α(t, ·, ·), ψs,α(t, ·, ·)〉L2(Rd,Rd) =
〈
Ks,α(ψs,α(t, ·, ·)−√µs,α), ψs,α(t, ·, ·)−√µs,α

〉
L2(Rd,Rd)

= −1

2

d

dt

〈
ψs,α(t, ·, ·)−√µs,α, ψs,α(t, ·, ·)−√µs,α

〉
L2(Rd,Rd)

= −1

2

d

dt
‖ρs,α(t, ·, ·)− µs,α‖2L2(µs,α) ≥ 0.

With Lemma 13, this verifies the unbounded Kramers operator Ks,α is positive semidefinite.
Hence, we can order the eigenvalues of Ks,α in L2(Rd,Rd) as

0 = ζs,α;0 ≤ ζs,α;1 ≤ · · · ≤ ζs,α;` ≤ · · · ≤ +∞.

Recall Theorem 1, the exponential decay constant in (17) is set to

λs,α = ζs,α;1.
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To see this, note that ψs,α(t, ·, ·) − √µs,α also satisfies (42) and is orthogonal to the null
eigenfunction

√
µs,α. Therefore, we can obtain〈

Ks,α(ψs,α(t, ·, ·)−√µs,α), ψs,α(t, ·, ·)−√µs,α
〉
L2(Rd,Rd)

≥ ζs,α;1‖ψs,α(0, ·, ·)−√µs,α)‖2L2(Rd,Rd)

= ζs,α;1‖ρs,α(0, ·, ·)− µs,α‖2L2(µ−1
s,α)

.

Furthermore, we can obtain the exponential estimate for ρs,α(t, ·, ·)− µs,α as

‖ρs,α(t, ·, ·)− µs,α‖2L2(µ−1
s,α)
≤ e−ζs,α;1t‖ρs,α(0, ·, ·)− µs,α‖2L2(µ−1

s,α)
.

5.2 The spectrum of Kramers-Fokker-Planck operators

Similar in Shi et al. (2023), the Schrödinger operator is equivalent to the Witten-Laplacian,
here the unbounded Kramers operator Ks,α is equivalent to the Kramers-Fokker-Planck
operator as

Ps,α := β(s, α)Ks,α = v · β(s, α)∇x−∇xf · β(s, α)∇v +
√
µ(v− β(s, α)∇v)(v+ β(s, α)∇v),

(44)
where Ps,α is only a simple rescaling of Ks,α. Denote the eigenvalues of the Kramers-
Fokker-Planck operator as 0 = δs,α;0 ≤ δs,α;1 ≤ · · · ≤ δs,α;` ≤ · · · ≤ +∞, we get the simple
relationship as

δs,α;` = β(s, α)ζs,α;`

for all ` ∈ N.
The spectrum of the Kramers-Fokker-Planck operator Ps,α has been investigated in Helf-

fer and Nier (2005); Hérau et al. (2011). Here, we exploit this literature to derive the closed-
form expression for the first positive eigenvalue of the Kramers-Fokker-Planck operator,
thereby obtaining the dependence of the exponential decay constant on the hyperparame-
ters, the learning rate s and the momentum coefficient α, for a certain class of nonconvex
objective functions.

Recall in Section 2, and we show the basic concepts of the Morse function. For detail
about the ideas of the Morse function, please refer to Shi et al. (2023, Section 6.2). Notably,
the most crucial concept, the index-1 separating saddle (See Shi et al. (2023, Figure 9)), is
introduced. Here, we briefly describe the general assumption for a Morse function.

Assumption 14 (Generic case in Hérau et al. (2011), also see Assumption 6.4 in Shi et al. (2023))
For every critical component Eij selected in the labeling process above, where i = 0, 1, . . . , I,
we assume that

• The minimum x•i,j of f in any critical component Eij is unique.

• If Eij ∩X ◦ 6= ∅, there exists a unique x◦i,j ∈ Eij ∩X ◦ such that f(x◦i,j) = max
x∈Eij∩X ◦

f(x).

In particular, Eij ∩ Kf(x◦i,j)
is the union of two distinct critical components.

With the generic assumption (Assumption 14), the labeling process for the index-1
separating saddle and local minima (See Shi et al. (2023, Figure 10)) is introduced, which
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reveals a remarkable result: there exists a bijection between the set of local minima and the
set of index-1 separating saddle points (including the fictive one) X ◦ ∪ {∞}. Interestingly,
this shows that the number of local minima is always larger than the number of index-
1 separating saddle points by one; that is, n◦ = n• − 1. Here, we relabel the index-1
separating saddle points x◦` for ` = 0, 1, . . . , n◦ with x◦0 = ∞, and the local minima x•` for
` = 0, 1, . . . , n• − 1 with x•0 = x?, such that

f(x◦0)− f(x•0) > f(x◦1)− f(x•1) ≥ . . . ≥ f(x◦n•−1)− f(x•n•−1), (45)

where f(x◦0) − f(x•0) = f(∞) − f(x?) = +∞. A detailed description of this bijection is
given in (Hérau et al., 2011, Proposition 5.2). With the pairs (x◦` , x

•
` ) in place, we state the

fundamental result concerning the first n• − 1 smallest positive eigenvalues of the Fokker-
Planck-Kramers operator as

Pβ(s,α) = v · β(s, α)∇x −∇xf · β(s, α)∇v +
1

2
γ(v − β(s, α)∇v)(v + β(s, α)∇v). (46)

Proposition 15 (Theorem 1.2 in Hérau et al. (2011)) Under Assumption 14 and the
assumptions of Theorem 2, there exists β0 > 0 such that for any β ∈ (0, β0], the first n•− 1
smallest positive eigenvalues of the Kramers-Fokker-Planck operator Ps,α associated with
f satisfy

δβ(s,α),` = β(s, α)|ηd(x◦` )| (γ` + o(β(s, α))) e
− 2(f(x◦` )−f(x

•
` ))

β(s,α) (47)

for ` = 1, 1, . . . , n• − 1, where

γ` =
1

π

(
det(∇2f(x•` ))

−det(∇2f(x◦` ))

) 1
2

,

and ηd(x
◦
` ) is the unique negative eigenvalue of the block matrix(

0 Id×d
−∇2f(x◦` ) γId×d

)
.

Recall Theorem 2, we assume the negative eigenvalue of ∇2f(x◦1) is −v. Apply Proposi-
tion 15 into the Kramers operator Ks,α in (44), we can obtain there exists Hf > 0 completely
depending only on f such that

ζs,α;1 = |ηd(x◦1)| (γ1 + o(β(s, α))) e
−

2Hf
β(s,α) = |ηd(x◦1)| (γ1 + o(s)) e−

2Hf
s
· 2(1−α)

1+α ,

where ηd(x
◦
1) =

√
µ−
√
µ+ v. With some basic substitution of notations, we complete the

proof of Theorem 2.

6. On Nesterov’s Momentum with Noise

This section briefly discusses Nesterov’s accelerated gradient descent method (NAG) under
the gradient with incomplete information. Recall the NAG, and the algorithms are set as{

yk+1 = xk − s∇f(xk) + sξk

xk+1 = yk+1 + α(yk+1 − yk).
(48)

Recall the classical analysis for NAGs in Shi et al. (2022), and there are two kinds of NAGs,
NAG-SC and NAG-C.
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6.1 NAG-SC

For NAG-SC, Nesterov’s accelerated gradient descent method for the µ-strongly convex

objective, the momentum coefficient is set as α =
1−√µs
1+
√
µs . Notably, though the name, NAG-

SC, comes from the µ-strongly convex case, here, the algorithm works on the non-convex
objective. Similarly, plugging the two high-resolution Taylor expansions, (1) and (2), into
the NAG-SC, we then get the high-resolution SDE for NAG-SC as

Ẍ +
(
2
√
µ+
√
s∇2f(X)

)
Ẋ + (1 +

√
µs)∇f(X) = 4

√
sẆ . (49)

Here, when the momentum coefficient is set α = 0.9 and the learning rate s is small enough,
a simple transformation tells us that the main part for the logarithm of exponential decay
constant in Theorem 2 for the NAG-SC high-resolution SDE (49) here is

−
2H(1+

√
µs)f√

s/
(
2
√
µ+
√
s∇2f

) = − 2

1 + α
·
(
1 + β∇2f(x)

)
·

2Hf

β(s, α)
≈ −

2Hf

β(s, α)
.

Meanwhile, taking a simple calculation, when the learning rate s is very small, we can
obtain the asymptotic estimate for |ηd(x◦1)| in (47) as

|ηd(x◦1)| =
√
µ+

sv2

4
+ v −√µ−

√
sv

2
≈
√
µ+ v −√µ.

Therefore, we find when the noise exists, the quantitive estimate of the exponential decay
constant, λs,α, in (17) is almost the same between the high-resolution SDE (49) and the
low-resolution SDE (4) (the hp-dependent SDE) for NAG-SC.

6.2 NAG-C

Similarly, we consider NAG-C, Nesterov’s accelerated gradient descent method for the gen-
eral convex objective, which works on the non-convex objective function. Plugging the
two high-resolution Taylor expansions, (1) and (2), into the NAG-C, we then get the high-
resolution SDE for NAG-C as

Ẍ +

(
3

t
+
√
s∇2f(x)

)
Ẋ +

(
1 +

3
√
s

2t

)
∇f(X) = 4

√
sẆ . (50)

Consider that the learning rate s is small enough. When the time t is small enough, that
is, t→ 0, the central part for the logarithm of exponential decay constant in Theorem 2 is

−
2H(

1+ 3
√
s

2t

)
f

√
s/
(

3
t +
√
s∇2f(X)

) ≈ −1

k

(
1 +

3

2k

)
·

6Hf

s
.

Here, we can find the convergence speed is faster at the beginning. However, the change is
very sharp, thus, the convergence rate decays very fast. Here, we can also find the high-
resolution SDE (50) for NAG-C is not faster than the hp-dependent SDE (4) under the
existence of noise.
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7. Conclusion

In (Shi et al., 2023), the authors show the linear convergence of SGD in non-convex opti-
mization and quantify the linear rate as the exponential of the negatively inverse learning
rate by taking its continuous surrogate. This paper presents the theoretical perspective on
the linear convergence of SGD with momentum. Different from SGD, the two hyperparam-
eters together, the learning rate s and the momentum coefficient α, play a significant role
in the linear convergence rate in the non-convex optimization. Taking the hp-dependent
SDE, we proceed further to use modern mathematical tools such as hypocoercivity and
semiclassical analysis to analyze the dynamics of SGD with momentum in a continuous-
time model. We demonstrate how the linear rate of convergence and the final gap for SGD
only for the learning rate s varies with the momentum coefficient α when the momentum
is added. Finally, we also briefly analyze the Nesterov momentum under the existence of
noise, which has no essential difference from the standard momentum.

Similarly, for understanding theoretically the stochastic optimization via SDEs, the
pressing question is to characterize better the gap between the stationary distribution of
the hp-dependent SDE and that of the discrete SGD with momentum (Pavliotis, 2014).
Moreover, Theorem 3 is a bound for the algorithms in finite time T , which is based on the
numerical analysis and not an algorithmic bound. More generally, it would be of interest
to extend our results to SDEs with variable-dependence noise variance (Li et al., 2019;
Chaudhari and Soatto, 2018). A related question is whether Theorem 3 can be improved
to an algorithmic bound

Ef(xk)− f? ≤ O(β(s, α) + (1− λs,αβ(s, α))k),

or more possible output

Ef(xk)− f? ≤ O(β(s, α) + (1 + λs,αβ(s, α))−k).

A straightforward direction is to extend our SDE-based analysis to various learning
rate schedules used in training deep neural networks, such as the diminishing learning rate,
cyclical learning rates, RMSProp, and Adam (Bottou et al., 2018; Smith, 2017; Tieleman
and Hinton, 2012; Kingma and Ba, 2014). From Theorem 2, we know that the linear
convergence rate has the explicit form as

λs,α � exp

(
−

2Hf

s
· 2(1− α)

1 + α

)
.

Practically, we speed up the convergence by adjusting the two parameters, learning rate s
and momentum coefficient α. If we consider from the view taking −2Hf

s ·
2(1−α)

1+α as a unity,
the adjustment of the two parameters with the Morse barrier fixed is indeed equivalent to
the change of the Morse barrier with the two parameters fixed. Based on the description
above, the Morse barrier is also a factor to influence the convergence rate. Hence, perhaps
these results may be used to choose the neural network architecture and the loss function
to get a small value of the Morse saddle barrier Hf . Similarly, the hp-dependent SDE
might give insights into the generalization properties of neural networks, such as implicit
regularization (Zhang et al., 2016; Gunasekar et al., 2018).
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Appendix A. Technical Details for Section 2

Here, we rewrite the hp-dependent SDE (4) in the form of vector field as

d

(
X
V

)
=

(
V

−2
√
µV −∇f(X)

)
dt+

(
0

4
√
sI

)
dW.

A.1 Derivation of the hp-dependent kinetic Fokker-Planck equation

First, we derive the corresponding Itô’s formula for the hp-dependent SDE (4) as

Lemma 16 (Itô’s lemma) For any f ∈ C∞(Rd) and u ∈ C∞
(
[0,+∞)× Rd × Rd

)
, let

(X,V ) be the solution to the hp-dependent SDE (4). Then, we have

du(t,X, V ) =

(
∂u

∂t
+ V · ∇xu−∇xf · ∇vu− 2

√
µV · ∇vu+

√
s

2
∆vu

)
dt

+ 4
√
s

(
d∑
i=1

∂u

∂vi

)
dW. (51)

Let g ∈ C∞
(
Rd × Rd

)
. Then, for any τ < t, we assume

u(τ, x, v) = E[g(X(t), V (t))|X(τ) = x, V (τ) = v]. (52)

Directly, from (52), we can obtain u(t, x, v) = g(x, v). Hence, we have

E
[
u(t,X(t), V (t))− u(τ,X(τ), V (τ))

∣∣X(τ) = x, V (τ) = v
]

= 0. (53)

According to Ito’s integral E
[∫ t
τ hdW

]
= 0, then we get the backward Kolmogorov equation

for u(τ, x, v) defined in (52) as


∂u

∂τ
= −v · ∇xu+∇xf · ∇vu+ 2

√
µv · ∇vu−

√
s

2
∆vu

u(t, x, v) = g(x, v).

(54)

Now, let ρs,α(t, x, v) = ρs,α(X(t) = x, V (t) = v) be the evolving probability density with
the initial as ρs,α(0, x, v). Taking τ = 0, then (53) can be written as

∫
Rd

∫
Rd
u(t, y, w)p(t, y, w|0, x, v)dydw − u(0, x, v) = 0.
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According to Chapman-Kolmogorov equation, we can obtain the expectation E[u(t, x, v)] is
a constant, that is,

E[u(t, x, v)] =

∫
Rd

∫
Rd
u(t, x, v)ρs,α(t, x, v)dxdv

=

∫
Rd

∫
Rd
u(t, y, w)ρs,α(t, y, w)dydw

=

∫
Rd

∫
Rd
u(t, y, w)

(∫
Rd

∫
Rd
p(t, y, w|0, x, v)ρs,α(0, x, v)dxdv

)
dydw

=

∫
Rd

∫
Rd

(∫
Rd

∫
Rd
u(t, y, w)p(t, y, w|0, x, v)dydw

)
ρs,α(0, x, v)dxdv

=

∫
Rd

∫
Rd
u(0, x, v)ρs,α(0, x, v)dxdv

= E[u(0, x, v)].

Hence, by differentiating the expectation E[u(t, x, v)], we can obtain∫
Rd

∫
Rd
u
∂ρs,α
∂t

dxdv = −
∫
Rd

∫
Rd

∂u

∂t
ρs,αdxdv

= −
∫
Rd

∫
Rd

(−v · ∇xu+∇xf · ∇vu+ 2
√
µv · ∇vu−

√
s

2
∆vu)ρs,αdxdv

=

∫
Rd

∫
Rd
u

[
−v · ∇xρs,α +∇xf · ∇vρs,α + 2

√
µ∇v · (vρs,α) +

√
s

2
∆vρs,α

]
dxdv.

Since u is an arbitrary function, we complete the derivation of the hp-dependent kinetic
Fokker-Planck equation.

A.2 The existence and uniqueness of Gibbs invariant distribution

Recall the equivalent form of the hp-dependent kinetic Fokker-Planck equation (25)

∂hs,α
∂t

= −Ls,αhs,α,

where the linear operator Ls,α is expressed as

Ls,αhs,α = T + Ds,α = v · ∇x −∇xf · ∇v + 2
√
µv · ∇v −

√
s

2
∆v.

Now, we start to prove the existence and uniqueness of the Gibbs invariant distribution.
Apparently, the Gibbs invariant distribution µs,α is a steady solution. Assume there exists
another steady solution ϑs,α, then hs,α = ϑs,αµ

−1
s,α should satisfy

Ls,αhs,α = 0.

Taking integration by parts, for the transport operator T , we have∫
Rd

∫
Rd
hs,αµs,α(T hs,α)dxdv = 0;
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while for the diffusion operator Ds,α, we have∫
Rd

∫
Rd
hs,αµs,α(Ds,αhs,α)dxdv =

∫
Rd

∫
Rd
hs,αµs,α

(
−2
√
µv · ∇v +

√
s

2
∆v

)
hs,αdxdv

=

∫
Rd

∫
Rd
−2
√
µhs,αµs,αv · ∇vhs,α −

√
s

2
∇vhs,α · ∇v(hs,αµs,α)dxdv

= −
√
s

2

∫
Rd

∫
Rd
‖∇vhs,α‖2 µs,αdxdv +

(
−2
√
µ+

√
s

β

)
...

=

√
s

2

∫
Rd

∫
Rd
‖∇vhs,α‖2 µs,αdxdv.

Then, some basic calculations tell us that the linear operator Ls,α satisfies

0 =

∫
Rd

∫
Rd
hs,αLs,αhs,αµs,αdxdv

=

∫
Rd

∫
Rd
hs,αT (hs,αµs,α)dxdv +

∫
Rd

∫
Rd
hs,αDs,α(hs,αµs,αdxdv

= −
√
s

2

∫
Rd

∫
Rd
‖∇vhs,α‖2µs,αdxdv ≤ 0.

Hence, we obtain hs,α(x, v) = gs,α(x). Furthermore, according to Ls,αhs,α = 0, we have
−v · ∇xgs,α = 0. Because v is arbitrary, we know gs,α = C. With both ϑs,α and µs,α being
probability densities, C = 1. Hence, the proof of the existence and uniqueness of the Gibbs
invariant distribution is complete.

A.3 Proof of Lemma 2

Recall that Section 5.1 shows that the transition probability density ρs,α(t, ·, ·) ∈ C1([0,+∞), L2(µ−1
s,α))

governed by the hp-dependent kinetic Fokker-Planck equation (15) is equivalent to the
function ψs(t, ·, ·) in C1([0,+∞), L2(Rd,Rd)) governed by the differential equation (42).
Moreover, in Section 5.1, we have shown that the spectrum of the Kramers operator Ks,α

satisfies
0 = ζs,α;0 < ζs,α;1 ≤ · · · ≤ ζs,α;` ≤ · · · < +∞.

Since L2(Rd,Rd) is a Hilbert space, there exists a standard orthogonal basis corresponding
to the spectrum of the Kramers operator Ks,α:

µs,α = φs,α;0, φs,α;1, . . . , φs,α;`, . . . ∈ L2(Rd,Rd).

Then, for any initialization ψs(0, ·, ·) ∈ L2(Rd,Rd), there exist a family of constants c`
(` = 1, 2, . . .) such that

ψs,α(0, ·, ·) =
√
µs,α +

+∞∑
`=1

c`φs,α;`.

Thus, the solution to the partial differential equation (42) is

ψs,α(t, ·, ·) =
√
µs,α +

+∞∑
`=1

c`e
−ζs,α;`tφs,α;`.
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Recognizing the transformation ψs,α(t, ·, ·) = ρs,α(t, ·, ·)/√µs,α, we recover

ρs,α(t, ·, ·) = µs,α +
+∞∑
`=1

c`e
−ζs,α;`tφs,α;`

√
µs,α.

Note that ζs,α;` is positive for ` ≥ 1. Thus, the proof is complete.

Appendix B. Technical Details for Section 3

B.1 Proof of Proposition 7

By Lemma 2, let ρs,α(t, ·, ·) ∈ C1([0,+∞), L2(µ−1
s,α)) denote the unique transition probability

density of the solution to the hp-dependent SDE (4). Taking an expectation, we get

E[Xs,α(t)] =

∫
Rd

∫
Rd
xρs,α(t, x, v)dvdx.

Hence, the uniqueness has been proved. Using the Cauchy–Schwarz inequality, we obtain:

‖E[Xs,α(t)]‖ ≤
∥∥∥∥∫

Rd

∫
Rd
x(ρs(t, ·, ·)− µs,α)dvdx

∥∥∥∥+

∥∥∥∥∫
Rd

∫
Rd
xµs,αdvdx

∥∥∥∥
≤
(∫

Rd

∫
Rd
‖x‖2µs,αdvdx

) 1
2 (
‖ρs,α(t, ·, ·)− µs,α‖L2(µ−1

s ) + 1
)

≤
(∫

Rd

∫
Rd
‖x‖2µs,αdvdx

) 1
2 (
e−λs,αt ‖ρs,α(0, ·, ·)− µs,α‖L2(µ−1

s ) + 1
)

< +∞,

where the integrability
∫
Rd
∫
Rd ‖x‖

2µs,αdvdx is due to the fact that the objective f satisfies
the Villani conditions. The existence of a global solution to the hp-dependent SDE (4) is
thus esta- -blished.

For the strong convergence, the hp-dependent SDE (4) corresponds to the Milstein
scheme in numerical methods. The original result is obtained by Mil’shtein (1975) and Ta-
lay (1982); Pardoux and Talay (1985), independently. We refer the readers to Kloeden and
Platen (1992, Theorem 10.3.5 and Theorem 10.6.3), which studies numerical schemes for
stochastic differential equation. For the weak convergence, we can obtain numerical errors
by using both the Euler-Maruyama scheme and Milstein scheme. The original result is
obtained by Mil’shtein (1986) and Pardoux and Talay (1985); Talay (1984) independently
and Kloeden and Platen (1992, Theorem 14.5.2) is also a well-known reference. Further-
more, there exists a more accurate estimate of B(T ) shown in Bally and Talay (1996).
The original proofs in the aforementioned references only assume finite smoothness such as
C6(Rd) for the objective function.

Appendix C. Technical Details for Section 4

C.1 Proof of Lemma 8

Here, we show the basic calculations in detail for the readers of all fields. Since the calcu-
lations are basic operations, if the readers are familiar with them, you can ignore them.
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(i) For any g1, g2 ∈ L2(µs,α), with the definition of conjugate linear operators, we have

〈A ?
s,αg1, g2〉1 = 〈g1,As,αg2〉1 = 4

√
s

4

∫
Rd

∫
Rd

(g1 · ∇vg2)µs,αdvdx

= − 4

√
s

4

∫
Rd×Rd

[∇v · (g1µs,α)] g2dvdx

= − 4

√
s

4

∫
Rd×Rd

(
∇v · g1 −

2v

β
g1

)
g2µs,αdvdx

=

〈
4

√
s

4

(
−∇v +

2v

β

)
g1, g2

〉
1

and

〈C ?
s,αg1, g2〉1 = 〈g1,C g2〉1 = 4

√
s

4

∫
Rd

∫
Rd

(g1 · ∇xg2)µs,αdvdx

= − 4

√
s

4

∫
Rd

∫
Rd

[∇x · (g1µs,α)] g2dvdx

= − 4

√
s

4

∫
Rd×Rd

(
∇x · g1 −

2∇xf
β

g1

)
g2µs,αdvdx

=

〈
4

√
s

4

(
−∇x +

2∇xf
β

)
g1, g2

〉
1

.

Hence, we obtain the diffusion operator as Ds,α = A ?
s,αAs,α.

(ii) Since both As,α and A ?
s,α are only the linear operators about v and the linear operator

Cs,α about x, both As,α and A ?
s,α commutes with Cs,α, that is,

[As,α,Cs,α] = [A ?
s,α,Cs,α] = 0.

For the commutator between A and A ?, we have

[A ,A ?] =

√
s

2

[
∇v,−∇v +

2v

β

]
=

√
s

2

[
∇v
(
−∇v +

2v

β

)
−
(
−∇v +

2v

β

)
∇v
]

= 2
√
µId×d.

(iii) Taking the simple equation (v · ∇x −∇xf · ∇v)µs,α = 0, for any g1, g2 ∈ L2(µs,α),we
have

〈T g1, g2〉1 =

∫
Rd

∫
Rd

(v · ∇x −∇xf · ∇v) g1g2µs,αdvdx

= −
∫
Rd

∫
Rd

(v · ∇x −∇xf · ∇v) (g2µs,α)g1dvdx

= −
∫
Rd

∫
Rd

(v · ∇x −∇xf · ∇v) g2g1µs,αdvdx

= −〈g1,T g2〉1 .
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The commutator between As,α and T is

[As,α,T ] = As,αT −T As,α

= 4

√
s

4

[
∇v (v · ∇x −∇xf · ∇v)− (v · ∇x −∇xf · ∇v)∇v

]
= 4

√
s

4
∇x = Cs,α.

Similarly, the commutator between Cs,α and T is

[Cs,α,T ] = Cs,αT −T Cs,α

= 4

√
s

4

[
∇x (v · ∇x −∇xf · ∇v)− (v · ∇x −∇xf · ∇v)∇x

]
= − 4

√
s

4
∇2
xf · ∇v.

C.2 Proof of Lemma 9

For any g ∈ L2(µ−1
s,α), we can write down it as∫

Rd

∫
Rd
|g(v, x)|2µ−1

s,αdvdx < +∞.

Then, we can take the following simple calculation as∫
Rd

∫
Rd
|g(x, v)|dvdx =

∫
Rd

∫
Rd
|g(x, v)|µ−

1
2

s,αµ
1
2
s,αdvdx

≤
(∫

Rd

∫
Rd
|g(x, v)|2µ−1

s,αdvdx

) 1
2
(∫

Rd

∫
Rd
µs,αdvdx

) 1
2

=

(∫
Rd

∫
Rd
|g(x, v)|2µ−1

s,αdvdx

) 1
2

< +∞.

This completes the proof.

C.3 Technical Details in Section 4.2.1

Here, we compute the derivative in detail as

1

2

d

dt
〈hs,α, hs,α〉H1(µs,α) = −〈Ls,αhs,α, hs,α〉L2(µs,α)︸ ︷︷ ︸

I

−〈As,αLs,αhs,α,As,αhs,α〉L2(µs,α)︸ ︷︷ ︸
II

−〈Cs,αLs,αhs,α,Cs,αhs,α〉L2(µs,α)︸ ︷︷ ︸
III

.

(1) For the term I, we have

I = 〈Ls,αhs,α, hs,α〉L2(µs,α) = 〈As,αhs,α,As,αhs,α〉L2(µs,α) = ‖As,αhs,α‖2L2(µs,α) .
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(2) For the term II, we have

II =
〈
As,αA ?

s,αAs,αhs,α,As,αhs,α
〉
L2(µs,α)︸ ︷︷ ︸

IIa

+ 〈As,αT hs,α,As,αhs,α〉L2(µs,α)︸ ︷︷ ︸
IIb

– For the term IIa, we have

IIa =
〈
As,αA ?

s,αAs,αhs,α,As,αhs,α
〉
L2(µs,α)

=
〈
A ?
s,αAs,αAs,αhs,α,As,αhs,α

〉
L2(µs,α)

+
〈[

As,α,A
?
s,α

]
As,αhs,α,As,αhs,α

〉
L2(µs,α)

=
〈
A 2
s,αhs,α,A

2
s,αhs,α

〉
L2(µs,α)

+
〈[

As,α,A
?
s,α

]
As,αhs,α,As,αhs,α

〉
L2(µs,α)

=
〈
A 2
s,αhs,α,A

2
s,αhs,α

〉
L2(µs,α)

+ 2
√
µ 〈As,αhs,α,As,αhs,α〉L2(µs,α)

= ‖A 2
s,αhs,α‖2L2(µs,α) + 2

√
µ‖As,αhs,α‖2L2(µs,α)

– For the term IIb, we have

IIb = 〈As,αT hs,α,As,αhs,α〉L2(µs,α)

= 〈T As,αhs,α,As,αhs,α〉L2(µs,α) + 〈[As,α,T ]hs,α,As,αhs,α〉L2(µs,α)

= 〈Cs,αhs,α,As,αhs,α〉L2(µs,α)

(3) For the term III, we have

III =
〈
Cs,αA ?

s,αAs,αhs,α,Cs,αhs,α
〉
L2(µs,α)︸ ︷︷ ︸

IIIa

+ 〈Cs,αT hs,α,Cs,αhs,α〉L2(µs,α)︸ ︷︷ ︸
IIIb

(1) For the term IIIa, we have

IIIa =
〈
Cs,αA ?

s,αAs,αhs,α,Cs,αhs,α
〉
L2(µs,α)

=
〈
A ?
s,αCs,αAs,αhs,α,Cs,αhs,α

〉
L2(µs,α)

= 〈Cs,αAs,αhs,α,As,αCs,αhs,α〉L2(µs,α) = 〈As,αCs,αhs,α,As,αCs,αhs,α〉L2(µs,α)

= ‖As,αCs,αhs,α‖2L2(µs,α)

(2) For the term IIIb, we have

IIIb = 〈Cs,αT hs,α,Cs,αhs,α〉L2(µs,α)

= 〈T Cs,αhs,α,Cs,αhs,α〉L2(µs,α) + 〈[Cs,α,T ]hs,α,Cs,αhs,α〉L2(µs,α)

= 〈[Cs,α,T ]hs,α,Cs,αhs,α〉L2(µs,α)

= −
〈
∇2
xf ·As,αhs,α,Cs,αhs,α

〉
L2(µs,α)

C.4 Proof of Lemma 12
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(i) By a density argument, we may assume that g is smooth and decays fast enough at
infinity. Then, taking the identity ∇xµs,α = − (2∇f/β(s, α))µs,α and by integration
by parts, we have∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv = −β(s, α)

2

∫
Rd

∫
Rd
g2∇xf · ∇xµs,αdxdv

=
β(s, α)

2

∫
Rd

∫
Rd
∇x ·

(
g2∇xf

)
µs,αdxdv

=
β(s, α)

2

∫
Rd

∫
Rd
g2(∆xf)µs,αdxdv + β(s, α)

∫
Rd

∫
Rd
g (∇xg · ∇xf)µs,αdxdv

By Cauchy-Schwarz inequality∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv ≤

β(s, α)

2

√∫
Rd

∫
Rd
g2(∆xf)2µs,αdxdv

√∫
Rd

∫
Rd
g2µs,αdxdv

+ β(s, α)

√∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv

√∫
Rd

∫
Rd
‖∇xg‖2µs,αdxdv

With the Villani Condition-(II), ‖∇2
xf‖2 ≤ C(1 + ‖∇f‖), we have

(∆f)2 ≤ d2‖∇2f‖22 ≤ d2C2 (1 + ‖∇f‖)2 ≤ 4d2C2
(
1 + ‖∇f‖2

)
.

Hence, we can obtain∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv

≤dCβ(s, α)

√∫
Rd

∫
Rd
g2µs,αdxdv +

∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv

√∫
Rd

∫
Rd
g2µs,αdxdv

+ β(s, α)

√∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv

√∫
Rd

∫
Rd
‖∇xg‖2µs,αdxdv

≤dCβ(s, α)

(∫
Rd

∫
Rd
g2µs,αdxdv +

√∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv

√∫
Rd

∫
Rd
g2µs,αdxdv

)

+ β(s, α)

√∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv

√∫
Rd

∫
Rd
‖∇xg‖2µs,αdxdv

≤dCβ(s, α)

∫
Rd

∫
Rd
g2µs,αdxdv +

1

4

∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv + d2C2β2(s, α)

∫
Rd

∫
Rd
g2µs,αdxdv

+
1

4

∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv + β2(s, α)

∫
Rd

∫
Rd
‖∇xg‖2µs,αdxdv

where the last inequality follows Cauchy-Schwartz inequality. Therefore, we have

1

2

∫
Rd

∫
Rd
‖∇xf‖2g2µs,αdxdv ≤

(
dCβ(s, α) + d2C2β2(s, α)

) ∫
Rd

∫
Rd
g2µs,αdxdv

+ β2(s, α)

∫
Rd

∫
Rd
‖∇xg‖2µs,αdxdv.
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Multiplied by two, taking κ1(s, α) = max{2(dCβ(s, α) + d2C2β2(s, α)), 2β2(s, α)},
we have

‖(∇xf)g‖2L2(µs,α) ≤ κ1(s, α)
(
‖g‖2L2(µs,α) + ‖∇xg‖2L2(µs,α)

)
.

(ii) Similarly, with the Villani Condition-(II), ‖∇2f‖22 ≤ 2C2
(
1 + ‖∇f‖2

)
, we have

∥∥‖∇2
xf‖2g

∥∥2

L2(µs,α)
=

∫
Rd

∫
Rd
‖∇2

xf‖22 · ‖g‖2µs,αdxdv

≤ 2C2

(∫
Rd

∫
Rd
‖g‖2µs,αdxdv +

∫
Rd

∫
Rd
‖∇xf‖2‖g‖2µs,αdxdv

)
.

With the inequality (i), we can obtain directly

∥∥‖∇2
xf‖2g

∥∥2

L2(µs,α)
≤ 2C2(1 + κ1(s, α))

(∫
Rd

∫
Rd
‖∇xg‖2µs,αdxdv +

∫
Rd

∫
Rd
‖g‖2µs,αdxdv

)
= 2C2(1 + κ1(s, α))

(
‖g‖2L2(µs,α) + ‖∇xg‖2L2(µs,α)

)
Taking κ2(s, α) = 2C2(1 + κ1(s, α)), we complete the proof.

C.5 Technical Details in Section 4.2.3

Here, we compute the derivative of the mixed term in detail as

d

dt
〈As,αhs,α, Cs,αhs,α〉L2(µs,α)

= 〈As,αLs,αhs,α,Cs,αhs,α〉L2(µs,α) + 〈As,αhs,α,Cs,αLs,αhs,α〉L2(µs,α)︸ ︷︷ ︸
IV

= 〈As,αA ?As,αhs,α,Cs,αhs,α〉L2(µs,α) +
〈
As,αhs,α,Cs,αA ?

s,αAs,αhs,α
〉
L2(µs,α)︸ ︷︷ ︸

IVa

+ 〈As,αT hs,α,Cs,αhs,α〉L2(µs,α) + 〈As,αhs,α,Cs,αT hs,α〉L2(µs,α)︸ ︷︷ ︸
IVb

• For the term IVa, we have

IVa =
〈
As,αA ?

s,αAs,αhs,α,Cs,αhs,α
〉
L2(µs,α)

+
〈
As,αhs,α,Cs,αA ?

s,αA hs,α
〉
L2(µs,α)

=
〈
A ?
s,αA 2

s,αhs,α,Cs,αhs,α
〉
L2(µs,α)

+
〈[

As,α,A
?
s,α

]
As,αhs,α,Cs,αhs,α

〉
L2(µs,α)

+
〈
As,αhs,α,A

?
s,αCs,αAs,αhs,α

〉
L2(µs,α)

= 2
〈
A 2
s,αhs,α,As,αCs,αhs,α

〉
L2(µs,α)

+ 2
√
µ 〈As,αhs,α,Cs,αhs,α〉L2(µs,α)

≥ −2‖A 2
s,αhs,α‖L2(µs,α)‖As,αCs,αhs,α‖L2(µs,α) − 2

√
µ‖As,αhs,α‖L2(µs,α)‖Cs,αhs,α‖L2(µs,α)
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• For the term IVb, we have

IVb = 〈As,αT hs,α,Cs,αhs,α〉L2(µs,α) + 〈As,αhs,α,Cs,αT hs,α〉L2(µs,α)

= 〈As,αT hs,α,Cs,αhs,α〉L2(µs,α) + 〈As,αhs,α,T Cs,αhs,α〉L2(µs,α) + 〈As,αhs,α, [Cs,α,T ]hs,α〉L2(µs,α)

= 〈As,αT hs,α,Cs,αhs,α〉L2(µs,α) − 〈T As,αhs,α,Cs,αhs,α〉L2(µs,α) − 〈As,αhs,α, [T ,Cs,α]hs,α〉L2(µs,α)

= 〈(As,αT −T As,α)hs,α,Cs,αhs,α〉L2(µs,α) − 〈As,αhs,α, [T ,Cs,α]hs,α〉L2(µs,α)

≥ ‖Cs,αhs,α‖2L2(µs,α) −
√
κ3(s, α)‖As,αhs,α‖L2(µs,α)

(
‖As,αCs,αhs,α‖L2(µs,α) + ‖As,αhs,α‖L2(µs,α)

)
I
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