
Journal of Machine Learning Research 25 (2024) 1-65 Submitted 5/22; Revised 1/24; Published 2/24

AMLB: an AutoML Benchmark

Pieter Gijsbers1 p.gijsbers@tue.nl

Marcos L. P. Bueno1,4 marcos.depaulabueno@donders.ru.nl

Stefan Coors2 stefan.coors@stat.uni-muenchen.de

Erin LeDell3 erin@h2o.ai

Sébastien Poirier3 sebastien@h2o.ai

Janek Thomas2 janek.thomas@stat.uni-muenchen.de

Bernd Bischl2 bernd.bischl@stat.uni-muenchen.de

Joaquin Vanschoren1 j.vanschoren@tue.nl

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Ludwig Maximilian University of Munich, Munich, Germany
3 H2O.ai, Mountain View, CA, United States
4 Radboud University, Nijmegen, The Netherlands

Editor: Marc Schoenauer

Abstract

Comparing different AutoML frameworks is notoriously challenging and often done incor-
rectly. We introduce an open and extensible benchmark that follows best practices and
avoids common mistakes when comparing AutoML frameworks. We conduct a thorough
comparison of 9 well-known AutoML frameworks across 71 classification and 33 regression
tasks. The differences between the AutoML frameworks are explored with a multi-faceted
analysis, evaluating model accuracy, its trade-offs with inference time, and framework fail-
ures. We also use Bradley-Terry trees to discover subsets of tasks where the relative Au-
toML framework rankings differ. The benchmark comes with an open-source tool that
integrates with many AutoML frameworks and automates the empirical evaluation process
end-to-end: from framework installation and resource allocation to in-depth evaluation.
The benchmark uses public data sets, can be easily extended with other AutoML frame-
works and tasks, and has a website with up-to-date results.

Keywords: open source, benchmark, automated machine learning, automl

1. Introduction

To create useful machine learning (ML) models from data, data scientists must prepare the
data for consumption by ML algorithms (for example, coercing it to a different format or
by encoding categorical features), select an ML algorithm, and tune its hyperparameters.
This requires extensive expertise, such as knowing which hyperparameters to tune and
how (Probst et al., 2019; Weerts et al., 2020). Even with this knowledge, it is a time-

c©2024 P. Gijsbers, M. L. P. Bueno, S. Coors, E. LeDell, S. Poirier, J. Thomas, B. Bischl and J. Vanschoren.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/22-0493.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/22-0493.html

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

consuming task, since the best choices are unique to each data set and can be interdependent
on each other (Van Rijn and Hutter, 2018).

The field of automated machine learning (AutoML) is focused on automating the design
and optimization of ML pipelines in a data-driven way (Hutter et al., 2019). Neural Archi-
tecture Search (NAS) is an important part of AutoML that automates the design decisions
of deep neural networks. AutoML aims to free up valuable time for experts to perform
other tasks and allow novice users to train well-performing ML models.

Many different AutoML approaches have been proposed, including sequential model-
based optimization (Hutter et al., 2011; Snoek et al., 2012), hierarchical task planning (Erol
et al., 1994), and genetic programming (Koza, 1992). Novel systems are being developed
in both academia and industry, and a recent survey by Van der Blom et al. (2021) showed
that 69% of 307 practitioners (at least partially) adopt automated model selection and
hyperparameter configuration.

1.1 The Need for Standardized Benchmarking

With considerable effort being spent on developing and improving AutoML frameworks as
well as increased usage by practitioners, there is a need for systematic and in-depth compar-
isons of the the various approaches to track progress in the field. However, the comparison
of AutoML frameworks is prone to several types of error. First, selection bias may be in-
troduced, even accidentally, when authors decide which data sets to use in their evaluation.
For example, too few data sets may be selected to accurately evaluate the framework’s
strengths and weaknesses, and the chosen data sets may no longer be challenging for cur-
rent AutoML frameworks. Without a standard suite of data sets to use for evaluation, the
selection of data sets is often not reasonably justified and motivated. Moreover, issues may
arise from errors in the installation, configuration, or use of ‘competitor’ frameworks. Typi-
cal examples are misunderstanding memory management and/or using insufficient compute
resources (Balaji and Allen, 2018), or failing to use comparable resource budgets (Ferreira
et al., 2021).

Several suites of benchmark data sets have been used in the aforementioned papers, but
none have become a standard in the AutoML community. The original selection of data
sets by Thornton et al. (2013) was used in several earlier papers (Feurer et al., 2015a; Mohr
et al., 2018), but fails to highlight differences between current AutoML frameworks. Most
published AutoML papers use a self-selected suit of data sets on which their methods are
evaluated. For example, Drori et al. (2018), Rakotoarison et al. (2019) and Gil et al. (2018)
were all published at the same time but feature different suites on which they evaluate their
contributions. This inconsistency makes it impossible to directly compare results across
papers and track progress over time. It also potentially allows for presenting cherry-picked
results.

1.2 Our Contributions

We introduce a novel AutoML benchmark following best practices to avoid these common
pitfalls while stimulating progress towards more standardized benchmarking.1 To ensure

1. A first look of this tool was presented at the ICML 2019 AutoML Workshop (Gijsbers et al., 2019). The
current version is significantly more general, more systematic, and allows much more in-depth analysis.

2

AMLB: an AutoML Benchmark

reproducibility2, we provide an open-source benchmarking tool3 that allows easy integration
with AutoML frameworks, and performs end-to-end evaluations thereof on carefully curated
sets of open data sets. Our focus is on tabular data. Unstructured data are out of scope
for this paper, since they are best tackled with NAS, and benchmarking NAS frameworks
imposes different practical constraints, as discussed in Section 2.2. We also restrict our
evaluations to open-source AutoML frameworks.

Our benchmarking tool, dubbed AMLB (for AutoML Benchmark), can be used to per-
form evaluations of AutoML frameworks in a fully automated way. The AutoML frameworks
are integrated with the AMLB in direct agreement and jointly with the framework’s devel-
opers to ensure correctness. We carry out a large-scale evaluation of 9 well-known AutoML
frameworks, some of which with multiple configurations, across 71 classification and 33 re-
gression tasks. To better understand how these systems perform across many tasks, we also
introduce techniques for detailed comparison of AutoML frameworks, including final model
accuracy, inference time trade-offs, and failure analysis. Finally, we provide an interactive
visualization tool that may be used for further exploration of all our results or to reproduce
the analyses performed in this paper.

In the remainder of this paper, we first discuss related work in Section 2 and cover
several key open-source AutoML frameworks in Section 3. Next, we provide an overview of
our proposed benchmarking tool in Section 4 and motivate our benchmark design choices
in Section 5. The results obtained by running this benchmark are analyzed in Section 6.
Finally, Section 7 summarizes our main conclusions and sketches directions for future work.

2. Related Literature

In this section, we motivate why we need benchmarks specifically designed for AutoML,
review other work evaluating AutoML frameworks, and finally discuss the relevant ML
benchmarking literature. Several benchmark suites have been developed in ML (Van Gestel
et al., 2004; Olson et al., 2017; Wu et al., 2018; Bischl et al., 2021; Fischer et al., 2023). The
data sets in these suites often do not include problematic data characteristics found in real
world tasks (for example, many missing values), as many ML algorithms are not natively
able to handle them. By contrast, in order to be applicable to a wide range of data,
AutoML frameworks should be designed to handle these problematic data sets. As such,
there is opportunity to allow more such problematic data sets in ML benchmarks and study
how well AutoML frameworks handle these issues. Moreover, runtime budgets are crucial in
an AutoML benchmark, as most AutoML frameworks are designed to run until a given time
budget is exhausted. These runtime budgets are often not specified beforehand in traditional
ML benchmarks, since algorithms must usually run to completion.4 Consequently, new
benchmarks that have been designed specifically for AutoML frameworks are needed.

2. Using the ACM definition: an independent group can obtain the same result using the author’s own
artifacts (https://www.acm.org/publications/policies/artifact-review-and-badging-current).

3. Code, results, and documentation at: https://openml.github.io/automlbenchmark/

4. One exception are performance studies, such as Kotthaus et al., 2015

3

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://openml.github.io/automlbenchmark/

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

2.1 Evaluation of Automated Machine Learning Frameworks

To establish new best practices for AutoML benchmarking, it is beneficial to study the
shortcomings encountered in prior benchmarks as well as lessons learned. Balaji and Allen
(2018) conducted one of the first benchmark studies on AutoML frameworks. They evalu-
ated four open-source frameworks on both classification and regression tasks sourced from
OpenML (Vanschoren et al., 2014), optimized for weighted F1 score and mean squared error,
respectively. Unfortunately, they encountered technical issues with most AutoML frame-
works that led to a questionable experimental evaluation. For example, H2O AUTOML (LeDell
and Poirier, 2020) was configured to optimize to a different metric (log loss as opposed to
weighted F1 score) and ran with a different setup (unlike the others, H2O AUTOML was not
containerized), and AUTO ML (Parry, 2018) had its hyperparameter optimization (HPO) dis-
abled, making for incomparable results. This highlights the need for careful configuration
of all AutoML frameworks involved.

A study by Ferreira et al. (2021) evaluated the effectiveness of AutoML frameworks for
protein abundance prediction. This evaluation compared H2O AUTOML with a 6 hour limit to
GAMA with a one hour limit, and TPOT with a limit defined by the hyperparameter configuration
of its evolutionary optimization (1000 generations with a population size of 250). While
the comparison was not the main contribution of the paper, the AutoML frameworks were
directly compared against each other, and these very different budgets were not motivated.

A study on nearly 300 data sets across six different frameworks was conducted by Truong
et al. (2019). Each experiment consisted of a single 80/20 holdout split on a 15-minute
training time budget, which was chosen so that most tools returned a result on at least 70%
of the data sets. We postulate it is reasonable to assume that the data sets for which no result
is returned by a framework are most often those data sets for which optimization is hard.
For example, a large data set might cause one framework to conduct only few evaluations
while it completely halts another. Unfortunately, this makes the resulting comparisons
uninterpretable, as a framework could seemingly demonstrate better performance simply
because it failed to return models on data sets for which optimization was difficult. Hence,
it is key that failures must be avoided as much as possible, and any remaining failures
should be analysed and taken into account in subsequent analysis.

On the positive side, Truong et al. (2019) present their results across different sub-
sets of the benchmark—for example, few versus many categorical features—which helps to
highlight differences between different frameworks. The authors also conduct small-scale
experiments to analyze performance over time by running the tools on multiple time bud-
gets on a subset of data sets as well as the ‘robustness’, which denotes the variance in
final performance given the same input data. Unfortunately, both experiments were con-
ducted on only one data set per sub-category, which does not enable generalizing the results.
Still, studying the impact of data characteristics and budget sizes should ideally be part of
AutoML benchmark design.

Zöller and Huber (2021) present a survey on AutoML and combined algorithm selection
and HPO frameworks (CASH, Thornton et al., 2013). Six CASH and five AutoML frame-
works are compared across 137 classification tasks, with the former limited to 325 iterations
and the latter constrained to a one hour time budget. Among the CASH frameworks,
hyperopt (Bergstra et al., 2013) performed best, although absolute differences were small

4

AMLB: an AutoML Benchmark

between all optimizers. The AutoML frameworks are compared as they are, which might
reflect common use. However, by not controlling their settings, it becomes impossible to
draw conclusions about the effectiveness of individual parts of AutoML systems. A num-
ber of errors of AutoML frameworks are observed, including memory constraint violations,
segmentation faults, and Java server crashes. The authors also find that most frameworks
construct rather modest pipelines (with few preprocessing operators). As such, it is rec-
ommended that AutoML frameworks are controlled carefully, use a wide operator search
space, and are evaluated on datasets that require non-trivial preprocessing.

Kaggle5, a platform for data science competitions, is sometimes used to compare Au-
toML frameworks to human data scientists (Zöller and Huber, 2021; Erickson et al., 2020).
Zöller and Huber (2021) found that the rankings of AutoML frameworks on benchmark
datasets are very different from the rankings on competitions. Furthermore, humans still
find better solutions than the examined AutoML frameworks. However, it is hard to in-
terpret such results. Submissions on Kaggle leaderboards range from serious attempts to
random test runs, and a significant portion of them do not outperform a simple baseline.
Finally, most Kaggle results are several years old and possibly no longer represent state-of-
the-art human-made models because of advances in the available hardware or algorithms.

A recent AutoML benchmark for multi-label classification (Wever et al., 2021) proposed
a general tool with a configurable search space and optimizer, which allows for the inclusion
of new methods and ablation studies. Unfortunately, this approach requires that existing
AutoML frameworks be re-implemented within this tool, which is difficult in such a rapidly
developing field. As such, we need a simpler way to include existing and new AutoML
frameworks into benchmarking tools while still allowing control over their configuration.

In addition to AutoML benchmarks, a series of competitions for tabular AutoML was
hosted (Guyon et al., 2019). The first two competitions focused on tabular AutoML, where
data is assumed to be independent and identically distributed. In these competitions,
participants submitted code that automatically builds a model on given data and produced
predictions for a test set. During the development phase, competitors could make use of a
public leaderboard and several validation data sets. After the development phase, the latest
submissions of each participant would be evaluated on a set of new data sets to determine
the final ranking. These data sets consisted of a mix of both new data and data taken
from public repositories, although they were reformatted to conceal their identity. In their
analysis Guyon et al. (2019) reveal that most methods failed to return results on at least
some data sets due to practical issues, such as running out of memory.

2.2 Other (Benchmark) Literature

Instead of benchmarking whole (Auto-) ML frameworks, it is often useful to focus on various
sub-parts and optimize them step-by-step. One part of such a system is HPO, and its
available algorithms are as numerous and diverse as the learning algorithms themselves.
Consequently, there exist various benchmarking suites to foster research by comparing those
optimization algorithms.

Like non-black-box optimization, black box optimizers are typically evaluated on syn-
thetic test functions or on real-world tasks. A well-established benchmarking suite for con-

5. https://www.kaggle.com/

5

https://www.kaggle.com/

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

tinuous optimization is COCO (Hansen et al., 2021), which includes a collection of various
synthetic black-box benchmark functions. Nevergrad6 is a popular platform for gradient-
free optimization with benchmarking functionality. kurobako (Ohta and Yamazaki, 2022)
provides various general black-box optimizers and benchmark problems, while LassoBench
(Šehić et al., 2021) is suitable for benchmarking high-dimensional optimization problems.
Especially for Bayesian Optimization, Bayesmark (Turner, 2022) combines several bench-
marks on real-world tasks.

One of the first benchmarks for empirically evaluating HPO algorithms was HPOlib
(Eggensperger et al., 2013), which allows accessing real-world HPO tasks, tabular and
surrogate benchmarks, and synthetic test functions using a common API. This bench-
mark was used by Bergstra et al. (2014) in their empirical benchmark studies. HPOBench
(Eggensperger et al., 2021) is a similar successor of HPOlib that concentrates on reproducible
containerized benchmarks and multi-fidelity optimization problems. Based on OpenML
(Vanschoren et al., 2014), Arango et al. (2021) recently introduced HPO-B, a large-scale
reproducible benchmark for transfer-HPO methods. In contrast, PROFET (Klein et al.,
2019) uses a generative meta-model to generate synthetic but realistic benchmark instances.

A related benchmark is NAS-Bench-101 (Ying et al., 2019), which is a tabular data
set that maps convolutional neural network architectures to their trained and evaluated
performance on CIFAR-10. Its goal is to make NAS more accessible, despite the tremen-
dous demand of computational resources. Additionally, there exists a series of NAS-Bench
systems that includes NAS-Bench-1shot1 (Zela et al., 2020), NAS-Bench-301 (Siems et al.,
2020), and others.

3. AutoML Frameworks

Automated ML pipeline design was first explored by Escalante et al. (2009), but the
first prominent AutoML framework was AUTO-WEKA (Thornton et al., 2013). AUTO-WEKA used
Bayesian optimization to select and tune the algorithms in an ML pipeline based on
WEKA (Hall et al., 2009). Since then, a plethora of new AutoML frameworks have been
developed, either by iteratively improving on old designs or using novel approaches. In this
section, we will discuss the AutoML frameworks we considered for our benchmark.

Unfortunately, the cost of evaluating all frameworks is prohibitive, so we selected only
9 of them to evaluate in this work. Only open source frameworks were considered. From
those, we made selections to cover a variety of different optimization approaches. We
considered frameworks developed by industry as well as academia and included packages
whose authors proactively integrated their AutoML framework, so that we are confident
that they are integrated correctly.

As our experiments are run on machines without GPU, we focus on AutoML frameworks
which are not significantly affected by the lack thereof. For example, AUTO-KERAS (Jin et al.,
2019), and AUTOPYTORCH (Zimmer et al., 2021) gain large benefits from having a GPU available,
thus reporting an evaluation with only CPU available might give a pessimistic performance
estimation compared to typical use of those frameworks. However, even for some of our
selected frameworks, such as H2O AUTOML and AUTOGLUON, specific base models support GPU
acceleration when it is available.

6. https://facebookresearch.github.io/nevergrad/benchmarking.html

6

AMLB: an AutoML Benchmark

Framework Optimization and Search Space Reference

AUTOGLUON Stacked ensembles of preset pipelines Erickson et al. (2020)
AUTO-SKLEARN BO of SCIKIT-LEARN pipelines Feurer et al. (2015a)
AUTO-SKLEARN 2 BO of iterative algorithms Feurer et al. (2020)
FLAML CFO of iterative algorithms Wang et al. (2021)
GAMA EO of SCIKIT-LEARN pipelines Gijsbers and Vanschoren (2021)
H2O AUTOML Iterative mix of RS and ensembling LeDell and Poirier (2020)
LIGHTAUTOML BO of linear models and GBM Vakhrushev et al. (2021)
MLJAR Custom data science pipeline P lońska and P loński (2021)
NAIVEAUTOML Custom data science pipeline Mohr and Wever (2023)
TPOT EO of SCIKIT-LEARN pipelines Olson and Moore (2016)

Table 1: Used AutoML frameworks in the experiments. Different optimization techniques
such as Bayesian optimization (BO), evolutionary optimization (EO), random
search (RS) or cost frugal optimization (CFO) are used across different search
spaces.

The most notable omission is AUTO-WEKA, which we decided to exclude based on the
performance in our 2019 evaluation and its lack of updates since Gijsbers et al. (2019).
Some frameworks integrated with AMLB are not evaluated in this paper. The authors of
AUTOXGBOOST (Thomas et al., 2018) opted out of an evaluation because it is built on deprecated
software with no plans for updates. ML-PLAN (Mohr et al., 2018), MLR3AUTOML7, and MLNET8 are
excluded because we encountered significant technical problems evaluating the systems. We
hope to publish results from these frameworks at a later date. There are still many AutoML
frameworks not yet integrated with the AutoML benchmark, and we hope that we can work
together with AutoML developers to add additional integrations in the future.

3.1 Integrated Frameworks

Table 1 offers an overview of the AutoML frameworks evaluated in this paper alongside a
simplified description of their optimization and search space design, which are elaborated
below. We refer the interested reader to the original publications and our website, which
has links to the frameworks’ source code and documentation. NAIVEAUTOML was also evaluated
but excluded from the analysis in Section 6, as explained in Appendix E.

3.1.1 AutoGluon-Tabular

AUTOGLUON automates ML across a variety of tasks, including image, text, and tabular data.
The subsystem that automates ML on tabular data is called AUTOGLUON-TABULAR (Erickson
et al., 2020), but we will refer to it as AUTOGLUON. In contrast to other AutoML systems
discussed here, AUTOGLUON does not perform a pipeline search or hyperparameter tuning.

7. Source and documentation of MLR3AUTOML at https://github.com/a-hanf/mlr3automl/.
8. Source and documentation of MLNET at https://github.com/dotnet/machinelearning/.

7

https://github.com/a-hanf/mlr3automl/
https://github.com/dotnet/machinelearning/

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

Instead, it has a predetermined set of models that are combined through multi-layer stacking
and ensembling.

AUTOGLUON’s ensemble consists of three layers. The first layer consists of models from a
range of model families trained directly on the data. In the second layer, the same type
of models are considered but rather as a stacking learner trained with both the input data
and the predictions of the first layer. In the final layer, the predictions of the second-layer
models are combined into an ensemble, using an ensemble method (Caruana et al., 2004)
first used in AutoML by AUTO-SKLEARN (Feurer et al., 2015a).

To adhere to time constraints, AUTOGLUON may stop iterative algorithms prematurely or
forgo training certain models altogether. Given more time, AUTOGLUON will train additional
models using the same algorithms and hyperparameter configurations on different data
splits, which further improves the generalization of the stacking layer.

AUTOGLUON offers many different presets that affect the trade-off between final model
performance and inference time. In this paper, we evaluated three presets: best quality,
high quality, and high quality with an inference time limit (denoted as B, HQ, and HQIL,
respectively). These respective presets produce increasingly faster models at the cost of
decreased model accuracy.

3.1.2 auto-sklearn

Based on the design of AUTO-WEKA, AUTO-SKLEARN (Feurer et al., 2015a) also uses Bayesian
optimization but is instead implemented in Python and optimizes pipelines built with
SCIKIT-LEARN (Pedregosa et al., 2011). Additionally, it warm-starts optimization through
meta-learning, starting pipeline search with the best pipelines for the most similar data
sets (Feurer et al., 2015b). After pipeline search has concluded, an ensemble is created
from pipelines trained during search using the procedure described by Caruana et al. (2004,
2006). AUTO-SKLEARN has won two AutoML challenges (Guyon et al., 2019), although for both
entries, AUTO-SKLEARN was customized for the competition, and not all changes are found in
the public releases (Feurer et al., 2018).

Based on experience from the challenges, AUTO-SKLEARN 2 was subsequently developed
(Feurer et al., 2020). The most notable changes include reducing the search space to
only iterative learning algorithms and excluding most preprocessing, use of successive halv-
ing (Jamieson and Talwalkar, 2016), adaptive evaluation strategies, and replacing the data-
specific warm-start strategy with a data-agnostic portfolio of pipelines. Because these
changes make version 2.0 almost entirely different from 1.0, and 1.0 has been updated
since our last evaluation, we evaluate both auto-sklearn versions in this paper. However,
AUTO-SKLEARN 2 does not yet support regression, and its heavy use of meta-learning made it
impossible for us to perform a ‘clean’ evaluation at this time (see Section 5.3.3).

3.1.3 FLAML

The Fast and Lightweight AutoML Library (FLAML, Wang et al., 2021) optimizes boosting
frameworks (XGBOOST, Chen and Guestrin, 2016, CATBOOST, Prokhorenkova et al., 2018, and
LIGHTGBM, Ke et al., 2017) and a small selection of SCIKIT-LEARN algorithms through a multi-
fidelity randomized directed search called Cost-Frugal Optimization (Wu et al., 2021). This
search is based on an expected cost for improvement, which tracks the expected compu-

8

AMLB: an AutoML Benchmark

tational cost of improving over the best model found so far for each learner. Only after
choosing which learner to tune, hyperparameter optimization proceeds by a randomized
directed search, sampling a new configuration from a unit sphere around the previous sam-
ple point. After evaluating its validation performance, the next sample point is moved to
that direction (if better) or the opposite direction (if worse). FLAML positions itself as a fast
AutoML framework that is designed to work for small time budgets (Wang et al., 2021).

3.1.4 GAMA

Designed as a modular AutoML framework for researchers, GAMA’s search method and post
processing are easily configurable and extensible (Gijsbers and Vanschoren, 2021). By de-
fault, GAMA uses genetic programming to optimize linear ML pipelines with an arbitrary
amount of preprocessing algorithms. Similar to TPOT, GAMA’s evolutionary algorithm uses
NSGA-II to perform multi-objective optimization (Deb et al., 2002), maximizing perfor-
mance while minimizing the number of components in the pipeline. By contrast, GAMA’s
evolutionary algorithm is asynchronous and does not work with distinct generations, which
allows for higher resource utilization. The final model is constructed through ensemble
selection (Caruana et al., 2004, 2006), similar to AUTO-SKLEARN.

3.1.5 H2O AutoML

Built on the H2O distributed machine learning platform (H2O.ai, 2013), H2O AUTOML (LeDell
and Poirier, 2020) evaluates a portfolio of bespoke algorithm configurations and also per-
forms random searches over the majority of the supervised learning algorithms offered in
H2O. Early stopping is applied to the searches for efficiency. The amount of time the H2O

AUTOML spends searching each algorithm is pre-specified by the authors, though this can be
customized. This allocates the amount of optimization work done at each step of the al-
gorithm, and some stronger algorithms (e.g. XGBoost) are favored, or given more time,
over others (e.g. GLM). To further increase model performance, H2O AUTOML also trains two
types of stacked ensemble models at various stages during the run: an ensemble using all
available models at step s, and an ensemble with only the best models of each algorithm
type at step s.

H2O AUTOML aims to cover a large search space quickly and relies on stacking to boost
model performance. Additionally, H2O AUTOML uses a predefined strategy for imputation,
normalization, and categorical encoding for each algorithm and does not currently optimize
over preprocessing pipelines by default, but preprocessing can be turned on as an option.
The H2O AUTOML algorithm is designed to generate models that are very fast at inference time,
rather than strictly focusing on maximizing model accuracy, with the goal of balancing these
two competing factors to produce practical models suited for production environments.

3.1.6 LightAutoML

LIGHTAUTOML is specifically designed with applications in the financial services industry in
mind (Vakhrushev et al., 2021). In this framework, pipelines are designed for quick inference
and interpretability. Only linear models and boosting frameworks (CATBOOST and LIGHTGBM)
are considered. Expert rules are used to evaluate likely good hyperparameter configurations
and design the search space. Tree-structured Parzen Estimators (Bergstra et al., 2011) are

9

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

used to optimize hyperparameters of the boosting frameworks, while warm-starting and
early stopping are used to optimize linear models with grid search. Different models are
combined in either a weighted voting ensemble (binary classification and regression) or with
two levels of stacking (multi-class classification). In a special ‘compete’ mode for larger time
budgets, the AutoML pipeline is run multiple times with different configurations and their
resulting models are ensembled with weighted voting, which allows for a more robust model.

3.1.7 MLJAR

MLJAR (P lońska and P loński, 2021) starts its search with a set of predetermined models and
a limited random search—similar to H2O AUTOML. This is followed by a feature creation and
selection step, after which a hill climbing algorithm is used to further tune the best pipelines.
After search, the models can be stacked, used in a voting ensemble, or both. Learners from
SCIKIT-LEARN are considered, as well as boosting packages XGBOOST, CATBOOST, and LIGHTGBM.
MLJAR features multiple modes for different use cases, including exploratory data analysis or
finding a fast model, a ‘perform’ mode aimed at finding a good model with good inference
time, and a ‘compete’ mode which aims to find the best possible model. We evaluate both
the ‘compete’ and ‘perform’ presets in this work.

3.1.8 Naive AutoML

Proposed as a baseline by Mohr and Wever (2023), it mimics a simple workflow a data
scientist might execute. First, a base learner is chosen by evaluating their performance us-
ing their default hyperparameter configuration. Then several steps are performed in order,
including feature scaling, feature selection, and hyperparameter tuning. Unfortunately, we
encountered issues evaluating NAIVEAUTOML which prohibited us to include its results in Sec-
tion 6. Appendix E motivates this choice, and shows the results we obtained for NAIVEAUTOML.

3.1.9 TPOT

Tree-based Pipeline Optimization Tool (Olson and Moore, 2016), or TPOT, optimizes pipelines
using genetic programming (e.g., McKay et al. (2010)): ML pipelines can be expressed as
trees where different branches represent distinct preprocessing pipelines. These pipelines
are then optimized through evolutionary optimization. To reduce overfitting that may arise
from the large search space, multi-objective optimization is used to minimize for pipeline
complexity while optimizing for performance (Olson et al., 2016). It is also possible to
reduce the search space by specifying a pipeline template (Le et al., 2018), which dictates
the high-level steps in the pipeline (for example, a “Selector-Transformer-Classifier” tem-
plate will result in pipelines with only those three steps, in that order). Development has
focused around genomic studies, providing specific options for dealing with this type of high
dimensional data for which prior knowledge may be present (Sohn et al., 2017). While TPOT

supports neural networks in its search (Romano et al., 2021), the default search space uses
SCIKIT-LEARN components and XGBOOST only.

10

AMLB: an AutoML Benchmark

3.2 Baselines

In addition to the integrated frameworks, AMLB allows for running several baselines. The
constant predictor always predicts the class prior or mean target value, regardless of the
values of the independent variables. The Random Forest baseline builds a forest 10 trees
at a time, until one of two criteria is met: we expect to exceed 90% of the memory limit or
time limit by building 10 more trees, or 2000 trees have been built.

The Tuned Random Forest baseline improves on the Random Forest baseline by using
an optimized max features value. The max features hyperparameter defines how many
random features are considered when determining each split and is found to be the most im-
portant hyperparameter (Van Rijn and Hutter, 2018).9 The value is optimized by evaluating
up to 11 unique values for the hyperparameter with 5-fold cross-validation before training a
final model with the best found value. The Tuned Random Forest is our strongest baseline
and aims to mimic a typical first approach for modeling by a human.

4. Software

We developed an open source benchmark tool that may be used for reproducible AutoML
benchmarking, which we will refer to as AMLB.10 This tool features robust automated
experiment execution and supports multiple AutoML frameworks, many of which are eval-
uated in this paper. AMLB is implemented as a Python application consisting mainly of an
amlb module and a framework folder hosting all the officially supported extensions, which
have been developed together with AutoML framework developers. The main consideration
for the design of AMLB is to produce correct and reproducible evaluations; the AutoML
frameworks are used as intended by their authors with little to no room for user error,
and the same evaluation conditions (including framework version, data set, and resampling
splits) and controlled computational environments can easily be recreated by anyone. The
amlb module provides the following features:

• a data loader to retrieve and prepare data from OpenML or local data sets.

• various benchmark runner implementations:

– a local runner that runs the experiments directly on the local machine. This is
also the runner to which each runner below delegates the final execution.

– container runners (docker and singularity are currently supported), which allow
preinstalling the amlb application together with a full setup of one framework
and consistently run all benchmark tasks against the same setup. This imple-
mentation also makes it possible to run multiple container instances in parallel.

– an aws runner that allows the user to safely run the benchmark on several EC2
instances in parallel. Each EC2 instance can itself use a pre-built docker image,
as used for this paper, or can configure the target framework on the fly, which is
useful for experiments in a development environment.

9. The hyperparameter min samples leaf is statistically equally important.
10. Source code and documentation under MIT license at https://github.com/openml/automlbenchmark.

11

https://github.com/openml/automlbenchmark

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

• a job executor responsible for running and orchestrating all the tasks. When used
with the aws runner, this allows distribution of the benchmark tasks across hundreds
of EC2 instances in parallel, with each one being monitored remotely by the host.

• a post-processor responsible for collecting and formatting the predictions returned by
the frameworks, handling errors, and computing the scoring metrics before writing
the information needed for post-analysis to a file.

Figure 13 in Appendix C provides an architecture overview and description of the flow
of the benchmarking tool, as used in the experiments for this paper.

4.1 Extensible Framework Structure

To ensure that AMLB is easily extensible to new AutoML frameworks, we integrate each
tool through a minimal interface. Each of the current tools requires less than 250 lines of
code across at most four files (most of which is boilerplate). The integration code handles
installation of the AutoML framework as well as its software stack and provides the frame-
work with data and recording predictions. The integration requirements are minimal, as
both input data and predictions can be exchanged both in Python objects and common
file formats, which makes integration across programming languages possible (currently in-
tegrated frameworks are written in C#, Java, Python and R). By keeping the integration
requirements minimal, we hope that AutoML framework authors are encouraged to con-
tribute integration scripts for their framework and, at the same time, avoid influencing the
methods or software used to design and develop new AutoML frameworks, as opposed to
providing a generic starter kit which may bias the developed AutoML frameworks (Guyon
et al., 2019). Frameworks may also be integrated completely locally to allow for private
benchmarking.11

4.2 Extensible Benchmarks

Benchmark suites define the data sets and one or more train/test splits, which should be
used to evaluate the AutoML frameworks. AMLB can work directly with OpenML tasks
and suites (Bischl et al., 2021), allowing for new evaluations without further changes to the
tool or its configuration. This is the preferred way to use AMLB for scientific experiments,
as it guarantees that the exact evaluation procedure can be reproduced easily by others.
However, it is also possible to use data sets stored in local files with manually defined splits,
e.g., to benchmark private use cases.12

4.3 Using the Software

To benchmark an AutoML framework, the user must first identify and define:

• the framework against which the benchmark is executed,

11. For information on how to add a framework, see https://openml.github.io/automlbenchmark/docs/

extending/framework/.
12. For information on how to add a new benchmark task or suite, see https://openml.github.io/

automlbenchmark/docs/extending/benchmark/.

12

https://openml.github.io/automlbenchmark/docs/extending/framework/
https://openml.github.io/automlbenchmark/docs/extending/framework/
https://openml.github.io/automlbenchmark/docs/extending/benchmark/
https://openml.github.io/automlbenchmark/docs/extending/benchmark/

AMLB: an AutoML Benchmark

• the benchmark suite listing the tasks to use in the evaluation, and

• the constraints that must be imposed on each task. This includes:

– the maximum training time.

– the number of CPU cores that can be used by the framework; not all frameworks
respect this constraint, but when run in aws mode, this constraint translates to
specific EC2 instances, therefore limiting the total number of CPUs available to
the framework.

– the amount of memory that can be used by the framework; not all frameworks
respect this constraint, but when run in aws mode, this constraint translates to
specific EC2 instances, therefore limiting the total amount of memory available
to the framework.

– the amount of disk volume that can be used by the framework (only respected
in aws mode).

Those constraints must then be declared explicitly in a constraints.yaml file (also in
the resources folder or as an external extension).

4.3.1 Commands

Once the previous parameters have been defined, the user can run a benchmark on the
command line using the basic syntax:

$ python runbenchmark . py framework id benchmark id c o n s t r a i n t i d

For example, to evaluate the tuned random forest baseline on the classification suite for 1
hour on 8 cores, run:

$ python runbenchmark . py tunedrandomforest openml/ s /271 1h8c

Additional options may be used to specify the mode, the parallelization, and other details of
the experimental setup. For example, the following command may be used to evaluate the
random forest baseline on the regression benchmark suite across 100 8-core aws instances
in parallel with a time budget of one hour.

$ python runbenchmark . py randomforest openml/ s /269 1h8c −m aws −p 100

5. Benchmark Design

In this section, we discuss both the design of the benchmark suite (that is, the chosen data
sets and evaluation procedures, Bischl et al., 2021) and the experimental setup, as well as
their limitations.

5.1 Benchmark Suites

To facilitate a reproducible experimental evaluation, we make use of OpenML Benchmark
suites (Bischl et al., 2021). An OpenML benchmark suite is a collection of OpenML tasks,

13

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

which each reference a data set, an evaluation procedure (such as k-fold cross-validation)
and its splits, the target feature, and the type of task (regression or classification). The
benchmark suites are designed to reflect a wide range of realistic use cases for which the
AutoML tools are designed. Resource constraints are not part of the task definition. Instead,
we define them separately in a local file so that each task can be evaluated with multiple
resource constraints. Both the OpenML benchmark suite (and tasks) and the resource
constraints are machine-readable to ensure automated and reproducible experiments.

5.1.1 Data Sets

We created two benchmarking suites, one with 71 classification tasks, and one with 33
regression tasks. The data sets used in these tasks are selected from previous AutoML
papers (Thornton et al., 2013), competitions (Guyon et al., 2019), and ML benchmarks
(Bischl et al., 2021) according to the following predefined list of criteria13:

• Difficulty of the data set must be sufficiently high. If a problem is easily solved
by almost any algorithm, it will not be able to differentiate the various AutoML
frameworks. This can mean that simple models (such as random forests, decision trees
or logistic regression) achieve a generalization error of zero, or that the performance
of these models and all evaluated AutoML tools is identical.

• Representative of real-world data science problems to be solved with the frame-
works. In particular, we limit artificial problems. We included a small selection of
such problems, either based on their widespread use (e.g., kr-vs-kp) or because they
pose difficult problems, but we do not want them to constitute a large part of the
benchmark. We also limit computer vision problems on raw pixel data because those
problems are better solved with dedicated deep learning solutions. However, since
they still make for real-world, interesting, and hard problems, we did not exclude
them altogether.

• No free form text features that cannot reasonably be interpreted as a categorical
feature. Most AutoML frameworks do not yet support feature engineering on text
features and will process them as categorical features. For this reason, we exclude
text features, even though we admit their prevalence in many interesting real-world
problems. A first investigation and benchmark of multimodal AutoML with text
features has been carried out by Shi et al. (2021).

• Diversity in the problem domains. We do not want the benchmark to skew towards
any application domain in particular. There are various software quality problems in
the OpenML-CC18 benchmark (jm1, kc1, kc2, pc1, pc3, pc4), but adopting them all
would lead to a bias in the benchmark to this domain.

• Independent and identically distributed (i.i.d.) data are required for each task.
If the data are of temporal nature or repeated measurements have been conducted, the
task is discarded. Both types of data are generally very interesting but are currently

13. The airlines datasets violate these criteria, but are included for historical reasons.

14

AMLB: an AutoML Benchmark

101 102 103 104

Number of Features
0

5

10

15

20

Da
ta

se
ts

Datasets by Number of Features
Regression
Multiclass Classification
Binary Classification

103 105 107

Number of Instances
0

5

10

15

20

25

Da
ta

se
ts

Datasets by Number of Instances
Regression
Multiclass Classification
Binary Classification

103 105 107

Number of Instances

101

102

103

104

Nu
m

be
r o

f F
ea

tu
re

s

Datasets by Data Dimensions
Regression
Multiclass Classification
Binary Classification

0 20 40 60
Percentage of Missing Values

0

2

4

6

Da
ta

se
ts

Datasets by Percentage of Missing Values
Regression
Multiclass Classification
Binary Classification

0 20 40 60 80 100
Percentage of Categorical Features

0

10

20

30

40

50

60

Da
ta

se
ts

Datasets by Percentage of Categorical Features
Regression
Multiclass Classification
Binary Classification

21 22 23 24 25 26 27 28

Number of Classes
0

2

4

6

8

10

Da
ta

se
ts

Datasets by Number of Classes

Figure 1: Properties of the tasks in both benchmarking suites.

not supported for most AutoML systems, and we plan to extend the benchmark in
the future in this direction.

• Freely available and hosted on OpenML. Data sets that can only be used on specific
platforms or are not shared freely for any reasons are not included in the benchmark.

Reasons to exclude a data set included label-leakage and near-duplicates of other tasks
in independent variables (for example, different only in categorical encoding or imputation)
or dependent variable (most commonly the binarization of a regression or multi-class task).

To study the differences between AutoML systems, the data sets vary in the number
of samples and features by orders of magnitude and vary in the occurrence of numeric
features, categorical features, and missing values. Figure 1 shows basic properties of the
classification and regression tasks, including the distributions of the number of instances
and features, the frequency of missing values and categorical features, and the number of
target classes (for classification tasks). Properties of the tasks are shown in Appendix A and
can be explored interactively on OpenML.14 While the selection spans a wide range of data
types and problem domains, we recognize that there is room for improvement. Restricting
ourselves to open data sets without text features severely limits options, especially for big
data sets. We hope to address this in future work.

All data sets are available in multiple formats for the AutoML frameworks, either as files
(parquet, arff, or csv) or as Python objects (pandas dataframe, numpy array), and the used
format depends on the AutoML framework. All frameworks have access to meta-data, such
as the data type of the columns, either directly from the chosen data format or as separate

14. Visit www.openml.org/s/269 for regression and www.openml.org/s/271 for classification.

15

www.openml.org/s/269
www.openml.org/s/271

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

input, so that each AutoML framework has the same information available regardless of the
chosen data format.

5.1.2 Performance Metrics

In our evaluation, we use area under the receiver operating characteristic curve (AUC)
for binary classification, log loss for multi-class classification and root mean-squared error
(rmse) for regression to evaluate model performance.15 We chose to use these metrics
because they are generally reasonable, commonly used in practice, and supported by most
AutoML tools. The latter is especially important because it is imperative that AutoML
systems optimize for the same metric on which they are evaluated. However, our tool is
not limited to only these three metrics, and a wide range of performance metrics can be
specified by the user.

Models are not calibrated, unless the AutoML framework does so by default. Whether or
not calibrated models are important is highly dependent on the use case, and most AutoML
frameworks do not support model calibration out of the box. This is especially important
to keep in mind when we discuss results on our binary classification problems, as AUC is
not sensitive to calibration.

5.1.3 Missing Values In Experimental Results

As will be discussed in more detail in Section 6.4, not all frameworks are equally well-
behaved. There are situations where search time budgets are exceeded or the AutoML
frameworks crash outright, which results in missing performance estimates. There are
multiple strategies to consider on how to deal with these missing data.

One naive approach may be to ignore missing values and aggregate over the obtained
results. However, we observe that failures do not occur at random. Failures correlate with
data set properties, such as data set size and class imbalance, which may be correlated
with “problem difficulty” and thus performance. Ignoring missing values thus means that
AutoML frameworks may fail on harder tasks or folds and consequently obtain higher
average performance estimates. Imputing missing values with performance obtained by the
same AutoML framework on other folds is subject to the same drawback. Moreover, in case
a framework fails to produce predictions on all folds of a task, neither method specifies how
to deal with missing values.

Instead, we propose to impute the missing values with an interpretable and reliable
baseline. An argument may be made for using the random forest baseline, since this may
be a strong fallback that AutoML frameworks could realistically implement. However, we
observe that training a random forest (of the size used in the baseline) requires a significant
amount of time on larger data sets. Automatically providing this fallback by means of
imputation would provide an unfair advantage to the AutoML frameworks that are not
well-behaved. Moreover, many failures would not be remedied by having a random forest
to fall back on, since the AutoML frameworks crash irrecoverably, for example, due to
segmentation faults.

15. We use the implementations provided by SCIKIT-LEARN 1.2.2.

16

AMLB: an AutoML Benchmark

Therefore, we impute missing values with the constant predictor, or prior.16 This base-
line returns the empirical class distribution for classification and the empirical mean for
regression. This is a very penalizing imputation strategy, as the constant predictor is often
much worse than results obtained by the AutoML frameworks that produce predictions for
the task or fold. However, we feel this penalization for ill-behaved systems is appropriate
and fairer towards the well-behaved frameworks and hope that it encourages a standard of
robust, well-behaved AutoML frameworks.

5.2 Experimental Setup

We execute the experiments on commodity-level hardware with AutoML frameworks gen-
erally in their default configurations.

5.2.1 Hardware

As discussed in Section 4, AMLB can be run on any machine. However, for comparable hard-
ware and easy expandability, we opt to conduct the benchmark on standard m5.2xlarge17

instances available on Amazon Web Services (AWS). These represent current commodity-
level hardware with 32 GB memory, 8 vCPUs (Intel Xeon Platinum 8000 series Skylake-SP
processor with a sustained all core Turbo CPU clock speed of up to 3.1 GHz). 100 GB
of gp3-SSD storage is available for storage, which can be necessary for storing a larger
number of evaluated pipelines. The use of AWS also enables others to fully reproduce and
extend our results, as funding permits, since the results do not depend on private computing
infrastructure.

5.2.2 Framework Configuration

AutoML frameworks are instantiated with their default configuration, except that we control
the following settings:

• ‘Mode’ to declare the user intent. For example, obtaining the best possible model
versus finding an interpretable (less complex) model. The modes used to evaluate
each AutoML framework is chosen by their developers.

• Runtime for the search. Additionally, there is one hour leeway for data loading,
making predictions, and cleanup operations, but this is not communicated to the
AutoML frameworks.

• Resource constraints that specify the number of CPU cores and amount of memory
available.

• Target metric to use for optimization. This is the same metric that is used for
evaluation in the benchmark.

The experiment design intentionally prohibits further customization of other AutoML
system configuration parameters to reflect how these systems are usually applied in practice

16. We except one specific error for AUTOGLUON(HQIL) which is already fixed (c.f. Appendix D).
17. More information is available at https://aws.amazon.com/ec2/instance-types/m5/.

17

https://aws.amazon.com/ec2/instance-types/m5/

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

as closely as possible (note that AMLB does allow for this type of customization). An
overview of used framework versions, their ‘mode’ configurations, and important integration
details are provided in Appendix C.2.

5.3 Limitations

Both the design of the benchmark and the setup for the experiments described in this paper
have some limitations with regard to the interpretation of their results. Limitations in the
design stem from the desire to keep the use of the frameworks as close as possible to the
original vision and usage intended by developers, whereas the limitations in the experiments
are caused by resource constraints and may be alleviated by running additional experiments
with the benchmark software. In this section, we highlight some important limitations and
stress that this paper and the results within do not state which AutoML framework is
ultimately the best.

5.3.1 Limitations of the Design

Perhaps the biggest limitation of the design is the inability to attribute the performance
of an AutoML framework to any one aspect of its design, as is often done with ablation
studies. The evaluated AutoML frameworks differ among multiple design choices, such as
the underlying ML library, search space, preprocessing, and search algorithm. Concretely, a
performance difference between, for instance, AUTO-SKLEARN and TPOT could be caused by TPOT’s
built-in stacking, AUTO-SKLEARN’s ensembles, the difference in Bayesian optimization versus
genetic programming, the difference in how multiprocessing is employed, or a combination
of these or any other difference between them. Software that would allow for such conclu-
sions essentially requires each AutoML framework to be reimplemented on a shared set of
algorithms for building models, search, and evaluation. We acknowledge that this would be
incredibly valuable for the research community. However, it would also no longer resemble
the software as used in practice and thus would be different work altogether. Note that it
is possible to perform ablation studies with AMLB for a specific AutoML framework, for
example by comparing different framework configurations as done by Erickson et al. (2020).

Another limitation stems from only recording results produced by the final model. Any-
time performance, where information about the performance during optimization is cap-
tured as if they were final models, can be very insightful. This method allows for the
distinction between a framework that converges quickly from one that does not. This may
be especially important for users who are interested to use the systems with a human-in-
the-loop, such as when designing a search space or data features. Unfortunately, many
frameworks do not support collection of anytime performance and— depending on how
they are recorded—might interfere with resources used during search. We hope to be able
to record anytime performance in the future, but in this work, we only approximate it by
evaluating the tools under two different time constraints (1 and 4 hours).

Finally, the qualitative comparison of the frameworks is also limited. Certain “quality of
life features” like analysis of the pipeline via interpretable ML methods, reports, usability, or
support are not evaluated here but are important to many users. For a qualitative analysis
of those characteristics, we refer the reader to one of the many existing overview papers

18

AMLB: an AutoML Benchmark

on AutoML (Zöller and Huber, 2021; Truong et al., 2019). We also provide an overview of
various AutoML frameworks with links to their documentation on our website.18

5.3.2 Limitations of the Experiments

Most frameworks are highly configurable and allow the user to configure the search algo-
rithm or its hyperparameters, among other aspects that affect the AutoML performance.
Some frameworks even provide different configuration presets for different use cases, such as
a performance-oriented competition mode and a mode that produces fast or interpretable
models at the cost of some performance. However, comparing the effect on model per-
formance of tuning AutoML hyper-hyperparameters quickly carries prohibitive costs. We
evaluated only a few modes for each framework, if any, based on the developers’ recom-
mendations. It is likely that better results may be achieved by carefully meta-tuning the
AutoML framework or evaluating additional modes. While it is cost prohibitive for us
to evaluate many different scenarios, it is easy to run the benchmark with custom con-
figurations for the various AutoML frameworks. This allows users to evaluate AutoML
frameworks in a setting that reflects their interest.

5.3.3 Meta-learning

Many AutoML frameworks make use of meta-learning to better initialize and speed up the
search (Yang et al., 2018; Feurer et al., 2015a, 2020). Since all data in the benchmark is
publicly available and many of them are well known in the AutoML community, it is likely
that there is a substantial overlap between data used by the developers for meta-learning
and the data used in the benchmark. This is a very intricate problem, as we consider
AutoML frameworks as black boxes. Removing the effect of the data set that is to be
evaluated from the meta-learning procedure is not solvable in general.

In this paper specifically, both AUTO-SKLEARN and AUTO-SKLEARN 2 use meta-learning.
AUTO-SKLEARN’s meta-learning uses 208 data sets from OpenML, each associated with well-
performing ML pipelines. The search is initialized with k-nearest datasets (Reif et al.,
2012) using the 25-nearest datasets based on 38 meta-features and looking up the best
known pipeline for those datasets. AUTO-SKLEARN can exclude data sets by name from the
lookup, which we make use of in AMLB to ensure that there is no overlap to the 39 data
sets from Gijsbers et al. (2019). Even so, it cannot be guaranteed that identical data sets
with a different name might be used for meta learning out-of-the-box.

AUTO-SKLEARN 2’s meta-learning model is more complicated and consists of: a) a static
pipeline portfolio for warm-starting the search, which is computed across hundreds of data
sets using a greedy forward selection, and b) a meta-model to predict the internal model
selection strategy and budget allocation strategy. Single data sets cannot be excluded
from these meta-learning procedures, and it is not feasible to retrain the meta-models and
pipeline portfolio for each data set in our benchmark. This ultimately means that the result
of AUTO-SKLEARN 2 must be considered very carefully and are likely optimistic, as their meta-
model is built with information about many datasets in this benchmark. More thought
and collaboration is required to address these issues and allow for the correct evaluation of
AutoML systems that use meta-learning in common benchmarks.

18. https://openml.github.io/automlbenchmark/frameworks.html

19

https://openml.github.io/automlbenchmark/frameworks.html

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

5.4 Overfitting the Benchmark

One last issue that plagues any widely-adopted benchmark is the potential of algorithms
overfitting on the data sets used in the benchmark. Since freely available, interesting,
and usable (refer to Section 5.1.1 for our selection criteria) data sets are scarce, many
AutoML developers use these data sets to benchmark and then improve their systems
iteratively. While this is not as direct of an issue as with meta-learning, these data sets can
in general not be assumed to be truly unseen. The only practical way to avoid this is to
collect a novel set of data sets for the benchmark, which would entail a prohibitive effort.
Moreover, after publishing such a benchmark, the new data sets are published, which again
gives developers the possibility to use them to improve their systems. On the other hand,
should the benchmarking data sets be kept private to avoid this issue, the benchmark is
no longer entirely reproducible by independent researchers. We hope that the size of our
benchmarking suites is large enough and their design general enough that overfitting is less
of an issue, but this is difficult to guarantee, and a study as outlined above may be useful
to evaluate this phenomenon in the future.

6. Results

In this section, we provide an overview and analysis of the results obtained. This section is
accompanied by an interactive visualization tool19, additional information in Appendix B,
and all data artifacts generated from these experiments.20 For a more comprehensive com-
parison than what we can provide here, we strongly encourage the reader to explore the
data with the interactive visualization tool. This tool enables users to select any subset
of frameworks, task types, performance measures, or data characteristics iteratively and
interactively. The tool includes overview plots for different task types as well as detailed
visualizations for individual data sets. Moreover, a statistical analysis of the results by
critical difference plots and Bradley-Terry trees is implemented.

In addition to the limitations outlined in section 5.3, we also want to stress that these
experimental results are obtained by running the frameworks as they were in June of 2023.
Some of these frameworks are still under active development, and results from experiments
run on later versions will almost certainly differ.

We used recent results as much as possible, but we also include some results of experi-
ments ran of frameworks in September of 2021. In these cases, the benchmarked framework
versions were not substantially different. We motivate this decision in Appendix C.2 and
denote the older results with an asterisk (*) by the framework name. For example, TPOT

denotes the June 2023 version and TPOT* denotes the September 2021 version. Some results
are missing: AUTO-SKLEARN 2 does not support regression, and we could not complete our 4
hour classification evaluation of AUTOGLUON(HQIL) due to budget constraints.

We strongly encourage people to run additional experiments that match their use case
with up-to-date frameworks, and use the results in this section as a reference on how to
analyze the results. Results may differ substantially for different time constraints, amount
of parallel processing available, availability of GPU’s, and more. Table 16 in Appendix C.2

19. Results can be interactively explored at http://openml.github.io/automlbenchmark/visualization.
20. Experiment artifacts can be found at: http://openml.github.io/automlbenchmark/data.

20

http://openml.github.io/automlbenchmark/visualization
http://openml.github.io/automlbenchmark/data

AMLB: an AutoML Benchmark

shows an overview of the versions benchmarked for each framework as well as the most
current version.

6.1 Predictive Performance

To report on the results for many AutoML frameworks across whole benchmarking suites,
we propose using critical difference (CD) diagrams (Demšar, 2006) illustrated in Figure 2.
In a CD diagram, the average rank of each framework as well as which ranks are statisti-
cally significantly different from each other are shown. To calculate the average rank per
task, we first impute any missing values with the constant predictor and then average the
performance over all folds. We may then test for the presence of statistically significant dif-
ferences in the average rank distributions using a non-parametric Friedman test at p < 0.05
(here, p ≈ 0 for every diagram) and use a Nemenyi post-hoc test to find which pairs differ.
For each benchmarking suite and time budget, the CD diagrams are shown in Figure 2,
which displays the rank of each framework (lower is better) averaged over all results from
the given benchmarking suite and budget. AUTO-SKLEARN 2 is excluded in this comparison
due to the meta-learning issues discussed in Section 5.3.3.

Overall, we observe that AUTOGLUON(B) and TPOT respectively achieve the best and worst
rank among AutoML frameworks in almost every setting with respect to model accuracy.
However, while AUTOGLUON(B) is generally not significantly better than the second best frame-
work, it does rank statistically significantly better than the worst AutoML frameworks in
any given scenario. Similarly, TPOT is never significantly worse than the second worst frame-
work, but its rank is always statistically significantly worse than AUTOGLUON(B). In all cases,
the baselines obtain worse ranks than any AutoML framework except TPOT, although the
tuned random forest is a strong baseline. Only AUTOGLUON(B) and LIGHTAUTOML achieve signif-
icantly better ranks across all settings. All AutoML frameworks except AUTOGLUON(B) and
TPOT are generally ranked close to each other, with small differences across the various suites
and budgets.

To complement the CD diagrams—which obfuscate the relative performance differences—
we show box plots of obtained results (after imputation) across all tasks in Figure 3. Because
the performances are not commensurable across tasks, we first scale all results per task be-
tween the random forest performance (0) and the best observed performance (1) (that is,
higher scores correspond to better performance). This also makes the scaled value inter-
pretable. Furthermore, the value scales based on the improvement over the baseline that is
observed to be achievable, and negative values are worse than the random forest baseline.
While the boxplots are calculated over performance data on all tasks, the plots are cut off
to allow a better visualization of the most relevant area. The number of outliers for each
framework that are not shown in the plot are denoted on the x-axis.

Even if ranks are similar, the performance distribution might be noticeably different.
For example, AUTOGLUON(HQIL) and MLJAR(P) achieve very similar average ranks on the one hour
regression tasks. However, we observe from the boxplots that while AUTOGLUON(HQIL) achieves
lower median normalized performance in this segment, it outperforms random forest with
much greater consistency than MLJAR(P). Similarly, while TPOT’s average rank is generally
close to that of the Tuned Random Forest baseline, TPOT exhibits much higher variance in
its prediction quality.

21

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

1 2 3 4 5 6 7 8 9 10 11 12 13 14

AutoGluon(B)
AutoGluon(HQ)

lightautoml
AutoGluon(HQIL)

flaml
H2OAutoML

MLJAR(P) autosklearn
GAMA(B)
MLJAR(B)
TunedRandomForest*
TPOT
RandomForest
constantpredictor

CD

(a) Binary Classification, 1 hour

1 2 3 4 5 6 7 8 9 10 11 12

AutoGluon(B)
AutoGluon(HQ)

lightautoml
H2OAutoML

GAMA(B)*
flaml autosklearn

MLJAR(B)*
TunedRandomForest*
TPOT*
RandomForest
constantpredictor

CD

(b) Binary Classification, 4 hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14

AutoGluon(B)
AutoGluon(HQ)

MLJAR(B)
AutoGluon(HQIL)

flaml
lightautoml
H2OAutoML MLJAR(P)

autosklearn
GAMA(B)
TunedRandomForest*
TPOT
RandomForest
constantpredictor

CD

(c) Multi-class Classification, 1 hour

1 2 3 4 5 6 7 8 9 10 11 12

AutoGluon(B)
AutoGluon(HQ)

MLJAR(B)*
lightautoml

flaml
H2OAutoML autosklearn

GAMA(B)*
TPOT*
TunedRandomForest*
RandomForest
constantpredictor

CD

(d) Multi-class Classification, 4 hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14

AutoGluon(B)
flaml

MLJAR(B)
H2OAutoML

AutoGluon(HQ)
lightautoml
autosklearn MLJAR(P)

AutoGluon(HQIL)
GAMA(B)
TPOT
TunedRandomForest*
RandomForest
constantpredictor

CD

(e) Regression, 1 hour

1 2 3 4 5 6 7 8 9 10 11 12 13

AutoGluon(B)
H2OAutoML

flaml
MLJAR(B)

lightautoml
GAMA(B)*

AutoGluon(HQ)
autosklearn
TPOT*
AutoGluon(HQIL)
TunedRandomForest*
RandomForest
constantpredictor

CD

(f) Regression, 4 hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14

AutoGluon(B)
AutoGluon(HQ)

lightautoml
flaml

AutoGluon(HQIL)
MLJAR(B)*

H2OAutoML MLJAR(P)*
autosklearn
GAMA(B)
TPOT
TunedRandomForest*
RandomForest
constantpredictor

CD

(g) All tasks, 1 hour

1 2 3 4 5 6 7 8 9 10 11

AutoGluon(B)
lightautoml
H2OAutoML

flaml
MLJAR(B)*
GAMA(B)*

autosklearn
TPOT*
TunedRandomForest*
RandomForest
constantpredictor

CD

(h) All tasks, 4 hours

Figure 2: CD plots with Nimenyi post-hoc test after imputing missing values with the
constant predictor baseline. An asterisk (*) next to a framework name means the
results were obtained in 2021.

22

AMLB: an AutoML Benchmark

 *[0][0][3][1][1][4][7][1][2][14][6][10][0]2

1

0

1
Sc

al
ed

 P
er

fo
rm

an
ce

Binary classification, 1 hour

 *
 *
 *
 *
 *[2] [1] [0] [2] [3] [8] [4] [1] [1][16][11][0]2

1

0

1

Sc
al

ed
 P

er
fo

rm
an

ce

Binary classification, 4 hours

 *[1][1][1][1][1][1][2][2][4][2][2][8][1]2

1

0

1

Sc
al

ed
 P

er
fo

rm
an

ce

Multiclass classification, 1 hour

 *
 *
 *
 *
 *[2] [2] [0] [1] [1] [2] [4] [2] [4] [1] [6] [1]2

1

0

1

Sc
al

ed
 P

er
fo

rm
an

ce

Multiclass classification, 4 hours

 AutoGluon(B)
 AutoGluon(HQ)
 AutoGluon(HQIL)
 autosklearn
 autosklearn2
 flam

l
 GAM

A(B)
 H2OAutoM

L
 lightautom

l
 M

LJAR(B)
 M

LJAR(P)
 TPOT
 TunedRandom

Forest*

[2][3][1][1][0][0][2][0][0][4][5][2][0]2

1

0

1

Sc
al

ed
 P

er
fo

rm
an

ce

Regression, 1 hour

 AutoGluon(B)
 AutoGluon(HQ)
 AutoGluon(HQIL)
 autosklearn
 autosklearn2*
 flam

l
 GAM

A(B)*
 H2OAutoM

L
 lightautom

l
 M

LJAR(B)
 TPOT*
 TunedRandom

Forest*

[2] [4] [2] [0] [0] [1] [2] [1] [0] [5] [2] [0]2

1

0

1

Sc
al

ed
 P

er
fo

rm
an

ce
Regression, 4 hours

Figure 3: Boxplots of framework performance across tasks after scaling the performance
values from random forest (0) to best observed (1). The number of outliers for
each framework that are not shown in the plot are denoted on the x-axis. An
asterisk (*) next to a framework name means the results were obtained in 2021.

Finally, we take a closer look at the difference in performance for different time con-
straints in Figure 4. Performance is scaled between 1 hour random forest performance (0)
and best observed performance (1). We only include frameworks for which we evaluated
all tasks on both constraints. We see that the performance is very similar overall, though

23

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

generally results improve slightly with a larger time budget. The performance of AUTOGLUON

confirms that better performance is still possible for other frameworks, but we suspect that
those frameworks are limited by their search space. For example, if a stacking ensemble is
required to reach the best performance, then the other methods will not achieve the best
performance regardless of time constraint.

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Scaled Performance

AutoGluon(B)
AutoGluon(HQ)

autosklearn
autosklearn2

flaml
H2OAutoML
lightautoml

MLJAR(B)
TunedRandomForest

Scaled performance after 1 and 4 hours
Time Constraint

1 hour
4 hours

Figure 4: Scaled performance for each framework under different time constraints. Only
frameworks which have evaluations on all tasks for both time constraints are
shown. Performance generally does not improve much with more time.

6.2 Bradley-Terry Trees

Bradley-Terry (BT) trees (Strobl et al., 2011) can be used to statistically analyse benchmark
experiments based on data set characteristics (Eugster et al., 2014). These trees use data
set characteristics—such as the number of instances, the number of features, the ratio of
missing values, and others—to split paired performance comparisons of the framework to
find statistically significant differences in performance. Bradley-Terry models originate in
psychology to analyze paired comparison experiments of subjects preferring one stimulus
over another. For our benchmark, such a preference ranking can be easily derived by
pairwise performance comparisons of all frameworks with regard to the data sets and cross-
validation folds.

The underlying algorithm of model-based recursive partitioning of Bradley–Terry mod-
els works as follows: In each split of the BT tree, a BT model is fitted for the paired
comparisons based on the underlying data set characteristics. Following Zeileis and Hornik
(2007) and Eugster et al. (2014), the BT model performs a statistical test of parameter
instability for the chosen data characteristics. If this test reveals a significant instability in
the model parameters, the corresponding tree node splits the data according the the charac-
teristic yielding the highest instability (lowest test p-value). The splitting cut-point is then

24

AMLB: an AutoML Benchmark

determined such that it has the highest improvement of the model fit. This procedure is
repeated until either no significant instability is left, a set tree depth is reached, or further
splits would exceed a set minimum number of observations in the leaves.

Numeric values in the tree leaves are worth parameters that can be interpreted as pref-
erences for the different frameworks (Eugster et al., 2014). Since these values are in [0, 1]
and sum up to 1 within a leaf, they can be understood as the probability of a framework
performing best, given the data characteristics in the corresponding leaf.

Figure 5 shows a Bradley-Terry tree for classification tasks for a runtime of one hour. For
simplicity, in order to obtain an easily understood tree, only the number of instances (rows)
and the number of features were chosen as data characteristics. The first split distinguishes
between data sets with more than 8237 instances and those equal to or below that cut-
point. The second split then further split into leaves based on the number of features in
the datasets. In the nodes, from left to right, we see that:

• For small datasets with a relatively low dimensionality (Node 3, 32 tasks) the perfor-
mance differences among the best frameworks are not very pronounced. Even though

number.of.instances
p < 0.001

1

≤ 8237 > 8237

number.of.features
p < 0.001

2

≤ 1301 > 1301

Node 3 (n = 320)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)

A
ut

oG
lu

on
(H

Q
IL

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
M

LJ
A

R
(P

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.39
Node 4 (n = 50)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)

A
ut

oG
lu

on
(H

Q
IL

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
M

LJ
A

R
(P

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.39

number.of.features
p < 0.001

5

≤ 43 > 43

Node 6 (n = 170)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)

A
ut

oG
lu

on
(H

Q
IL

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
M

LJ
A

R
(P

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.39
Node 7 (n = 160)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)

A
ut

oG
lu

on
(H

Q
IL

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
M

LJ
A

R
(P

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.39

Figure 5: Bradley-Terry tree of depth three for classification tasks. Results from the one
hour classification benchmark were used, and missing values were imputed by
constant predictor performance. One observation within the BT tree equals the
preference ranking of one fold on one data set. The n value denotes the number
of observations in the leaf node.

25

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

AUTOGLUON(B) is preferred for those kinds of data sets, AUTOGLUON(HQ) and AUTO-SKLEARN 2

show similar performances.

• For very wide datasets, those with a similarly small number of instances but much
higher dimensionality, more than 1301 features (Node 4, 5 tasks), performance dif-
ferences increase overall with AUTOGLUON(B) still being preferred over all others, but
now followed by AUTOGLUON(HQ) and LIGHTAUTOML with similar performances, and larger
distance to H2O AUTOML, GAMA(B) and FLAML.

• For datasets with a larger number of instances, more than 8237 (Node 6 and 7),
we see that AUTOGLUON(B) is preferred by a large margin over AUTOGLUON(HQ) as second.
There are minor differences depending on the number of features, such as FLAML being
a preferred third option when there are few features, at most 43, but AUTOGLUON(HQIL)

being preferred if the dataset has a relatively higher dimensionality.

More Bradley-Terry trees for the subsets of binary and multiclass classification as well as
regression can be found in the appendix. The findings from the BT trees are essentially the
same as those presented here, as AUTOGLUON(B) is overall the preferred framework in most tree
leaves. One exception is for small balanced binary classification tasks, shown in Figure 10,
where various frameworks are preferred over AUTOGLUON.

In conclusion, it can be observed that the performance gap of AUTOGLUON(B) increases
particularly as data sets become more complex. Moreover, the reader is strongly invited to
explore the aforementioned interactive visualization tool, with which deeper BT trees based
on several more data set characteristics can be constructed on various task types.

6.3 Model Accuracy vs. Inference Time Trade-offs

Model accuracy (here measured by AUC, log loss, or RMSE) plays a central role in eval-
uating performance of machine learning models. However, maximizing accuracy can come
at the cost of added model complexity. One practical way to consider the complexity of the
model is to measure the inference speed of the resulting model.

Some of the integrated frameworks offer a “compete” mode (AUTOGLUON, MLJAR, LIGHTAUTOML
and GAMA) that maximizes accuracy, typically at the cost of increased model complexity,
similar to competing in a Kaggle competition. This can lead to models being built that are
highly accurate but are extremely slow at inference time and are therefore not practical in
many real-life use-cases.

However, some frameworks provide multiple presets that allow the user to balance the
trade-off between accuracy and inference time differently. Unless the use of a specific preset
is mentioned (for AUTOGLUON and MLJAR), results in this section used presets which prioritize
accuracy over inference time, or in the case of H2O AUTOML, a balance of the two. Thus,
performing additional experiments with other presets is advised when inference time is
important. We also recognize that there are applications for which inference time is not
important.

In order to evaluate the limitations of the models produced by each framework we also
measured their inference time. The inference time reported on in this section is measured
by having the frameworks infer on samples of test data, either on a single row which is in
memory, or on ten thousand rows loaded from disk. Each measurement is done ten times

26

AMLB: an AutoML Benchmark

and the median is reported. Measurements for TPOT are omitted from this section, as TPOT

requires data which is already encoded and the encoding step may consume a considerable
part of the total inference time, making direct comparisons invalid. This metric provides
important insight into the trade-offs that tool authors make in their algorithm designs.

Figure 6 shows aggregated inference times across all models standardized to rows per
second (fewer is slower). For H2O AUTOML we do not report in-memory inference speed as
technical limitations of our benchmarking tool result in pessimistic inference time measure-
ments for non-Python frameworks.21 Here we see that the high accuracy of AUTOGLUON(B)

comes at the cost of extremely slow inference times. This is explained by the large models
produced by combining both stacking and ensembling to form ensembles of multiple layers.
In general, we see that ensemble models are slower (AUTO-SKLEARN, GAMA, and MLJAR(B) also do
ensembling), and GAMA and AUTO-SKLEARN with the same search space and ensemble methods
have comparable inference speeds. H2O AUTOML and AUTOGLUON(HQIL) maintain fast inference
speed despite making use of ensembles, by building on more optimized models or explicitly
selecting for fast inference when building the ensemble. FLAML stand out as having very fast
inference time, a potential explanation is that FLAML’s cost-frugal optimization also indirectly
takes inference time into account, as it is part of the time estimate which is used to consider
which model to tune.

AutoGluon(B)
AutoGluon(HQ)
AutoGluon(HQIL)
autosklearn
autosklearn2
flam

l
GAM

A(B)
H2OAutoM

L
lightautom

l
M

LJAR(B)
M

LJAR(P)
Random

Forest

103

105

ro
ws

 p
er

 se
co

nd

From-Disk Batch Inference Speed

AutoGluon(B)
AutoGluon(HQ)
AutoGluon(HQIL)
autosklearn
autosklearn2
flam

l
GAM

A(B)
H2OAutoM

L
lightautom

l
M

LJAR(B)
M

LJAR(P)
Random

Forest

100

102

104

ro
ws

 p
er

 se
co

nd

In-Memory Single Row Inference Speed

Figure 6: Inference speed on unseen data in rows per second, normalized from inference on
10 thousand rows from solid-state drive (left) or single rows in memory (right).
Measured for models created with the one hour time constraint and all scenarios.

In Figure 7, we show the Pareto front for all three scenarios with a one-hour time
constraint, demonstrating the average normalized model accuracy against corresponding
median per-row prediction speeds. Here, it is more apparent that the frameworks that

21. Transferring data between our Python-based benchmark tool and H2O AUTOML’s Java back-end requires
serialization to disk. Serialization to disk occurs significant overhead, especially when comparing to in-
memory inference. Faster inference speeds will be obtained by using H2O Frames directly in H2O AUTOML,
or using H2O in it’s production mode, which performs inference on exported models directly from disk
instead of in memory.

27

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

achieve the highest accuracy do so at the cost of inference time performance. This demon-
strates that when contextualizing any type of model accuracy results, it is important to
consider any trade-offs that may have been made to achieve the extra performance and how
that will affect the framework’s usability in practice. In this case, measuring accuracy in
isolation does not give the complete picture of the overall utility of a particular framework.

It should also be noted that with sufficient computing infrastructure and effort, scoring
across rows or chunks of data could be parallelized in a production system, which would
reduce the overall prediction time as compared to predicting a single test set on a single
machine. However, our goal in this section was to compare the inference time of the high-
accuracy models derived from different AutoML frameworks to each each other rather than
evaluate different techniques for speeding up the inference of any individual system.

103 104

median rows per second

0.4

0.5

0.6

0.7

0.8

0.9

m
ed

ia
n

sc
al

ed
 p

er
fo

rm
an

ce

binary classification 1 hour
framework
AutoGluon(B)
AutoGluon(HQ)
AutoGluon(HQIL)
GAMA(B)
H2OAutoML
MLJAR(B)
MLJAR(P)
autosklearn
autosklearn2
flaml
lightautoml 103 104

median rows per second

0.4

0.6

0.8

1.0

m
ed

ia
n

sc
al

ed
 p

er
fo

rm
an

ce

multiclass classification 1 hour
framework
AutoGluon(B)
AutoGluon(HQ)
AutoGluon(HQIL)
GAMA(B)
H2OAutoML
MLJAR(B)
MLJAR(P)
autosklearn
autosklearn2
flaml
lightautoml

103 104

median rows per second

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
ed

ia
n

sc
al

ed
 p

er
fo

rm
an

ce

regression 1 hour
framework
AutoGluon(B)
AutoGluon(HQ)
AutoGluon(HQIL)
GAMA(B)
H2OAutoML
MLJAR(B)
MLJAR(P)
autosklearn
flaml
lightautoml

Figure 7: Pareto Frontiers of framework performance across tasks after scaling the perfor-
mance values from the random forest (0) to best observed (1) for each task type
on a one hour time budget.

6.4 Observed AutoML Failures

While most jobs completed successfully, we observed multiple framework errors during our
experiments. In this section, we will discuss where AutoML frameworks fail, although we
want to stress that development for these packages is ongoing. For that reason, it is likely
that the same frameworks will not experience the same failures in the future (especially
after gaining access to all experiment logs). We categorize the errors into the following
categories:

Memory: The framework crashed due to exceeding available memory or encountering
other memory-related errors, such as segmentation faults.

28

AMLB: an AutoML Benchmark

Time: The framework exceeded the time limit past the leniency period.

Data: Errors due to specific data characteristics (such as imbalanced data) occurred.

Implementation: Any errors caused by bugs in the AutoML framework code oc-
curred.

These categories are a bit crude and ultimately subjective, since from a reductive viewpoint,
all errors are implementation errors. However, they serve for a quick overview. We also in-
troduce a ‘fixed’ category in Figure 8a to denote errors from a specific bug in AUTOGLUON(HQIL)

which is already fixed in newer releases. Additional details on this, and other errors en-
countered, can be found in Appendix D.

Figure 8a shows the errors by type, and Figure 8b shows errors by dataset size and
dimensionality on the right. Overall, memory and time constraints are the main cause
for errors, with one major exception.22 We observe that errors are far more common in
the classification benchmark suite than the regression suite. This is largely accounted
for by the difference in benchmarking suite size (33 and 71 tasks) and the fact that the
largest data sets are mostly classification tasks, both in number of instances and features.
Unique to classification, we do observe several frameworks failing to produce models or
predictions on highly imbalanced data sets. This is also the case for the failures on the
two small classification data sets (‘yeast’ and ‘wine-quality-white’), where careless use of
internal validation splits yields splits that no longer contain all classes. Interestingly, the
distribution of the type of errors observed is different under different time constraints (as
shown in Figure 14a of Appendix D). Both memory and time constraint violations happen
more frequently, which may potentially be explained by frameworks saving increasingly
more models or building increasingly larger pipelines. It is worth noting the stability of
the different systems is varied, with some systems being far more stable than others. Some
types of errors, such as memory errors, could potentially be easily resolved by running the
AutoML system on a machine with more RAM. However, the implementation errors are
more problematic because they represent an error from the code of the AutoML system.
Those are not currently resolvable without changes to the AutoML system itself, which may
or may not be fixed by code authors in the future.

Only when the framework exceeds the time budget by more than one hour do we record
a time error. However, as we can see in Figure 9, not all AutoML frameworks adhere
to the runtime constraints equally well, even if they finish within the leniency period. In
the figure, the training duration for each individual job (task and fold combination) are
aggregated, and timeout errors are shown above each framework, where missing values due
to non-time errors are excluded. These plots reveal different design decisions around the
specified runtime, with some frameworks never exceeding the limit by more than a few
minutes, while others violate it by a larger margin with some regularity. Interestingly, we
see that a number of frameworks consistently tend to stop far before the specified runtime
limit.

22. MLJAR(B) has 284 ‘implementation errors’ which are almost exclusively caused by only 3 distinct errors.

29

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

M
LJAR(B)

TPOT

GAM
A(B)

M
LJAR(P)

AutoGluon(HQIL)

flam
l

lightautom
l

autosklearn

autosklearn2

AutoGluon(B)

AutoGluon(HQ)

H2OAutoM
L

0

50

100

150

200

250

300

co
un

t
Error types by framework

data
implementation
memory
timeout
fixed

(a) Errors by type for each framework.

102 103 104 105 106 107

Instances

101

102

103

104

Fe
at

ur
es

Number of Errors by Data Dimensions
Type (color)

No Error
Regression
Classification

Count (size)
 2

in [3, 10]
in [11, 50]

50

(b) Number of errors by size of the dataset.

 AutoGluon(B)
 AutoGluon(HQ)
 AutoGluon(HQIL)
 autosklearn
 autosklearn2
 flam

l
 GAM

A(B)
 H2OAutoM

L
 lightautom

l
 M

LJAR(B)
 M

LJAR(P)
 Random

Forest
 TPOT

[0][0][0][0][0][0][8][1][0][0][1][0][41]

1H

2H

Tr
ai

ni
ng

 D
ur

at
io

n

Training Duration 1 hour

 AutoGluon(B)
 AutoGluon(HQ)
 AutoGluon(HQIL)
 autosklearn
 autosklearn2*
 flam

l
 GAM

A(B)*
 H2OAutoM

L
 lightautom

l
 M

LJAR(B)*
 Random

Forest
 TPOT*

[4] [0] [0] [0][10][16][0] [1] [0][13][0][29]

4H
5H

Tr
ai

ni
ng

 D
ur

at
io

n
Training Duration 4 hours

Figure 9: Time spent during search with a one hour budget (left) and four hour budget
(right). The grey line indicates the specified time limit, and the red line denotes
the end of the leniency period. The number of timeout errors for each framework
are shown beside it.

7. Conclusion

We presented a novel benchmark for measuring and comparing AutoML frameworks. To
ensure reproducibility, fair comparison, and detailed analysis of the results, our open-source
benchmarking tool automates the empirical evaluation of any integrated framework on any
supported task, including installation of the AutoML framework, provisioning the data
for training and inference, resource allocation, and processing of the results. This greatly
simplifies evaluating AutoML frameworks while enhancing reproducibility and reducing

30

AMLB: an AutoML Benchmark

errors. We worked jointly with the authors of 9 AutoML frameworks to evaluate their
systems in a large-scale study on 71 classification and 33 regression tasks.

When analyzing the predictive performance of these AutoML systems, we find that
the average ranks of the AutoML frameworks are generally very competitive with each
other. Still, by using Bradley-Terry trees (Strobl et al., 2011), we find that their relative
performance is affected by data characteristics—such as the data set size, dimensionality,
and class balance—highlighting specific strengths and weaknesses. Overall, in terms of
model performance, AUTOGLUON consistently has the highest average rank in our benchmark.
Additionally, in most scenarios, the AutoML frameworks outperform even our strongest
baseline.

Because inference time is an important factor in real-world applications, we also re-
viewed the inference time and accuracy trade-off and found large differences in inference
time of the produced models, at times spanning multiple orders of magnitude. The most
accurate frameworks achieve higher model accuracy at a large cost to performance in terms
of inference speed. Broadly speaking, while the models with higher accuracy also have
slower inference time, not all frameworks produce models that are Pareto optimal. Fur-
thermore, specific AutoML frameworks allow users to choose presets for customizing the
accuracy-inference time trade-off.

Finally, we analyzed scenarios in which AutoML frameworks fail to produce a model
and found that the main cause for failure was data set size. In other words, not all methods
scale well. To allow further analysis of our results, we provide an open-source interactive
visualization tool, which includes graphical representations and statistical tests.

7.1 Limitations

These quantitative results are obtained by using AutoML frameworks with preset con-
figurations only. The performance of frameworks under non-default settings can be very
relevant when, for example, there is budget available to also optimize AutoML hyper-
hyperparameters, or when a custom search space is used. Additionally, many frameworks
are under active development, so the results presented here may not be representative of
their performance in the future.

Next, all frameworks differ along multiple design axes, which prohibits attributing per-
formance differences to any specific component of the AutoML framework (such as the
search algorithm), without additional analysis.

Moreover, since we provide a purely quantitative comparison, it ignores qualitative as-
pects of AutoML frameworks that are very relevant in real-world settings, such as the
produced model’s interpretability or the level of support.

Lastly, the benchmarks were executed on 8-CPU machines, which is very modest by
today’s standards. Therefore, frameworks with better parallelism may show even greater
advantages on higher powered machines (with, for example, 50 or 100 CPUs). On the other
hand, even shorter time constraints may be useful for a human-in-the-loop or green AutoML
setting.

31

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

7.2 Future Work

The benchmarking suites, or sets of tasks, proposed in this paper are meant as a starting
point to be improved upon in collaboration with the AutoML community. We will seek to
update these suites based on community discussion so that they continue to reflect modern
challenges while also decreasing the risk of AutoML frameworks overfitting to the bench-
mark. In particular, we are interested in extending the benchmarking suites with problems
that feature free-form text data. Real-world tabular data often contain instances of text
data with different semantic meaning, such as addresses or URLs, from which meaningful
features can be extracted. This kind of feature engineering is typically very important for
model performance on such data sets, but the current selection of data sets does not reflect
this, in part because not all AutoML frameworks support text features.

We would also like to extend the benchmarking tool to support new problems, such as
multi-objective optimization tasks. While model accuracy is often an important metric,
‘secondary’ metrics—such as a model’s inference time or fairness—are often crucial for real-
world applications. Multi-objective optimization can be used to convey the importance of
these metrics to AutoML frameworks, for example, by using a fairness metric as secondary
objective, (Schmucker et al., 2021)), which can subsequently provide Pareto fronts of models
that optimize this trade-off. In particular for fairness related tasks, additional support
to convey sensitive attributes and protected groups to the AutoML frameworks must be
added. Other interesting problem types include non-i.i.d. data, such as when temporal
relationships are present in the data, or semi-supervised learning, where not all instances
have an associated ground truth.

Finally, the evaluations in this paper were performed on the equivalent of commodity-
level hardware using only CPU and a limited time budget. In some cases, it is more
desirable to devote a large budget to building a single model, perhaps even days of compute,
potentially with GPU access. In other cases, much smaller budgets may be desired, for
example to reduce carbon footprints or improve the experience for workflows with a human
in the loop. As different behavior (both in robustness and model performance) on one-hour
and four-hour budgets are already observed, future work may reveal different behavior when
evaluating AutoML frameworks at different scales.

7.3 Parting Words

The benchmark tool presented in this work makes producing rigorous reproducible research
both easier and faster. We hope that the open and extensible nature of this benchmark
motivates researchers to not only use the tool, but also to contribute their own data sets,
framework integrations, or feedback and code contributions to the open source AutoML
benchmark. We strongly encourage this participation so that the benchmark may remain
useful to the community for a long time to come.

Acknowledgments

We would all like to give special thanks to everyone that contributed to the benchmark,
both directly with pull requests and indirectly through opening issues. We also thank

32

AMLB: an AutoML Benchmark

Rinchin Damdinov, Nick Erickson, Matthias Feurer, and Piotr P loński for feedback and
corrections to this manuscript.

This work made use of the resources and expertise offered by the SURF Public Cloud
Call which is financed by the Dutch Research Council (NWO). We also made use of research
credits provided by the AWS Cloud Credit for Research program.

Pieter Gijsbers and Joaquin Vanschoren would like to acknowledge funding by AFRL
and DARPA under contract FA8750-17-C-0141, and EU’s Horizon Europe research and
innovation program under grant agreement No. 952215 (TAILOR).

Stefan Coors, Janek Thomas, and Bernd Bischl would like to acknowledge funding
by the German Federal Ministry of Education and Research (BMBF) under Grant No.
01IS18036A.

33

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

Appendix A. OpenML Benchmark Suites

Table 2 and Table 3 contain an overview of data sets used in the regression and classification
benchmarking suites, respectively. We hope to continuously update the benchmarking suites
with new data sets that represent current challenges.

Table 2: Tasks in the AutoML regression suite.

Task ID name n p

359944 abalone 4177 9
359929 Airlines DepDelay 10M 10000000 10
233212 Allstate Claims Severity 188318 131
359937 black friday 166821 10
359950 boston 506 14

359938 Brazilian houses 10692 13
233213 Buzzinsocialmedia Twitter 583250 78
359942 colleges 7063 45
233211 diamonds 53940 10
359936 elevators 16599 19

359952 house 16H 22784 17
359951 house prices nominal 1460 80
359949 house sales 21613 22
233215 Mercedes Benz Greener Manufacturing 4209 377
360945 MIP-2016-regression 1090 145

167210 Moneyball 1232 15
359943 nyc-taxi-green-dec-2016 581835 19
359941 OnlineNewsPopularity 39644 60
359946 pol 15000 49
360933 QSAR-TID-10980 5766 1026

360932 QSAR-TID-11 5742 1026
359930 quake 2178 4
233214 Santander transaction value 4459 4992
359948 SAT11-HAND-runtime-regression 4440 117
359931 sensory 576 12

359932 socmob 1156 6
359933 space ga 3107 7
359934 tecator 240 125
359939 topo 2 1 8885 267
359945 us crime 1994 127

359935 wine quality 6497 12
317614 Yolanda 400000 101
359940 yprop 4 1 8885 252

34

AMLB: an AutoML Benchmark

Table 3: Tasks in the AutoML classification suite.

Task ID name n p C class ratio

190411 ada 4147 49 2 0.33
359983 adult 48842 15 2 0.31
189354 airlines 539383 8 2 0.80
189356 albert 425240 79 2 1.00
10090 amazon-commerce-reviews 1500 10001 50 1.00

359979 Amazon employee access 32769 10 2 0.06
168868 APSFailure 76000 171 2 0.02
190412 arcene 100 10001 2 0.79
146818 Australian 690 15 2 0.80
359982 bank-marketing 45211 17 2 0.13

359967 Bioresponse 3751 1777 2 0.84
359955 blood-transfusion-service-center 748 5 2 0.31
359960 car 1728 7 4 0.05
359973 christine 5418 1637 2 1.00
359968 churn 5000 21 2 0.16

359992 Click prediction small 39948 12 2 0.20
359959 cmc 1473 10 3 0.53
359957 cnae-9 1080 857 9 1.00
359977 connect-4 67557 43 3 0.15

7593 covertype 581012 55 7 0.01

168757 credit-g 1000 21 2 0.43
211986 Diabetes130US 101766 50 3 0.21
168909 dilbert 10000 2001 5 0.93
189355 dionis 416188 61 355 0.36
359964 dna 3186 181 3 0.46

359954 eucalyptus 736 20 5 0.49
168910 fabert 8237 801 7 0.26
359976 Fashion-MNIST 70000 785 10 1.00
359969 first-order-theorem-proving 6118 52 6 0.19
359970 GesturePhaseSegmentationProcessed 9873 33 5 0.34

189922 gina 3153 971 2 0.97
359988 guillermo 20000 4297 2 0.67
359984 helena 65196 28 100 0.03
360114 Higgs 1000000 29 2 0.89
359966 Internet-Advertisements 3279 1559 2 0.16

211979 jannis 83733 55 4 0.04
168911 jasmine 2984 145 2 1.00
359981 jungle chess 2pcs raw endgame complete 44819 7 3 0.19

35

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

Table 3: Tasks in the AutoML classification suite (continued).

Task ID name n p C class ratio

359962 kc1 2109 22 2 0.18
360975 KDDCup09-Upselling 50000 14892 2 0.08

3945 KDDCup09 appetency 50000 231 2 0.02
360112 KDDCup99 4898431 42 23 0.00
359991 kick 72983 33 2 0.14
359965 kr-vs-kp 3196 37 2 0.91
190392 madeline 3140 260 2 0.99

359961 mfeat-factors 2000 217 10 1.00
359953 micro-mass 571 1301 20 0.18
359990 MiniBooNE 130064 51 2 0.39
359980 nomao 34465 119 2 0.40
167120 numerai28.6 96320 22 2 0.98

359993 okcupid-stem 50789 20 3 0.13
190137 ozone-level-8hr 2534 73 2 0.07
359958 pc4 1458 38 2 0.14
190410 philippine 5832 309 2 1.00
359971 PhishingWebsites 11055 31 2 0.80

168350 phoneme 5404 6 2 0.42
360113 porto-seguro 595212 58 2 0.04
359956 qsar-biodeg 1055 42 2 0.51
359989 riccardo 20000 4297 2 0.33
359986 robert 10000 7201 10 0.92

359975 Satellite 5100 37 2 0.01
359963 segment 2310 20 7 1.00
359994 sf-police-incidents 2215023 9 2 0.14
359987 shuttle 58000 10 7 0.00
168784 steel-plates-fault 1941 28 7 0.08

359972 sylvine 5124 21 2 1.00
190146 vehicle 846 19 4 0.91
359985 volkert 58310 181 10 0.11
146820 wilt 4839 6 2 0.06
359974 wine-quality-white 4898 12 7 0.00

2073 yeast 1484 9 10 0.01

36

AMLB: an AutoML Benchmark

Appendix B. Results

This appendix contains additional figures and tables with experimental results. Tables 4-
15 report results per framework per task for different task types and time budgets. Each
value denotes the mean score of completed folds, the standard deviation in those completed
folds, and the number of folds for which the AutoML framework did not return a result,
if applicable. A ‘-’ denotes cases where the AutoML framework was unable to complete
any fold of a task on a specific time budget. A ‘*’ next to a framework name denotes
experiments that were conducted on an older version of the framework in 2021.

37

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

fr
a
m

e
w

o
rk

A
u
to

G
lu

o
n
(B

)
A

u
to

G
lu

o
n
(H

Q
)

A
u
to

G
lu

o
n
(H

Q
IL

)
a
u
to

sk
le

a
rn

a
u
to

sk
le

a
rn

2
fl

a
m

l
G

A
M

A
(B

)
H

2
O

A
u
to

M
L

ta
sk

id
ta

sk
n
a
m

e

1
4
6
8
1
8

A
u
st

ra
li
..
.

0
.9

4
1
(0

.0
1
8
)

0
.9

4
2
(0

.0
1
7
)

0
.9

4
2
(0

.0
1
7
)

0
.9

3
1
(0

.0
2
2
)

0
.9

3
6
(0

.0
1
9
)

0
.9

3
8
(0

.0
2
3
)

0
.9

4
1
(0

.0
2
2
)1

0
.9

3
5
(0

.0
2
5
)

1
4
6
8
2
0

w
il
t

0
.9

9
5
(0

.0
0
8
)

0
.9

9
4
(0

.0
1
0
)

0
.9

9
4
(0

.0
1
0
)

0
.9

9
4
(0

.0
0
9
)

0
.9

9
5
(0

.0
0
7
)

0
.9

9
1
(0

.0
1
1
)

0
.9

9
6
(0

.0
0
4
)

0
.9

9
2
(0

.0
1
0
)

1
6
7
1
2
0

n
u
m

e
ra

i2
..
.

0
.5

3
1
(0

.0
0
4
)

0
.5

2
8
(0

.0
0
4
)

0
.5

2
9
(0

.0
0
4
)

0
.5

3
0
(0

.0
0
4
)

0
.5

3
1
(0

.0
0
4
)

0
.5

2
8
(0

.0
0
4
)

0
.5

3
0
(0

.0
0
6
)

0
.5

3
1
(0

.0
0
4
)

1
6
8
3
5
0

p
h
o
n
e
m

e
0
.9

6
8
(0

.0
0
9
)

0
.9

6
8
(0

.0
0
9
)

0
.9

6
8
(0

.0
0
9
)

0
.9

6
3
(0

.0
0
9
)

0
.9

7
0
(0

.0
0
9
)

0
.9

7
2
(0

.0
0
8
)

0
.9

7
1
(0

.0
1
0
)2

0
.9

6
8
(0

.0
0
9
)

1
6
8
7
5
7

c
re

d
it

-g
0
.7

9
6
(0

.0
4
1
)

0
.7

8
8
(0

.0
4
4
)

0
.7

6
3
(0

.0
5
3
)

0
.7

7
8
(0

.0
3
0
)

0
.7

9
6
(0

.0
4
1
)

0
.7

8
8
(0

.0
3
9
)

0
.7

9
4
(0

.0
3
3
)

0
.7

7
9
(0

.0
4
8
)

1
6
8
8
6
8

A
P

S
F
a
il
u
..
.

0
.9

9
3
(0

.0
0
2
)

0
.9

9
3
(0

.0
0
2
)

0
.9

9
3
(0

.0
0
2
)

0
.9

9
3
(0

.0
0
2
)

0
.9

9
2
(0

.0
0
1
)

0
.9

9
2
(0

.0
0
2
)

0
.9

9
0
(0

.0
0
3
)

0
.9

9
3
(0

.0
0
2
)

1
6
8
9
1
1

ja
sm

in
e

0
.8

8
6
(0

.0
1
8
)

0
.8

8
5
(0

.0
1
9
)

0
.8

8
5
(0

.0
1
9
)

0
.8

8
5
(0

.0
1
6
)

0
.8

8
8
(0

.0
1
7
)

0
.8

8
7
(0

.0
1
6
)

0
.8

9
1
(0

.0
1
3
)

0
.8

8
7
(0

.0
1
8
)

1
8
9
3
5
4

a
ir

li
n
e
s

0
.7

3
2
(0

.0
0
2
)

0
.7

3
2
(0

.0
0
2
)

0
.7

3
2
(0

.0
0
2
)

0
.7

2
6
(0

.0
0
3
)

0
.7

2
7
(0

.0
0
2
)

0
.7

3
1
(0

.0
0
2
)

0
.7

1
7
(0

.0
0
7
)

0
.7

3
1
(0

.0
0
2
)

1
8
9
3
5
6

a
lb

e
rt

0
.7

8
2
(0

.0
0
2
)

0
.7

8
2
(0

.0
0
2
)

0
.7

8
2
(0

.0
0
3
)

0
.7

5
6
(0

.0
0
3
)

0
.7

3
7
(0

.0
0
3
)

0
.7

7
0
(0

.0
0
2
)

0
.7

2
6
(0

.0
0
6
)

0
.7

6
1
(0

.0
0
3
)

1
8
9
9
2
2

g
in

a
0
.9

9
1
(0

.0
0
5
)

0
.9

9
2
(0

.0
0
5
)

0
.9

9
2
(0

.0
0
5
)

0
.9

9
0
(0

.0
0
5
)

0
.9

8
8
(0

.0
0
7
)

0
.9

9
2
(0

.0
0
5
)

0
.9

9
1
(0

.0
0
6
)

0
.9

9
1
(0

.0
0
5
)

1
9
0
1
3
7

o
z
o
n
e
-l

e
..
.

0
.9

3
3
(0

.0
1
6
)

0
.9

3
1
(0

.0
1
6
)

0
.9

3
1
(0

.0
1
6
)

0
.9

2
6
(0

.0
1
9
)

0
.9

2
7
(0

.0
2
6
)

0
.9

2
2
(0

.0
1
9
)

0
.9

2
5
(0

.0
3
0
)

0
.9

3
0
(0

.0
2
0
)

1
9
0
3
9
2

m
a
d
e
li
n
e

0
.9

4
5
(0

.0
0
8
)

0
.9

4
4
(0

.0
0
8
)

0
.9

4
4
(0

.0
0
8
)

0
.9

6
5
(0

.0
0
7
)

0
.9

4
5
(0

.0
0
8
)

0
.9

5
4
(0

.0
0
7
)

0
.9

5
7
(0

.0
0
9
)

0
.9

4
3
(0

.0
1
0
)

1
9
0
4
1
0

p
h
il
ip

p
i.
..

0
.8

7
8
(0

.0
1
3
)

0
.8

7
7
(0

.0
1
1
)

0
.8

7
7
(0

.0
1
1
)

0
.9

1
5
(0

.0
1
1
)

0
.8

7
7
(0

.0
1
4
)

0
.8

9
1
(0

.0
1
4
)

0
.8

9
2
(0

.0
1
6
)

0
.8

8
2
(0

.0
1
1
)

1
9
0
4
1
1

a
d
a

0
.9

2
1
(0

.0
1
8
)

0
.9

2
0
(0

.0
1
8
)

0
.9

2
0
(0

.0
1
8
)

0
.9

1
8
(0

.0
1
8
)

0
.9

1
9
(0

.0
1
8
)

0
.9

2
4
(0

.0
1
8
)

0
.9

2
0
(0

.0
1
9
)

0
.9

2
1
(0

.0
1
9
)

1
9
0
4
1
2

a
rc

e
n
e

0
.8

7
3
(0

.1
5
5
)

0
.8

7
3
(0

.1
7
3
)

0
.8

5
2
(0

.1
6
9
)

0
.8

6
6
(0

.1
4
1
)

0
.8

4
5
(0

.1
9
6
)

0
.8

6
8
(0

.1
5
4
)

0
.8

7
8
(0

.1
5
4
)1

0
.8

3
9
(0

.2
2
8
)

3
5
9
9
5
5

b
lo

o
d
-t

r.
..

0
.7

5
8
(0

.0
4
6
)

0
.7

5
9
(0

.0
4
3
)

0
.7

5
9
(0

.0
4
3
)

0
.7

4
7
(0

.0
5
0
)

0
.7

5
6
(0

.0
4
9
)

0
.7

3
0
(0

.0
4
2
)

0
.7

5
3
(0

.0
3
6
)

0
.7

6
4
(0

.0
4
1
)

3
5
9
9
5
6

q
sa

r-
b
io

..
.

0
.9

4
2
(0

.0
3
2
)

0
.9

4
1
(0

.0
3
5
)

0
.9

3
9
(0

.0
3
4
)

0
.9

3
1
(0

.0
3
4
)

0
.9

3
6
(0

.0
2
7
)

0
.9

3
0
(0

.0
3
1
)

0
.9

3
6
(0

.0
3
2
)

0
.9

3
9
(0

.0
3
4
)

3
5
9
9
5
8

p
c
4

0
.9

5
2
(0

.0
2
1
)

0
.9

4
9
(0

.0
2
2
)

0
.9

5
0
(0

.0
2
3
)

0
.9

4
2
(0

.0
1
9
)

0
.9

4
9
(0

.0
1
8
)

0
.9

5
0
(0

.0
1
9
)

0
.9

5
0
(0

.0
2
2
)

0
.9

4
8
(0

.0
2
2
)

3
5
9
9
6
2

k
c
1

0
.8

4
0
(0

.0
3
4
)

0
.8

4
0
(0

.0
3
5
)

0
.8

4
0
(0

.0
3
5
)

0
.8

4
3
(0

.0
3
3
)

0
.8

3
8
(0

.0
3
7
)

0
.8

4
1
(0

.0
4
0
)

0
.8

5
2
(0

.0
3
0
)

0
.8

2
9
(0

.0
3
0
)

3
5
9
9
6
5

k
r-

v
s-

k
p

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
1
)

1
.0

0
0
(0

.0
0
1
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

0
.9

6
1
(0

.1
2
3
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
1
)

3
5
9
9
6
6

In
te

rn
e
t.

..
0
.9

8
5
(0

.0
1
1
)

0
.9

8
6
(0

.0
1
2
)

0
.9

7
8
(0

.0
1
6
)

0
.9

8
4
(0

.0
1
2
)

0
.9

8
4
(0

.0
1
3
)

0
.9

8
7
(0

.0
1
1
)

0
.9

8
3
(0

.0
1
2
)

0
.9

8
6
(0

.0
1
0
)

3
5
9
9
6
7

B
io

re
sp

o
..
.

0
.8

8
6
(0

.0
1
7
)

0
.8

8
4
(0

.0
1
6
)

0
.8

7
8
(0

.0
1
6
)

0
.8

7
3
(0

.0
1
7
)

0
.8

7
0
(0

.0
1
8
)

0
.8

8
4
(0

.0
1
6
)

0
.8

8
4
(0

.0
1
7
)

0
.8

8
7
(0

.0
1
6
)

3
5
9
9
6
8

c
h
u
rn

0
.9

2
2
(0

.0
2
1
)

0
.9

2
4
(0

.0
2
2
)

0
.9

2
3
(0

.0
2
3
)

0
.9

2
2
(0

.0
2
1
)

0
.9

2
0
(0

.0
2
4
)

0
.9

2
2
(0

.0
2
3
)

0
.9

2
0
(0

.0
2
3
)

0
.9

2
5
(0

.0
2
2
)

3
5
9
9
7
1

P
h
is

h
in

g
..
.

0
.9

9
8
(0

.0
0
1
)

0
.9

9
8
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
2
)

0
.9

9
7
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)

0
.9

9
8
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)1

0
.9

9
8
(0

.0
0
1
)

3
5
9
9
7
2

sy
lv

in
e

0
.9

9
0
(0

.0
0
3
)

0
.9

8
9
(0

.0
0
3
)

0
.9

8
9
(0

.0
0
3
)

0
.9

9
1
(0

.0
0
3
)

0
.9

9
0
(0

.0
0
2
)

0
.9

9
1
(0

.0
0
2
)

0
.9

9
3
(0

.0
0
2
)2

0
.9

9
0
(0

.0
0
3
)

3
5
9
9
7
3

c
h
ri

st
in

e
0
.8

2
6
(0

.0
1
4
)

0
.8

2
7
(0

.0
1
3
)

0
.8

2
7
(0

.0
1
3
)

0
.8

2
8
(0

.0
1
5
)

0
.8

1
9
(0

.0
1
1
)

0
.8

2
4
(0

.0
1
3
)

0
.8

2
8
(0

.0
1
7
)

0
.8

2
5
(0

.0
1
3
)

3
5
9
9
7
5

S
a
te

ll
it

e
0
.9

9
6
(0

.0
0
5
)

0
.9

9
6
(0

.0
0
7
)

0
.9

9
6
(0

.0
0
7
)

0
.9

9
4
(0

.0
0
7
)

0
.9

9
5
(0

.0
0
7
)

0
.9

7
8
(0

.0
4
1
)

0
.9

9
6
(0

.0
0
3
)

0
.9

7
9
(0

.0
3
3
)

3
5
9
9
7
9

A
m

a
z
o
n

e
..
.

0
.9

0
2
(0

.0
1
2
)

0
.9

0
1
(0

.0
1
1
)

0
.9

0
1
(0

.0
1
1
)

0
.8

5
3
(0

.0
1
7
)

0
.8

7
6
(0

.0
1
4
)

0
.8

7
6
(0

.0
1
4
)

0
.8

6
7
(0

.0
1
2
)1

0
.8

7
7
(0

.0
1
2
)

3
5
9
9
8
0

n
o
m

a
o

0
.9

9
7
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)

0
.9

9
6
(0

.0
0
1
)

0
.9

9
6
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)

0
.9

9
5
(0

.0
0
1
)

0
.9

9
6
(0

.0
0
1
)

3
5
9
9
8
2

b
a
n
k
-m

a
r.

..
0
.9

4
1
(0

.0
0
6
)

0
.9

4
1
(0

.0
0
6
)

0
.9

4
0
(0

.0
0
6
)

0
.9

3
9
(0

.0
0
6
)

0
.9

3
8
(0

.0
0
7
)

0
.9

3
7
(0

.0
0
6
)

0
.9

3
6
(0

.0
0
6
)

0
.9

3
8
(0

.0
0
7
)

3
5
9
9
8
3

a
d
u
lt

0
.9

3
2
(0

.0
0
4
)

0
.9

3
2
(0

.0
0
4
)

0
.9

3
2
(0

.0
0
4
)

0
.9

3
0
(0

.0
0
4
)

0
.9

3
1
(0

.0
0
4
)

0
.9

3
2
(0

.0
0
4
)

0
.9

2
9
(0

.0
0
4
)

0
.9

3
1
(0

.0
0
4
)

3
5
9
9
8
8

g
u
il
le

rm
o

0
.9

1
4
(0

.0
0
8
)

0
.9

1
4
(0

.0
0
8
)

0
.9

1
4
(0

.0
0
9
)

0
.9

1
4
(0

.0
0
8
)

0
.9

0
6
(0

.0
0
9
)

0
.9

1
9
(n

a
n
)9

0
.8

6
5
(0

.0
3
1
)

0
.8

9
7
(0

.0
1
0
)

3
5
9
9
8
9

ri
c
c
a
rd

o
1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)3

0
.9

9
9
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

3
5
9
9
9
0

M
in

iB
o
o
N

E
0
.9

8
9
(0

.0
0
1
)

0
.9

8
8
(0

.0
0
1
)

0
.9

8
8
(0

.0
0
1
)

0
.9

8
7
(0

.0
0
1
)

0
.9

8
7
(0

.0
0
1
)

0
.9

8
7
(0

.0
0
1
)

0
.9

8
2
(0

.0
0
2
)

0
.9

8
7
(0

.0
0
1
)

3
5
9
9
9
1

k
ic

k
0
.7

9
1
(0

.0
0
7
)

0
.7

9
0
(0

.0
0
7
)

0
.7

9
0
(0

.0
0
7
)

0
.7

8
5
(0

.0
0
6
)

0
.7

8
7
(0

.0
0
7
)

0
.7

8
7
(0

.0
0
7
)

0
.7

9
1
(0

.0
1
6
)

0
.7

8
9
(0

.0
0
7
)

3
5
9
9
9
2

C
li
c
k

p
r.

..
0
.7

1
0
(0

.0
1
2
)

0
.7

1
0
(0

.0
1
2
)

0
.7

1
0
(0

.0
1
2
)

0
.6

9
7
(0

.0
1
4
)

0
.6

9
9
(0

.0
1
4
)

0
.7

2
3
(0

.0
1
0
)

0
.6

5
5
(0

.0
1
9
)

0
.7

0
1
(0

.0
1
3
)

3
5
9
9
9
4

sf
-p

o
li
c
..
.

0
.6

9
7
(0

.0
0
1
)

0
.6

9
3
(0

.0
0
2
)

0
.6

7
7
(0

.0
0
2
)

0
.6

9
4
(0

.0
0
5
)

0
.6

9
3
(0

.0
2
2
)

0
.7

0
9
(0

.0
0
4
)

0
.6

2
3
(0

.0
1
1
)

0
.6

8
8
(0

.0
1
3
)

3
6
0
1
1
3

p
o
rt

o
-s

e
..
.

0
.6

4
3
(0

.0
0
4
)

0
.6

4
3
(0

.0
0
5
)

0
.6

4
3
(0

.0
0
5
)

0
.6

3
9
(0

.0
0
4
)

0
.6

4
0
(0

.0
0
5
)

0
.6

4
2
(0

.0
0
4
)

0
.6

2
4
(0

.0
0
6
)

0
.6

4
2
(0

.0
0
4
)

3
6
0
1
1
4

H
ig

g
s

0
.8

3
8
(0

.0
0
1
)

0
.8

3
7
(0

.0
0
1
)

0
.6

7
5
(0

.0
0
1
)

0
.8

3
8
(0

.0
0
1
)

0
.8

3
5
(0

.0
0
1
)

0
.8

3
9
(0

.0
0
1
)

0
.7

8
4
(0

.0
0
6
)1

0
.8

3
2
(0

.0
0
1
)

3
6
0
9
7
5

K
D

D
C

u
p
0
9
..
.

0
.9

0
8
(0

.0
0
7
)

0
.9

0
6
(0

.0
0
7
)

0
.9

0
6
(0

.0
0
7
)

-
-

-
0
.5

5
8
(0

.0
8
5
)8

0
.9

0
3
(0

.0
0
5
)

3
9
4
5

K
D

D
C

u
p
0
9
..
.

0
.8

4
9
(0

.0
1
3
)

0
.8

4
8
(0

.0
1
3
)

0
.8

4
8
(0

.0
1
3
)

0
.8

3
8
(0

.0
1
5
)

0
.8

3
8
(0

.0
1
4
)

0
.8

2
5
(0

.0
1
7
)

0
.8

1
8
(0

.0
2
0
)

0
.8

3
7
(0

.0
1
4
)

T
ab

le
4:

R
es

u
lt

s
fo

r
b

in
ar

y
cl

as
si

fi
ca

ti
on

(i
n

A
U

C
)

on
a

on
e

h
ou

r
b

u
d

ge
t,

d
en

ot
ed

as
m
e
a
n
(s
t
d
)f
a
i
l
s

.

38

AMLB: an AutoML Benchmark

fr
a
m

e
w

o
rk

li
g
h
ta

u
to

m
l

M
L

J
A

R
(B

)
M

L
J
A

R
(P

)
T

P
O

T
c
o
n
st

a
n
tp

re
d
ic

to
r

R
a
n
d
o
m

F
o
re

st
T

u
n
e
d
R

a
n
d
o
m

F
o
re

st
*

ta
sk

id
ta

sk
n
a
m

e

1
4
6
8
1
8

A
u
st

ra
li
..
.

0
.9

4
6
(0

.0
2
0
)

0
.9

4
3
(0

.0
2
0
)

0
.9

4
4
(0

.0
1
7
)

0
.9

3
9
(0

.0
2
2
)

0
.5

0
0
(0

.0
0
0
)

0
.9

4
0
(0

.0
2
1
)

0
.9

3
8
(0

.0
2
2
)

1
4
6
8
2
0

w
il
t

0
.9

9
4
(0

.0
0
7
)

0
.9

9
9
(0

.0
0
0
)8

0
.9

9
5
(0

.0
0
9
)

0
.9

9
6
(0

.0
0
4
)

0
.5

0
0
(0

.0
0
0
)

0
.9

8
9
(0

.0
1
2
)

0
.9

9
1
(0

.0
1
0
)

1
6
7
1
2
0

n
u
m

e
ra

i2
..
.

0
.5

3
1
(0

.0
0
4
)

0
.5

3
0
(0

.0
0
4
)

0
.5

3
1
(0

.0
0
5
)

0
.5

2
8
(0

.0
0
7
)

0
.5

0
0
(0

.0
0
0
)

0
.5

1
9
(0

.0
0
6
)

0
.5

2
0
(0

.0
0
6
)

1
6
8
3
5
0

p
h
o
n
e
m

e
0
.9

6
6
(0

.0
0
8
)

-
0
.9

6
7
(0

.0
0
8
)

0
.9

6
9
(0

.0
0
8
)

0
.5

0
0
(0

.0
0
0
)

0
.9

6
5
(0

.0
0
9
)

0
.9

6
6
(0

.0
0
9
)

1
6
8
7
5
7

c
re

d
it

-g
0
.7

9
6
(0

.0
3
7
)

-
0
.7

8
5
(0

.0
4
6
)

0
.7

9
1
(0

.0
5
2
)

0
.5

0
0
(0

.0
0
0
)

0
.8

0
1
(0

.0
3
8
)

0
.7

9
9
(0

.0
3
5
)

1
6
8
8
6
8

A
P

S
F
a
il
u
..
.

0
.9

9
3
(0

.0
0
2
)

0
.9

9
5
(n

a
n
)9

0
.9

9
2
(0

.0
0
2
)

0
.9

8
9
(0

.0
0
4
)1

0
.5

0
0
(0

.0
0
0
)

0
.9

9
1
(0

.0
0
2
)

0
.9

9
2
(0

.0
0
3
)

1
6
8
9
1
1

ja
sm

in
e

0
.8

8
0
(0

.0
1
8
)

0
.8

8
5
(0

.0
1
6
)

0
.8

8
6
(0

.0
1
9
)

0
.8

8
6
(0

.0
1
3
)

0
.5

0
0
(0

.0
0
0
)

0
.8

8
8
(0

.0
1
6
)

0
.8

8
8
(0

.0
1
7
)

1
8
9
3
5
4

a
ir

li
n
e
s

0
.7

2
7
(0

.0
0
2
)

0
.7

3
1
(0

.0
0
2
)

0
.7

3
0
(0

.0
0
2
)

0
.7

2
2
(0

.0
0
2
)

0
.5

0
0
(0

.0
0
0
)

0
.6

6
1
(0

.0
0
2
)

0
.6

6
1
(0

.0
0
2
)

1
8
9
3
5
6

a
lb

e
rt

0
.7

8
0
(0

.0
0
3
)

0
.7

8
3
(0

.0
0
3
)

0
.7

6
5
(0

.0
0
3
)

0
.7

1
8
(0

.0
1
4
)1

0
.5

0
0
(0

.0
0
0
)

0
.7

3
8
(0

.0
0
3
)

0
.7

3
8
(0

.0
0
2
)

1
8
9
9
2
2

g
in

a
0
.9

9
0
(0

.0
0
6
)

0
.9

9
1
(0

.0
0
5
)

0
.9

9
0
(0

.0
0
5
)

0
.9

8
8
(0

.0
0
7
)1

0
.5

0
0
(0

.0
0
0
)

0
.9

8
4
(0

.0
0
8
)

0
.9

8
4
(0

.0
0
8
)

1
9
0
1
3
7

o
z
o
n
e
-l

e
..
.

0
.9

3
0
(0

.0
1
8
)

-
0
.9

2
9
(0

.0
1
9
)

0
.9

2
8
(0

.0
2
6
)

0
.5

0
0
(0

.0
0
0
)

0
.9

2
0
(0

.0
3
6
)

0
.9

2
1
(0

.0
3
3
)

1
9
0
3
9
2

m
a
d
e
li
n
e

0
.9

3
5
(0

.0
1
0
)

0
.9

5
6
(0

.0
1
1
)

0
.9

5
0
(0

.0
1
2
)

0
.9

4
8
(0

.0
0
9
)

0
.5

0
0
(0

.0
0
0
)

0
.8

8
7
(0

.0
1
7
)

0
.9

3
2
(0

.0
1
3
)

1
9
0
4
1
0

p
h
il
ip

p
i.
..

0
.8

6
6
(0

.0
1
4
)

0
.8

8
2
(0

.0
1
3
)

0
.8

7
2
(0

.0
1
2
)

0
.8

7
9
(0

.0
1
2
)1

0
.5

0
0
(0

.0
0
0
)

0
.8

4
9
(0

.0
1
6
)

0
.8

5
8
(0

.0
1
5
)

1
9
0
4
1
1

a
d
a

0
.9

2
1
(0

.0
1
8
)

0
.9

2
1
(0

.0
1
8
)

0
.9

2
1
(0

.0
1
8
)

0
.9

1
7
(0

.0
1
9
)

0
.5

0
0
(0

.0
0
0
)

0
.9

0
3
(0

.0
1
4
)

0
.9

0
2
(0

.0
1
6
)

1
9
0
4
1
2

a
rc

e
n
e

0
.8

4
8
(0

.1
7
6
)

0
.8

7
0
(0

.1
8
3
)

-
0
.8

3
1
(0

.1
5
1
)6

0
.5

0
0
(0

.0
0
0
)

0
.8

5
7
(0

.1
7
5
)

0
.8

2
8
(0

.1
8
3
)

3
5
9
9
5
5

b
lo

o
d
-t

r.
..

0
.7

5
3
(0

.0
5
8
)

-
0
.7

5
3
(0

.0
5
3
)

0
.7

2
4
(0

.1
0
2
)

0
.5

0
0
(0

.0
0
0
)

0
.6

8
6
(0

.0
6
4
)

0
.6

8
6
(0

.0
6
5
)

3
5
9
9
5
6

q
sa

r-
b
io

..
.

0
.9

3
4
(0

.0
3
4
)

0
.9

3
2
(n

a
n
)9

0
.9

3
7
(0

.0
3
1
)

0
.9

2
6
(0

.0
4
5
)

0
.5

0
0
(0

.0
0
0
)

0
.9

3
2
(0

.0
3
3
)

0
.9

3
5
(0

.0
2
9
)

3
5
9
9
5
8

p
c
4

0
.9

5
0
(0

.0
1
5
)

0
.9

5
1
(0

.0
1
6
)

0
.9

5
3
(0

.0
1
6
)

0
.9

4
4
(0

.0
2
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

4
7
(0

.0
1
9
)

0
.9

4
9
(0

.0
1
9
)

3
5
9
9
6
2

k
c
1

0
.8

3
1
(0

.0
3
2
)

0
.8

2
8
(0

.0
3
0
)

0
.8

2
4
(0

.0
3
2
)

0
.8

4
4
(0

.0
3
8
)

0
.5

0
0
(0

.0
0
0
)

0
.8

3
7
(0

.0
3
7
)

0
.8

4
1
(0

.0
3
7
)

3
5
9
9
6
5

k
r-

v
s-

k
p

1
.0

0
0
(0

.0
0
1
)

-
1
.0

0
0
(0

.0
0
1
)

0
.9

9
9
(0

.0
0
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

9
9
(0

.0
0
1
)

0
.9

9
9
(0

.0
0
2
)

3
5
9
9
6
6

In
te

rn
e
t.

..
0
.9

8
6
(0

.0
1
0
)

0
.9

8
2
(0

.0
1
1
)4

0
.9

7
7
(0

.0
1
2
)

0
.9

8
1
(0

.0
1
2
)6

0
.5

0
0
(0

.0
0
0
)

0
.9

8
6
(0

.0
1
2
)

0
.9

8
8
(0

.0
0
9
)

3
5
9
9
6
7

B
io

re
sp

o
..
.

0
.8

8
4
(0

.0
1
9
)

0
.8

8
2
(0

.0
1
7
)

0
.8

8
3
(0

.0
1
6
)

0
.8

8
0
(0

.0
2
0
)1

0
.5

0
0
(0

.0
0
0
)

0
.8

8
1
(0

.0
1
8
)

0
.8

8
1
(0

.0
1
8
)

3
5
9
9
6
8

c
h
u
rn

0
.9

2
6
(0

.0
2
0
)

0
.9

2
8
(0

.0
2
1
)

0
.9

2
5
(0

.0
1
9
)

0
.9

1
9
(0

.0
2
5
)

0
.5

0
0
(0

.0
0
0
)

0
.9

1
6
(0

.0
2
3
)

0
.9

1
2
(0

.0
2
1
)

3
5
9
9
7
1

P
h
is

h
in

g
..
.

0
.9

9
8
(0

.0
0
1
)

-
0
.9

9
8
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

9
6
(0

.0
0
2
)

0
.9

9
6
(0

.0
0
2
)

3
5
9
9
7
2

sy
lv

in
e

0
.9

8
8
(0

.0
0
3
)

0
.9

9
2
(0

.0
0
3
)

0
.9

9
2
(0

.0
0
3
)

0
.9

9
2
(0

.0
0
2
)

0
.5

0
0
(0

.0
0
0
)

0
.9

8
3
(0

.0
0
4
)

0
.9

8
4
(0

.0
0
4
)

3
5
9
9
7
3

c
h
ri

st
in

e
0
.8

3
1
(0

.0
1
3
)

0
.8

2
7
(0

.0
1
3
)

0
.8

2
3
(0

.0
1
2
)

0
.8

1
1
(0

.0
1
3
)2

0
.5

0
0
(0

.0
0
0
)

0
.8

0
5
(0

.0
1
6
)

0
.8

0
9
(0

.0
1
3
)

3
5
9
9
7
5

S
a
te

ll
it

e
0
.9

8
6
(0

.0
2
5
)

-
0
.9

9
3
(0

.0
0
7
)

0
.9

8
4
(0

.0
3
8
)

0
.5

0
0
(0

.0
0
0
)

0
.9

8
5
(0

.0
2
9
)

0
.9

8
4
(0

.0
3
1
)

3
5
9
9
7
9

A
m

a
z
o
n

e
..
.

0
.8

7
9
(0

.0
0
9
)

0
.9

0
5
(0

.0
1
3
)

0
.9

0
3
(0

.0
1
3
)

0
.8

6
4
(0

.0
1
4
)

0
.5

0
0
(0

.0
0
0
)

0
.8

6
3
(0

.0
1
5
)

0
.8

6
3
(0

.0
1
4
)

3
5
9
9
8
0

n
o
m

a
o

0
.9

9
7
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
0
)8

0
.9

9
7
(0

.0
0
1
)

0
.9

9
5
(0

.0
0
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

9
5
(0

.0
0
1
)

0
.9

9
5
(0

.0
0
1
)

3
5
9
9
8
2

b
a
n
k
-m

a
r.

..
0
.9

4
0
(0

.0
0
6
)

-
0
.9

4
0
(0

.0
0
6
)

0
.9

3
5
(0

.0
0
7
)

0
.5

0
0
(0

.0
0
0
)

0
.9

3
1
(0

.0
0
6
)

0
.9

3
1
(0

.0
0
7
)

3
5
9
9
8
3

a
d
u
lt

0
.9

3
2
(0

.0
0
4
)

-
0
.9

3
1
(0

.0
0
4
)

0
.9

2
7
(0

.0
0
4
)

0
.5

0
0
(0

.0
0
0
)

0
.9

1
0
(0

.0
0
3
)

0
.9

1
0
(0

.0
0
3
)

3
5
9
9
8
8

g
u
il
le

rm
o

0
.9

3
2
(0

.0
0
7
)

0
.9

1
5
(0

.0
0
9
)

0
.9

1
2
(0

.0
0
7
)3

0
.8

2
6
(0

.0
5
3
)

0
.5

0
0
(0

.0
0
0
)

0
.9

0
3
(0

.0
0
9
)

0
.9

0
3
(0

.0
0
9
)

3
5
9
9
8
9

ri
c
c
a
rd

o
1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

0
.9

9
8
(0

.0
0
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

9
9
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

3
5
9
9
9
0

M
in

iB
o
o
N

E
0
.9

8
8
(0

.0
0
1
)

0
.9

8
7
(0

.0
0
1
)

0
.9

8
7
(0

.0
0
1
)

0
.9

8
2
(0

.0
0
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

8
2
(0

.0
0
1
)

0
.9

8
2
(0

.0
0
1
)

3
5
9
9
9
1

k
ic

k
0
.7

8
5
(0

.0
0
8
)

0
.7

5
4
(0

.0
1
2
)

0
.7

5
1
(0

.0
0
9
)

0
.7

2
8
(0

.0
0
9
)

0
.5

0
0
(0

.0
0
0
)

0
.7

6
1
(0

.0
0
8
)

0
.7

6
6
(0

.0
0
9
)

3
5
9
9
9
2

C
li
c
k

p
r.

..
0
.7

2
8
(0

.0
1
0
)

0
.7

0
9
(0

.0
1
4
)

0
.7

0
9
(0

.0
1
4
)

0
.7

1
5
(0

.0
0
8
)

0
.5

0
0
(0

.0
0
0
)

0
.6

8
7
(0

.0
0
9
)

0
.6

8
9
(0

.0
0
9
)

3
5
9
9
9
4

sf
-p

o
li
c
..
.

0
.6

8
5
(0

.0
0
2
)

0
.7

0
3
(0

.0
0
7
)

0
.6

9
4
(0

.0
1
2
)8

0
.6

1
5
(0

.0
5
8
)4

0
.5

0
0
(0

.0
0
0
)

0
.7

0
4
(0

.0
0
2
)

0
.7

0
3
(0

.0
0
2
)

3
6
0
1
1
3

p
o
rt

o
-s

e
..
.

0
.6

4
1
(0

.0
0
4
)

0
.6

4
1
(0

.0
0
4
)

0
.6

4
3
(0

.0
0
4
)

0
.5

7
7
(0

.0
5
8
)1

0
.5

0
0
(0

.0
0
0
)

0
.6

1
0
(0

.0
0
5
)

0
.6

1
8
(0

.0
0
6
)

3
6
0
1
1
4

H
ig

g
s

0
.8

3
8
(0

.0
0
1
)

0
.8

3
6
(0

.0
0
2
)

-
0
.7

3
7
(0

.0
4
3
)1

0
.5

0
0
(0

.0
0
0
)

0
.8

2
2
(0

.0
0
1
)

0
.8

1
9
(0

.0
0
1
)

3
6
0
9
7
5

K
D

D
C

u
p
0
9
..
.

0
.9

1
0
(0

.0
0
7
)

0
.9

0
6
(0

.0
0
6
)

-
-

0
.5

0
0
(0

.0
0
0
)

0
.8

8
3
(0

.0
0
8
)

0
.8

8
3
(0

.0
0
7
)

3
9
4
5

K
D

D
C

u
p
0
9
..
.

0
.8

5
1
(0

.0
1
2
)

-
0
.8

3
7
(0

.0
1
5
)

0
.8

3
1
(0

.0
1
7
)2

0
.5

0
0
(0

.0
0
0
)

0
.7

9
6
(0

.0
1
8
)

0
.7

9
5
(0

.0
2
1
)

T
ab

le
5:

R
es

u
lt

s
fo

r
b

in
ar

y
cl

as
si

fi
ca

ti
on

(i
n

A
U

C
)

on
a

on
e

h
ou

r
b

u
d

ge
t,

d
en

ot
ed

as
m
e
a
n
(s
t
d
)f
a
i
l
s

.

39

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

fr
a
m

e
w

o
rk

A
u
to

G
lu

o
n
(B

)
A

u
to

G
lu

o
n
(H

Q
)

a
u
to

sk
le

a
rn

a
u
to

sk
le

a
rn

2
*

fl
a
m

l
G

A
M

A
(B

)*
H

2
O

A
u
to

M
L

ta
sk

id
ta

sk
n
a
m

e

1
4
6
8
1
8

A
u
st

ra
li
..
.

0
.9

4
1
(0

.0
1
8
)

0
.9

4
2
(0

.0
1
7
)

0
.9

3
1
(0

.0
2
3
)

0
.9

4
0
(0

.0
2
0
)

0
.9

4
1
(0

.0
2
5
)

0
.9

4
0
(0

.0
1
9
)

0
.9

3
5
(0

.0
2
1
)

1
4
6
8
2
0

w
il
t

0
.9

9
5
(0

.0
0
8
)

0
.9

9
4
(0

.0
1
0
)

0
.9

9
4
(0

.0
0
9
)

0
.9

9
5
(0

.0
0
8
)

0
.9

9
1
(0

.0
1
0
)

0
.9

9
6
(0

.0
0
4
)

0
.9

9
4
(0

.0
0
8
)

1
6
7
1
2
0

n
u
m

e
ra

i2
..
.

0
.5

3
1
(0

.0
0
4
)

0
.5

2
9
(0

.0
0
4
)

0
.5

3
0
(0

.0
0
5
)

0
.5

3
1
(0

.0
0
4
)

0
.5

2
9
(0

.0
0
4
)

0
.5

3
2
(0

.0
0
4
)1

0
.5

3
1
(0

.0
0
4
)

1
6
8
3
5
0

p
h
o
n
e
m

e
0
.9

6
8
(0

.0
0
9
)

0
.9

6
8
(0

.0
0
9
)

0
.9

6
4
(0

.0
0
9
)

0
.9

7
0
(0

.0
0
9
)

0
.9

7
2
(0

.0
0
9
)

0
.9

7
1
(0

.0
0
9
)

0
.9

6
7
(0

.0
1
0
)

1
6
8
7
5
7

c
re

d
it

-g
0
.7

9
6
(0

.0
4
1
)

0
.7

8
8
(0

.0
4
4
)

0
.7

8
5
(0

.0
4
2
)

0
.7

9
5
(0

.0
3
8
)

0
.7

8
3
(0

.0
4
5
)

0
.7

9
1
(0

.0
3
0
)

0
.7

8
3
(0

.0
4
3
)

1
6
8
8
6
8

A
P

S
F
a
il
u
..
.

0
.9

9
3
(0

.0
0
2
)

0
.9

9
2
(0

.0
0
2
)

0
.9

9
3
(0

.0
0
2
)

0
.9

9
2
(0

.0
0
3
)

0
.9

9
2
(0

.0
0
2
)1

0
.9

9
2
(0

.0
0
2
)

0
.9

9
2
(0

.0
0
2
)

1
6
8
9
1
1

ja
sm

in
e

0
.8

8
6
(0

.0
1
8
)

0
.8

8
5
(0

.0
1
9
)

0
.8

8
3
(0

.0
1
6
)

0
.8

8
7
(0

.0
1
7
)

0
.8

8
7
(0

.0
1
6
)

0
.8

9
3
(0

.0
1
4
)

0
.8

8
7
(0

.0
2
0
)

1
8
9
3
5
4

a
ir

li
n
e
s

0
.7

3
3
(0

.0
0
2
)

0
.7

3
3
(0

.0
0
2
)

0
.7

2
7
(0

.0
0
2
)

0
.7

2
7
(0

.0
0
2
)

0
.7

3
2
(0

.0
0
2
)

-
0
.7

3
2
(0

.0
0
2
)

1
8
9
3
5
6

a
lb

e
rt

0
.7

8
6
(0

.0
0
2
)

0
.7

8
5
(0

.0
0
2
)

0
.7

6
2
(0

.0
0
3
)

0
.7

5
9
(0

.0
0
2
)

0
.7

7
1
(0

.0
0
2
)1

0
.7

4
7
(0

.0
0
9
)

0
.7

6
9
(0

.0
0
3
)

1
8
9
9
2
2

g
in

a
0
.9

9
1
(0

.0
0
5
)

0
.9

9
2
(0

.0
0
5
)

0
.9

9
1
(0

.0
0
6
)

0
.9

8
8
(0

.0
0
7
)

0
.9

9
2
(0

.0
0
5
)

0
.9

9
1
(0

.0
0
5
)

0
.9

9
0
(0

.0
0
6
)

1
9
0
1
3
7

o
z
o
n
e
-l

e
..
.

0
.9

3
3
(0

.0
1
6
)

0
.9

3
1
(0

.0
1
6
)

0
.9

1
3
(0

.0
2
9
)

0
.9

3
3
(0

.0
2
2
)

0
.9

2
4
(0

.0
2
0
)

0
.9

2
6
(0

.0
3
2
)

0
.9

2
5
(0

.0
2
5
)

1
9
0
3
9
2

m
a
d
e
li
n
e

0
.9

4
5
(0

.0
0
8
)

0
.9

4
4
(0

.0
0
8
)

0
.9

6
9
(0

.0
0
6
)

0
.9

4
5
(0

.0
0
8
)

0
.9

5
4
(0

.0
0
8
)

0
.9

5
9
(0

.0
0
8
)

0
.9

4
7
(0

.0
1
0
)

1
9
0
4
1
0

p
h
il
ip

p
i.
..

0
.8

7
8
(0

.0
1
3
)

0
.8

7
7
(0

.0
1
1
)

0
.9

1
7
(0

.0
1
2
)

0
.8

7
7
(0

.0
1
4
)

0
.8

9
3
(0

.0
1
3
)

0
.9

0
3
(0

.0
1
4
)

0
.8

8
0
(0

.0
1
5
)

1
9
0
4
1
1

a
d
a

0
.9

2
1
(0

.0
1
8
)

0
.9

2
0
(0

.0
1
8
)

0
.9

1
8
(0

.0
1
8
)

0
.9

2
0
(0

.0
1
8
)

0
.9

2
4
(0

.0
1
8
)

0
.9

2
1
(0

.0
1
8
)

0
.9

2
1
(0

.0
1
6
)

1
9
0
4
1
2

a
rc

e
n
e

0
.8

6
1
(0

.1
7
6
)

0
.8

6
9
(0

.1
7
3
)

0
.8

7
3
(0

.1
5
5
)

0
.8

3
2
(0

.1
5
6
)

0
.8

8
1
(0

.1
2
0
)

0
.8

5
6
(0

.1
6
2
)

0
.8

6
5
(0

.1
5
6
)

3
5
9
9
5
5

b
lo

o
d
-t

r.
..

0
.7

5
8
(0

.0
4
6
)

0
.7

5
9
(0

.0
4
3
)

0
.7

4
8
(0

.0
5
2
)

0
.7

5
5
(0

.0
4
0
)

0
.7

3
0
(0

.0
4
2
)

0
.7

5
7
(0

.0
4
9
)

0
.7

5
6
(0

.0
4
7
)

3
5
9
9
5
6

q
sa

r-
b
io

..
.

0
.9

4
2
(0

.0
3
2
)

0
.9

4
1
(0

.0
3
5
)

0
.9

3
2
(0

.0
3
2
)

0
.9

3
7
(0

.0
2
7
)

0
.9

3
4
(0

.0
2
8
)

0
.9

3
7
(0

.0
3
2
)

0
.9

3
9
(0

.0
3
3
)

3
5
9
9
5
8

p
c
4

0
.9

5
2
(0

.0
2
1
)

0
.9

4
9
(0

.0
2
2
)

0
.9

4
2
(0

.0
2
0
)

0
.9

4
9
(0

.0
1
7
)

0
.9

4
6
(0

.0
2
1
)

0
.9

5
1
(0

.0
1
9
)

0
.9

5
1
(0

.0
1
9
)

3
5
9
9
6
2

k
c
1

0
.8

4
0
(0

.0
3
4
)

0
.8

4
0
(0

.0
3
5
)

0
.8

4
3
(0

.0
2
7
)

0
.8

3
9
(0

.0
3
6
)

0
.8

4
1
(0

.0
3
9
)

0
.8

5
1
(0

.0
3
2
)

0
.8

2
1
(0

.0
4
0
)

3
5
9
9
6
5

k
r-

v
s-

k
p

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

0
.9

7
6
(0

.0
7
5
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
1
)

3
5
9
9
6
6

In
te

rn
e
t.

..
0
.9

8
5
(0

.0
1
1
)

0
.9

8
6
(0

.0
1
2
)

0
.9

8
6
(0

.0
1
1
)

0
.9

8
2
(0

.0
1
5
)

0
.9

8
6
(0

.0
1
2
)

0
.9

8
4
(0

.0
1
1
)

0
.9

8
7
(0

.0
0
9
)

3
5
9
9
6
7

B
io

re
sp

o
..
.

0
.8

8
6
(0

.0
1
7
)

0
.8

8
5
(0

.0
1
6
)

0
.8

7
2
(0

.0
1
9
)

0
.8

7
3
(0

.0
1
8
)

0
.8

8
6
(0

.0
1
6
)

0
.8

8
5
(0

.0
1
7
)

0
.8

8
6
(0

.0
1
7
)

3
5
9
9
6
8

c
h
u
rn

0
.9

2
2
(0

.0
2
1
)

0
.9

2
4
(0

.0
2
2
)

0
.9

1
7
(0

.0
2
0
)

0
.9

1
9
(0

.0
2
1
)

0
.9

2
6
(0

.0
2
7
)

0
.9

2
1
(0

.0
2
2
)

0
.9

2
9
(0

.0
1
5
)

3
5
9
9
7
1

P
h
is

h
in

g
..
.

0
.9

9
8
(0

.0
0
1
)

0
.9

9
8
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)

0
.9

9
8
(0

.0
0
1
)

0
.9

9
8
(0

.0
0
1
)

0
.9

9
8
(0

.0
0
1
)

3
5
9
9
7
2

sy
lv

in
e

0
.9

9
0
(0

.0
0
3
)

0
.9

8
9
(0

.0
0
3
)

0
.9

9
2
(0

.0
0
3
)

0
.9

9
0
(0

.0
0
2
)

0
.9

9
1
(0

.0
0
2
)

0
.9

9
3
(0

.0
0
2
)

0
.9

9
0
(0

.0
0
3
)

3
5
9
9
7
3

c
h
ri

st
in

e
0
.8

2
7
(0

.0
1
3
)

0
.8

2
6
(0

.0
1
3
)

0
.8

2
9
(0

.0
1
4
)

0
.8

1
8
(0

.0
1
3
)

0
.8

2
7
(0

.0
1
2
)

0
.8

3
3
(0

.0
1
4
)

0
.8

2
4
(0

.0
1
1
)

3
5
9
9
7
5

S
a
te

ll
it

e
0
.9

9
6
(0

.0
0
5
)

0
.9

9
6
(0

.0
0
7
)

0
.9

8
3
(0

.0
3
9
)

0
.9

9
5
(0

.0
0
5
)

0
.9

7
8
(0

.0
4
1
)

0
.9

9
6
(0

.0
0
2
)

0
.9

9
3
(0

.0
0
7
)

3
5
9
9
7
9

A
m

a
z
o
n

e
..
.

0
.9

0
2
(0

.0
1
2
)

0
.9

0
1
(0

.0
1
1
)

0
.8

6
1
(0

.0
1
7
)

0
.8

7
8
(0

.0
1
0
)

0
.8

7
8
(0

.0
1
3
)

0
.8

6
2
(0

.0
1
3
)

0
.8

7
5
(0

.0
1
1
)

3
5
9
9
8
0

n
o
m

a
o

0
.9

9
7
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)

0
.9

9
6
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)

0
.9

9
6
(0

.0
0
1
)

0
.9

9
6
(0

.0
0
1
)

3
5
9
9
8
2

b
a
n
k
-m

a
r.

..
0
.9

4
1
(0

.0
0
6
)

0
.9

4
1
(0

.0
0
6
)

0
.9

3
8
(0

.0
0
6
)

0
.9

3
9
(0

.0
0
7
)

0
.9

3
8
(0

.0
0
6
)

0
.9

3
7
(0

.0
0
7
)

0
.9

3
9
(0

.0
0
7
)

3
5
9
9
8
3

a
d
u
lt

0
.9

3
2
(0

.0
0
4
)

0
.9

3
2
(0

.0
0
4
)

0
.9

3
0
(0

.0
0
5
)

0
.9

3
1
(0

.0
0
4
)

0
.9

3
2
(0

.0
0
4
)

0
.9

3
0
(0

.0
0
4
)

0
.9

3
1
(0

.0
0
4
)

3
5
9
9
8
8

g
u
il
le

rm
o

0
.9

1
9
(0

.0
0
8
)

0
.9

1
9
(0

.0
0
7
)

0
.9

1
2
(0

.0
1
0
)

0
.9

0
7
(0

.0
0
9
)

-
0
.9

0
8
(0

.0
1
0
)

0
.9

0
9
(0

.0
0
9
)

3
5
9
9
8
9

ri
c
c
a
rd

o
1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)4

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

3
5
9
9
9
0

M
in

iB
o
o
N

E
0
.9

8
9
(0

.0
0
1
)

0
.9

8
8
(0

.0
0
1
)

0
.9

8
7
(0

.0
0
1
)

0
.9

8
8
(0

.0
0
1
)

0
.9

8
8
(0

.0
0
1
)

0
.9

8
5
(0

.0
0
1
)

0
.9

8
7
(0

.0
0
1
)

3
5
9
9
9
1

k
ic

k
0
.7

9
2
(0

.0
0
7
)

0
.7

9
0
(0

.0
0
7
)

0
.7

8
6
(0

.0
0
8
)

0
.7

8
6
(0

.0
0
7
)

0
.7

8
8
(0

.0
0
7
)

0
.7

8
8
(0

.0
0
6
)

0
.7

8
9
(0

.0
0
7
)

3
5
9
9
9
2

C
li
c
k

p
r.

..
0
.7

1
0
(0

.0
1
2
)

0
.7

0
9
(0

.0
1
2
)

0
.6

9
7
(0

.0
1
4
)

0
.7

0
3
(0

.0
1
2
)

0
.7

2
4
(0

.0
0
9
)

0
.6

6
0
(0

.0
1
5
)

0
.7

0
2
(0

.0
1
3
)

3
5
9
9
9
4

sf
-p

o
li
c
..
.

0
.7

1
1
(0

.0
0
4
)4

0
.7

1
7
(0

.0
0
7
)

0
.7

0
1
(0

.0
0
6
)

0
.7

0
6
(0

.0
0
2
)

0
.7

1
8
(0

.0
0
3
)2

0
.6

4
8
(0

.0
1
2
)

0
.7

0
7
(0

.0
0
2
)1

3
6
0
1
1
3

p
o
rt

o
-s

e
..
.

0
.6

4
4
(0

.0
0
4
)

0
.6

4
4
(0

.0
0
5
)

0
.6

4
1
(0

.0
0
4
)

0
.6

4
0
(0

.0
0
4
)

0
.6

4
2
(0

.0
0
4
)

0
.6

3
3
(0

.0
0
5
)

0
.6

4
3
(0

.0
0
4
)

3
6
0
1
1
4

H
ig

g
s

0
.8

5
1
(0

.0
0
1
)

0
.8

5
0
(0

.0
0
1
)

0
.8

4
2
(0

.0
0
3
)

0
.8

4
2
(0

.0
0
3
)

0
.8

4
1
(0

.0
0
1
)4

0
.8

0
6
(0

.0
0
8
)1

0
.8

3
4
(0

.0
0
1
)

3
6
0
9
7
5

K
D

D
C

u
p
0
9
..
.

0
.9

1
0
(0

.0
0
7
)

0
.9

0
9
(0

.0
0
7
)

-
-

-
-

0
.9

0
1
(0

.0
0
8
)

3
9
4
5

K
D

D
C

u
p
0
9
..
.

0
.8

5
0
(0

.0
1
2
)

0
.8

4
8
(0

.0
1
3
)

0
.8

3
6
(0

.0
1
5
)

0
.8

4
2
(0

.0
1
6
)

0
.8

3
9
(0

.0
1
5
)

0
.8

3
1
(0

.0
1
5
)

0
.8

3
7
(0

.0
1
4
)

T
ab

le
6:

R
es

u
lt

s
fo

r
b

in
ar

y
cl

as
si

fi
ca

ti
on

(i
n

A
U

C
)

on
a

fo
u

r
h

ou
r

b
u

d
ge

t,
d

en
ot

ed
as

m
e
a
n
(s
t
d
)f
a
i
l
s

.
R

es
u

lt
s

o
b

ta
in

ed
in

2
0
2
1

ar
e

d
en

ot
ed

w
it

h
a

‘*
’

n
ex

t
to

th
e

fr
am

ew
or

k
n

am
e.

40

AMLB: an AutoML Benchmark

fr
a
m

e
w

o
rk

li
g
h
ta

u
to

m
l

M
L

J
A

R
(B

)*
T

P
O

T
*

c
o
n
st

a
n
tp

re
d
ic

to
r

R
a
n
d
o
m

F
o
re

st
T

u
n
e
d
R

a
n
d
o
m

F
o
re

st
*

ta
sk

id
ta

sk
n
a
m

e

1
4
6
8
1
8

A
u
st

ra
li
..
.

0
.9

4
6
(0

.0
2
0
)

0
.9

4
0
(0

.0
2
4
)

0
.9

3
6
(0

.0
2
4
)

0
.5

0
0
(0

.0
0
0
)

0
.9

4
0
(0

.0
2
1
)

0
.9

3
8
(0

.0
2
2
)

1
4
6
8
2
0

w
il
t

0
.9

9
4
(0

.0
0
7
)

0
.9

9
4
(0

.0
0
3
)5

0
.9

8
5
(0

.0
2
5
)

0
.5

0
0
(0

.0
0
0
)

0
.9

8
9
(0

.0
1
2
)

0
.9

9
0
(0

.0
1
1
)

1
6
7
1
2
0

n
u
m

e
ra

i2
..
.

0
.5

3
1
(0

.0
0
4
)

0
.5

3
0
(0

.0
0
4
)

0
.5

2
7
(0

.0
0
6
)

0
.5

0
0
(0

.0
0
0
)

0
.5

1
9
(0

.0
0
6
)

0
.5

2
0
(0

.0
0
6
)

1
6
8
3
5
0

p
h
o
n
e
m

e
0
.9

6
5
(0

.0
0
8
)

-
0
.9

7
1
(0

.0
0
9
)

0
.5

0
0
(0

.0
0
0
)

0
.9

6
5
(0

.0
0
9
)

0
.9

6
6
(0

.0
0
9
)

1
6
8
7
5
7

c
re

d
it

-g
0
.7

9
7
(0

.0
4
3
)

-
0
.7

8
7
(0

.0
3
4
)

0
.5

0
0
(0

.0
0
0
)

0
.8

0
1
(0

.0
3
8
)

0
.8

0
2
(0

.0
3
4
)

1
6
8
8
6
8

A
P

S
F
a
il
u
..
.

0
.9

9
3
(0

.0
0
2
)

0
.9

9
3
(0

.0
0
2
)6

0
.9

8
9
(0

.0
0
3
)1

0
.5

0
0
(0

.0
0
0
)

0
.9

9
1
(0

.0
0
2
)

0
.9

9
0
(0

.0
0
3
)

1
6
8
9
1
1

ja
sm

in
e

0
.8

8
1
(0

.0
1
8
)

0
.8

9
1
(0

.0
1
6
)

0
.8

8
9
(0

.0
1
2
)

0
.5

0
0
(0

.0
0
0
)

0
.8

8
8
(0

.0
1
6
)

0
.8

8
7
(0

.0
1
7
)

1
8
9
3
5
4

a
ir

li
n
e
s

0
.7

3
0
(0

.0
0
2
)

0
.7

3
2
(0

.0
0
2
)

0
.7

2
4
(0

.0
0
2
)

0
.5

0
0
(0

.0
0
0
)

0
.6

6
1
(0

.0
0
2
)

0
.6

5
4
(0

.0
0
3
)

1
8
9
3
5
6

a
lb

e
rt

0
.7

8
0
(0

.0
0
2
)

0
.7

8
5
(0

.0
0
2
)

0
.7

3
4
(0

.0
0
9
)

0
.5

0
0
(0

.0
0
0
)

0
.7

3
8
(0

.0
0
3
)

0
.7

3
8
(0

.0
0
2
)

1
8
9
9
2
2

g
in

a
0
.9

9
0
(0

.0
0
6
)

0
.9

9
3
(0

.0
0
4
)

0
.9

9
1
(0

.0
0
5
)1

0
.5

0
0
(0

.0
0
0
)

0
.9

8
4
(0

.0
0
8
)

0
.9

8
4
(0

.0
0
8
)

1
9
0
1
3
7

o
z
o
n
e
-l

e
..
.

0
.9

3
0
(0

.0
1
6
)

0
.9

1
1
(0

.0
1
9
)8

0
.9

1
6
(0

.0
2
6
)

0
.5

0
0
(0

.0
0
0
)

0
.9

2
0
(0

.0
3
6
)

0
.9

2
1
(0

.0
3
5
)

1
9
0
3
9
2

m
a
d
e
li
n
e

0
.9

3
5
(0

.0
0
9
)

0
.9

6
3
(0

.0
0
8
)

0
.9

5
4
(0

.0
0
7
)

0
.5

0
0
(0

.0
0
0
)

0
.8

8
7
(0

.0
1
7
)

0
.9

3
3
(0

.0
1
3
)

1
9
0
4
1
0

p
h
il
ip

p
i.
..

0
.8

6
6
(0

.0
1
5
)

0
.9

0
5
(0

.0
1
0
)

0
.8

9
7
(0

.0
1
3
)1

0
.5

0
0
(0

.0
0
0
)

0
.8

4
9
(0

.0
1
6
)

0
.8

5
8
(0

.0
1
5
)

1
9
0
4
1
1

a
d
a

0
.9

2
1
(0

.0
1
8
)

0
.9

2
1
(0

.0
1
8
)

0
.9

1
7
(0

.0
1
8
)

0
.5

0
0
(0

.0
0
0
)

0
.9

0
3
(0

.0
1
4
)

0
.9

0
2
(0

.0
1
5
)

1
9
0
4
1
2

a
rc

e
n
e

0
.8

5
2
(0

.1
6
4
)

0
.8

6
4
(0

.1
5
6
)

0
.8

4
0
(0

.1
3
5
)4

0
.5

0
0
(0

.0
0
0
)

0
.8

5
7
(0

.1
7
5
)

0
.8

5
7
(0

.1
7
8
)

3
5
9
9
5
5

b
lo

o
d
-t

r.
..

0
.7

5
1
(0

.0
6
0
)

-
0
.7

5
4
(0

.0
4
3
)

0
.5

0
0
(0

.0
0
0
)

0
.6

8
6
(0

.0
6
4
)

0
.6

8
7
(0

.0
6
2
)

3
5
9
9
5
6

q
sa

r-
b
io

..
.

0
.9

3
4
(0

.0
3
3
)

0
.9

2
6
(n

a
n
)9

0
.9

3
3
(0

.0
3
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

3
2
(0

.0
3
3
)

0
.9

3
5
(0

.0
2
9
)

3
5
9
9
5
8

p
c
4

0
.9

4
9
(0

.0
1
6
)

0
.9

5
1
(0

.0
1
7
)

0
.9

4
3
(0

.0
2
3
)

0
.5

0
0
(0

.0
0
0
)

0
.9

4
7
(0

.0
1
9
)

0
.9

4
9
(0

.0
1
9
)

3
5
9
9
6
2

k
c
1

0
.8

3
0
(0

.0
3
3
)

0
.8

2
9
(0

.0
3
2
)

0
.8

4
4
(0

.0
3
6
)

0
.5

0
0
(0

.0
0
0
)

0
.8

3
7
(0

.0
3
7
)

0
.8

4
1
(0

.0
3
7
)

3
5
9
9
6
5

k
r-

v
s-

k
p

1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)7

0
.9

5
0
(0

.1
5
8
)

0
.5

0
0
(0

.0
0
0
)

0
.9

9
9
(0

.0
0
1
)

1
.0

0
0
(0

.0
0
1
)

3
5
9
9
6
6

In
te

rn
e
t.

..
0
.9

8
7
(0

.0
0
8
)

0
.9

9
1
(n

a
n
)9

0
.9

8
2
(0

.0
1
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

8
6
(0

.0
1
2
)

0
.9

8
7
(0

.0
1
1
)

3
5
9
9
6
7

B
io

re
sp

o
..
.

0
.8

8
4
(0

.0
1
8
)

0
.8

8
5
(0

.0
1
8
)

0
.8

8
0
(0

.0
1
7
)1

0
.5

0
0
(0

.0
0
0
)

0
.8

8
1
(0

.0
1
8
)

0
.8

8
1
(0

.0
1
9
)

3
5
9
9
6
8

c
h
u
rn

0
.9

2
6
(0

.0
2
2
)

0
.9

3
1
(0

.0
2
4
)

0
.9

1
9
(0

.0
2
2
)

0
.5

0
0
(0

.0
0
0
)

0
.9

1
6
(0

.0
2
3
)

0
.9

1
3
(0

.0
2
3
)

3
5
9
9
7
1

P
h
is

h
in

g
..
.

0
.9

9
8
(0

.0
0
1
)

-
0
.8

4
9
(0

.2
4
0
)

0
.5

0
0
(0

.0
0
0
)

0
.9

9
6
(0

.0
0
2
)

0
.9

9
6
(0

.0
0
2
)

3
5
9
9
7
2

sy
lv

in
e

0
.9

8
8
(0

.0
0
3
)

0
.9

9
3
(0

.0
0
3
)

0
.9

9
5
(0

.0
0
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

8
3
(0

.0
0
4
)

0
.9

8
4
(0

.0
0
4
)

3
5
9
9
7
3

c
h
ri

st
in

e
0
.8

3
1
(0

.0
1
3
)

0
.8

2
9
(0

.0
1
2
)

0
.8

1
6
(0

.0
1
3
)1

0
.5

0
0
(0

.0
0
0
)

0
.8

0
5
(0

.0
1
6
)

0
.8

0
9
(0

.0
1
5
)

3
5
9
9
7
5

S
a
te

ll
it

e
0
.9

8
7
(0

.0
2
4
)

0
.9

8
9
(0

.0
1
5
)7

0
.9

9
0
(0

.0
2
3
)

0
.5

0
0
(0

.0
0
0
)

0
.9

8
5
(0

.0
2
9
)

0
.9

9
1
(0

.0
1
1
)

3
5
9
9
7
9

A
m

a
z
o
n

e
..
.

0
.8

7
8
(0

.0
1
0
)

0
.9

0
4
(0

.0
1
2
)

0
.8

6
6
(0

.0
1
3
)

0
.5

0
0
(0

.0
0
0
)

0
.8

6
3
(0

.0
1
5
)

0
.8

6
2
(0

.0
1
4
)

3
5
9
9
8
0

n
o
m

a
o

0
.9

9
7
(0

.0
0
1
)

0
.9

9
7
(0

.0
0
1
)7

0
.9

9
6
(0

.0
0
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

9
5
(0

.0
0
1
)

0
.9

9
5
(0

.0
0
1
)

3
5
9
9
8
2

b
a
n
k
-m

a
r.

..
0
.9

4
1
(0

.0
0
6
)

0
.9

4
3
(0

.0
0
5
)6

0
.9

3
5
(0

.0
0
7
)

0
.5

0
0
(0

.0
0
0
)

0
.9

3
1
(0

.0
0
6
)

0
.9

3
1
(0

.0
0
7
)

3
5
9
9
8
3

a
d
u
lt

0
.9

3
2
(0

.0
0
4
)

-
0
.9

2
8
(0

.0
0
4
)

0
.5

0
0
(0

.0
0
0
)

0
.9

1
0
(0

.0
0
3
)

0
.9

1
0
(0

.0
0
4
)

3
5
9
9
8
8

g
u
il
le

rm
o

0
.9

3
6
(0

.0
0
5
)

0
.9

1
7
(0

.0
0
7
)

0
.8

5
9
(0

.0
4
8
)

0
.5

0
0
(0

.0
0
0
)

0
.9

0
3
(0

.0
0
9
)

0
.9

0
6
(0

.0
0
9
)

3
5
9
9
8
9

ri
c
c
a
rd

o
1
.0

0
0
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

0
.9

9
7
(0

.0
0
4
)

0
.5

0
0
(0

.0
0
0
)

0
.9

9
9
(0

.0
0
0
)

1
.0

0
0
(0

.0
0
0
)

3
5
9
9
9
0

M
in

iB
o
o
N

E
0
.9

8
8
(0

.0
0
1
)

0
.9

8
8
(0

.0
0
1
)

0
.9

8
3
(0

.0
0
1
)

0
.5

0
0
(0

.0
0
0
)

0
.9

8
2
(0

.0
0
1
)

0
.9

8
2
(0

.0
0
1
)

3
5
9
9
9
1

k
ic

k
0
.7

8
4
(0

.0
0
7
)

0
.7

5
7
(0

.0
1
2
)

0
.7

4
2
(0

.0
0
6
)

0
.5

0
0
(0

.0
0
0
)

0
.7

6
1
(0

.0
0
8
)

0
.7

6
6
(0

.0
0
9
)

3
5
9
9
9
2

C
li
c
k

p
r.

..
0
.7

2
8
(0

.0
1
0
)

-
0
.7

1
9
(0

.0
1
0
)

0
.5

0
0
(0

.0
0
0
)

0
.6

8
7
(0

.0
0
9
)

0
.6

8
8
(0

.0
0
9
)

3
5
9
9
9
4

sf
-p

o
li
c
..
.

0
.6

9
6
(0

.0
0
2
)

0
.7

0
8
(0

.0
0
3
)

0
.6

7
0
(0

.0
1
0
)1

0
.5

0
0
(0

.0
0
0
)

0
.7

0
4
(0

.0
0
2
)

0
.6

8
7
(0

.0
1
5
)

3
6
0
1
1
3

p
o
rt

o
-s

e
..
.

0
.6

4
2
(0

.0
0
4
)

0
.6

4
3
(0

.0
0
4
)

0
.6

3
1
(0

.0
0
5
)

0
.5

0
0
(0

.0
0
0
)

0
.6

1
0
(0

.0
0
5
)

0
.6

1
7
(0

.0
0
6
)

3
6
0
1
1
4

H
ig

g
s

0
.8

3
9
(0

.0
0
1
)

0
.8

3
8
(0

.0
0
2
)

0
.7

7
7
(0

.0
0
7
)

0
.5

0
0
(0

.0
0
0
)

0
.8

2
2
(0

.0
0
1
)

0
.8

2
2
(0

.0
0
1
)

3
6
0
9
7
5

K
D

D
C

u
p
0
9
..
.

0
.9

1
2
(0

.0
0
8
)

0
.9

0
9
(0

.0
0
6
)

-
0
.5

0
0
(0

.0
0
0
)

0
.8

8
3
(0

.0
0
8
)

0
.8

6
0
(0

.0
3
1
)

3
9
4
5

K
D

D
C

u
p
0
9
..
.

0
.8

5
1
(0

.0
1
2
)

0
.8

3
5
(0

.0
2
1
)5

0
.8

3
0
(0

.0
1
6
)

0
.5

0
0
(0

.0
0
0
)

0
.7

9
6
(0

.0
1
8
)

0
.7

9
4
(0

.0
1
9
)

T
ab

le
7:

R
es

u
lt

s
fo

r
b

in
ar

y
cl

as
si

fi
ca

ti
on

(i
n

A
U

C
)

on
a

fo
u

r
h

ou
r

b
u

d
ge

t,
d

en
ot

ed
as

m
e
a
n
(s
t
d
)f
a
i
l
s

.
R

es
u

lt
s

o
b

ta
in

ed
in

2
0
2
1

ar
e

d
en

ot
ed

w
it

h
a

‘*
’

n
ex

t
to

th
e

fr
am

ew
or

k
n

am
e.

41

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

fr
a
m

e
w

o
rk

A
u
to

G
lu

o
n
(B

)
A

u
to

G
lu

o
n
(H

Q
)

A
u
to

G
lu

o
n
(H

Q
IL

)
a
u
to

sk
le

a
rn

a
u
to

sk
le

a
rn

2
fl

a
m

l
G

A
M

A
(B

)
H

2
O

A
u
to

M
L

ta
sk

id
ta

sk
n
a
m

e

1
0
0
9
0

a
m

a
z
o
n
-c

..
.

0
.6

9
5
(0

.0
8
6
)

0
.7

4
7
(0

.1
0
4
)

1
.1

8
7
(0

.1
1
9
)

1
.1

3
9
(0

.1
3
2
)

1
.1

2
5
(0

.1
4
6
)

1
.1

1
5
(0

.1
5
5
)

0
.9

1
0
(0

.0
6
6
)

1
.0

7
7
(0

.0
9
2
)

1
6
8
7
8
4

st
e
e
l-

p
l.
..

0
.4

6
4
(0

.0
4
2
)

0
.4

6
5
(0

.0
5
0
)

0
.5

0
7
(0

.0
3
7
)

0
.5

1
6
(0

.0
3
2
)

0
.4

5
7
(0

.0
2
7
)

0
.4

8
2
(0

.0
3
7
)

0
.4

9
1
(0

.0
2
9
)

0
.4

9
0
(0

.0
3
6
)

1
6
8
9
0
9

d
il
b

e
rt

0
.0

1
4
(0

.0
0
6
)

0
.0

1
3
(0

.0
0
7
)

0
.0

1
4
(0

.0
0
7
)

0
.0

3
3
(0

.0
1
2
)1

0
.0

3
7
(0

.0
0
7
)

0
.0

2
4
(0

.0
0
8
)

0
.1

7
6
(0

.0
3
3
)

0
.0

6
5
(0

.0
0
7
)

1
6
8
9
1
0

fa
b

e
rt

0
.6

8
3
(0

.0
3
0
)

0
.6

8
4
(0

.0
3
0
)

-
0
.7

4
5
(0

.0
3
4
)

0
.7

2
5
(0

.0
2
9
)

0
.7

6
6
(0

.0
2
5
)

0
.7

6
3
(0

.0
3
2
)

0
.7

4
6
(0

.0
2
9
)

1
8
9
3
5
5

d
io

n
is

0
.2

6
6
(0

.0
0
4
)

0
.3

0
2
(0

.0
0
9
)

0
.2

9
9
(0

.0
1
0
)

0
.7

3
1
(0

.1
6
9
)

1
.8

4
3
(1

.4
5
3
)

0
.4

9
5
(0

.2
8
7
)

1
.4

4
6
(0

.1
4
5
)

3
.3

3
1
(0

.0
9
8
)5

1
9
0
1
4
6

v
e
h
ic

le
0
.3

1
2
(0

.0
5
0
)

0
.3

4
1
(0

.0
6
0
)

-
0
.3

6
4
(0

.0
3
6
)

0
.3

2
2
(0

.0
4
0
)

0
.4

3
9
(0

.0
4
1
)

0
.3

7
8
(0

.0
5
6
)

0
.3

5
1
(0

.0
7
7
)

2
0
7
3

y
e
a
st

1
.0

0
3
(0

.0
9
1
)

1
.0

0
8
(0

.0
9
2
)

1
.0

1
9
(0

.0
9
7
)

1
.0

3
7
(0

.0
8
5
)

1
.0

1
1
(0

.0
8
3
)

1
.0

0
4
(0

.0
7
7
)

1
.0

4
2
(0

.0
9
4
)2

1
.0

6
1
(0

.1
2
0
)

2
1
1
9
7
9

ja
n
n
is

0
.6

5
0
(0

.0
0
6
)

0
.6

5
1
(0

.0
0
6
)

0
.6

5
1
(0

.0
0
6
)

0
.6

6
3
(0

.0
0
7
)

0
.6

7
1
(0

.0
0
4
)

0
.6

7
4
(0

.0
0
6
)

0
.7

3
2
(0

.0
1
4
)

0
.6

6
9
(0

.0
0
6
)

2
1
1
9
8
6

D
ia

b
e
te

s.
..

0
.8

3
1
(0

.0
0
6
)

0
.8

3
1
(0

.0
0
6
)

0
.8

3
1
(0

.0
0
6
)

0
.8

3
5
(0

.0
0
5
)

0
.8

3
2
(0

.0
0
6
)

0
.8

3
1
(0

.0
0
6
)

0
.8

4
7
(0

.0
0
8
)

0
.8

3
3
(0

.0
0
7
)

3
5
9
9
5
3

m
ic

ro
-m

a
..
.

0
.2

1
1
(0

.0
7
9
)

0
.2

4
7
(0

.1
0
8
)

0
.2

4
7
(0

.1
0
9
)

0
.2

4
9
(0

.1
0
7
)

0
.2

1
2
(0

.0
7
9
)

0
.3

0
9
(0

.1
3
6
)

0
.2

2
6
(0

.0
6
3
)

0
.4

0
0
(0

.0
8
6
)

3
5
9
9
5
4

e
u
c
a
ly

p
t.

..
0
.6

5
4
(0

.0
6
5
)

0
.6

7
5
(0

.0
8
3
)

0
.6

9
1
(0

.0
9
1
)

0
.7

1
4
(0

.0
4
7
)

0
.6

8
8
(0

.0
4
8
)

0
.7

2
6
(0

.0
8
0
)

0
.7

0
1
(0

.0
6
1
)1

0
.6

6
6
(0

.0
7
5
)

3
5
9
9
5
7

c
n
a
e
-9

0
.1

2
6
(0

.0
5
6
)

0
.1

5
8
(0

.1
1
0
)

0
.2

0
0
(0

.1
1
8
)7

0
.1

5
9
(0

.0
5
1
)

0
.1

2
9
(0

.0
4
1
)

0
.1

6
4
(0

.0
5
2
)

0
.1

2
6
(0

.0
4
1
)

0
.2

0
0
(0

.0
7
5
)

3
5
9
9
5
9

c
m

c
0
.9

2
7
(0

.0
6
4
)

0
.9

3
7
(0

.0
6
7
)

-
0
.8

9
0
(0

.0
3
4
)

0
.8

8
1
(0

.0
3
9
)

0
.9

0
4
(0

.0
4
9
)

0
.8

9
7
(0

.0
4
1
)

0
.9

0
2
(0

.0
4
5
)

3
5
9
9
6
0

c
a
r

0
.0

0
2
(0

.0
0
3
)

0
.0

1
0
(0

.0
2
7
)

0
.0

1
1
(0

.0
1
2
)2

0
.0

1
3
(0

.0
2
6
)

0
.0

0
1
(0

.0
0
1
)

0
.0

0
2
(0

.0
0
2
)

0
.0

2
2
(0

.0
1
5
)1

0
.0

0
1
(0

.0
0
2
)

3
5
9
9
6
1

m
fe

a
t-

fa
..
.

0
.0

7
1
(0

.0
2
6
)

0
.0

7
3
(0

.0
3
1
)

0
.0

7
4
(0

.0
3
0
)

0
.0

9
3
(0

.0
3
8
)

0
.0

7
3
(0

.0
3
3
)

0
.0

9
2
(0

.0
3
5
)

0
.0

7
7
(0

.0
3
6
)

0
.0

9
6
(0

.0
4
2
)

3
5
9
9
6
3

se
g
m

e
n
t

0
.0

5
2
(0

.0
2
4
)

0
.0

5
6
(0

.0
2
8
)

0
.0

7
5
(0

.0
4
9
)

0
.0

7
8
(0

.0
4
2
)

0
.0

5
9
(0

.0
2
3
)

0
.0

6
7
(0

.0
3
1
)

0
.0

6
7
(0

.0
2
5
)

0
.0

6
1
(0

.0
2
5
)

3
5
9
9
6
4

d
n
a

0
.1

0
6
(0

.0
3
0
)

0
.1

1
3
(0

.0
3
3
)

0
.0

9
7
(0

.0
2
9
)7

0
.1

1
6
(0

.0
3
1
)

0
.1

1
2
(0

.0
2
8
)

0
.1

0
8
(0

.0
2
9
)

0
.1

0
7
(0

.0
2
8
)

0
.1

0
8
(0

.0
3
0
)

3
5
9
9
6
9

fi
rs

t-
o
r.

..
1
.0

3
9
(0

.0
4
5
)

1
.0

3
6
(0

.0
4
0
)

-
1
.1

0
0
(0

.0
3
5
)

1
.0

3
2
(0

.0
3
1
)

1
.0

4
1
(0

.0
2
4
)

1
.0

5
7
(0

.0
3
3
)

1
.0

7
5
(0

.0
4
0
)

3
5
9
9
7
0

G
e
st

u
re

P
..
.

0
.6

6
8
(0

.0
3
2
)

0
.6

7
1
(0

.0
3
1
)

0
.7

7
6
(0

.0
3
9
)

0
.8

0
3
(0

.0
2
4
)

0
.7

2
6
(0

.0
3
2
)

0
.7

6
9
(0

.0
3
1
)

0
.8

4
8
(0

.0
4
3
)1

0
.7

0
2
(0

.0
3
8
)

3
5
9
9
7
4

w
in

e
-q

u
a
..
.

0
.6

9
8
(0

.0
2
7
)

0
.7

0
2
(0

.0
2
7
)

0
.7

6
5
(0

.0
3
4
)

0
.7

9
4
(0

.0
3
8
)

0
.7

2
2
(0

.0
2
8
)

0
.7

2
7
(0

.0
4
1
)

0
.7

6
6
(0

.0
3
2
)3

0
.7

8
2
(0

.0
5
6
)

3
5
9
9
7
6

F
a
sh

io
n
-.

..
0
.2

2
1
(0

.0
0
9
)

0
.2

2
5
(0

.0
0
8
)

0
.2

2
5
(0

.0
0
9
)

0
.2

5
3
(0

.0
0
8
)

0
.2

5
1
(0

.0
0
9
)

0
.2

5
3
(0

.0
1
4
)

0
.4

3
9
(0

.0
3
6
)

0
.2

8
3
(0

.0
0
7
)

3
5
9
9
7
7

c
o
n
n
e
c
t-

4
0
.2

9
5
(0

.0
0
7
)

0
.3

1
8
(0

.0
1
6
)

0
.4

4
5
(0

.0
9
3
)

0
.3

6
6
(0

.0
1
3
)

0
.3

4
8
(0

.0
1
4
)

0
.3

4
0
(0

.0
0
7
)

0
.4

1
7
(0

.0
4
8
)

0
.3

1
1
(0

.0
0
9
)

3
5
9
9
8
1

ju
n
g
le

c
..
.

0
.0

1
2
(0

.0
0
2
)

0
.0

1
7
(0

.0
0
4
)

-
0
.1

9
9
(0

.0
2
5
)

0
.2

0
0
(0

.0
2
1
)

0
.2

1
0
(0

.0
0
6
)

0
.2

4
3
(0

.0
1
2
)

0
.1

3
6
(0

.0
2
5
)

3
5
9
9
8
4

h
e
le

n
a

2
.4

6
7
(0

.0
1
6
)

2
.4

9
8
(0

.0
1
5
)

2
.5

6
0
(0

.0
1
4
)

2
.5

5
3
(0

.0
1
6
)

2
.5

3
7
(0

.0
3
0
)

2
.6

1
7
(0

.0
2
5
)

2
.8

0
2
(0

.0
2
1
)8

2
.7

9
1
(0

.0
2
2
)

3
5
9
9
8
5

v
o
lk

e
rt

0
.6

7
2
(0

.0
1
0
)

0
.6

9
0
(0

.0
1
7
)

0
.9

0
7
(0

.1
4
0
)

0
.7

8
9
(0

.0
1
9
)

0
.7

7
8
(0

.0
1
0
)

0
.7

9
5
(0

.0
1
4
)

1
.1

0
2
(0

.0
1
8
)

0
.8

4
4
(0

.0
1
0
)

3
5
9
9
8
6

ro
b

e
rt

1
.3

0
4
(0

.0
2
1
)

1
.3

5
1
(0

.0
2
0
)

1
.3

6
3
(0

.0
2
7
)

1
.4

2
5
(0

.0
3
0
)

1
.3

8
2
(0

.0
2
6
)

1
.3

8
2
(0

.0
3
7
)

1
.7

1
0
(0

.0
5
6
)

1
.4

2
3
(0

.0
2
6
)

3
5
9
9
8
7

sh
u
tt

le
0
.0

0
0
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)6

0
.0

0
0
(0

.0
0
1
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
1
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
1
)

3
5
9
9
9
3

o
k
c
u
p
id

-.
..

0
.5

5
9
(0

.0
0
9
)

0
.5

5
9
(0

.0
0
9
)

0
.5

5
9
(0

.0
0
9
)

0
.5

6
7
(0

.0
0
8
)

0
.5

6
3
(0

.0
0
7
)

0
.5

6
2
(0

.0
0
7
)

0
.5

7
0
(0

.0
0
8
)

0
.5

7
1
(0

.0
1
6
)

3
6
0
1
1
2

K
D

D
C

u
p
9
9

0
.0

0
1
(0

.0
0
0
)

0
.0

0
1
(n

a
n
)9

-
-

-
0
.0

0
0
(0

.0
0
0
)

0
.0

9
9
(0

.1
3
6
)2

0
.0

0
0
(0

.0
0
0
)

7
5
9
3

c
o
v
e
rt

y
p

e
0
.0

5
7
(0

.0
0
1
)

0
.0

5
9
(0

.0
0
2
)

0
.0

6
7
(0

.0
1
2
)

0
.1

4
7
(0

.0
0
3
)

0
.1

1
7
(0

.0
1
1
)

0
.0

6
8
(0

.0
0
2
)

0
.5

2
6
(0

.0
2
6
)

0
.2

5
3
(0

.2
0
8
)

T
ab

le
8:

R
es

u
lt

s
fo

r
m

u
lt

ic
la

ss
cl

as
si

fi
ca

ti
on

(i
n

lo
gl

os
s)

on
a

on
e

h
ou

r
b

u
d

ge
t,

d
en

ot
ed

as
m
e
a
n
(s
t
d
)f
a
i
l
s

.

42

AMLB: an AutoML Benchmark

fr
a
m

e
w

o
rk

li
g
h
ta

u
to

m
l

M
L

J
A

R
(B

)
M

L
J
A

R
(P

)
T

P
O

T
c
o
n
st

a
n
tp

re
d
ic

to
r

R
a
n
d
o
m

F
o
re

st
T

u
n
e
d
R

a
n
d
o
m

F
o
re

st
*

ta
sk

id
ta

sk
n
a
m

e

1
0
0
9
0

a
m

a
z
o
n
-c

..
.

0
.8

4
3
(0

.0
8
8
)

1
.1

6
9
(0

.1
3
3
)

1
.2

5
2
(0

.1
7
8
)

1
.1

1
1
(0

.2
6
8
)5

3
.9

1
2
(0

.0
0
0
)

2
.0

5
7
(0

.0
6
8
)

1
.4

6
2
(0

.0
8
7
)

1
6
8
7
8
4

st
e
e
l-

p
l.
..

0
.4

7
8
(0

.0
3
2
)

0
.4

6
8
(0

.0
2
6
)

0
.4

8
4
(0

.0
3
0
)

0
.5

0
9
(0

.0
4
4
)

1
.6

7
1
(0

.0
0
7
)

0
.5

9
2
(0

.0
6
1
)

0
.5

4
0
(0

.0
4
7
)

1
6
8
9
0
9

d
il
b

e
rt

0
.0

3
3
(0

.0
0
6
)

0
.0

2
8
(0

.0
1
2
)

0
.0

3
0
(0

.0
0
9
)

0
.1

5
0
(0

.0
7
2
)

1
.6

0
9
(0

.0
0
0
)

0
.3

2
9
(0

.0
1
0
)

0
.3

0
2
(0

.0
0
9
)

1
6
8
9
1
0

fa
b

e
rt

0
.7

6
8
(0

.0
3
5
)

0
.7

5
5
(0

.0
3
3
)

0
.7

7
1
(0

.0
2
4
)

0
.8

8
6
(0

.0
6
9
)3

1
.8

7
5
(0

.0
0
1
)

0
.8

0
8
(0

.0
3
0
)

0
.8

0
4
(0

.0
2
4
)

1
8
9
3
5
5

d
io

n
is

-
1
.2

3
4
(0

.1
0
3
)5

1
.1

3
5
(0

.0
4
5
)

4
.2

4
1
(0

.4
0
3
)8

5
.8

5
7
(0

.0
0
0
)

0
.8

8
2
(0

.0
1
9
)

0
.8

7
2
(0

.0
2
0
)

1
9
0
1
4
6

v
e
h
ic

le
0
.3

8
9
(0

.0
7
4
)

0
.3

2
1
(0

.0
3
7
)

0
.3

4
9
(0

.0
3
4
)

0
.4

1
7
(0

.0
6
2
)

1
.3

8
6
(0

.0
0
0
)

0
.4

9
8
(0

.0
3
5
)

0
.4

8
4
(0

.0
4
0
)

2
0
7
3

y
e
a
st

1
.0

4
0
(0

.0
9
2
)5

1
.0

0
6
(0

.0
8
6
)

1
.0

1
3
(0

.0
8
9
)

1
.0

5
6
(0

.0
5
5
)5

1
.7

2
7
(0

.0
1
3
)

1
.0

8
9
(0

.1
5
8
)

1
.1

3
9
(0

.1
5
7
)

2
1
1
9
7
9

ja
n
n
is

0
.6

6
6
(0

.0
0
5
)

0
.6

6
2
(0

.0
0
6
)

0
.6

7
2
(0

.0
0
5
)

0
.7

3
4
(0

.0
0
9
)

1
.1

0
9
(0

.0
0
0
)

0
.7

2
9
(0

.0
0
4
)

0
.7

2
9
(0

.0
0
5
)

2
1
1
9
8
6

D
ia

b
e
te

s.
..

0
.8

1
0
(0

.0
0
7
)

0
.8

2
9
(0

.0
0
6
)

0
.8

3
1
(0

.0
0
6
)

0
.8

4
6
(0

.0
0
8
)

0
.9

4
5
(0

.0
0
0
)

0
.8

5
3
(0

.0
0
4
)

0
.8

5
2
(0

.0
0
5
)

3
5
9
9
5
3

m
ic

ro
-m

a
..
.

0
.2

8
0
(0

.0
9
8
)

0
.4

7
2
(0

.1
8
2
)

0
.3

8
3
(0

.1
4
4
)

0
.3

4
5
(0

.1
8
2
)

2
.9

1
4
(0

.0
1
4
)

0
.6

2
7
(0

.0
5
9
)

0
.4

6
9
(0

.0
9
2
)

3
5
9
9
5
4

e
u
c
a
ly

p
t.

..
0
.6

8
4
(0

.0
6
9
)

0
.6

5
3
(0

.0
6
0
)

0
.6

7
7
(0

.0
5
6
)

0
.7

1
2
(0

.0
4
1
)

1
.5

6
8
(0

.0
0
4
)

0
.7

4
7
(0

.0
5
6
)

0
.7

2
0
(0

.0
4
7
)

3
5
9
9
5
7

c
n
a
e
-9

0
.1

5
2
(0

.0
5
6
)

0
.1

8
2
(0

.0
8
5
)

0
.3

2
3
(0

.1
9
5
)

0
.1

4
6
(0

.0
6
5
)

2
.1

9
7
(0

.0
0
0
)

0
.3

0
1
(0

.0
3
7
)

0
.2

9
5
(0

.0
6
5
)

3
5
9
9
5
9

c
m

c
0
.8

8
6
(0

.0
4
3
)

0
.8

9
0
(0

.0
5
4
)

0
.8

8
3
(0

.0
4
2
)

0
.9

0
1
(0

.0
5
7
)

1
.0

6
7
(0

.0
0
1
)

1
.0

4
6
(0

.1
0
8
)

1
.0

5
2
(0

.1
0
4
)

3
5
9
9
6
0

c
a
r

0
.0

0
1
(0

.0
0
1
)

0
.0

0
3
(0

.0
0
2
)

0
.0

1
0
(0

.0
0
6
)

0
.7

8
8
(1

.3
0
1
)

0
.8

3
6
(0

.0
0
6
)

0
.1

0
5
(0

.0
1
0
)

0
.0

4
2
(0

.0
1
0
)

3
5
9
9
6
1

m
fe

a
t-

fa
..
.

0
.0

8
0
(0

.0
3
0
)

0
.1

0
0
(0

.0
4
4
)

0
.0

9
6
(0

.0
2
9
)

0
.1

3
5
(0

.0
7
1
)

2
.3

0
3
(0

.0
0
0
)

0
.2

3
4
(0

.0
2
1
)

0
.2

0
4
(0

.0
2
6
)

3
5
9
9
6
3

se
g
m

e
n
t

0
.0

6
1
(0

.0
1
9
)

0
.0

5
7
(0

.0
2
1
)

0
.0

5
9
(0

.0
2
0
)

0
.0

7
5
(0

.0
3
2
)

1
.9

4
6
(0

.0
0
0
)

0
.0

9
6
(0

.0
2
2
)

0
.1

7
2
(0

.0
2
8
)

3
5
9
9
6
4

d
n
a

0
.1

0
9
(0

.0
2
5
)

0
.1

0
8
(0

.0
2
5
)

0
.1

1
9
(0

.0
2
3
)

0
.1

1
2
(0

.0
2
6
)

1
.0

2
6
(0

.0
0
1
)

0
.2

8
4
(0

.0
1
2
)

0
.1

7
0
(0

.0
2
7
)

3
5
9
9
6
9

fi
rs

t-
o
r.

..
1
.0

4
6
(0

.0
2
6
)

1
.0

3
4
(0

.0
2
8
)

1
.0

4
6
(0

.0
2
4
)

1
.0

8
1
(0

.0
4
0
)

1
.5

9
4
(0

.0
0
2
)

1
.1

8
9
(0

.1
1
1
)

1
.1

8
8
(0

.0
7
5
)

3
5
9
9
7
0

G
e
st

u
re

P
..
.

0
.7

6
1
(0

.0
3
8
)

0
.7

2
3
(0

.0
3
7
)

0
.7

8
8
(0

.0
3
0
)

0
.8

7
0
(0

.0
2
9
)

1
.5

2
0
(0

.0
0
1
)

0
.9

0
7
(0

.0
1
8
)

0
.8

8
8
(0

.0
2
2
)

3
5
9
9
7
4

w
in

e
-q

u
a
..
.

0
.7

8
6
(0

.0
1
6
)5

0
.7

7
0
(0

.0
2
6
)

0
.8

0
6
(0

.0
3
0
)

0
.7

9
2
(0

.0
4
3
)5

1
.2

9
1
(0

.0
0
5
)

0
.7

7
5
(0

.0
3
4
)

0
.7

8
7
(0

.0
5
8
)

3
5
9
9
7
6

F
a
sh

io
n
-.

..
0
.2

4
8
(0

.0
0
8
)

0
.2

4
9
(0

.0
1
0
)

0
.2

5
9
(0

.0
1
0
)

0
.4

3
1
(0

.0
1
4
)

2
.3

0
3
(0

.0
0
0
)

0
.3

6
1
(0

.0
0
5
)

0
.3

6
1
(0

.0
0
5
)

3
5
9
9
7
7

c
o
n
n
e
c
t-

4
0
.3

3
5
(0

.0
0
7
)

0
.3

2
2
(0

.0
0
6
)

0
.3

4
2
(0

.0
0
5
)

0
.3

9
2
(0

.0
2
7
)

0
.8

4
5
(0

.0
0
0
)

0
.4

9
4
(0

.0
0
4
)

0
.4

7
7
(0

.0
0
5
)

3
5
9
9
8
1

ju
n
g
le

c
..
.

0
.1

4
5
(0

.0
1
3
)

0
.0

9
0
(0

.0
1
6
)

0
.1

9
8
(0

.0
1
2
)

1
.7

6
6
(3

.3
3
3
)

0
.9

3
5
(0

.0
0
0
)

0
.4

3
8
(0

.0
0
9
)

0
.4

0
2
(0

.0
0
9
)

3
5
9
9
8
4

h
e
le

n
a

2
.5

5
5
(0

.0
1
7
)

2
.6

0
8
(0

.0
3
6
)

2
.6

5
3
(0

.0
6
2
)

2
.9

5
1
(0

.0
3
7
)1

4
.1

4
3
(0

.0
0
1
)

3
.3

3
4
(0

.0
2
1
)

1
2
.8

8
7
(2

.5
9
0
)

3
5
9
9
8
5

v
o
lk

e
rt

0
.8

1
5
(0

.0
1
1
)

0
.7

9
4
(0

.0
1
3
)

0
.8

0
8
(0

.0
1
3
)

1
.0

1
3
(0

.0
3
4
)1

2
.0

5
3
(0

.0
0
0
)

0
.9

8
0
(0

.0
0
8
)

0
.9

3
6
(0

.0
0
7
)

3
5
9
9
8
6

ro
b

e
rt

1
.2

8
3
(0

.0
2
2
)

1
.3

6
1
(0

.0
2
6
)

1
.4

1
7
(0

.0
2
8
)

1
.9

5
6
(0

.1
4
7
)

2
.3

0
2
(0

.0
0
0
)

1
.6

8
7
(0

.0
1
5
)

1
.6

8
9
(0

.0
1
6
)

3
5
9
9
8
7

sh
u
tt

le
0
.0

0
1
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
1
(0

.0
0
0
)

0
.6

6
6
(0

.0
0
1
)

0
.0

0
1
(0

.0
0
0
)

0
.0

0
1
(0

.0
0
0
)

3
5
9
9
9
3

o
k
c
u
p
id

-.
..

0
.5

6
0
(0

.0
0
9
)

0
.5

6
4
(0

.0
0
8
)

0
.5

6
5
(0

.0
0
9
)

0
.5

7
1
(0

.0
0
6
)

0
.7

7
9
(0

.0
0
0
)

0
.5

9
4
(0

.0
0
5
)

0
.5

9
3
(0

.0
0
5
)

3
6
0
1
1
2

K
D

D
C

u
p
9
9

-
0
.0

0
0
(0

.0
0
0
)1

-
-

1
.0

3
1
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

7
5
9
3

c
o
v
e
rt

y
p

e
0
.0

8
2
(0

.0
0
2
)

0
.0

8
2
(0

.0
0
1
)

0
.1

0
5
(n

a
n
)9

0
.6

9
6
(0

.1
1
1
)2

1
.2

0
5
(0

.0
0
0
)

0
.1

6
1
(0

.0
0
1
)

0
.1

0
1
(0

.0
0
1
)

T
ab

le
9:

R
es

u
lt

s
fo

r
m

u
lt

ic
la

ss
cl

as
si

fi
ca

ti
on

(i
n

lo
gl

os
s)

on
a

on
e

h
ou

r
b

u
d

ge
t,

d
en

ot
ed

as
m
e
a
n
(s
t
d
)f
a
i
l
s

.

43

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

fr
a
m

e
w

o
rk

A
u
to

G
lu

o
n
(B

)
A

u
to

G
lu

o
n
(H

Q
)

a
u
to

sk
le

a
rn

a
u
to

sk
le

a
rn

2
*

fl
a
m

l
G

A
M

A
(B

)*
H

2
O

A
u
to

M
L

ta
sk

id
ta

sk
n
a
m

e

1
0
0
9
0

a
m

a
z
o
n
-c

..
.

0
.6

7
3
(0

.0
7
2
)

0
.7

0
7
(0

.0
7
9
)

1
.1

3
8
(0

.1
3
0
)

0
.8

3
7
(0

.1
2
2
)

1
.1

0
1
(0

.1
5
0
)

0
.9

0
7
(0

.0
9
4
)

1
.0

7
7
(0

.0
9
2
)

1
6
8
7
8
4

st
e
e
l-

p
l.
..

0
.4

6
2
(0

.0
4
3
)

0
.4

6
3
(0

.0
4
8
)

0
.5

1
5
(0

.0
3
5
)

0
.4

7
2
(0

.0
2
9
)

0
.5

0
0
(0

.0
4
4
)

0
.4

9
1
(0

.0
3
9
)

0
.4

9
5
(0

.0
3
3
)

1
6
8
9
0
9

d
il
b

e
rt

0
.0

1
3
(0

.0
0
5
)

0
.0

1
3
(0

.0
0
6
)

0
.0

2
9
(0

.0
1
0
)

0
.0

2
9
(0

.0
0
8
)

0
.0

2
4
(0

.0
1
1
)

0
.1

1
5
(0

.0
4
4
)

0
.0

3
2
(0

.0
1
0
)

1
6
8
9
1
0

fa
b

e
rt

0
.6

8
2
(0

.0
3
0
)

0
.6

8
3
(0

.0
3
0
)

0
.7

4
8
(0

.0
2
9
)

0
.7

3
3
(0

.0
2
6
)

0
.7

7
4
(0

.0
3
1
)

0
.7

3
7
(0

.0
2
9
)

0
.7

2
6
(0

.0
2
7
)

1
8
9
3
5
5

d
io

n
is

0
.2

8
5
(0

.0
0
4
)

0
.3

2
3
(0

.0
0
4
)

0
.5

4
4
(0

.0
6
4
)

0
.5

2
3
(0

.1
4
4
)

0
.3

3
5
(0

.0
0
4
)8

1
.5

8
7
(0

.2
4
4
)

1
.5

6
8
(0

.0
1
9
)2

1
9
0
1
4
6

v
e
h
ic

le
0
.3

1
2
(0

.0
5
0
)

0
.3

4
2
(0

.0
6
1
)

0
.3

6
6
(0

.0
4
1
)

0
.3

2
9
(0

.0
3
0
)

0
.4

3
8
(0

.0
4
2
)

0
.3

6
9
(0

.0
3
2
)

0
.3

3
6
(0

.0
6
2
)

2
0
7
3

y
e
a
st

1
.0

0
3
(0

.0
9
1
)

1
.0

0
8
(0

.0
9
3
)

1
.0

4
2
(0

.0
8
6
)

1
.0

1
5
(0

.0
8
4
)

1
.0

0
4
(0

.0
7
7
)

1
.0

1
9
(0

.0
8
1
)5

1
.0

4
2
(0

.0
9
4
)

2
1
1
9
7
9

ja
n
n
is

0
.6

4
8
(0

.0
0
6
)

0
.6

5
4
(0

.0
0
6
)

0
.6

6
4
(0

.0
0
6
)

0
.6

7
2
(0

.0
0
5
)

0
.6

7
1
(0

.0
0
6
)

0
.6

9
8
(0

.0
0
9
)

0
.6

6
4
(0

.0
0
6
)

2
1
1
9
8
6

D
ia

b
e
te

s.
..

0
.8

3
0
(0

.0
0
6
)

0
.8

3
0
(0

.0
0
6
)

0
.8

3
5
(0

.0
0
6
)

0
.8

3
2
(0

.0
0
5
)

0
.8

3
1
(0

.0
0
6
)

0
.8

3
7
(0

.0
0
6
)

0
.8

3
5
(0

.0
0
8
)

3
5
9
9
5
3

m
ic

ro
-m

a
..
.

0
.2

0
9
(0

.0
8
3
)

0
.2

4
0
(0

.1
0
7
)

0
.2

8
0
(0

.1
0
6
)

0
.1

8
9
(0

.0
7
3
)

0
.2

8
4
(0

.1
1
4
)

0
.2

2
3
(0

.0
9
2
)

0
.3

4
5
(0

.1
5
4
)

3
5
9
9
5
4

e
u
c
a
ly

p
t.

..
0
.6

5
4
(0

.0
6
5
)

0
.6

7
5
(0

.0
8
3
)

0
.7

0
7
(0

.0
4
4
)

0
.7

0
4
(0

.0
6
1
)

0
.7

2
9
(0

.0
8
8
)

0
.7

0
0
(0

.0
5
7
)

0
.6

6
5
(0

.0
7
2
)

3
5
9
9
5
7

c
n
a
e
-9

0
.1

3
8
(0

.0
9
5
)

0
.1

6
3
(0

.1
0
2
)

0
.1

6
3
(0

.0
5
9
)

0
.1

4
3
(0

.0
4
3
)

0
.1

5
2
(0

.0
6
0
)

0
.1

3
2
(0

.0
4
4
)

0
.1

5
6
(0

.0
5
9
)

3
5
9
9
5
9

c
m

c
0
.9

2
7
(0

.0
6
3
)

0
.9

3
7
(0

.0
6
6
)

0
.8

8
9
(0

.0
4
0
)

0
.8

8
4
(0

.0
3
7
)

0
.9

0
4
(0

.0
5
2
)

0
.8

9
3
(0

.0
4
3
)

0
.9

0
0
(0

.0
4
3
)

3
5
9
9
6
0

c
a
r

0
.0

0
1
(0

.0
0
2
)

0
.0

0
0
(0

.0
0
1
)

0
.0

0
0
(0

.0
0
1
)

0
.0

0
2
(0

.0
0
4
)

0
.0

0
2
(0

.0
0
2
)

0
.0

1
2
(0

.0
0
8
)

0
.0

0
1
(0

.0
0
1
)

3
5
9
9
6
1

m
fe

a
t-

fa
..
.

0
.0

7
0
(0

.0
2
7
)

0
.0

7
3
(0

.0
3
1
)

0
.0

8
4
(0

.0
3
7
)

0
.0

7
4
(0

.0
3
0
)

0
.0

9
0
(0

.0
3
6
)

0
.0

8
2
(0

.0
2
8
)

0
.1

1
5
(0

.0
6
4
)

3
5
9
9
6
3

se
g
m

e
n
t

0
.0

5
3
(0

.0
2
4
)

0
.0

5
6
(0

.0
2
7
)

0
.0

8
2
(0

.0
4
0
)

0
.0

6
2
(0

.0
2
6
)

0
.0

7
3
(0

.0
3
4
)

0
.0

6
7
(0

.0
2
6
)

0
.0

6
4
(0

.0
2
4
)

3
5
9
9
6
4

d
n
a

0
.1

0
6
(0

.0
3
0
)

0
.1

1
6
(0

.0
4
0
)

0
.1

1
6
(0

.0
2
9
)

0
.1

1
1
(0

.0
2
5
)

0
.1

0
8
(0

.0
2
7
)

0
.1

0
6
(0

.0
2
8
)

0
.1

1
7
(0

.0
2
9
)

3
5
9
9
6
9

fi
rs

t-
o
r.

..
1
.0

4
3
(0

.0
4
3
)

1
.0

4
2
(0

.0
4
0
)

1
.0

9
8
(0

.0
3
8
)

1
.0

4
1
(0

.0
3
0
)

1
.0

3
7
(0

.0
2
7
)

1
.0

5
2
(0

.0
2
7
)

1
.1

9
9
(0

.0
5
6
)

3
5
9
9
7
0

G
e
st

u
re

P
..
.

0
.6

6
8
(0

.0
3
2
)

0
.6

7
1
(0

.0
3
1
)

0
.8

0
5
(0

.0
2
2
)

0
.7

6
8
(0

.0
2
9
)

0
.7

6
5
(0

.0
3
7
)

0
.8

0
7
(0

.0
3
9
)

0
.8

0
6
(0

.0
7
9
)

3
5
9
9
7
4

w
in

e
-q

u
a
..
.

0
.6

9
9
(0

.0
2
8
)

0
.7

0
3
(0

.0
2
8
)

0
.7

9
3
(0

.0
4
1
)

0
.7

1
5
(0

.0
2
8
)

0
.7

2
6
(0

.0
4
1
)

0
.7

7
2
(0

.0
1
8
)5

0
.7

9
4
(0

.0
3
2
)

3
5
9
9
7
6

F
a
sh

io
n
-.

..
0
.2

1
8
(0

.0
0
8
)

0
.2

2
0
(0

.0
0
8
)

0
.2

4
2
(0

.0
0
8
)

0
.2

4
7
(0

.0
1
2
)

0
.2

4
5
(0

.0
1
0
)

0
.3

5
6
(0

.0
0
9
)

0
.2

6
5
(0

.0
0
9
)

3
5
9
9
7
7

c
o
n
n
e
c
t-

4
0
.2

9
4
(0

.0
0
7
)

0
.3

1
0
(0

.0
1
2
)

0
.3

5
1
(0

.0
0
8
)

0
.3

4
2
(0

.0
1
3
)

0
.3

3
6
(0

.0
0
8
)

0
.3

4
6
(0

.0
2
8
)

0
.3

0
9
(0

.0
1
1
)

3
5
9
9
8
1

ju
n
g
le

c
..
.

0
.0

1
0
(0

.0
0
2
)

0
.0

1
7
(0

.0
0
4
)

0
.1

5
8
(0

.0
3
2
)

0
.2

0
3
(0

.0
2
1
)

0
.2

1
1
(0

.0
0
6
)

0
.2

1
7
(0

.0
2
2
)

0
.1

0
8
(0

.0
1
2
)

3
5
9
9
8
4

h
e
le

n
a

2
.4

4
7
(0

.0
1
5
)

2
.4

6
0
(0

.0
1
6
)

2
.5

3
4
(0

.0
1
4
)

2
.4

8
5
(0

.0
3
1
)

2
.6

2
1
(0

.0
3
2
)1

2
.7

3
1
(n

a
n
)9

2
.7

9
0
(0

.0
2
8
)

3
5
9
9
8
5

v
o
lk

e
rt

0
.6

7
2
(0

.0
1
0
)

0
.6

8
5
(0

.0
1
4
)

0
.7

9
0
(0

.0
1
2
)

0
.8

3
3
(0

.0
3
8
)

0
.8

0
2
(0

.0
2
0
)

0
.9

5
1
(0

.0
1
6
)

0
.7

7
8
(0

.0
1
4
)

3
5
9
9
8
6

ro
b

e
rt

1
.2

6
5
(0

.0
2
1
)

1
.2

8
1
(0

.0
2
4
)

1
.3

3
7
(0

.0
3
8
)

1
.3

8
3
(0

.0
3
1
)

1
.3

1
8
(0

.0
3
2
)

1
.6

1
7
(0

.0
3
0
)

1
.4

0
6
(0

.0
3
4
)

3
5
9
9
8
7

sh
u
tt

le
0
.0

0
0
(0

.0
0
0
)

0
.0

0
2
(0

.0
0
3
)

0
.0

0
1
(0

.0
0
1
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
1
(0

.0
0
1
)

3
5
9
9
9
3

o
k
c
u
p
id

-.
..

0
.5

5
8
(0

.0
0
9
)

0
.5

5
9
(0

.0
0
8
)

0
.5

6
7
(0

.0
0
7
)

0
.5

6
3
(0

.0
0
8
)

0
.5

6
1
(0

.0
0
7
)

0
.5

6
8
(0

.0
0
7
)

0
.5

6
9
(0

.0
1
2
)

3
6
0
1
1
2

K
D

D
C

u
p
9
9

0
.0

0
1
(0

.0
0
0
)

0
.0

0
3
(0

.0
0
1
)1

-
0
.0

0
0
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)3

-
0
.0

0
0
(0

.0
0
0
)

7
5
9
3

c
o
v
e
rt

y
p

e
-

0
.0

5
3
(0

.0
0
1
)

0
.0

8
9
(0

.0
1
5
)

0
.0

9
5
(0

.0
1
0
)

0
.0

6
6
(0

.0
0
3
)1

0
.2

5
5
(0

.0
4
8
)4

0
.0

8
6
(0

.0
0
2
)

T
ab

le
10

:
R

es
u

lt
s

fo
r

m
u

lt
ic

la
ss

cl
as

si
fi

ca
ti

on
(i

n
lo

gl
os

s)
on

a
fo

u
r

h
ou

r
b

u
d

ge
t,

d
en

ot
ed

as
m
e
a
n
(s
t
d
)f
a
i
l
s

.
R

es
u

lt
s

o
b

ta
in

ed
in

20
21

ar
e

d
en

ot
ed

w
it

h
a

‘*
’

n
ex

t
to

th
e

fr
am

ew
or

k
n

am
e.

44

AMLB: an AutoML Benchmark

fr
a
m

e
w

o
rk

li
g
h
ta

u
to

m
l

M
L

J
A

R
(B

)*
T

P
O

T
*

c
o
n
st

a
n
tp

re
d
ic

to
r

R
a
n
d
o
m

F
o
re

st
T

u
n
e
d
R

a
n
d
o
m

F
o
re

st
*

ta
sk

id
ta

sk
n
a
m

e

1
0
0
9
0

a
m

a
z
o
n
-c

..
.

0
.8

1
7
(0

.0
7
7
)

1
.1

8
1
(0

.1
3
2
)

0
.8

5
2
(0

.1
5
9
)2

3
.9

1
2
(0

.0
0
0
)

2
.0

5
7
(0

.0
6
8
)

1
.4

6
2
(0

.1
1
5
)

1
6
8
7
8
4

st
e
e
l-

p
l.
..

0
.4

7
5
(0

.0
3
0
)

0
.4

6
7
(0

.0
3
2
)

0
.4

8
6
(0

.0
2
1
)

1
.6

7
1
(0

.0
0
7
)

0
.5

9
2
(0

.0
6
1
)

0
.5

3
8
(0

.0
4
7
)

1
6
8
9
0
9

d
il
b

e
rt

0
.0

2
5
(0

.0
0
9
)

0
.0

2
4
(0

.0
0
9
)

0
.0

6
0
(0

.0
2
2
)

1
.6

0
9
(0

.0
0
0
)

0
.3

2
9
(0

.0
1
0
)

0
.3

0
0
(0

.0
0
9
)

1
6
8
9
1
0

fa
b

e
rt

0
.7

7
8
(0

.0
3
3
)

0
.7

5
2
(0

.0
2
5
)

0
.7

9
5
(0

.0
4
9
)

1
.8

7
5
(0

.0
0
1
)

0
.8

0
8
(0

.0
3
0
)

0
.8

0
9
(0

.0
3
0
)

1
8
9
3
5
5

d
io

n
is

-
-

-
5
.8

5
7
(0

.0
0
0
)

0
.8

9
1
(0

.0
3
1
)

0
.8

7
0
(0

.0
1
7
)

1
9
0
1
4
6

v
e
h
ic

le
0
.4

0
1
(0

.0
6
9
)

0
.3

2
1
(0

.0
4
3
)

0
.3

3
9
(0

.0
6
5
)

1
.3

8
6
(0

.0
0
0
)

0
.4

9
8
(0

.0
3
5
)

0
.4

8
3
(0

.0
3
9
)

2
0
7
3

y
e
a
st

1
.0

4
1
(0

.0
9
1
)5

1
.0

0
4
(0

.0
8
5
)

1
.0

2
9
(0

.0
8
3
)5

1
.7

2
7
(0

.0
1
3
)

1
.0

8
9
(0

.1
5
8
)

1
.1

2
9
(0

.1
8
6
)

2
1
1
9
7
9

ja
n
n
is

0
.6

6
6
(0

.0
0
4
)

0
.6

5
8
(0

.0
0
5
)

0
.7

1
5
(0

.0
1
1
)

1
.1

0
9
(0

.0
0
0
)

0
.7

2
9
(0

.0
0
4
)

0
.7

1
9
(0

.0
0
5
)

2
1
1
9
8
6

D
ia

b
e
te

s.
..

0
.8

0
9
(0

.0
0
7
)

0
.8

2
8
(0

.0
0
6
)

0
.8

4
3
(0

.0
0
5
)

0
.9

4
5
(0

.0
0
0
)

0
.8

5
3
(0

.0
0
4
)

0
.8

5
2
(0

.0
0
5
)

3
5
9
9
5
3

m
ic

ro
-m

a
..
.

0
.2

6
8
(0

.0
9
8
)

0
.4

6
0
(0

.2
0
2
)

0
.2

8
9
(0

.1
5
3
)

2
.9

1
4
(0

.0
1
4
)

0
.6

2
7
(0

.0
5
9
)

0
.4

6
3
(0

.0
8
6
)

3
5
9
9
5
4

e
u
c
a
ly

p
t.

..
0
.6

8
4
(0

.0
7
0
)

0
.6

4
6
(0

.0
5
4
)

0
.7

5
2
(0

.1
3
0
)

1
.5

6
8
(0

.0
0
4
)

0
.7

4
7
(0

.0
5
6
)

0
.7

1
7
(0

.0
4
7
)

3
5
9
9
5
7

c
n
a
e
-9

0
.1

4
9
(0

.0
5
9
)

0
.1

7
6
(0

.0
5
7
)

0
.1

5
0
(0

.0
7
7
)

2
.1

9
7
(0

.0
0
0
)

0
.3

0
1
(0

.0
3
7
)

0
.2

9
7
(0

.0
6
5
)

3
5
9
9
5
9

c
m

c
0
.8

8
7
(0

.0
4
3
)

0
.8

8
8
(0

.0
5
4
)

0
.9

0
8
(0

.0
6
0
)

1
.0

6
7
(0

.0
0
1
)

1
.0

4
6
(0

.1
0
8
)

1
.0

4
7
(0

.1
3
5
)

3
5
9
9
6
0

c
a
r

0
.0

0
2
(0

.0
0
2
)

0
.0

0
2
(0

.0
0
3
)

1
.4

5
0
(3

.0
0
4
)

0
.8

3
6
(0

.0
0
6
)

0
.1

0
5
(0

.0
1
0
)

0
.0

4
2
(0

.0
1
0
)

3
5
9
9
6
1

m
fe

a
t-

fa
..
.

0
.0

8
1
(0

.0
2
9
)

0
.1

0
2
(0

.0
2
9
)

0
.1

0
8
(0

.0
4
2
)

2
.3

0
3
(0

.0
0
0
)

0
.2

3
4
(0

.0
2
1
)

0
.2

0
4
(0

.0
2
6
)

3
5
9
9
6
3

se
g
m

e
n
t

0
.0

6
0
(0

.0
2
0
)

0
.0

5
8
(0

.0
2
1
)

0
.0

7
1
(0

.0
3
2
)

1
.9

4
6
(0

.0
0
0
)

0
.0

9
6
(0

.0
2
2
)

0
.0

8
1
(0

.0
2
5
)

3
5
9
9
6
4

d
n
a

0
.1

0
9
(0

.0
2
5
)

0
.1

0
9
(0

.0
2
5
)

0
.1

1
2
(0

.0
2
5
)

1
.0

2
6
(0

.0
0
1
)

0
.2

8
4
(0

.0
1
2
)

0
.1

6
9
(0

.0
2
7
)

3
5
9
9
6
9

fi
rs

t-
o
r.

..
1
.0

4
7
(0

.0
2
6
)

1
.0

3
2
(0

.0
2
9
)

1
.0

6
2
(0

.0
3
5
)

1
.5

9
4
(0

.0
0
2
)

1
.1

8
9
(0

.1
1
1
)

1
.1

6
9
(0

.0
8
3
)

3
5
9
9
7
0

G
e
st

u
re

P
..
.

0
.7

6
3
(0

.0
3
9
)

0
.7

2
0
(0

.0
3
5
)

0
.8

3
4
(0

.0
4
4
)

1
.5

2
0
(0

.0
0
1
)

0
.9

0
7
(0

.0
1
8
)

0
.8

8
8
(0

.0
2
2
)

3
5
9
9
7
4

w
in

e
-q

u
a
..
.

0
.7

8
5
(0

.0
1
5
)5

0
.7

5
5
(0

.0
3
0
)

0
.7

8
7
(0

.0
2
1
)5

1
.2

9
1
(0

.0
0
5
)

0
.7

7
5
(0

.0
3
4
)

0
.7

8
7
(0

.0
5
8
)

3
5
9
9
7
6

F
a
sh

io
n
-.

..
0
.2

4
7
(0

.0
0
8
)

0
.2

4
5
(0

.0
0
8
)

0
.4

1
5
(0

.0
2
9
)

2
.3

0
3
(0

.0
0
0
)

0
.3

6
1
(0

.0
0
5
)

0
.3

5
0
(0

.0
0
8
)

3
5
9
9
7
7

c
o
n
n
e
c
t-

4
0
.3

2
1
(0

.0
0
6
)

0
.3

1
6
(0

.0
0
7
)

0
.3

7
8
(0

.0
2
3
)

0
.8

4
5
(0

.0
0
0
)

0
.4

9
4
(0

.0
0
4
)

0
.4

7
8
(0

.0
0
5
)

3
5
9
9
8
1

ju
n
g
le

c
..
.

0
.1

0
4
(0

.0
1
2
)

0
.0

7
3
(0

.0
0
6
)

1
.0

7
8
(2

.8
8
5
)

0
.9

3
5
(0

.0
0
0
)

0
.4

3
8
(0

.0
0
9
)

0
.4

0
1
(0

.0
0
9
)

3
5
9
9
8
4

h
e
le

n
a

2
.5

1
1
(0

.0
1
5
)

2
.5

7
5
(0

.0
2
1
)1

2
.9

2
2
(0

.0
3
9
)

4
.1

4
3
(0

.0
0
1
)

3
.3

0
9
(0

.0
3
1
)

1
0
.8

7
7
(2

.0
5
9
)

3
5
9
9
8
5

v
o
lk

e
rt

0
.7

8
8
(0

.0
1
6
)

0
.7

9
4
(0

.0
1
3
)

0
.9

7
3
(0

.0
4
0
)1

2
.0

5
3
(0

.0
0
0
)

0
.9

8
0
(0

.0
0
8
)

0
.9

2
9
(0

.0
1
8
)

3
5
9
9
8
6

ro
b

e
rt

1
.2

7
8
(0

.0
2
2
)

1
.3

0
6
(0

.0
2
9
)

1
.8

0
9
(0

.1
1
4
)

2
.3

0
2
(0

.0
0
0
)

1
.6

8
7
(0

.0
1
5
)

1
.6

6
1
(0

.0
1
5
)

3
5
9
9
8
7

sh
u
tt

le
0
.0

0
1
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

0
.6

6
6
(0

.0
0
1
)

0
.0

0
1
(0

.0
0
0
)

0
.0

0
1
(0

.0
0
0
)

3
5
9
9
9
3

o
k
c
u
p
id

-.
..

0
.5

6
1
(0

.0
0
9
)

0
.5

6
3
(0

.0
0
8
)

0
.5

6
9
(0

.0
0
9
)

0
.7

7
9
(0

.0
0
0
)

0
.5

9
4
(0

.0
0
5
)

0
.5

9
3
(0

.0
0
5
)

3
6
0
1
1
2

K
D

D
C

u
p
9
9

-
0
.0

0
0
(0

.0
0
0
)

-
1
.0

3
1
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

0
.0

0
0
(0

.0
0
0
)

7
5
9
3

c
o
v
e
rt

y
p

e
0
.0

6
9
(0

.0
0
1
)

0
.0

8
3
(0

.0
0
6
)

0
.4

5
9
(0

.1
3
9
)

1
.2

0
5
(0

.0
0
0
)

0
.1

6
1
(0

.0
0
1
)

0
.0

9
9
(0

.0
0
1
)

T
ab

le
11

:
R

es
u

lt
s

fo
r

m
u

lt
ic

la
ss

cl
as

si
fi

ca
ti

on
(i

n
lo

gl
os

s)
on

a
fo

u
r

h
ou

r
b

u
d

ge
t,

d
en

ot
ed

as
m
e
a
n
(s
t
d
)f
a
i
l
s

.
R

es
u

lt
s

o
b

ta
in

ed
in

20
21

ar
e

d
en

ot
ed

w
it

h
a

‘*
’

n
ex

t
to

th
e

fr
am

ew
or

k
n

am
e.

45

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

fr
a
m

e
w

o
rk

A
u
to

G
lu

o
n
(B

)
A

u
to

G
lu

o
n
(H

Q
)

A
u
to

G
lu

o
n
(H

Q
IL

)
a
u
to

sk
le

a
rn

fl
a
m

l
G

A
M

A
(B

)
H

2
O

A
u
to

M
L

ta
sk

id
ta

sk
n
a
m

e

1
6
7
2
1
0

M
o
n
e
y
b
a
ll

2
1
(0

.8
7
)

2
1
(0

.8
7
)

2
1
(0

.8
7
)

2
1
(0

.7
5
)

2
2
(0

.6
2
)

2
e
+

1
0
(6

.3
e
+

1
0
)

2
1
(0

.9
3
)

2
3
3
2
1
1

d
ia

m
o
n
d
s

5
e
+

0
2
(1

9
)

5
.3

e
+

0
2
(3

6
)

5
.2

e
+

0
2
(2

2
)

5
.2

e
+

0
2
(2

1
)

5
.2

e
+

0
2
(1

9
)

5
.3

e
+

0
2
(2

1
)1

5
.2

e
+

0
2
(2

0
)

2
3
3
2
1
2

A
ll
st

a
te

..
.

1
.9

e
+

0
3
(4

4
)

1
.9

e
+

0
3
(3

6
)

1
.9

e
+

0
3
(3

9
)

1
.9

e
+

0
3
(5

8
)

1
.9

e
+

0
3
(5

4
)

2
e
+

0
3
(5

4
)

1
.9

e
+

0
3
(4

8
)

2
3
3
2
1
3

B
u
z
z
in

so
..
.

1
.5

e
+

0
2
(4

9
)

1
.5

e
+

0
2
(4

9
)

1
.5

e
+

0
2
(4

9
)

1
.6

e
+

0
2
(5

2
)

1
.5

e
+

0
2
(4

7
)

1
.6

e
+

0
2
(4

5
)

1
.5

e
+

0
2
(4

6
)

2
3
3
2
1
4

S
a
n
ta

n
d
e
..
.

6
.8

e
+

0
6
(4

.4
e
+

0
5
)

6
.8

e
+

0
6
(4

.4
e
+

0
5
)

7
.1

e
+

0
6
(4

.5
e
+

0
5
)

6
.8

e
+

0
6
(5

.1
e
+

0
5
)

7
e
+

0
6
(4

.5
e
+

0
5
)

7
e
+

0
6
(4

.8
e
+

0
5
)

7
e
+

0
6
(4

.9
e
+

0
5
)

2
3
3
2
1
5

M
e
rc

e
d
e
s.

..
8
.6

(1
)

8
.8

(1
)

8
.8

(1
)

8
.3

(1
.1

)
8
.3

(1
.1

)
8
.3

(1
.1

)
8
.3

(1
.1

)
3
1
7
6
1
4

Y
o
la

n
d
a

8
.4

(0
.0

3
5
)

8
.5

(0
.0

4
5
)

8
.8

(0
.0

4
7
)

8
.7

(0
.0

6
1
)

8
.6

(0
.0

4
5
)

9
.4

(0
.1

1
)

8
.8

(0
.0

4
8
)

3
5
9
9
2
9

A
ir

li
n
e
s.

..
2
9
(0

.2
7
)

2
9
(0

.2
8
)

2
9
(0

.2
5
)

2
9
(0

.2
7
)

2
9
(0

.2
6
)

2
9
(0

.2
6
)

2
9
(0

.2
3
)

3
5
9
9
3
0

q
u
a
k
e

0
.1

9
(0

.0
0
8
9
)

0
.2

2
(0

.0
1
2
)

0
.2

2
(0

.0
1
5
)

0
.1

9
(0

.0
0
8
4
)

0
.1

9
(0

.0
0
9
8
)

0
.1

9
(0

.0
0
7
7
)2

0
.1

9
(0

.0
1
)

3
5
9
9
3
1

se
n
so

ry
0
.6

7
(0

.0
6
1
)

0
.6

8
(0

.0
5
7
)

0
.6

8
(0

.0
5
7
)

0
.7

(0
.0

6
4
)

0
.6

8
(0

.0
4
9
)

0
.6

8
(0

.0
5
8
)

0
.6

9
(0

.0
5
2
)

3
5
9
9
3
2

so
c
m

o
b

1
2
(7

.8
)

1
3
(8

.1
)

1
3
(9

)
1
2
(5

.4
)

1
4
(8

.1
)

1
5
(8

.1
)

1
5
(1

3
)

3
5
9
9
3
3

sp
a
c
e

g
a

0
.0

9
5
(0

.0
1
4
)

0
.1

(0
.0

1
6
)

0
.1

1
(0

.0
2
5
)

0
.0

9
7
(0

.0
1
3
)

0
.1

(0
.0

1
6
)

0
.0

9
7
(0

.0
1
9
)

0
.0

9
7
(0

.0
1
6
)

3
5
9
9
3
4

te
c
a
to

r
0
.8

4
(0

.1
9
)

0
.8

6
(0

.2
)

1
(0

.2
)

0
.5

8
(0

.1
9
)

0
.9

3
(0

.2
2
)

0
.8

9
(0

.3
9
)

0
.8

2
(0

.3
)

3
5
9
9
3
5

w
in

e
q
u
a
..
.

0
.5

7
(0

.0
2
3
)

0
.5

7
(0

.0
2
4
)

0
.6

(0
.0

2
3
)

0
.6

1
(0

.0
1
9
)

0
.5

7
(0

.0
2
)

0
.5

7
(0

.0
2
1
)

0
.5

7
(0

.0
2
2
)

3
5
9
9
3
6

e
le

v
a
to

rs
0
.0

0
1
8
(5

.2
e
-0

5
)

0
.0

0
1
9
(6

.7
e
-0

5
)

0
.0

0
2
(0

.0
0
0
2
4
)

0
.0

0
2
(6

.1
e
-0

5
)

0
.0

0
2
(6

e
-0

5
)

0
.0

0
2
(0

.0
0
0
1
1
)1

0
.0

0
1
9
(5

e
-0

5
)

3
5
9
9
3
7

b
la

c
k

fr
..
.

3
.4

e
+

0
3
(2

7
)

3
.5

e
+

0
3
(2

8
)

3
.4

e
+

0
3
(4

7
)

3
.4

e
+

0
3
(3

1
)

3
.4

e
+

0
3
(3

0
)

3
.5

e
+

0
3
(3

5
)

3
.4

e
+

0
3
(2

7
)

3
5
9
9
3
8

B
ra

z
il
ia

..
.

2
.3

e
+

0
4
(4

.5
e
+

0
4
)

1
.7

e
+

0
4
(3

e
+

0
4
)

1
.1

e
+

0
4
(2

e
+

0
4
)

1
.5

e
+

0
3
(4

.7
e
+

0
3
)

1
.3

e
+

0
3
(2

.8
e
+

0
3
)

4
.3

(4
.9

)
3
.2

e
+

0
2
(3

e
+

0
2
)

3
5
9
9
3
9

to
p

o
2

1
0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
8
)

3
5
9
9
4
0

y
p
ro

p
4

1
0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
5
2
)1

0
.0

2
8
(0

.0
0
4
8
)

3
5
9
9
4
1

O
n
li
n
e
N

e
..
.

3
.3

e
+

0
6
(9

.2
e
+

0
6
)

1
.4

e
+

0
4
(7

.7
e
+

0
3
)

1
.1

e
+

0
4
(3

.5
e
+

0
3
)

1
.1

e
+

0
4
(3

.6
e
+

0
3
)

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

1
.2

e
+

0
4
(3

.6
e
+

0
3
)

3
5
9
9
4
2

c
o
ll
e
g
e
s

0
.1

4
(0

.0
0
5
6
)

0
.1

4
(0

.0
0
5
9
)

0
.1

4
(0

.0
0
6
9
)

0
.1

4
(0

.0
0
5
8
)

0
.1

4
(0

.0
0
6
2
)

0
.1

5
(0

.0
0
4
7
)1

0
.1

4
(0

.0
0
5
4
)

3
5
9
9
4
3

n
y
c
-t

a
x
i.

..
1
.5

(0
.1

5
)

1
.5

(0
.1

6
)

1
.7

(0
.1

2
)

1
.8

(0
.2

)
1
.6

(0
.1

2
)

1
.8

(0
.1

8
)

1
.7

(0
.1

3
)

3
5
9
9
4
4

a
b
a
lo

n
e

2
.1

(0
.1

2
)

2
.1

(0
.1

2
)

2
.2

(0
.1

1
)

2
.1

(0
.1

1
)

2
.1

(0
.1

2
)

2
.1

(0
.1

1
)

2
.1

(0
.1

1
)

3
5
9
9
4
5

u
s

c
ri

m
e

0
.1

3
(0

.0
0
5
5
)

0
.1

3
(0

.0
0
7
4
)

0
.1

3
(0

.0
1
3
)

0
.1

3
(0

.0
0
7
1
)

0
.1

3
(0

.0
0
5
7
)

0
.1

3
(0

.0
0
7
)

0
.1

3
(0

.0
0
6
9
)

3
5
9
9
4
6

p
o
l

2
.6

(0
.3

)
2
.8

(0
.3

8
)

3
.9

(1
)

3
.8

(0
.3

4
)

3
.9

(0
.3

7
)

4
.1

(0
.3

4
)

2
.9

(0
.3

9
)

3
5
9
9
4
8

S
A

T
1
1
-H

A
..
.

8
.9

e
+

0
2
(5

9
)

8
.8

e
+

0
2
(6

6
)

9
.6

e
+

0
2
(7

8
)

1
.1

e
+

0
3
(7

2
)

1
e
+

0
3
(5

7
)

1
.2

e
+

0
3
(4

5
)1

9
.3

e
+

0
2
(5

9
)

3
5
9
9
4
9

h
o
u
se

sa
..
.

1
.1

e
+

0
5
(1

.1
e
+

0
4
)

1
.1

e
+

0
5
(1

.1
e
+

0
4
)

1
.1

e
+

0
5
(1

.5
e
+

0
4
)

1
.2

e
+

0
5
(1

.5
e
+

0
4
)

1
.1

e
+

0
5
(1

.3
e
+

0
4
)

1
.2

e
+

0
5
(1

.5
e
+

0
4
)

1
.1

e
+

0
5
(1

.2
e
+

0
4
)

3
5
9
9
5
0

b
o
st

o
n

2
.9

(0
.8

2
)

2
.7

(0
.7

4
)

2
.8

(0
.7

3
)

3
(1

.1
)

2
.9

(0
.7

1
)

3
(0

.9
4
)

2
.9

(0
.8

8
)

3
5
9
9
5
1

h
o
u
se

p
r.

..
2
.5

e
+

0
4
(7

.6
e
+

0
3
)

2
.6

e
+

0
4
(8

.3
e
+

0
3
)

2
.7

e
+

0
4
(6

.9
e
+

0
3
)

2
.6

e
+

0
4
(8

.8
e
+

0
3
)

2
.6

e
+

0
4
(7

.8
e
+

0
3
)

2
.7

e
+

0
4
(6

.6
e
+

0
3
)

2
.7

e
+

0
4
(9

.1
e
+

0
3
)

3
5
9
9
5
2

h
o
u
se

1
6
H

2
.8

e
+

0
4
(2

.3
e
+

0
3
)

2
.8

e
+

0
4
(2

.6
e
+

0
3
)

2
.9

e
+

0
4
(2

.4
e
+

0
3
)

3
e
+

0
4
(2

.3
e
+

0
3
)

2
.9

e
+

0
4
(2

e
+

0
3
)

3
e
+

0
4
(2

.3
e
+

0
3
)

2
.9

e
+

0
4
(1

.8
e
+

0
3
)

3
6
0
9
3
2

Q
S
A

R
-T

ID
..
.

0
.7

1
(0

.0
7
3
)

0
.7

2
(0

.0
7
4
)

0
.7

2
(0

.0
7
1
)

0
.7

8
(0

.0
5
9
)

0
.7

3
(0

.0
7
2
)

0
.7

6
(0

.0
7
5
)

0
.7

3
(0

.0
6
9
)

3
6
0
9
3
3

Q
S
A

R
-T

ID
..
.

0
.6

9
(0

.0
2
2
)

0
.6

9
(0

.0
2
1
)

0
.7

(0
.0

2
6
)

0
.7

3
(0

.0
3
1
)

0
.6

9
(0

.0
2
1
)

0
.7

2
(0

.0
2
9
)

0
.6

9
(0

.0
2
5
)

3
6
0
9
4
5

M
IP

-2
0
1
6
..
.

2
.1

e
+

0
4
(1

.6
e
+

0
3
)

2
.1

e
+

0
4
(1

.6
e
+

0
3
)

2
.1

e
+

0
4
(1

.9
e
+

0
3
)

2
.2

e
+

0
4
(1

.2
e
+

0
3
)

2
.2

e
+

0
4
(1

.7
e
+

0
3
)

2
.2

e
+

0
4
(1

.4
e
+

0
3
)

2
.1

e
+

0
4
(2

.2
e
+

0
3
)

T
ab

le
12

:
R

es
u

lt
s

fo
r

re
gr

es
si

on
(i

n
R

M
S

E
)

on
a

on
e

h
ou

r
b

u
d

ge
t,

d
en

ot
ed

as
m
e
a
n
(s
t
d
)f
a
i
l
s

.

46

AMLB: an AutoML Benchmark

fr
a
m

e
w

o
rk

li
g
h
ta

u
to

m
l

M
L

J
A

R
(B

)
M

L
J
A

R
(P

)
T

P
O

T
c
o
n
st

a
n
tp

re
d
ic

to
r

R
a
n
d
o
m

F
o
re

st
T

u
n
e
d
R

a
n
d
o
m

F
o
re

st
*

ta
sk

id
ta

sk
n
a
m

e

1
6
7
2
1
0

M
o
n
e
y
b
a
ll

2
1
(0

.7
2
)

2
1
(0

.8
3
)

2
1
(0

.6
6
)

2
1
(1

.1
)1

9
2
(1

.9
)

2
4
(1

.2
)

2
4
(1

.2
)

2
3
3
2
1
1

d
ia

m
o
n
d
s

5
.2

e
+

0
2
(2

1
)

5
.1

e
+

0
2
(2

1
)

5
.1

e
+

0
2
(2

1
)

5
.3

e
+

0
2
(2

2
)

4
.3

e
+

0
3
(6

7
)

5
.4

e
+

0
2
(2

0
)

5
.4

e
+

0
2
(1

9
)

2
3
3
2
1
2

A
ll
st

a
te

..
.

1
.9

e
+

0
3
(4

9
)

1
.9

e
+

0
3
(5

8
)

1
.9

e
+

0
3
(5

8
)

2
.1

e
+

0
3
(1

.3
e
+

0
2
)6

3
e
+

0
3
(6

3
)

2
e
+

0
3
(5

7
)

1
.9

e
+

0
3
(5

3
)

2
3
3
2
1
3

B
u
z
z
in

so
..
.

1
.6

e
+

0
2
(4

5
)

1
.5

e
+

0
2
(5

3
)

1
.7

e
+

0
2
(5

2
)

1
.7

e
+

0
2
(3

9
)2

6
.3

e
+

0
2
(4

3
)

1
.5

e
+

0
2
(5

0
)

1
.5

e
+

0
2
(4

9
)

2
3
3
2
1
4

S
a
n
ta

n
d
e
..
.

6
.9

e
+

0
6
(4

.4
e
+

0
5
)

6
.9

e
+

0
6
(4

.5
e
+

0
5
)

6
.9

e
+

0
6
(4

.2
e
+

0
5
)

7
e
+

0
6
(4

.7
e
+

0
5
)1

9
e
+

0
6
(6

.5
e
+

0
5
)

7
.2

e
+

0
6
(3

.8
e
+

0
5
)

6
.8

e
+

0
6
(4

.5
e
+

0
5
)

2
3
3
2
1
5

M
e
rc

e
d
e
s.

..
8
.3

(1
.1

)
8
.3

(1
.1

)
8
.3

(1
.1

)
8
.3

(1
.1

)
1
3
(0

.7
2
)

8
.9

(0
.9

3
)

8
.9

(0
.9

5
)

3
1
7
6
1
4

Y
o
la

n
d
a

8
.6

(0
.0

3
7
)

8
.6

(0
.0

6
8
)

8
.6

(0
.0

6
7
)

9
.6

(0
.0

5
2
)3

1
2
(0

.0
6
9
)

9
.1

(0
.0

3
7
)

9
.2

(0
.0

3
9
)

3
5
9
9
2
9

A
ir

li
n
e
s.

..
2
9
(0

.2
5
)

2
9
(0

.2
5
)

-
2
9
(0

.1
2
)3

3
1
(0

.2
4
)

3
0
(0

.2
4
)

3
0
(0

.2
4
)

3
5
9
9
3
0

q
u
a
k
e

0
.1

9
(0

.0
1
)

0
.1

9
(0

.0
0
9
3
)

0
.1

9
(0

.0
0
9
5
)

0
.1

9
(0

.0
0
9
1
)

0
.2

(0
.0

1
3
)

0
.2

(0
.0

0
9
5
)

0
.2

(0
.0

0
9
)

3
5
9
9
3
1

se
n
so

ry
0
.6

8
(0

.0
6
4
)

0
.6

8
(0

.0
4
4
)

0
.6

8
(0

.0
5
6
)

0
.6

8
(0

.0
5
8
)

0
.8

2
(0

.1
1
)

0
.7

1
(0

.0
4
5
)

0
.7

(0
.0

6
1
)

3
5
9
9
3
2

so
c
m

o
b

2
0
(9

.8
)

4
1
(9

4
)

2
1
(3

1
)

1
8
(9

.6
)

4
3
(9

.9
)

1
9
(6

.7
)

1
9
(7

.6
)

3
5
9
9
3
3

sp
a
c
e

g
a

0
.1

(0
.0

1
7
)

0
.0

9
9
(0

.0
1
8
)

0
.1

(0
.0

1
5
)

0
.1

(0
.0

1
8
)

0
.2

(0
.0

1
9
)

0
.1

1
(0

.0
2
2
)

0
.1

1
(0

.0
2
2
)

3
5
9
9
3
4

te
c
a
to

r
0
.8

(0
.2

7
)

0
.9

(0
.2

6
)

1
(0

.2
3
)

0
.6

7
(0

.3
5
)

1
5
(2

.5
)

1
.4

(0
.2

1
)

1
.3

(0
.1

6
)

3
5
9
9
3
5

w
in

e
q
u
a
..
.

0
.5

9
(0

.0
2
2
)

0
.5

7
(0

.0
2
6
)

0
.5

9
(0

.0
2
2
)

0
.5

8
(0

.0
1
5
)

0
.8

9
(0

.0
2
5
)

0
.5

9
(0

.0
2
3
)

0
.5

8
(0

.0
2
2
)

3
5
9
9
3
6

e
le

v
a
to

rs
0
.0

0
2
(5

.7
e
-0

5
)

0
.0

0
1
9
(6

e
-0

5
)

0
.0

0
2
(6

.1
e
-0

5
)

0
.0

0
2
(8

e
-0

5
)

0
.0

0
7
(0

.0
0
0
2
6
)

0
.0

0
2
7
(9

.4
e
-0

5
)

0
.0

0
2
6
(8

.8
e
-0

5
)

3
5
9
9
3
7

b
la

c
k

fr
..
.

3
.4

e
+

0
3
(2

8
)

3
.4

e
+

0
3
(3

1
)

3
.4

e
+

0
3
(2

9
)

3
.5

e
+

0
3
(2

9
)

5
.1

e
+

0
3
(4

4
)

3
.7

e
+

0
3
(3

0
)

3
.7

e
+

0
3
(2

9
)

3
5
9
9
3
8

B
ra

z
il
ia

..
.

3
.8

(5
)

2
.6

e
+

1
0
(8

.1
e
+

1
0
)

2
.5

e
+

1
3
(7

.9
e
+

1
3
)

3
.9

(5
)

1
.2

e
+

0
4
(1

.2
e
+

0
4
)

4
e
+

0
3
(5

e
+

0
3
)

4
.1

e
+

0
3
(5

.2
e
+

0
3
)

3
5
9
9
3
9

to
p

o
2

1
0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

3
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
7
)

0
.0

2
8
(0

.0
0
4
8
)

3
5
9
9
4
0

y
p
ro

p
4

1
0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

3
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
8
)

3
5
9
9
4
1

O
n
li
n
e
N

e
..
.

1
.1

e
+

0
4
(3

.5
e
+

0
3
)

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

1
.5

e
+

0
4
(1

.2
e
+

0
4
)

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

1
.1

e
+

0
4
(3

.6
e
+

0
3
)

1
.2

e
+

0
4
(3

.5
e
+

0
3
)

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

3
5
9
9
4
2

c
o
ll
e
g
e
s

0
.1

4
(0

.0
0
5
4
)

0
.1

4
(0

.0
0
6
3
)

0
.1

4
(0

.0
0
6
1
)

0
.1

4
(0

.0
0
6
3
)

0
.2

3
(0

.0
0
4
)

0
.1

5
(0

.0
0
6
)

0
.1

4
(0

.0
0
5
3
)

3
5
9
9
4
3

n
y
c
-t

a
x
i.

..
1
.7

(0
.1

7
)

1
.6

(0
.1

7
)

1
.7

(0
.1

5
)

1
.9

(0
.1

)
2
.7

(0
.1

9
)

1
.7

(0
.1

2
)

1
.7

(0
.1

3
)

3
5
9
9
4
4

a
b
a
lo

n
e

2
.1

(0
.1

2
)

2
.1

(0
.1

2
)

2
.1

(0
.1

3
)

2
.1

(0
.1

1
)

3
.3

(0
.1

6
)

2
.2

(0
.0

9
7
)

2
.1

(0
.1

1
)

3
5
9
9
4
5

u
s

c
ri

m
e

0
.1

3
(0

.0
0
5
6
)

0
.1

3
(0

.0
0
5
8
)

0
.1

3
(0

.0
0
6
6
)

0
.1

3
(0

.0
0
8
)

0
.2

5
(0

.0
2
5
)

0
.1

4
(0

.0
0
6
)

0
.1

4
(0

.0
0
7
2
)

3
5
9
9
4
6

p
o
l

3
.9

(0
.3

4
)

2
.3

(0
.2

9
)

2
.4

(0
.2

6
)

4
(0

.3
2
)

5
1
(1

.2
)

4
.5

(0
.4

2
)

4
.3

(0
.3

6
)

3
5
9
9
4
8

S
A

T
1
1
-H

A
..
.

1
.2

e
+

0
3
(8

8
)

1
e
+

0
3
(9

1
)

1
.2

e
+

0
3
(9

6
)

1
.1

e
+

0
3
(7

7
)

2
.8

e
+

0
3
(9

8
)

1
.1

e
+

0
3
(5

0
)

1
.1

e
+

0
3
(4

9
)

3
5
9
9
4
9

h
o
u
se

sa
..
.

1
.1

e
+

0
5
(1

.6
e
+

0
4
)

1
.1

e
+

0
5
(1

.2
e
+

0
4
)

1
.1

e
+

0
5
(1

.3
e
+

0
4
)

1
.2

e
+

0
5
(2

e
+

0
4
)

3
.8

e
+

0
5
(3

.7
e
+

0
4
)

1
.3

e
+

0
5
(1

.5
e
+

0
4
)

1
.3

e
+

0
5
(1

.5
e
+

0
4
)

3
5
9
9
5
0

b
o
st

o
n

2
.9

(0
.9

5
)

3
(0

.9
5
)

2
.9

(0
.8

8
)

3
.1

(0
.9

1
)

9
.1

(2
)

3
.1

(0
.6

6
)

3
.1

(0
.9

1
)

3
5
9
9
5
1

h
o
u
se

p
r.

..
2
.6

e
+

0
4
(7

.2
e
+

0
3
)

2
.4

e
+

0
4
(6

.9
e
+

0
3
)

2
.5

e
+

0
4
(6

.8
e
+

0
3
)

2
.7

e
+

0
4
(6

.2
e
+

0
3
)

8
.1

e
+

0
4
(6

.3
e
+

0
3
)

2
.8

e
+

0
4
(6

e
+

0
3
)

2
.8

e
+

0
4
(6

.6
e
+

0
3
)

3
5
9
9
5
2

h
o
u
se

1
6
H

2
.9

e
+

0
4
(2

.1
e
+

0
3
)

2
.9

e
+

0
4
(2

.1
e
+

0
3
)

2
.9

e
+

0
4
(2

e
+

0
3
)

3
.1

e
+

0
4
(1

.8
e
+

0
3
)

5
.5

e
+

0
4
(2

.7
e
+

0
3
)

3
.2

e
+

0
4
(2

e
+

0
3
)

3
.1

e
+

0
4
(2

e
+

0
3
)

3
6
0
9
3
2

Q
S
A

R
-T

ID
..
.

0
.7

2
(0

.0
6
8
)

-
-

0
.7

5
(0

.0
7
5
)

1
.6

(0
.0

4
8
)

0
.7

6
(0

.0
6
6
)

0
.7

5
(0

.0
6
5
)

3
6
0
9
3
3

Q
S
A

R
-T

ID
..
.

0
.6

9
(0

.0
2
1
)

0
.7

(0
.0

2
4
)5

0
.7

2
(n

a
n
)9

0
.7

2
(0

.0
3
)

1
.3

(0
.0

3
9
)

0
.7

2
(0

.0
2
8
)

0
.7

1
(0

.0
2
6
)

3
6
0
9
4
5

M
IP

-2
0
1
6
..
.

2
.2

e
+

0
4
(1

.1
e
+

0
3
)

2
.2

e
+

0
4
(2

e
+

0
3
)

2
.4

e
+

0
4
(2

.4
e
+

0
3
)

2
.2

e
+

0
4
(1

.4
e
+

0
3
)2

3
.2

e
+

0
4
(2

.2
e
+

0
3
)

2
.3

e
+

0
4
(2

.2
e
+

0
3
)

2
.3

e
+

0
4
(2

.1
e
+

0
3
)

T
ab

le
13

:
R

es
u

lt
s

fo
r

re
gr

es
si

on
(i

n
R

M
S

E
)

on
a

on
e

h
ou

r
b

u
d

ge
t,

d
en

ot
ed

as
m
e
a
n
(s
t
d
)f
a
i
l
s

.

47

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

fr
a
m

e
w

o
rk

A
u
to

G
lu

o
n
(B

)
A

u
to

G
lu

o
n
(H

Q
)

A
u
to

G
lu

o
n
(H

Q
IL

)
a
u
to

sk
le

a
rn

fl
a
m

l
G

A
M

A
(B

)*
H

2
O

A
u
to

M
L

ta
sk

id
ta

sk
n
a
m

e

1
6
7
2
1
0

M
o
n
e
y
b
a
ll

2
1
(0

.8
7
)

2
1
(0

.8
7
)

2
1
(0

.8
7
)

2
1
(0

.7
3
)

2
2
(0

.8
6
)

2
1
(0

.7
7
)

2
1
(0

.8
5
)

2
3
3
2
1
1

d
ia

m
o
n
d
s

5
e
+

0
2
(1

8
)

5
.3

e
+

0
2
(2

6
)

5
.2

e
+

0
2
(2

2
)

5
.2

e
+

0
2
(2

0
)

5
.2

e
+

0
2
(2

0
)

5
.2

e
+

0
2
(2

0
)

5
.1

e
+

0
2
(1

8
)

2
3
3
2
1
2

A
ll
st

a
te

..
.

1
.9

e
+

0
3
(4

0
)

1
.9

e
+

0
3
(3

9
)

1
.9

e
+

0
3
(1

.3
e
+

0
2
)

1
.9

e
+

0
3
(5

9
)

1
.9

e
+

0
3
(5

5
)

8
.6

e
+

1
2
(2

.7
e
+

1
3
)

1
.9

e
+

0
3
(5

9
)

2
3
3
2
1
3

B
u
z
z
in

so
..
.

1
.5

e
+

0
2
(4

9
)

2
.3

e
+

0
2
(2

.9
e
+

0
2
)

2
.3

e
+

0
2
(2

.9
e
+

0
2
)

1
.5

e
+

0
2
(5

4
)

1
.5

e
+

0
2
(5

2
)

1
.6

e
+

0
2
(4

7
)

1
.5

e
+

0
2
(4

7
)

2
3
3
2
1
4

S
a
n
ta

n
d
e
..
.

6
.8

e
+

0
6
(4

.6
e
+

0
5
)

6
.8

e
+

0
6
(4

.7
e
+

0
5
)

7
e
+

0
6
(4

.3
e
+

0
5
)

6
.9

e
+

0
6
(5

.6
e
+

0
5
)

6
.9

e
+

0
6
(4

.8
e
+

0
5
)

6
.9

e
+

0
6
(4

.3
e
+

0
5
)

6
.9

e
+

0
6
(4

.8
e
+

0
5
)

2
3
3
2
1
5

M
e
rc

e
d
e
s.

..
8
.6

(1
)

8
.8

(1
)

8
.8

(0
.9

7
)

8
.3

(1
.1

)
8
.3

(1
.1

)
8
.3

(1
.1

)
8
.3

(1
.1

)

3
1
7
6
1
4

Y
o
la

n
d
a

8
.3

(0
.0

3
3
)

8
.4

(0
.0

3
3
)

8
.6

(0
.0

5
5
)

8
.7

(0
.0

6
3
)

8
.6

(n
a
n
)9

9
.2

(0
.1

)
8
.6

(0
.0

3
4
)

3
5
9
9
2
9

A
ir

li
n
e
s.

..
2
9
(0

.2
6
)2

2
9
(0

.2
3
)

2
9
(0

.2
3
)

2
9
(0

.2
7
)

2
8
(0

.2
3
)

2
9
(0

.2
5
)

2
9
(0

.2
4
)

3
5
9
9
3
0

q
u
a
k
e

0
.1

9
(0

.0
0
8
9
)

0
.2

2
(0

.0
1
2
)

0
.2

2
(0

.0
1
5
)

0
.1

9
(0

.0
0
9
)

0
.1

9
(0

.0
0
9
2
)

0
.1

9
(0

.0
0
9
2
)

0
.1

9
(0

.0
0
9
6
)

3
5
9
9
3
1

se
n
so

ry
0
.6

7
(0

.0
6
1
)

0
.6

8
(0

.0
5
7
)

0
.6

8
(0

.0
5
7
)

0
.6

9
(0

.0
6
2
)

0
.6

8
(0

.0
5
4
)

0
.6

8
(0

.0
5
5
)

0
.6

9
(0

.0
5
9
)

3
5
9
9
3
2

so
c
m

o
b

1
2
(7

.7
)

1
3
(8

.1
)

1
4
(9

.3
)

1
2
(6

.4
)1

1
5
(8

.4
)

1
4
(7

)
1
4
(1

3
)

3
5
9
9
3
3

sp
a
c
e

g
a

0
.0

9
5
(0

.0
1
4
)

0
.1

(0
.0

1
6
)

0
.1

1
(0

.0
1
6
)

0
.1

(0
.0

1
8
)

0
.1

(0
.0

1
4
)

0
.0

9
6
(0

.0
1
9
)

0
.0

9
4
(0

.0
1
1
)

3
5
9
9
3
4

te
c
a
to

r
0
.8

4
(0

.1
8
)

0
.8

5
(0

.1
9
)

1
.1

(0
.3

2
)

0
.6

1
(0

.2
)

0
.9

2
(0

.2
9
)

0
.8

2
(0

.3
3
)

0
.7

1
(0

.1
7
)

3
5
9
9
3
5

w
in

e
q
u
a
..
.

0
.5

7
(0

.0
2
2
)

0
.5

7
(0

.0
2
4
)

0
.6

(0
.0

2
1
)

0
.6

(0
.0

1
8
)

0
.5

7
(0

.0
2
)

0
.5

7
(0

.0
2
2
)

0
.5

7
(0

.0
2
2
)

3
5
9
9
3
6

e
le

v
a
to

rs
0
.0

0
1
8
(5

.3
e
-0

5
)

0
.0

0
1
9
(0

.0
0
0
1
4
)

0
.0

0
2
(0

.0
0
0
2
4
)

0
.0

0
1
9
(9

.6
e
-0

5
)

0
.0

0
1
9
(5

.6
e
-0

5
)

0
.0

0
1
9
(6

.5
e
-0

5
)

0
.0

0
1
9
(5

.7
e
-0

5
)

3
5
9
9
3
7

b
la

c
k

fr
..
.

3
.5

e
+

0
3
(2

8
)

3
.5

e
+

0
3
(3

1
)

3
.4

e
+

0
3
(2

8
)

3
.4

e
+

0
3
(3

1
)

3
.4

e
+

0
3
(2

8
)

3
.5

e
+

0
3
(2

9
)1

3
.4

e
+

0
3
(2

8
)

3
5
9
9
3
8

B
ra

z
il
ia

..
.

8
.6

e
+

0
4
(1

.9
e
+

0
5
)

7
.4

e
+

0
4
(1

.7
e
+

0
5
)

1
.5

e
+

0
4
(3

.3
e
+

0
4
)

1
.5

e
+

0
3
(4

.7
e
+

0
3
)

1
.8

e
+

0
3
(3

e
+

0
3
)

4
.4

(4
.9

)
3
.4

e
+

0
2
(5

e
+

0
2
)

3
5
9
9
3
9

to
p

o
2

1
0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
9
)

3
5
9
9
4
0

y
p
ro

p
4

1
0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
7
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
8
)

3
5
9
9
4
1

O
n
li
n
e
N

e
..
.

4
.1

e
+

0
6
(9

.1
e
+

0
6
)

1
.3

e
+

0
4
(4

.6
e
+

0
3
)

1
.3

e
+

0
4
(4

.6
e
+

0
3
)

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

2
.2

e
+

0
4
(3

.3
e
+

0
4
)

3
5
9
9
4
2

c
o
ll
e
g
e
s

0
.1

4
(0

.0
0
5
9
)

0
.1

4
(0

.0
0
6
1
)

0
.1

4
(0

.0
0
6
1
)

0
.1

4
(0

.0
0
5
8
)

0
.1

4
(0

.0
0
5
8
)

0
.1

4
(0

.0
0
4
8
)

0
.1

4
(0

.0
0
6
2
)

3
5
9
9
4
3

n
y
c
-t

a
x
i.

..
1
.7

(0
.6

6
)

3
(4

.2
)

1
.7

(0
.1

2
)

1
.6

(0
.1

5
)

1
.6

(0
.1

)
1
.7

(0
.0

9
)6

1
.6

(0
.1

5
)

3
5
9
9
4
4

a
b
a
lo

n
e

2
.1

(0
.1

2
)

2
.1

(0
.1

2
)

2
.2

(0
.1

1
)

2
.1

(0
.1

2
)

2
.1

(0
.1

1
)

2
.1

(0
.1

)
2
.1

(0
.1

1
)

3
5
9
9
4
5

u
s

c
ri

m
e

0
.1

3
(0

.0
0
5
5
)

0
.1

3
(0

.0
0
6
8
)

0
.1

3
(0

.0
1
3
)

0
.1

3
(0

.0
0
6
3
)

0
.1

3
(0

.0
0
4
9
)

0
.1

3
(0

.0
0
5
9
)

0
.1

3
(0

.0
0
7
1
)

3
5
9
9
4
6

p
o
l

2
.6

(0
.3

1
)

2
.8

(0
.4

)
3
.9

(1
)

3
.5

(0
.3

4
)

3
.6

(0
.3

4
)

3
.7

(0
.3

)
2
.9

(0
.3

1
)

3
5
9
9
4
8

S
A

T
1
1
-H

A
..
.

8
.8

e
+

0
2
(6

6
)

8
.8

e
+

0
2
(6

5
)

1
.1

e
+

0
3
(6

2
)

1
.1

e
+

0
3
(7

2
)

1
e
+

0
3
(6

6
)

1
.1

e
+

0
3
(6

3
)

9
e
+

0
2
(5

8
)

3
5
9
9
4
9

h
o
u
se

sa
..
.

1
.1

e
+

0
5
(1

.1
e
+

0
4
)

1
.1

e
+

0
5
(1

.2
e
+

0
4
)

1
.1

e
+

0
5
(1

.5
e
+

0
4
)

1
.2

e
+

0
5
(1

.7
e
+

0
4
)

1
.1

e
+

0
5
(1

.4
e
+

0
4
)

1
.1

e
+

0
5
(1

.6
e
+

0
4
)

1
.1

e
+

0
5
(1

.2
e
+

0
4
)

3
5
9
9
5
0

b
o
st

o
n

2
.9

(0
.8

2
)

2
.7

(0
.7

4
)

2
.8

(0
.7

3
)

2
.9

(1
.2

)
2
.9

(0
.7

3
)

3
(0

.9
9
)

2
.7

(0
.8

7
)

3
5
9
9
5
1

h
o
u
se

p
r.

..
2
.5

e
+

0
4
(7

.8
e
+

0
3
)

2
.6

e
+

0
4
(8

e
+

0
3
)

2
.8

e
+

0
4
(1

.1
e
+

0
4
)

2
.6

e
+

0
4
(1

e
+

0
4
)

2
.4

e
+

0
4
(5

.9
e
+

0
3
)

2
.4

e
+

0
4
(5

.9
e
+

0
3
)

2
.7

e
+

0
4
(1

.1
e
+

0
4
)

3
5
9
9
5
2

h
o
u
se

1
6
H

2
.8

e
+

0
4
(2

.3
e
+

0
3
)

2
.8

e
+

0
4
(2

.5
e
+

0
3
)

3
e
+

0
4
(2

.8
e
+

0
3
)

3
e
+

0
4
(2

.1
e
+

0
3
)

2
.9

e
+

0
4
(2

e
+

0
3
)

3
e
+

0
4
(2

.2
e
+

0
3
)

2
.9

e
+

0
4
(1

.8
e
+

0
3
)

3
6
0
9
3
2

Q
S
A

R
-T

ID
..
.

0
.7

1
(0

.0
7
6
)

0
.7

2
(0

.0
7
8
)

0
.7

6
(0

.0
7
9
)

0
.7

7
(0

.0
6
4
)

0
.7

2
(0

.0
7
2
)

0
.7

5
(0

.0
6
7
)

0
.7

2
(0

.0
7
)

3
6
0
9
3
3

Q
S
A

R
-T

ID
..
.

0
.6

9
(0

.0
2
2
)

0
.6

9
(0

.0
2
)

0
.7

2
(0

.0
2
3
)

0
.7

3
(0

.0
3
3
)

0
.6

8
(0

.0
2
5
)

0
.7

1
(0

.0
2
5
)

0
.6

9
(0

.0
2
7
)

3
6
0
9
4
5

M
IP

-2
0
1
6
..
.

2
.1

e
+

0
4
(1

.5
e
+

0
3
)

2
.1

e
+

0
4
(1

.7
e
+

0
3
)

2
.1

e
+

0
4
(1

.6
e
+

0
3
)

2
.2

e
+

0
4
(1

.5
e
+

0
3
)

2
.1

e
+

0
4
(1

.6
e
+

0
3
)

2
.1

e
+

0
4
(1

.4
e
+

0
3
)

2
.1

e
+

0
4
(1

.7
e
+

0
3
)

T
ab

le
14

:
R

es
u

lt
s

fo
r

re
gr

es
si

on
(i

n
R

M
S

E
)

on
a

fo
u

r
h

ou
r

b
u

d
ge

t,
d

en
ot

ed
as

m
e
a
n
(s
t
d
)f
a
i
l
s

.
R

es
u

lt
s

o
b

ta
in

ed
in

2
0
2
1

a
re

d
en

ot
ed

w
it

h
a

‘*
’

n
ex

t
to

th
e

fr
am

ew
or

k
n

am
e.

48

AMLB: an AutoML Benchmark

fr
a
m

e
w

o
rk

li
g
h
ta

u
to

m
l

M
L

J
A

R
(B

)
T

P
O

T
*

c
o
n
st

a
n
tp

re
d
ic

to
r

R
a
n
d
o
m

F
o
re

st
T

u
n
e
d
R

a
n
d
o
m

F
o
re

st
*

ta
sk

id
ta

sk
n
a
m

e

1
6
7
2
1
0

M
o
n
e
y
b
a
ll

2
1
(0

.7
3
)

2
1
(0

.8
4
)

2
1
(0

.8
7
)

9
2
(1

.9
)

2
4
(1

.2
)

2
4
(1

.3
)

2
3
3
2
1
1

d
ia

m
o
n
d
s

5
.2

e
+

0
2
(2

1
)

5
.1

e
+

0
2
(2

2
)

5
.3

e
+

0
2
(2

3
)

4
.3

e
+

0
3
(6

7
)

5
.4

e
+

0
2
(2

0
)

5
.4

e
+

0
2
(2

0
)

2
3
3
2
1
2

A
ll
st

a
te

..
.

1
.9

e
+

0
3
(4

9
)

1
.9

e
+

0
3
(5

4
)

1
.9

e
+

0
3
(5

0
)

3
e
+

0
3
(6

3
)

2
e
+

0
3
(5

7
)

2
e
+

0
3
(7

9
)

2
3
3
2
1
3

B
u
z
z
in

so
..
.

1
.6

e
+

0
2
(4

6
)

1
.5

e
+

0
2
(4

7
)

1
.6

e
+

0
2
(4

6
)

6
.3

e
+

0
2
(4

3
)

1
.5

e
+

0
2
(4

9
)

1
.5

e
+

0
2
(5

0
)

2
3
3
2
1
4

S
a
n
ta

n
d
e
..
.

7
.1

e
+

0
6
(2

.7
e
+

0
5
)5

6
.9

e
+

0
6
(4

.3
e
+

0
5
)

7
e
+

0
6
(4

.4
e
+

0
5
)

9
e
+

0
6
(6

.5
e
+

0
5
)

7
.2

e
+

0
6
(3

.8
e
+

0
5
)

6
.8

e
+

0
6
(4

.6
e
+

0
5
)

2
3
3
2
1
5

M
e
rc

e
d
e
s.

..
8
.3

(1
.1

)
8
.3

(1
.1

)
8
.3

(1
.1

)
1
3
(0

.7
2
)

8
.9

(0
.9

3
)

8
.9

(0
.9

6
)

3
1
7
6
1
4

Y
o
la

n
d
a

8
.6

(0
.0

4
1
)

8
.5

(0
.0

4
5
)

9
.3

(0
.1

1
)

1
2
(0

.0
6
9
)

9
.1

(0
.0

3
8
)

9
.1

(0
.0

4
)

3
5
9
9
2
9

A
ir

li
n
e
s.

..
2
9
(0

.2
4
)

2
9
(0

.2
3
)

2
9
(0

.2
8
)4

3
1
(0

.2
4
)

3
0
(0

.2
4
)

3
0
(0

.2
3
)

3
5
9
9
3
0

q
u
a
k
e

0
.1

9
(0

.0
1
)

0
.1

9
(0

.0
0
8
4
)

0
.1

9
(0

.0
0
9
6
)

0
.2

(0
.0

1
3
)

0
.2

(0
.0

0
9
5
)

0
.2

(0
.0

0
8
8
)

3
5
9
9
3
1

se
n
so

ry
0
.6

8
(0

.0
5
7
)

0
.6

8
(0

.0
4
6
)

0
.6

8
(0

.0
5
4
)

0
.8

2
(0

.1
1
)

0
.7

1
(0

.0
4
5
)

0
.7

(0
.0

5
7
)

3
5
9
9
3
2

so
c
m

o
b

2
0
(9

.4
)

4
0
(9

1
)

1
6
(8

)
4
3
(9

.9
)

1
9
(6

.7
)

1
9
(7

.3
)

3
5
9
9
3
3

sp
a
c
e

g
a

0
.1

(0
.0

1
7
)

0
.0

9
8
(0

.0
1
7
)

0
.0

9
9
(0

.0
1
8
)

0
.2

(0
.0

1
9
)

0
.1

1
(0

.0
2
2
)

0
.1

1
(0

.0
2
2
)

3
5
9
9
3
4

te
c
a
to

r
0
.7

9
(0

.2
6
)

0
.9

2
(0

.1
8
)

0
.5

6
(0

.0
9
4
)1

1
5
(2

.5
)

1
.4

(0
.2

1
)

1
.3

(0
.1

7
)

3
5
9
9
3
5

w
in

e
q
u
a
..
.

0
.5

8
(0

.0
2
2
)

0
.5

7
(0

.0
2
3
)

0
.5

7
(0

.0
2
3
)

0
.8

9
(0

.0
2
5
)

0
.5

9
(0

.0
2
3
)

0
.5

8
(0

.0
2
2
)

3
5
9
9
3
6

e
le

v
a
to

rs
0
.0

0
2
(5

.7
e
-0

5
)

0
.0

0
1
9
(5

.9
e
-0

5
)

0
.0

0
1
9
(6

.4
e
-0

5
)

0
.0

0
7
(0

.0
0
0
2
6
)

0
.0

0
2
7
(9

.4
e
-0

5
)

0
.0

0
2
6
(9

e
-0

5
)

3
5
9
9
3
7

b
la

c
k

fr
..
.

3
.4

e
+

0
3
(2

7
)

3
.4

e
+

0
3
(2

8
)

3
.5

e
+

0
3
(3

0
)

5
.1

e
+

0
3
(4

4
)

3
.7

e
+

0
3
(3

0
)

3
.8

e
+

0
3
(3

7
)

3
5
9
9
3
8

B
ra

z
il
ia

..
.

3
.9

(5
)

1
.1

e
+

1
1
(3

.3
e
+

1
1
)

4
.2

(4
.9

)
1
.2

e
+

0
4
(1

.2
e
+

0
4
)

4
e
+

0
3
(5

e
+

0
3
)

4
.1

e
+

0
3
(5

.1
e
+

0
3
)

3
5
9
9
3
9

to
p

o
2

1
0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

3
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
7
)

0
.0

2
8
(0

.0
0
4
7
)

3
5
9
9
4
0

y
p
ro

p
4

1
0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
9
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

3
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
8
)

0
.0

2
8
(0

.0
0
4
9
)

3
5
9
9
4
1

O
n
li
n
e
N

e
..
.

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

4
.9

e
+

0
5
(1

.5
e
+

0
6
)

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

1
.1

e
+

0
4
(3

.6
e
+

0
3
)

1
.2

e
+

0
4
(3

.5
e
+

0
3
)

1
.1

e
+

0
4
(3

.7
e
+

0
3
)

3
5
9
9
4
2

c
o
ll
e
g
e
s

0
.1

4
(0

.0
0
5
4
)

0
.1

4
(0

.0
0
6
2
)

0
.1

4
(0

.0
0
5
)

0
.2

3
(0

.0
0
4
)

0
.1

5
(0

.0
0
6
)

0
.1

4
(0

.0
0
5
4
)

3
5
9
9
4
3

n
y
c
-t

a
x
i.

..
1
.7

(0
.1

7
)

1
.6

(0
.1

3
)

1
.8

(0
.1

6
)

2
.7

(0
.1

9
)

1
.7

(0
.1

2
)

1
.7

(0
.1

6
)

3
5
9
9
4
4

a
b
a
lo

n
e

2
.1

(0
.1

2
)

2
.1

(0
.1

2
)

2
.1

(0
.1

1
)

3
.3

(0
.1

6
)

2
.2

(0
.0

9
7
)

2
.1

(0
.1

1
)

3
5
9
9
4
5

u
s

c
ri

m
e

0
.1

3
(0

.0
0
6
)

0
.1

3
(0

.0
0
5
7
)

0
.1

3
(0

.0
0
5
8
)

0
.2

5
(0

.0
2
5
)

0
.1

4
(0

.0
0
6
)

0
.1

4
(0

.0
0
6
4
)

3
5
9
9
4
6

p
o
l

3
.9

(0
.3

4
)

2
.3

(0
.2

6
)

3
.7

(0
.3

8
)

5
1
(1

.2
)

4
.5

(0
.4

2
)

4
.3

(0
.3

6
)

3
5
9
9
4
8

S
A

T
1
1
-H

A
..
.

1
.2

e
+

0
3
(9

5
)

1
.1

e
+

0
3
(1

e
+

0
2
)

1
e
+

0
3
(6

9
)

2
.8

e
+

0
3
(9

8
)

1
.1

e
+

0
3
(5

0
)

1
.1

e
+

0
3
(4

9
)

3
5
9
9
4
9

h
o
u
se

sa
..
.

1
.1

e
+

0
5
(1

.6
e
+

0
4
)

1
.1

e
+

0
5
(1

.3
e
+

0
4
)

1
.2

e
+

0
5
(1

.2
e
+

0
4
)

3
.8

e
+

0
5
(3

.7
e
+

0
4
)

1
.3

e
+

0
5
(1

.5
e
+

0
4
)

1
.3

e
+

0
5
(1

.5
e
+

0
4
)

3
5
9
9
5
0

b
o
st

o
n

2
.9

(0
.9

4
)

3
(0

.9
)

3
.1

(1
)

9
.1

(2
)

3
.1

(0
.6

6
)

3
.1

(0
.9

2
)

3
5
9
9
5
1

h
o
u
se

p
r.

..
2
.5

e
+

0
4
(6

.6
e
+

0
3
)

2
.4

e
+

0
4
(7

.1
e
+

0
3
)

2
.7

e
+

0
4
(7

.8
e
+

0
3
)

8
.1

e
+

0
4
(6

.3
e
+

0
3
)

2
.8

e
+

0
4
(6

e
+

0
3
)

2
.8

e
+

0
4
(6

.5
e
+

0
3
)

3
5
9
9
5
2

h
o
u
se

1
6
H

2
.9

e
+

0
4
(2

.1
e
+

0
3
)

2
.9

e
+

0
4
(2

e
+

0
3
)

3
.1

e
+

0
4
(2

.1
e
+

0
3
)

5
.5

e
+

0
4
(2

.7
e
+

0
3
)

3
.2

e
+

0
4
(2

e
+

0
3
)

3
.1

e
+

0
4
(2

e
+

0
3
)

3
6
0
9
3
2

Q
S
A

R
-T

ID
..
.

0
.7

2
(0

.0
6
8
)

-
0
.7

4
(0

.0
6
9
)

1
.6

(0
.0

4
8
)

0
.7

6
(0

.0
6
6
)

0
.7

5
(0

.0
6
6
)

3
6
0
9
3
3

Q
S
A

R
-T

ID
..
.

0
.6

9
(0

.0
2
1
)

0
.7

(0
.0

2
)3

0
.7

1
(0

.0
2
7
)

1
.3

(0
.0

3
9
)

0
.7

2
(0

.0
2
8
)

0
.7

1
(0

.0
2
7
)

3
6
0
9
4
5

M
IP

-2
0
1
6
..
.

2
.2

e
+

0
4
(1

.2
e
+

0
3
)

2
.2

e
+

0
4
(1

.8
e
+

0
3
)

2
.2

e
+

0
4
(2

.2
e
+

0
3
)

3
.2

e
+

0
4
(2

.2
e
+

0
3
)

2
.3

e
+

0
4
(2

.2
e
+

0
3
)

2
.3

e
+

0
4
(2

e
+

0
3
)

T
ab

le
15

:
R

es
u

lt
s

fo
r

re
gr

es
si

on
(i

n
R

M
S

E
)

on
a

fo
u

r
h

ou
r

b
u

d
ge

t,
d

en
ot

ed
as

m
e
a
n
(s
t
d
)f
a
i
l
s

.
R

es
u

lt
s

o
b

ta
in

ed
in

2
0
2
1

a
re

d
en

ot
ed

w
it

h
a

‘*
’

n
ex

t
to

th
e

fr
am

ew
or

k
n

am
e.

49

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

B.1 BT-Trees

As described in Section 6.2, Bradley-Terry (BT) trees may be used to identify subsets of tasks for which
the ‘preferred’ framework is significantly different. Figures 10-12 show BT trees for each task type and time
budget, generated by splitting based on different data set characteristics. We observe that AUTOGLUON(B) is
the preferred framework in many cases, especially for large number of observations, and more complex data
sets in terms of class imbalance, number of classes or missing data. In contrast, differences in small datasets
are generally smaller, and distinct preferred frameworks often emerge for various task types. The online
visualization tool may be used to generate additional BT trees, from different subsets of tasks or allowing
for different meta-features when calculating splits.

50

AMLB: an AutoML Benchmark

number.of.instances
p < 0.001

1

≤ 5832 > 5832

imbalance.ratio
p < 0.001

2

≤ 1.034 > 1.034

Node 3 (n = 60)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)

A
ut

oG
lu

on
(H

Q
IL

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
M

LJ
A

R
(P

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.28
Node 4 (n = 160)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)

A
ut

oG
lu

on
(H

Q
IL

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
M

LJ
A

R
(P

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st
0

0.28

ratio.of.numeric.features
p < 0.001

5

≤ 0.375 > 0.375

Node 6 (n = 50)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)

A
ut

oG
lu

on
(H

Q
IL

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
M

LJ
A

R
(P

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.28
Node 7 (n = 130)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)

A
ut

oG
lu

on
(H

Q
IL

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
M

LJ
A

R
(P

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.28

(a) Binary classification datasets, 1h.

number.of.instances
p < 0.001

1

≤ 5832 > 5832

imbalance.ratio
p < 0.001

2

≤ 1.034 > 1.034

Node 3 (n = 60)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.33
Node 4 (n = 160)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.33

ratio.of.numeric.features
p < 0.001

5

≤ 0.831 > 0.831

Node 6 (n = 120)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.33
Node 7 (n = 60)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
R

an
do

m
Fo

re
st

TP
O

T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.33

(b) Binary classification datasets, 4h.

Figure 10: Binary classification datasets, 1h and 4h.
51

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

number.of.instances
p < 0.001

1

≤ 67557 > 67557

number.of.instances
p < 0.001

2

≤ 8237 > 8237

Node 3 (n = 150)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
A

ut
oG

lu
on

(H
Q

IL
)

au
to

sk
le

ar
n

au
to

sk
le

ar
n2

co
ns

ta
nt

pr
ed

ic
to

r
fla

m
l

G
A

M
A

(B
)

H
2O

A
ut

oM
L

lig
ht

au
to

m
l

M
LJ

A
R

(B
)

M
LJ

A
R

(P
)

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.5
Node 4 (n = 90)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
A

ut
oG

lu
on

(H
Q

IL
)

au
to

sk
le

ar
n

au
to

sk
le

ar
n2

co
ns

ta
nt

pr
ed

ic
to

r
fla

m
l

G
A

M
A

(B
)

H
2O

A
ut

oM
L

lig
ht

au
to

m
l

M
LJ

A
R

(B
)

M
LJ

A
R

(P
)

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.5

Node 5 (n = 60)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
A

ut
oG

lu
on

(H
Q

IL
)

au
to

sk
le

ar
n

au
to

sk
le

ar
n2

co
ns

ta
nt

pr
ed

ic
to

r
fla

m
l

G
A

M
A

(B
)

H
2O

A
ut

oM
L

lig
ht

au
to

m
l

M
LJ

A
R

(B
)

M
LJ

A
R

(P
)

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.5

(a) Multiclass classification datasets, 1h.

number.of.classes
p < 0.001

1

≤ 10 > 10

number.of.instances
p < 0.001

2

≤ 8237 > 8237

Node 3 (n = 130)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
R

an
do

m
Fo

re
st

TP
O

T
Tu

ne
dR

an
do

m
Fo

re
st

0

0.38
Node 4 (n = 120)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
R

an
do

m
Fo

re
st

TP
O

T
Tu

ne
dR

an
do

m
Fo

re
st

0

0.38

Node 5 (n = 50)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
au

to
sk

le
ar

n
au

to
sk

le
ar

n2
co

ns
ta

nt
pr

ed
ic

to
r

fla
m

l
G

A
M

A
(B

)
H

2O
A

ut
oM

L
lig

ht
au

to
m

l
M

LJ
A

R
(B

)
R

an
do

m
Fo

re
st

TP
O

T
Tu

ne
dR

an
do

m
Fo

re
st

0

0.38

(b) Multiclass classification datasets, 4h.

Figure 11: Multiclass classification datasets, 1h and 4h.
52

AMLB: an AutoML Benchmark

ratio.of.instances.with.missing.values
p < 0.001

1

≤ 0 > 0

number.of.instances
p < 0.001

2

≤ 10692 > 10692

Node 3 (n = 160)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
A

ut
oG

lu
on

(H
Q

IL
)

au
to

sk
le

ar
n

co
ns

ta
nt

pr
ed

ic
to

r
fla

m
l

G
A

M
A

(B
)

H
2O

A
ut

oM
L

lig
ht

au
to

m
l

M
LJ

A
R

(B
)

M
LJ

A
R

(P
)

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.24
Node 4 (n = 120)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
A

ut
oG

lu
on

(H
Q

IL
)

au
to

sk
le

ar
n

co
ns

ta
nt

pr
ed

ic
to

r
fla

m
l

G
A

M
A

(B
)

H
2O

A
ut

oM
L

lig
ht

au
to

m
l

M
LJ

A
R

(B
)

M
LJ

A
R

(P
)

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.24

Node 5 (n = 50)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
A

ut
oG

lu
on

(H
Q

IL
)

au
to

sk
le

ar
n

co
ns

ta
nt

pr
ed

ic
to

r
fla

m
l

G
A

M
A

(B
)

H
2O

A
ut

oM
L

lig
ht

au
to

m
l

M
LJ

A
R

(B
)

M
LJ

A
R

(P
)

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.24

(a) Regression datasets, 1h.

number.of.instances
p < 0.001

1

≤ 39644 > 39644

number.of.features
p < 0.001

2

≤ 13 > 13

Node 3 (n = 70)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
A

ut
oG

lu
on

(H
Q

IL
)

au
to

sk
le

ar
n

co
ns

ta
nt

pr
ed

ic
to

r
fla

m
l

G
A

M
A

(B
)

H
2O

A
ut

oM
L

lig
ht

au
to

m
l

M
LJ

A
R

(B
)

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.25
Node 4 (n = 190)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
A

ut
oG

lu
on

(H
Q

IL
)

au
to

sk
le

ar
n

co
ns

ta
nt

pr
ed

ic
to

r
fla

m
l

G
A

M
A

(B
)

H
2O

A
ut

oM
L

lig
ht

au
to

m
l

M
LJ

A
R

(B
)

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.25

Node 5 (n = 70)

A
ut

oG
lu

on
(B

)
A

ut
oG

lu
on

(H
Q

)
A

ut
oG

lu
on

(H
Q

IL
)

au
to

sk
le

ar
n

co
ns

ta
nt

pr
ed

ic
to

r
fla

m
l

G
A

M
A

(B
)

H
2O

A
ut

oM
L

lig
ht

au
to

m
l

M
LJ

A
R

(B
)

R
an

do
m

Fo
re

st
TP

O
T

Tu
ne

dR
an

do
m

Fo
re

st

0

0.25

(b) Regression datasets, 4h.

Figure 12: Regression datasets, 1h and 4h.
53

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

Appendix C. Software

This appendix contains additional details about the developed and used software.

C.1 Architecture Overview

Figure 13 shows the architecture and information flow when running the benchmarking tool in the setup
used in the experiments for this paper. The dotted lines indicate calls (communication) whereas the solid
lines indicate transfer of files. In this paper we distribute our workload to AWS EC2 containers which run
experiments within a docker environment.

The experiments are initiated from a ‘local’ machine, shown enclosed in a blue rectangle in the bottom.
This local instantiation first reads information from a local configuration file and the command line, after
which it uses boto3 to connect to AWS. It uploads local files required for the experiments, such as the
configuration files, to an S3 bucket accessible by the EC2 instances, deploys the jobs to EC2 instances, and
tracks the instance status through CloudWatch.

The EC2 instance then installs the specified version of the benchmarking tool (here of type m5.2xlarge),
retrieves the user configuration from the S3 bucket, the specified docker image from the docker hub, and
the dataset (task) from OpenML. The experiment is then run in a docker container (which in turn uses the
benchmarking software in ‘local’ mode) which has the benefits of reproducibility of the software stack and
requiring much less time than installing the framework from scratch.

After the experiment has completed, results are uploaded to an S3 bucket and the EC2 instance termi-
nates. The local machine will observe this shutdown and subsequently fetch the downloaded results from
the S3 bucket.

As you can see, with this setup there are almost no requirements to the local machine. Provided the
docker images are built and published, the specified benchmark tool version is available online and OpenML
is used, the only data transfer between the local machine and the cloud is the upload of configuration files
and the download of results.

C.2 Framework Versions

Experimental results in this paper are mostly from the latest version of each AutoML framework as of early
June 2023. Our original submission contained results from frameworks as of September 2021. Because of
the delay between our 2021 experiments and submission as well as the delay between our submission and the
reviews, and the additional presets we wanted to evaluate, we felt it best to redo our all of our experimental
evaluations to reflect a more recent state of the AutoML frameworks. However, because of budget constraints
we could not re-evaluate everything so we chose to re-use some of our old experimental results instead. In
the text, these results are denoted by an asterisk (*). We only used old data for frameworks which did not
have many updates between the two experimental evaluations.

Below are the exact versions of the frameworks used in both the 2021 and 2023 evaluations. Presets with
a

′23 are only evaluated in 2023. The specific version number of each framework can be seen in Table 16.
For each framework, the latest available version as of the 2nd of April 2024 is also shown.

C.2.1 AutoGluon

With the ’best quality’ preset, the models used in the final ensembles are the same ones created to produce
out-of-bag predictions during the optimization step. This means that the same algorithm and configuration
is represented multiple times, but trained on different subsets of the training data. For the ‘high quality’
preset, instead of using these multiple models a single model for the given algorithm and configuration is
trained instead. This typically results in lower predictive performance, but faster inference times. When the
‘limited inference’ constraint is applied, first all models which have too slow inference time are discarded,
but otherwise the procedure continues as normal.

AUTOGLUON’s ‘high quality’ presets execute a post-processing step, i.e., refitting the models, after search
regardless of elapsed time. Because this possible time constraint violation is by design, we agreed with the
authors to we reduce the time constraint communicated to the framework for those presets by 10%. With
this adjustment, we expected the final training time to observe our time constraints better. For NAIVEAUTOML
we disable early-stopping as detailed in Appendix E.

54

AMLB: an AutoML Benchmark

Figure 13: Architecture Overview of the AWS+docker mode, as used for this paper

C.2.2 TPOT

TPOT requires encoded data to function. The AutoML benchmark provides this encoded data, but the time
to encode the data is not include in training time or inference time measurements. For this reason, TPOT’s
inference time is not reported on in this paper.

55

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

framework 2021 2023 latest notes

AUTOGLUON 0.3.1 0.8.0 1.0.0 ‘best quality’ (B),

’high quality’
′23 (HQ), and

’HQ with limited inference time’
′23 (HQIL)

AUTO-SKLEARN 0.14.0 0.15.0 0.15.0
AUTO-SKLEARN 2 0.14.0 0.15.0 0.15.0
FLAML 0.6.2 1.2.4 2.1.2
GAMA 21.0.1 23.0.0 23.0.0 ‘performance’ preset
H2O AUTOML 3.34.0.1 3.40.0.4 3.46.0.1
LIGHTAUTOML 0.2.16 0.3.7.3 0.3.8.1

MLJAR 0.11.0 0.11.5 1.1.6 ‘compete’ and ’perform’
′23 preset

NAIVEAUTOML - 0.0.27 0.0.27
TPOT 0.11.7 0.12.0 0.12.2

Table 16: Used AutoML framework versions in the experiments.

56

AMLB: an AutoML Benchmark

implementation memory timeout
Error Type

0

25

50

75

100

125

150

175
Co

un
t

classification 1 hour
classification 4 hours
regression 1 hour
regression 4 hours

(a) Error count by category and time constraint.

data implementation memory
Error Type

1

4

Du
ra

tio
n

(h
ou

rs
)

classification 1 hour
classification 4 hours
regression 1 hour
regression 4 hours

(b) Distribution of when errors occurred.

Figure 14: Figure denoting for each benchmarking suite and time constraint how often
errors occurred (on the left) and when (on the right).

Appendix D. AutoML Framework Errors

This appendix contains additional information on the AutoML framework errors encountered while running
the experiments. In the results below, the ‘fixed’ category from Section 6.4 is simply included in the
‘implementation’ error category. More information on this particular error can be found later in section D.3
of this appendix.

Figure 14a shows the number of errors encountered across different time constraints and benchmarking
suites. In this comparison, we only report on frameworks which had both a one hour and four hour evaluation
in 2023. As mentioned in Section 6.4, the amount of memory an timeout errors increase with higher time
budgets. However, the number of implementation errors decrease, lowering the total amount of errors
encountered overall. We suspect a number of implementation errors on the one hour constraints are due
to the framework aborting its pipeline optimization early to adhere to the time constraint while not being
prepared to produce predictions yet. Figure 14b, which shows the time at which various errors occurred,
supports this hypothesis for the one hour classification tasks where the majority of implementation errors
occur. With a more generous time budget, the AutoML framework might be able to fall back on already
optimized models, which could explain why we see fewer implementation errors under a larger time constraint.

D.1 Class Imbalance

The two classification tasks with a large amount of failures despite being small are ‘yeast’ and ‘wine-quality-
white’, which feature a minority class with only 5 instances. This means that within the 10-fold cross-
validation we perform in our experiments, either 4 or 5 of those instances are available in the training splits.
We see that only in the case where one of those samples is in the test set failures occur. The exact error
message differs per framework, though they indicate that evaluating pipelines fails. This is likely due to e.g.,
using 5-fold cross-validation out of the box. Failure on these specific datasets (and folds) is only observed
for GAMA, LightAutoML, and TPOT.

D.2 MLJarSupervised

MLJarSupervised(B) the most ‘implementation errors’, more than twice the next framework. Of its 284
errors, 256 failures are caused by variations of the following three unique errors:

25 times [’Ensemble prediction 0 for neg 1 for pos’, . . .,
’2 DecisionTree prediction 0 for neg 1 for pos’] not in index"

149 times catboost/libs/data/model dataset compatibility.cpp:81:

At position 6 should be feature with name 60 NeuralNetwork prediction 0 for 1 1 for 2

(found 60 NeuralNetwork prediction).

57

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

82 times The feature names should match those that were passed during fit. Feature names unseen

at fit time:- 100 Xgboost prediction-. . .

This is specific to MLJarSupervised. While we can only guess, we assume it is related to the extensive
AutoML pipeline MLJarSupervised has. It includes 10 different steps, including three steps for feature
generation and selection and three steps for ensembling and stacking. These steps are not turned on by
default23. Since these three errors only occur in MLJARSupervised in ‘compete’ mode and not in ‘performance’
mode, it likely stems from the ensembling step, which is only used in ‘compete’.

D.3 AutoGluon

In the version of AUTOGLUON(HQIL) that we benchmarked (0.8.0), there was a bug in the newly added model
calibration which made it crash on some tasks (and only under one hour constraints). However, this bug has
since been fixed. We also confirmed that in the version with the fix, AUTOGLUON(HQIL) performs very similar
to the AUTOGLUON(HQ) of version 0.8.0. Because the bug had been fixed and a very accurate imputation
strategy was available, we found it more reasonable to impute missing values of AUTOGLUON(HQIL) which
were specifically caused by this bug with values obtained by AUTOGLUON(HQ) instead.

23. https://supervised.mljar.com/features/modes/

58

https://supervised.mljar.com/features/modes/

AMLB: an AutoML Benchmark

Appendix E. Naive AutoML

NAIVEAUTOML is introduced as a baseline to compare AutoML frameworks to (Mohr and Wever, 2023). It
designs the machine learning pipeline one step at a time in sequence, ignoring the fact that better performance
may be obtained by performing joint algorithm selection and hyperparameter optimization over the whole
machine learning pipeline at once. It was not designed to find the best possible model, but instead to provide
an adequate model fast. To this end, it employs an aggressive early-stopping heuristic.

We developed the NAIVEAUTOML integration together with the framework authors. We changed a few
hyperparameters from their default configuration in order to disable NAIVEAUTOML’s early stopping. This
allows for comparisons of models produced under similar time constraints. The integration was developed
with version 0.0.16, which proved too unstable to benchmark. The experiments in this appendix ran on
version 0.0.27. We changed the following hyperparameters from their default configuration:

• MAX HPO ITERATIONS defines after how many hyperparameter optimization iterations of no improve-
ment NAIVEAUTOML should stop. The default is 100, but we effectively disable early stopping by setting
it to 1010 iterations.

• EXECUTION TIMEOUT defines how long a single evaluation at any step in the process may take (such as
evaluating a random forest model). The default was set to 10 seconds in version 0.0.16, which is too
short to evaluate models on larger datasets, so we set it to 5% of the total allowed time (that is, 3
minutes for a 1 hour timeout). A later version of NAIVEAUTOML changed the default to 5 minutes, but
we were not aware of this change and the integration script was not changed to reflect that. As we
will see below, the 5% limit was too strict.

We evaluated NAIVEAUTOML on a one hour budget for both the classification and regression benchmark
suites. Figure 15 shows NAIVEAUTOML achieving poor performance compared to other AutoML frameworks.
This low performance contrasts the evaluation by Mohr and Wever (2023), where it achieves performance
similar to AUTO-SKLEARN.

103 104

median rows per second

0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n

sc
al

ed
 p

er
fo

rm
an

ce

binary classification 1 hour

103 104

median rows per second

0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n

sc
al

ed
 p

er
fo

rm
an

ce

multiclass classification 1 hour

103 104

median rows per second

0.2

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n

sc
al

ed
 p

er
fo

rm
an

ce

regression 1 hour framework
AutoGluon(B)
AutoGluon(HQ)
AutoGluon(HQIL)
GAMA(B)
H2OAutoML
MLJAR(B)
MLJAR(P)
NaiveAutoML
RandomForest
autosklearn
flaml
lightautoml

Figure 15: Performance and inference time trade-off as in Figure 7 of Section 6.3, but with
NAIVEAUTOML results included. NAIVEAUTOML has bad performance but fast inference
speeds due to a bad configuration.

This can be entirely explained due to the low EXECUTION TIMEOUT. In many cases, NAIVEAUTOML fails to
evaluate good baseline models such as random forests, and instead only manages to evaluate models such
as Gaussian Naive Bayes which have fast train and inference times but relatively poor performance. The
experiment logs and framework authors confirmed our findings, and explained that their original work also
used a larger EXECUTION TIMEOUT. If we had set our EXECUTION TIMEOUT to a fixed 10 minutes (instead of
3), we might have observed a similar performance to that reported by Mohr and Wever (2023).

The framework authors state that they plan to integrate their work on learning curve cross-validation
(LCCV, Mohr and van Rijn (2023)), which would provide automatic scaling of their evaluation resources
and make setting EXECUTION TIMEOUT obsolete. We hope to evaluate this future version of NAIVEAUTOML and
publish the results online.

59

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

References

Sebastian Pineda Arango, Hadi S. Jomaa, Martin Wistuba, and Josif Grabocka. HPO-B: A Large-Scale
Reproducible Benchmark for Black-Box HPO based on OpenML. arXiv:2106.06257 [cs], 2021.

A. Balaji and A. Allen. Benchmarking automatic machine learning frameworks. CoRR, abs/1808.06492,
2018. URL http://arxiv.org/abs/1808.06492.

James Bergstra, Rémi Bardenet, B Kégl, and Y Bengio. Implementations of algorithms for hyper-parameter
optimization. In NIPS Workshop on Bayesian optimization, page 29, 2011.

James Bergstra, Daniel Yamins, and David Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In International conference on machine
learning, pages 115–123. PMLR, 2013.

James Bergstra, Brent Komer, Chris Eliasmith, and David Warde-Farley. Preliminary Evaluation of Hyper-
opt Algorithms on HPOLib. In ICML Workshop on Automatic Machine Learning, 2014.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel Lang,
Rafael Gomes Mantovani, Jan N van Rijn, and Joaquin Vanschoren. Openml benchmarking suites.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection from libraries
of models. In Proceedings of the twenty-first international conference on Machine learning, page 18, 2004.

Rich Caruana, Art Munson, and Alexandru Niculescu-Mizil. Getting the most out of ensemble selection. In
Sixth International Conference on Data Mining (ICDM’06), pages 828–833. IEEE, 2006.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR, abs/1603.02754, 2016.
URL http://arxiv.org/abs/1603.02754.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197, 2002.

J. Demšar. Statistical Comparisons of Classifiers over Multiple Data Sets. The Journal of Machine Learning
Research, 7:1–30, 2006.

Iddo Drori, Yamuna Krishnamurthy, Remi Rampin, Raoni Lourenço, Jorge One, Kyunghyun Cho, Claudio
Silva, and Juliana Freire. Alphad3m: Machine learning pipeline synthesis. In 5th ICML Workshop on
Automated Machine Learning (AutoML), 2018.

K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos, and K. Leyton-Brown. Towards an
Empirical Foundation for Assessing Bayesian Optimization of Hyperparameters. In NIPS Workshop on
Bayesian Optimization in Theory and Practice, 2013.

Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, René Sass, Aaron Klein, Noor
Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of reproducible multi-fidelity bench-
mark problems for hpo, 2021.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander Smola.
Autogluon-tabular: Robust and accurate automl for structured data, 2020.

Kutluhan Erol, James A Hendler, and Dana S Nau. Umcp: A sound and complete procedure for hierarchical
task-network planning. In Aips, volume 94, pages 249–254, 1994.

Hugo Jair Escalante, Manuel Montes, and Luis Enrique Sucar. Particle swarm model selection. Journal of
Machine Learning Research, 10(2), 2009.

60

http://arxiv.org/abs/1808.06492
http://arxiv.org/abs/1603.02754

AMLB: an AutoML Benchmark

Manuel J.A. Eugster, Friedrich Leisch, and Carolin Strobl. (psycho-)analysis of benchmark experiments.
Comput. Stat. Data Anal., 71(C):986–1000, mar 2014. ISSN 0167-9473.

Mauricio Ferreira, Rafaela Ventorim, Eduardo Almeida, Sabrina Silveira, and Wendel Silveira. Protein
abundance prediction through machine learning methods. Journal of molecular biology, 433(22):167267,
2021.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and robust
automated machine learning. In Advances in Neural Information Processing Systems, pages 2962–2970,
2015a.

Matthias Feurer, Jost Springenberg, and Frank Hutter. Initializing bayesian hyperparameter optimization
via meta-learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015b.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Practical
automated machine learning for the automl challenge 2018. In International Workshop on Automatic
Machine Learning at ICML, pages 1189–1232, 2018.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter. Auto-sklearn
2.0: Hands-free automl via meta-learning, 2020. URL https://arxiv.org/abs/2007.04074.

Sebastian Felix Fischer, Matthias Feurer, and Bernd Bischl. OpenML-CTR23–a curated tabular regression
benchmarking suite. In AutoML Conference 2023 (Workshop), 2023.

P. Gijsbers, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Vanschoren. An open source automl bench-
mark. arXiv preprint arXiv:1907.00909 [cs.LG], 2019. URL https://arxiv.org/abs/1907.00909. Ac-
cepted at AutoML Workshop at ICML 2019.

Pieter Gijsbers and Joaquin Vanschoren. GAMA: A General Automated Machine Learning Assistant. In
Yuxiao Dong, Georgiana Ifrim, Dunja Mladenić, Craig Saunders, and Sofie Van Hoecke, editors, Machine
Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track, pages 560–564,
Cham, 2021. Springer International Publishing. ISBN 978-3-030-67670-4.

Yolanda Gil, Ke-Thia Yao, Varun Ratnakar, Daniel Garijo, Greg Ver Steeg, Pedro Szekely, Rob Brekelmans,
Mayank Kejriwal, Fanghao Luo, and I-Hui Huang. P4ML: A phased performance-based pipeline planner
for automated machine learning. In 5th ICML Workshop on Automated Machine Learning (AutoML),
2018.

Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Sergio Escalera, Zhengying Liu,
Damir Jajetic, Bisakha Ray, Mehreen Saeed, Michèle Sebag, et al. Analysis of the automl challenge
series. Automated Machine Learning, page 177, 2019.

H2O.ai. H2O: Scalable Machine Learning Platform, 2013. URL https://github.com/h2oai/h2o-3. First
version of H2O was released in 2013.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The weka data mining
software: An update. SIGKDD Explor. Newsl., 11(1):10–18, November 2009. ISSN 1931-0145. doi:
10.1145/1656274.1656278. URL http://doi.acm.org/10.1145/1656274.1656278.

Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff. Coco: A
platform for comparing continuous optimizers in a black-box setting. Optimization Methods and Software,
36(1):114–144, 2021.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In International conference on learning and intelligent optimization, pages 507–
523. Springer, 2011.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors. Automated Machine Learning - Methods,
Systems, Challenges. Springer, 2019.

61

https://arxiv.org/abs/2007.04074
https://arxiv.org/abs/1907.00909
https://github.com/h2oai/h2o-3
http://doi.acm.org/10.1145/1656274.1656278

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter opti-
mization. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of Machine Learning Re-
search, pages 240–248, Cadiz, Spain, 09–11 May 2016. PMLR. URL http://proceedings.mlr.press/

v51/jamieson16.html.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture search system. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 1946–1956, 2019.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing
systems, 30:3146–3154, 2017.

Aaron Klein, Zhenwen Dai, Frank Hutter, Neil Lawrence, and Javier Gonzalez. Meta-surrogate bench-
marking for hyperparameter optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/

0668e20b3c9e9185b04b3d2a9dc8fa2d-Paper.pdf.

Helena Kotthaus, Ingo Korb, Michel Lang, Bernd Bischl, Jörg Rahnenführer, and Peter Marwedel. Runtime
and memory consumption analyses for machine learning r programs. Journal of Statistical Computation
and Simulation, 85(1):14–29, 2015. doi: 10.1080/00949655.2014.925192.

John R Koza. Genetic programming: on the programming of computers by means of natural selection,
volume 1. MIT press, 1992.

Trang T Le, Weixuan Fu, and Jason H Moore. Scaling tree-based automated machine learning to biomedical
big data with a dataset selector. BioRxiv, page 502484, 2018.

Erin LeDell and Sebastien Poirier. H2O AutoML: Scalable automatic machine learning. In 7th ICML work-
shop on automated machine learning, 2020. URL http://docs.h2o.ai/h2o/latest-stable/h2o-docs/

automl.html.

Robert I McKay, Nguyen Xuan Hoai, Peter Alexander Whigham, Yin Shan, and Michael O’neill. Grammar-
based genetic programming: a survey. Genetic Programming and Evolvable Machines, 11:365–396, 2010.

F. Mohr, M. Wever, and E. Hüllermeier. Ml-plan: Automated machine learning via hierarchical planning.
Machine Learning, 107(8):1495–1515, Sep 2018. ISSN 1573-0565. doi: 10.1007/s10994-018-5735-z. URL
https://doi.org/10.1007/s10994-018-5735-z.

Felix Mohr and Jan N van Rijn. Fast and informative model selection using learning curve cross-validation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Felix Mohr and Marcel Wever. Naive automated machine learning. Machine Learning, 112(4):1131–1170,
2023.

Takeru Ohta and Hiroyuki Vincent Yamazaki. Kurobako. https://github.com/optuna/kurobako, 2022.

Randal S. Olson and Jason H. Moore. Tpot: A tree-based pipeline optimization tool for automating machine
learning. In Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, editors, Proceedings of the Workshop
on Automatic Machine Learning, volume 64 of Proceedings of Machine Learning Research, pages 66–74,
New York, New York, USA, 24 Jun 2016. PMLR. URL http://proceedings.mlr.press/v64/olson_

tpot_2016.html.

Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. Evaluation of a tree-based
pipeline optimization tool for automating data science. CoRR, abs/1603.06212, 2016. URL http://

arxiv.org/abs/1603.06212.

62

http://proceedings.mlr.press/v51/jamieson16.html
http://proceedings.mlr.press/v51/jamieson16.html
https://proceedings.neurips.cc/paper/2019/file/0668e20b3c9e9185b04b3d2a9dc8fa2d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0668e20b3c9e9185b04b3d2a9dc8fa2d-Paper.pdf
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://doi.org/10.1007/s10994-018-5735-z
https://github.com/optuna/kurobako
http://proceedings.mlr.press/v64/olson_tpot_2016.html
http://proceedings.mlr.press/v64/olson_tpot_2016.html
http://arxiv.org/abs/1603.06212
http://arxiv.org/abs/1603.06212

AMLB: an AutoML Benchmark

Randal S Olson, William La Cava, Patryk Orzechowski, Ryan J Urbanowicz, and Jason H Moore. Pmlb:
a large benchmark suite for machine learning evaluation and comparison. BioData mining, 10(1):1–13,
2017.

Preston Parry. auto ml. https://github.com/ClimbsRocks/auto_ml, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. Journal of machine learning
research, 12(Oct):2825–2830, 2011.

Aleksandra P lońska and Piotr P loński. Mljar: State-of-the-art automated machine learning framework for
tabular data. version 0.10.3, 2021. URL https://github.com/mljar/mljar-supervised.

Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. Tunability: Importance of Hyperparameters of
Machine Learning Algorithms. Journal of Machine Learning Research, 20(53):1–32, 2019. ISSN 1533-7928.
URL http://jmlr.org/papers/v20/18-444.html.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
Catboost: Unbiased boosting with categorical features. In Proceedings of the 32nd International Confer-
ence on Neural Information Processing Systems, NIPS’18, page 6639–6649, Red Hook, NY, USA, 2018.
Curran Associates Inc.

Herilalaina Rakotoarison, Marc Schoenauer, and Michèle Sebag. Automated machine learning with monte-
carlo tree search. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intel-
ligence, pages 3296–3303, 2019.

Matthias Reif, Faisal Shafait, and Andreas Dengel. Meta-learning for evolutionary parameter optimization
of classifiers. Machine learning, 87(3):357–380, 2012.

Joseph D Romano, Trang T Le, Weixuan Fu, and Jason H Moore. Tpot-nn: augmenting tree-based auto-
mated machine learning with neural network estimators. Genetic Programming and Evolvable Machines,
22(2):207–227, 2021.

Robin Schmucker, Michele Donini, Muhammad Bilal Zafar, David Salinas, and Cédric Archambeau. Multi-
objective asynchronous successive halving, 2021.

Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Lassobench: A high-dimensional
hyperparameter optimization benchmark suite for lasso. arXiv preprint arXiv:2111.02790, 2021.

Xingjian Shi, Jonas Mueller, Nick Erickson, Mu Li, and Alexander J Smola. Benchmarking multimodal
automl for tabular data with text fields. arXiv preprint arXiv:2111.02705, 2021.

Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and Frank Hutter. Nas-bench-301
and the case for surrogate benchmarks for neural architecture search. CoRR, abs/2008.09777, 2020. URL
https://arxiv.org/abs/2008.09777.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25, 2012.

Andrew Sohn, Randal S Olson, and Jason H Moore. Toward the automated analysis of complex diseases in
genome-wide association studies using genetic programming. In Proceedings of the genetic and evolutionary
computation conference, pages 489–496, 2017.

Carolin Strobl, Florian Wickelmaier, and Achim Zeileis. Accounting for individual differences in bradley-
terry models by means of recursive partitioning. Journal of Educational and Behavioral Statistics, 36(2):
135–153, 2011. doi: 10.3102/1076998609359791. URL https://doi.org/10.3102/1076998609359791.

J. Thomas, S. Coors, and B. Bischl. Automatic gradient boosting. In International Workshop on Automatic
Machine Learning at ICML, 2018.

63

https://github.com/ClimbsRocks/auto_ml
https://github.com/mljar/mljar-supervised
http://jmlr.org/papers/v20/18-444.html
https://arxiv.org/abs/2008.09777
https://doi.org/10.3102/1076998609359791

Gijsbers, Bueno, Coors, LeDell, Poirier, Thomas, Bischl, and Vanschoren

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined selection and hyper-
parameter optimization of classification algorithms. In Proc. of KDD-2013, pages 847–855, 2013.

Anh Truong, Austin Walters, Jeremy Goodsitt, Keegan E. Hines, C. Bayan Bruss, and Reza Farivar. Towards
Automated Machine Learning: Evaluation and Comparison of AutoML Approaches and Tools. In 31st
IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019, Portland, OR, USA,
November 4-6, 2019, pages 1471–1479. IEEE, 2019. doi: 10.1109/ICTAI.2019.00209.

Ryan Turner. Uber. bayesopt benchmark. https://github.com/uber/bayesmark, 2022.

Anton Vakhrushev, Alexander Ryzhkov, Maxim Savchenko, Dmitry Simakov, Rinchin Damdinov, and
Alexander Tuzhilin. Lightautoml: Automl solution for a large financial services ecosystem. arXiv preprint
arXiv:2109.01528, 2021.

Koen Van der Blom, Alex Serban, Holger Hoos, and Joost Visser. Automl adoption in ml software. In 8th
ICML Workshop on Automated Machine Learning (AutoML), 2021.

Tony Van Gestel, Johan AK Suykens, Bart Baesens, Stijn Viaene, Jan Vanthienen, Guido Dedene, Bart
De Moor, and Joos Vandewalle. Benchmarking least squares support vector machine classifiers. Machine
learning, 54(1):5–32, 2004.

Jan N Van Rijn and Frank Hutter. Hyperparameter importance across datasets. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2367–2376,
2018.

J. Vanschoren, J. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in machine learning.
SIGKDD Explor. Newsl., 15(2):49–60, 2014.

Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. Flaml: A fast and lightweight automl library.
In MLSys, 2021.

Hilde JP Weerts, Andreas C Mueller, and Joaquin Vanschoren. Importance of tuning hyperparameters of
machine learning algorithms. arXiv preprint arXiv:2007.07588, 2020.

M. Wever, A. Tornede, F. Mohr, and E. Hullermeier. AutoML for Multi-Label Classification: Overview
and Empirical Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–19,
2021. doi: 10.1109/TPAMI.2021.3051276.

Qingyun Wu, Chi Wang, and Silu Huang. Frugal optimization for cost-related hyperparameters. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 10347–10354, 2021.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S Pappu, Karl
Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning. Chemical science,
9(2):513–530, 2018.

C. Yang, Y. Akimoto, D.W. Kim, and M. Udell. OBOE: collaborative filtering for automl initialization.
CoRR, abs/1808.03233, 2018. URL http://arxiv.org/abs/1808.03233.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. NAS-bench-
101: Towards reproducible neural architecture search. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 7105–7114, Long Beach, California, USA, 09–15 Jun 2019. PMLR.
URL http://proceedings.mlr.press/v97/ying19a.html.

Achim Zeileis and Kurt Hornik. Generalized m-fluctuation tests for parameter instability. Statistica
Neerlandica, 61(4):488–508, 2007. doi: https://doi.org/10.1111/j.1467-9574.2007.00371.x. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9574.2007.00371.x.

64

https://github.com/uber/bayesmark
http://arxiv.org/abs/1808.03233
http://proceedings.mlr.press/v97/ying19a.html
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9574.2007.00371.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9574.2007.00371.x

AMLB: an AutoML Benchmark

Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shot1: Benchmarking and dissecting one-shot
neural architecture search. CoRR, abs/2001.10422, 2020. URL https://arxiv.org/abs/2001.10422.

Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch tabular: Multi-fidelity metalearning for
efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 3079
– 3090, 2021. also available under https://arxiv.org/abs/2006.13799.

Marc-André Zöller and Marco F. Huber. Benchmark and survey of automated machine learning frameworks.
J. Artif. Intell. Res., 70:409–472, 2021. doi: 10.1613/jair.1.11854.

65

https://arxiv.org/abs/2001.10422

	Introduction
	The Need for Standardized Benchmarking
	Our Contributions

	Related Literature
	Evaluation of Automated Machine Learning Frameworks
	Other (Benchmark) Literature

	AutoML Frameworks
	Integrated Frameworks
	AutoGluon-Tabular
	auto-sklearn
	FLAML
	GAMA
	H2O AutoML
	LightAutoML
	MLJAR
	Naive AutoML
	TPOT

	Baselines

	Software
	Extensible Framework Structure
	Extensible Benchmarks
	Using the Software
	Commands

	Benchmark Design
	Benchmark Suites
	Data Sets
	Performance Metrics
	Missing Values In Experimental Results

	Experimental Setup
	Hardware
	Framework Configuration

	Limitations
	Limitations of the Design
	Limitations of the Experiments
	Meta-learning

	Overfitting the Benchmark

	Results
	Predictive Performance
	Bradley-Terry Trees
	Model Accuracy vs. Inference Time Trade-offs
	Observed AutoML Failures

	Conclusion
	Limitations
	Future Work
	Parting Words

	OpenML Benchmark Suites
	Results
	BT-Trees

	Software
	Architecture Overview
	Framework Versions
	AutoGluon
	TPOT

	AutoML Framework Errors
	Class Imbalance
	MLJarSupervised
	AutoGluon

	Naive AutoML

