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Abstract

Black-box variational inference (BBVI) now sees widespread use in machine learning and
statistics as a fast yet flexible alternative to Markov chain Monte Carlo methods for ap-
proximate Bayesian inference. However, stochastic optimization methods for BBVI remain
unreliable and require substantial expertise and hand-tuning to apply effectively. In this
paper, we propose robust and automated black-box VI (RABVI), a framework for improving
the reliability of BBVI optimization. RABVI is based on rigorously justified automation
techniques, includes just a small number of intuitive tuning parameters, and detects inaccu-
rate estimates of the optimal variational approximation. RABVI adaptively decreases the
learning rate by detecting convergence of the fixed–learning-rate iterates, then estimates
the symmetrized Kullback–Leibler (KL) divergence between the current variational approx-
imation and the optimal one. It also employs a novel optimization termination criterion
that enables the user to balance desired accuracy against computational cost by comparing
(i) the predicted relative decrease in the symmetrized KL divergence if a smaller learning
were used and (ii) the predicted computation required to converge with the smaller learn-
ing rate. We validate the robustness and accuracy of RABVI through carefully designed
simulation studies and on a diverse set of real-world model and data examples.

Keywords: black-box variational inference, symmetrized KL divergence, stochastic op-
timization, fixed-learning rate

1. Introduction

A core strength of the Bayesian approach is that it is conceptually straightforward to carry
out inference in arbitrary models, which enables the user to employ whatever model is most
appropriate for the problem at hand. The flexibility and uncertainty quantification provided
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by Bayesian inference have led to its widespread use in statistics (Robert, 2007; Gelman
et al., 2013) and machine learning (Bishop, 2006; Murphy, 2012), including in deep learning
(for example, Kingma and Welling, 2014; Rezende et al., 2014; Gal and Ghahramani, 2016;
Maddox et al., 2019; Saatchi and Wilson, 2017; Johnson et al., 2016; Burda et al., 2016).
Using Bayesian methods in practice, however, typically requires using approximate inference
algorithms to estimate quantities of interest such as posterior functionals (for example,
means, covariances, predictive distributions, and tail probabilities) and measures of model
fit (for example, marginal likelihoods and cross-validated predictive accuracy). Therefore, a
core challenge in modern Bayesian statistics is the development of general-purpose (or black-
box ) algorithms that can accurately approximate these quantities for whatever model the
user chooses. In machine learning, rather than using Markov chain Monte Carlo (MCMC),
black-box variational inference (BBVI) has become the method of choice because of its
scalability and wide-applicability (Wainwright and Jordan, 2008; Blei et al., 2017; Kingma
and Welling, 2014; Rezende et al., 2014; Burda et al., 2016). BBVI is implemented in
many software packages for general-purpose inference such as Stan, Pyro, PyMC3, and
TensorFlow Probability, which have seen widespread adoption by applied data analysts,
statisticians, and data scientists.

Variational inference methods aim to minimize a measure of discrepancy between a
parameterized family of distributions and the posterior distribution, with the Kullback–
Leibler divergence being the canonical choice of discrepancy. Conventional approaches to
variational inference leverage conditional conjugacy and other model-specific structure to
derive optimization algorithms. BBVI, on the other hand, uses stochastic optimization to
avoid the need for model-specific derivations, thereby significantly broadening the appli-
cability of variational methods. Ensuring the efficiency and reliability of the BBVI opti-
mization requires careful selection of optimization method and the stochastic estimator of
the discrepancy gradient. For example, using adaptive optimization procedures like Adam,
RMSProp, and Adagrad can ensure stability (Hinton and Tieleman, 2012; Kingma and Ba,
2015; Duchi et al., 2011). Due to its relatively small variance, the most common gradient
estimator is the reparameterization gradient (Salimans and Knowles, 2013; Kingma and
Welling, 2014; Rezende et al., 2014; Ruiz et al., 2016; Bamler et al., 2017; Domke, 2019).
However, sometimes alternatives such as the score function gradient are employed (Paisley
et al., 2012; Ranganath et al., 2014). No matter the choice of gradient estimator, various
variance reduction strategies like control variates have been introduced to stabilize and
speed up optimization (Miller et al., 2017; Roeder et al., 2017; Geffner and Domke, 2018,
2020; Boustati et al., 2020; Wang et al., 2023a,b). Recent research has furthered our under-
standing of convergence behavior, tackling theoretical challenges in stochastic optimization
and providing new convergence guarantees (Domke et al., 2023; Kim et al., 2023).

While some recent progress has been made in developing tools for assessing the accuracy
of variational approximations (Yao et al., 2018; Huggins et al., 2020; Wang et al., 2023c),
stochastic optimization methods for BBVI remain unreliable and require substantial hand-
tuning of the number of iterations and optimizer tuning parameters. Moreover, there are
few tools available for determining whether the variational parameters estimated by these
frameworks are close to optimal in any meaningful sense and, if not, how to address the
problem; More iterations? A different learning rate schedule? A smaller initial or final
learning rate? Agrawal et al. (2020) demonstrate the absence of a reliable and coherent
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Figure 1: Schematic of the high-level logic of our proposed robust and automated BBVI
(RABVI) framework.

optimization methodology for BBVI. The authors synthesize and compare recent advances
such as normalizing flows and gradient estimators using 30 benchmarked models. Despite
the fact that these models vary greatly in the complexity and dimensionality of the poste-
riors, Agrawal et al. (2020) run each optimization for a fixed number of iterations (30,000)
and for 5 different step sizes because the existing literature does not provide any com-
pelling guidance for how to automate the choice of step size and reliably determine when
the optimization has converged.

1.1 Contributions

In view of the significant limitations of existing BBVI optimization methodology, in this
paper we aim to provide a practical, cohesive, and theoretically well-grounded optimization
framework for BBVI. To ensure reliability and wide applicability, we develop a framework
that is (1) automated, (2) intuitively adjustable by the user, and (3) robust to failure and
tuning parameter selection. Our approach builds on a recent line of work inspired by Pflug
(1990), which uses a fixed learning rate γ that is adaptively decreased by a multiplicative
factor ρ once the optimization iterates, which form a homogenous Markov chain, have
converged (Chee and Toulis, 2018; Yaida, 2019; Pesme et al., 2020; Chee and Li, 2020;
Zhang et al., 2020; Dhaka et al., 2020). A benefit of this approach is that, for a given
learning rate, a dramatically more accurate estimate of the optimal variational parameter
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(a) nes2000 (b) dogs

Figure 2: Accuracy comparison of variational inference algorithms using two data
sets/models from the posteriordb package (see Section 7.2 for details). Accu-
racy is measured in terms of relative mean error ‖(µ− µ̂)/σ‖2, where µ and σ are,
respectively, the posterior mean and standard deviation vectors and µ̂ is the vari-
ational approximation to µ. The vertical lines indicate the termination points
for RABVI, which uses averaged Adam (see Section 4.3). The fixed-learning
rate algorithms have a learning rate γ and RABVI has a user-specified accuracy
threshold ξ. For SGD exponential decay, we use an initial learning rate of 0.01 for
dogs but a smaller initial learning rate of 0.001 for nes2000 due to optimization
instability.

can be obtained by using iterate averaging (Ruppert, 1988; Polyak and Juditsky, 1992;
Dieuleveut et al., 2020). However, as we have shown in previous work, existing convergence
checks can be unreliable and stop too early (Dhaka et al., 2020). Since the learning rate
is decreased by a constant multiplicative factor, decreasing it too early can slow down the
optimization by an order of magnitude or more. Hence, it is crucial to develop methods that
do not prematurely declare convergence. On the other hand, an optimization framework
must also provide a termination criterion that triggers when it is no longer worthwhile to
decrease the learning rate further, either because the current variational approximation is
sufficiently accurate or because further optimization would be too time-consuming.

The key idea that informs our solutions to these challenges is that we want qγ∗, the target
variational approximation for learning rate γ, to be close to the optimal variational approxi-
mation q∗. We measure closeness in terms of symmetrized Kullback–Leibler (KL) divergence
SKL(q∗, qγ∗) and show that closeness in symmetrized KL divergence can be translated into
bounds on other widely used accuracy metrics like Wasserstein distance (Huggins et al.,
2020; Bolley and Villani, 2005). Figure 1 summarizes our proposed framework, which we
call robust and automated black-box VI (RABVI). The primary contributions of this paper
are in steps 2, 3, and 4. In step 2, to determine convergence at a fixed step size, we build
upon our approach in Dhaka et al. (2020), where we establish that the scale-reduction factor
R̂ (Gelman and Rubin, 1992; Gelman et al., 2013; Vehtari et al., 2021), which is widely used
to determine convergence of Markov chain Monte Carlo algorithms, can be combined with a
Monte Carlo standard error (MCSE) (Geyer, 1992; Vehtari et al., 2021) cutoff to construct
a convergence criteria. We improve upon our previous proposal by:
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(a) adaptively finding the size of the convergence window, which may need to be large for
challenging or high-dimensional distributions over the model parameters, and

(b) developing a new rigorous MCSE cutoff condition that guarantees the symmetrized KL
divergence between qργ∗ and the estimate of qργ∗ obtained via iterate averaging will be
small.

In step 3, we leverage recent results that characterize the bias of the stationary distribution
of stochastic gradient descent (SGD) with a fixed learning rate (Dieuleveut et al., 2020) to
estimate SKL(q∗, qγ∗) and SKL(q∗, qργ∗) without access to q∗. In step 4, these estimates
enable the use of a termination criterion that compares (i) the predicted relative decrease
in the KL divergence if the smaller learning ργ were used and (ii) the predicted computa-
tion required to converge with the learning rate ργ. By trading off between (i) and (ii),
the criterion enables the user to balance desired accuracy against computational cost. Fig-
ure 2 provides an example of the faster convergence, higher accuracy, and greater reliability
achievable using RABVI compared to alternative optimization algorithms and demonstrates
how the user can trade off accuracy and computation by adjusting the accuracy threshold
ξ.

In summary, by drawing on recent developments in theory and methods for fixed–
learning-rate stochastic optimization, tools from MCMC methodology and results from
functional analysis, RABVI delivers a number of benefits:

• it relies on rigorously justified automation techniques, including automatic learning
rate adaptation;

• it has an interpretable, user-adjustable accuracy parameter along with a small number
of additional intuitive tuning parameters;

• it detects inaccurate estimates of the optimal variational approximation; and

• it can flexibly incorporate additional or future methodological improvements related
to variational inference and stochastic optimization.

We demonstrate through synthetic comparisons and real-world model and data examples
that RABVI provides high-quality black-box approximate inferences. We make RABVI
available as part of the open source Python package VIABEL.1

2. Preliminaries and Background

In this section, we briefly review relevant background about Bayesian and variational infer-
ence.

2.1 Bayesian Inference

Let θ ∈ Rd denote a parameter vector of interest, and let x denote observed data. A Bayesian
model consists of a prior density π0(dθ) and a likelihood `(x; θ). Together, the prior and
likelihood define a joint distribution over the data and parameters. The Bayesian posterior

1. https://github.com/jhuggins/viabel
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distribution π is the conditional distribution of θ given fixed data x, with x suppressed in the
notation since it is always fixed throughout this work. To write this conditional, we define
the unnormalized posterior density πu(θ) := `(x; θ)π0(dθ) and the marginal likelihood,
or evidence, Z :=

∫
πu(dθ). Then the posterior is π := πu/Z. Typically, practitioners

report posterior summaries, such as point estimates and uncertainties, rather than the full
posterior. For ϑ ∼ π, typical summaries include the mean mπ := E(ϑ), the covariance
Σπ := E{(ϑ − mπ)(ϑ − mπ)>}, and [a, b] interval probability Iπ,i,a,b := P (ϑi ∈ [a, b]) =
E{1(ϑi ∈ [a, b])}, where 1(C) is equal to one when C is true and zero otherwise.

2.2 Variational Inference

In most Bayesian models, it is infeasible to efficiently compute quantities of interest such
as posterior means, variances, and quantiles. Therefore, one must use an approximate
inference method that produces an approximation q to the posterior π. The summaries of
q may in turn be used as approximations to the summaries of π. One approach, variational
inference, is widely used in machine learning. Variational inference aims to minimize some
measure of discrepancy Dπ(·) over a tractable family Q = {qλ : λ ∈ Rm} of approximating
distributions (Wainwright and Jordan, 2008; Blei et al., 2017):

qλ∗ = arg min
qλ∈Q

Dπ(qλ).

The variational family Q is chosen to be tractable in the sense that, for any q ∈ Q, we are
able to efficiently calculate relevant summaries either analytically or using independent and
identically distributed samples from q.

In variational inference, the standard choice for the discrepancy Dπ(·) is the Kullback–
Leibler (KL) divergence KL(q | π) :=

∫
log (dq/dπ) dq (Bishop, 2006). Note that the KL

divergence is asymmetric in its arguments. The direction Dπ(q) = KL(q | π) is most typical
in variational inference, largely out of convenience; the unknown marginal likelihood Z
appears in an additive constant that does not influence the optimization and computing
gradients require estimating expectations only with respect to q ∈ Q, which is chosen to
be tractable. Minimizing KL(q | π) is equivalent to maximizing the evidence lower bound
(ELBO; Bishop, 2006):

ELBO(q) :=

∫
log

(
dπu

dq

)
dq.

While numerous other divergences have been used in the literature (for example, Hernández-
Lobato et al., 2016; Li and Turner, 2016; Bui et al., 2017; Dieng et al., 2017; Wang et al.,
2018; Wan et al., 2020), we focus on KL(q | π) since it is the most common choice; the
default or only choice in widely used frameworks such as Stan, Pyro, and PyMC3; and
easiest to estimate when using simple Monte Carlo sampling to approximate the gradient
(Dhaka et al., 2021).

2.3 Black-box Variational Inference

Black-box variational inference (BBVI) methods have greatly extended the applicability of
variational inference by removing the need for model-specific derivations (Cornebise et al.,
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2008; Ranganath et al., 2014; Kucukelbir et al., 2015; Titsias and Lázaro-Gredilla, 2014; Mo-
hamed et al., 2020) and enabling the use of more flexible approximation families (Kingma
and Welling, 2014; Salimans et al., 2015; Papamakarios et al., 2021). This flexibility is
a result of using simple Monte Carlo (and automatic differentiation) to approximate the
(gradients of the) expectations that define common choices of the discrepancy objective
(Papamakarios et al., 2021; Mohamed et al., 2020). To estimate the optimal variational
parameter λ∗, BBVI methods commonly use stochastic optimization schemes which at it-
eration k are of the form

λ(k+1) ← λ(k) − γ(k)d(k), (1)

where d(k) ∈ Rm is the descent direction and γ(k) > 0 is the learning rate (also called the
step size). Standard stochastic gradient descent corresponds to taking d(k) = ĝ(k), a (usually
unbiased) stochastic estimate of the gradient g(λ(k)) := ∇λ(k)Dπ(qλ(k)). We are particularly
interested in adaptive stochastic optimization methods (for example, Duchi et al., 2011;
Hinton and Tieleman, 2012; Kingma and Ba, 2015) that use a smoothed and/or rescaled
version of ĝ(k) as the descent direction. For example, RMSProp (Hinton and Tieleman,
2012) tracks an exponential moving average of the squared gradient, ν(k+1) = βν(k) + (1−
β)ĝ(k) � ĝ(k), which is used to rescale the current stochastic gradient: d(k) = ĝ(k+1)/

√
ν(k) .

Or, Adam (Kingma and Ba, 2015) tracks an exponential moving average of the gradient
m(k+1) = αm(k) +(1−α)ĝ(k) as well as the squared gradient ν(k+1) and uses both to rescale

the current stochastic gradient: d(k) = m(k)/
√
ν(k) . The benefits of adaptive algorithms

include that they tend to be more stable and are scale invariant, so the learning rate can
be set in a problem-independent manner.

2.4 Fixed–Learning-Rate Stochastic Optimization

If the learning rate is fixed so that γ(k) = γ, then we can view the iterates λ(1), λ(2), . . .
produced by Eq. (1) as a homogenous Markov chain, which under certain conditions will
have a stationary distribution µγ (Dieuleveut et al., 2020; Gitman et al., 2019; Pflug, 1990;
Chee and Toulis, 2018; Yaida, 2019). Stochastic optimization with a fixed learning rate
exhibits two distinct phases: a transient (a.k.a. warm-up) phase during which iterates make
rapid progress toward the optimum, followed by a stationary (a.k.a. mixing) phase during
which iterates oscillate around the mean of the stationary distribution, λ̄γ :=

∫
λµγ(dλ)

(Gelman and Rubin, 1992).
The mean λ̄γ is a natural target because even if the variance of the individual iterates

λ(k) means they are far from λ∗, λ̄γ can be a much more accurate approximation to λ∗.
For example, the following result quantifies the bias of standard fixed–learning-rate SGD
(Gitman et al. (2019) provide similar results for momentum-based SGD algorithms):

Theorem 1 (Dieuleveut et al. (2020, Theorem 4)) Under regularity conditions on the
objective function and the unbiased stochastic gradients, there exist constant vectors A,B ∈
Rm such that2

λ̄γ − λ∗ = Aγ +Bγ2 + o(γ2) (2)

2. As stated in Dieuleveut et al. (2020), the Bγ2 term is written as O(γ2). However, the fact that this term
is of the form Bγ2 + o(γ2) can be extracted from the proof.
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and a matrix A′ ∈ Rm×m such that∫
(λ− λ∗)(λ− λ∗)> µγ(dλ) = A′γ +O(γ2).

Remark 2 The regularity conditions required by Theorem 1 are mostly mild. For example,
the stochastic gradients must be unbiased and have finite variance that does not grow too
quickly away from the optimum. However, it does require the stronger assumptions that
the objective function is smooth and strongly convex. While these conditions do not hold
globally, we do not view it be a significant problem in practice because near the optimum we
expect the objective function to be locally smooth and strongly convex.

Theorem 1 shows that, at stationarity, a single iterate will satisfy λ(k) − λ∗ = O(γ1/2)
(with high probability) while its expectation will satisfy λ̄γ − λ∗ = O(γ). Therefore, when
the learning rate is small, λ̄γ is a substantially better estimator for λ∗ than λ(k). In practice
the iterate average (that is, the sample mean)

λ̂γ :=
1

kavg

kavg−1∑
k=0

λ(kconv+k) (3)

provides an estimate of λ̄γ , where kconv is the iteration at which the optimization has
reached the stationary phase and kavg is the number of iterations used to compute the
average. Using λ̂γ as an estimate of λ∗ is known as Polyak–Ruppert averaging (Polyak and
Juditsky, 1992; Ruppert, 1988; Bach and Moulines, 2013).

When using iterate averaging, it is crucial to ensure the iterate average accurately ap-
proximates λ̄γ . Considering a stationary Markov chain, we can compute the Monte Carlo
estimate of the mean of the Markov Chain at stationarity. Then the notion of effective
sample size (ESS) aids in quantifying the accuracy of this Monte Carlo estimate. Fur-
ther, the effective sample size can also be used to define the Monte Carlo standard er-
ror (MCSE) when the Markov chain satisfies a central limit theorem. We can efficiently
estimate the ESS and also approximate the MCSE (see Appendix B.1 for details). We

denote the estimates of ESS and MCSE for the ith component using iterates λ
(kconv:k)
i as

ÊSS(λ
(kconv:k)
i ) and M̂CSE(λ

(kconv:k)
i ) respectively. Dhaka et al. (2020) use the conditions

m−1
∑m

i=1 M̂CSE(λ
(kconv:k)
i ) < 0.02 and ÊSS(λ

(kconv:k)
i ) > 20 to determine when to stop

iterate averaging. However, no rigorous justification is given for the MCSE threshold.

2.5 Automatically Scheduling Learning Rate Decreases

A benefit of using a fixed learning rate is that it can be adaptively and automatically
decreased once the iterates reach stationarity. For example, if the initial learning rate is γ0,
after reaching stationarity the learning rate can decrease to γ1 := ργ0, where ρ ∈ (0, 1) is a
user-specified adaptation factor. The process can be repeated: when stationarity is reached
at learning rate γt, the learning rate can decrease to γt+1 := ργt. In this way the learning
rate is not decreased too early (when the iterates are still making fast progress toward the
optimum) or too late (when the accuracy of the iterates is no longer improving). Compare
this adaptive approach to the canonical one of setting a schedule such as γ(k) = 4/(©+k)�,
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which requires the choice of three tuning parameters. These tuning parameters can have a
dramatic effect on the speed of convergence, particularly when λ(0) is far from λ∗.

The question of how to determine when the stationary phase has been reached has a
long history with recent renewed attention (Pesme et al., 2020; Zhang et al., 2020; Chee
and Li, 2020; Lang et al., 2019; Yaida, 2019; Pflug, 1990; Chee and Toulis, 2018; Dhaka
et al., 2020). One line of work (Yaida, 2019; Lang et al., 2019; Zhang et al., 2020) is based
on finding an invariant function that has expectation zero under the stationary distribution
of the iterates, then using a test for whether the empirical mean of the invariant function
is sufficiently close to zero. An alternative approach developed in Dhaka et al. (2020)
makes use of the potential scale reduction factor R̂, perhaps the most widely used MCMC
diagnostic for detecting stationarity (Gelman and Rubin, 1992; Gelman et al., 2013; Vehtari
et al., 2021). The standard approach to computing R̂ is to use multiple Markov chains. If we
have J ≥ 2 chains and K � 1 iterates in each chain, then R̂ := (V̂/Ŵ)1/2, where V̂ and Ŵ
are estimates of, respectively, the between-chain and within-chain variances. In the split-R̂
version, each chain is split into two before carrying out the computation above, which helps
with detecting non-stationarity (Gelman et al., 2013; Vehtari et al., 2021) and allows for use

even when J = 1. Let R̂i(W ) denote the split-R̂ value computed from λ
(k−W+1)
i , . . . , λ

(k)
i ,

the ith dimension of the last W iterates. Dhaka et al. (2020) uses the stationarity condition
maxi R̂i(100) < 1.1,

3. Methodological Criteria

We now summarize our criteria when designing a robust and automatic optimization frame-
work for BBVI.

Robustness. A robust method should not be too sensitive to the choice of tuning param-
eters. It should also work well on a wide range of “typical” problems. To achieve this we
design an adaptive methods for setting parameters (such as the window size for detecting
convergence) that are problem-dependent.

Automation. An automatic method should require minimal input from the user. Any
inputs that are required should be clearly necessary (for example, the model and the data)
or be intuitive to an applied user who is not an expert in variational inference and op-
timization. Therefore, we require the parameters of any adaptation scheme to either be
intuitive or not require adjustment by the user. Examples of intuitive parameters include
the maximum number of iterations, maximum runtime, and, when defined appropriately,
accuracy.

We ensure these criteria are satisfied when designing the two core components of a BBVI
stochastic optimization framework with automated learning rate scheduling:

1. A termination rule for stopping the optimization once the final approximation is
close to the optimal approximation (Section 4).

2. A learning rate scheduler, which must detect stationarity and determine how many
iterates to average before decreasing the learning rate (Section 5).

9
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4. Termination Rule

The development of our termination rule will proceed in three steps. First, we will select an
appropriate discrepancy measure between distributions. Next, we will design an idealized
termination rule based on this discrepancy measure. Finally, we will develop an imple-
mentable version of the idealized termination rule that satisfies the criteria from Section 3.

4.1 Choice of Accuracy Measure

To develop a termination rule, we must specify a measure of how close a variational approx-
imation returned by the optimization algorithm, q̂∗, is to the optimal variational approxi-
mation q∗ := qλ∗ . But the answer to this question depends upon choosing an appropriate
measure of the discrepancy between q∗ and the posterior π. Based on the discussion in Sec-
tion 2.1, the goal should be for quantities such as mq∗ , Σq∗ , and Iq∗,i,a,b to be close to, respec-
tively, mπ, Σπ, and Iπ,i,a,b. The interval probabilities are already on an interpretable scale,
so ensuring that |Iq,i,a,b−Iπ,i,a,b| is much less than 1 is an intuitive notion of accuracy. Since

Σ
1/2
π establishes the relevant scale of the problem for means and standard deviations, so it

is appropriate to ensure that ‖Σ−1/2
π (mπ −mq∗)‖2 and ‖Σ−1

π (Σπ − Σq∗)‖2 = ‖I − Σ−1
π Σq∗‖2

are much less than 1.

While we want to choose a discrepancy measure that guarantees the accuracy of mean,
covariance, and interval probabilities, ideally it would also guarantee other plausible ex-
pectations of interest (for example, predictive densities) are accurately approximated. The
Wasserstein distance provides one convenient metric for accomplishing this goal, and is
widely used in the analysis of MCMC algorithms and in large-scale data asymptotics (for
example, Joulin and Ollivier, 2010; Madras and Sezer, 2010; Rudolf and Schweizer, 2018;
Durmus et al., 2019; Durmus and Moulines, 2019; Vollmer et al., 2016; Eberle and Majka,
2019). For p ≥ 1 and a positive-definite matrix Σ ∈ Rd×d, we define the (p,Σ)-Wasserstein
distance between distributions η and ζ as

Wp,Σ(η, ζ) := inf
ω

{∫
‖Σ−1/2(θ − θ′)‖p2ω(dθ,dθ′)

}1/p

,

where the infimum is over the set of couplings between η and ζ; that is, Borel measures ω on
Rd×Rd such that η = ω(·,Rd) and ζ = ω(Rd, ·) (Villani, 2009, Defs. 6.1 & 1.1). Small (p,Σ)-
Wasserstein distance implies many functionals of the two distributions are close relative to
the scale determined by Σ1/2.

Specifically, we have the following result, which is an immediate corollary of Huggins
et al. (2020, Theorem 3.4).

Proposition 3 If Wp,Σ(η, ζ) ≤ ε for any p ≥ 1, then

‖Σ−1/2(mη −mζ)‖2 ≤ ε

If W2,Σ(η, ζ) ≤ ε, then, for % := min{
∥∥Σ−1Ση

∥∥1/2

2
,
∥∥Σ−1Σζ

∥∥1/2

2
},

‖Σ−1(Ση − Σζ)‖2 < 2ε(%+ ε).
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More generally, small (p,Σ)-Wasserstein distance for any p ≥ 1 guarantees the accuracy
of expectations for any function f with small Lipschitz constant with respect the metric
dΣ(θ, θ′) := ‖Σ−1/2(θ − θ′)‖2; that is, when supθ 6=θ′ |f(θ)− f(θ′)|/dΣ(θ, θ′) is small.

While the Wasserstein distance controls the error in mean and covariance estimates,
it does not provide strong control on interval probability estimates. The KL divergence,
however, does, since for distributions η and ζ, |Iη,i,a,b−Iζ,i,a,b| ≤

√
KL(η | ζ)/2 for all a < b

and i (see Appendix B.2). As we show next, in many scenarios we can bound the Wasserstein
distance by the KL divergence and therefore enjoy the benefits of both. Our result is based
on the following definition, which makes the notion of the scale of a distribution precise:

Definition 4 For p ≥ 1 and a positive-definite matrix Σ ∈ Rd×d, the distribution η is said
to be (p,Σ)-exponentially controlled if

inf
θ′

log

∫
e‖Σ

−1/2(θ−θ′)‖p2η(dθ) ≤ d/2. (4)

Specially, Σ1/2 establishes the appropriate scale for uncertainty with respect to η. For ex-
ample, if η = N (m,V ), then it is a straightforward exercise to confirm that η is (2, 1.782V )-
exponentially controlled.

The following result establishes the relevant link between the KL divergence and the
Wasserstein distance via Definition 4.

Proposition 5 If η is (p,Σ)-exponentially controlled, then for all ζ absolutely continuous
with respect to η,

Wp,Σ(ζ, η) ≤ (3 + d)Kp(ζ | η),

where Kp(ζ | η) := KL(ζ | η)
1
p + {KL(ζ | η)/2}

1
2p .

Proof The result follows from Bolley and Villani (2005, Corollary 2.3) after the change-of-
variable θ 7→ Σ−1/2θ and using the fact that the KL divergence is invariant under diffeo-
morphisms, then applying Eq. (4).

If ζ and η could operate over different scales, then we can use the symmetrized KL diver-
gence SKL(ζ, η) := KL(ζ | η) + KL(η | ζ). Indeed, it follows from Proposition 5 that if
SKL(ζ, η) is small, then the (p,Σ)-Wasserstein distance is small whenever either η or ζ is
(p,Σ)-exponentially controlled.

4.2 An Idealized Termination Rule

Based on our developments in Section 4.1, we will define our termination rule in terms of the
symmetrized KL divergence. Recall that q∗ denotes the optimal variational approximation
to π and q̂∗ denotes an estimate of q∗. Since the total variation and (1,Σ)-Wasserstein
distances are controlled by the square root of the KL divergence, we focused on the square
root of the symmetrized KL divergence. For the current learning rate γ > 0, let qγ∗ :=
qλ̄γ denote the target γ–learning-rate variational approximation. The termination rule we
propose is based on the trade-off between the improved accuracy of the approximation if
the learning rate were reduced to ργ and the time required to reach that improved accuracy.

11



Welandawe, Andersen, Vehtari, and Huggins

To quantify the improved accuracy, we introduce a user-chosen target accuracy target ξ for
SKL(q∗, q̂∗)

1/2. If the user expects KL(π | q∗) to be large, then setting ξ to a moderate
value such as 1 or 10 could give acceptable performance. If the user expects KL(π | q∗) to
be small, then setting ξ to a value such as 0.1 or 0.01 might be more appropriate. Using ξ,
define the relative SKL improvement

RSKL :=
SKL(q∗, qργ∗)

1/2 + ξ

SKL(q∗, qγ∗)1/2
,

where the first term measures the relative improvement of the approximation if the learning
rate were reduced and the second term measures the current accuracy relative to the desired
accuracy. To quantify the time to obtain the relative accuracy improvement, we use the
number of iterations to reach convergence for the fixed learning rate ργ. Letting Kγ∗
denote the number of iterations required to reach the target γ–learning-rate variational
approximation, we define the relative iteration increase

RI :=
Kργ∗

Kγ∗ +K0
,

where K0 denotes the number of iterations the user would consider “small”. Combining
RSKL and RI, we obtain the inefficiency index I = RSKL× RI, the relative improvement
in accuracy times the relative increase in runtime. Thus, we can interpret I as quantifying
how much greater the increase in runtime cost (above a baseline of K0 iterations) will be
compared to the reduction in error (down to a target error of ξ). For example, I = 2 means
the increase in runtime cost is twice as large as the reduction in error. Our idealized SKL
inefficiency termination rule triggers when I > τ , where τ is a user-specified inefficiency
threshold that allows the user to trade off accuracy with computation, but only up to the
point where SKL(q∗, qγ∗)

1/2 ≈ ξ.

4.3 An Implementable Termination Rule

The idealized SKL inefficiency termination rule cannot be directly implemented since q∗ is
unknown; and if it were known, it would be unnecessary to run the optimization algorithm.
However, we will show that it is possible to obtain a good estimate of the symmetrized
KL divergence between the approximation obtained with a given learning rate γ′ and the
optimal approximation without access to q∗.

Recall that qγ∗ denotes the target γ–learning-rate variational approximation. With a
slight abuse of notation, we let the optimal zero–learning-rate approximation refer to the
optimal approximation: q0∗ := limγ→0 qγ∗ = q∗. Our approach is motivated by Theorem 1
and in particular the form of the bias λ̄γ−λ∗ in Eq. (2). We first consider the still-common
setting when Q is the family of mean-field Gaussian distributions, where the parameter
λ = (τ, ψ) ∈ R2d corresponds to the distribution qλ = N (τ,diag e2ψ).

Proposition 6 Let Q be the family of mean-field Gaussian distributions. If Eq. (2) holds
and γ′ = O(γ), then there is a constant C > 0 depending only on A and λ∗ such that

SKL(qγ∗, qγ′∗) = C(γ − γ′)2 + o(γ2).

12
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See Appendix A.1 for the proof. Assuming that the current learning rate is γ, then the
previous learning rate was γ/ρ. Let δγ := SKL(qγ∗, qγ/ρ∗) denote the symmetrized KL di-
vergence between the optimal variational approximations obtained at each of these learning
rates. In principle we can use Proposition 6 to estimate C by

Ĉ = δγρ
2/{γ2(1− ρ)2},

and then estimate that

SKL(qγ∗, q∗) ≈ Ĉγ2 = δγρ
2/(1− ρ)2.

There are, however, two problems with the tentative approach just outlined. The first
problem is that Theorem 1 only holds for standard SGD; however, adaptive SGD algorithms
are widely used in practice. Indeed, we observe empirically that SKL(qγ∗, qγ′∗) = Θ(|γ −
γ′|κ/2) with κ ≈ 1 for RMSProp (Fig. C.6) and κ ∈ (1, 1.6) (with a point estimate at 1.2) for
Adam Fig. C.7). Hence RMSProp and Adam both appear to have larger errors than SGD
when the step size is small. To get the accuracy of SGD but also adaptivity, we modify
the adaptive gradient methods to behave asymptotically (in the number of iterations) like
SGD. In the cases of RMSProp and Adam, we propose averaged RMSProp (avgRMSProp)
and averaged Adam (avgAdam), which use the squared gradient update

ν(k+1) = βkν
(k) + (1− βk)ĝ(k) � ĝ(k),

for βk = 1−1/k. Hence, ν(k+1) = (k+1)−1
∑k

k′=0 ĝ
(k)�ĝ(k) is the averaged squared gradient

over all iterations (Mukkamala and Hein, 2017, §4). As long as the SGD Markov chain is

ergodic and E[
∥∥ĝ(k)

∥∥2

2
] <∞ at stationarity, ν(k) converges almost surely to a constant and

hence the SGD bias analysis also applies to avgRMSProp and avgAdam.

The second problem is that Proposition 6 only holds for the mean-field Gaussian varia-
tional family. However, other variational families such as normalizing flows are of substantial
practical interest. Therefore, we consider the weaker assumption that either Eq. (2) holds
or there exist constant vectors Λ, A ∈ Rm and a constant κ ∈ [1/2, 1) such that

λ̄γ = λ∗ + Λγκ +Aγ + o(γ2κ). (5)

Adding the latter assumption, we have the following generalization of Proposition 6, which
holds for any sufficiently regular variational family:

Proposition 7 Let Q be the variational approximation family. If (i) Eq. (5) holds for
some κ ∈ [1/2, 1) or Eq. (2) holds (in which case let κ = 1), (ii) γ′ = O(γ), and (iii) for all
θ ∈ Rd, log qλ(θ) is three-times continuously differentiable with respect to λ, then for some
C ≥ 0,

SKL(qγ∗, qγ′∗) = C{γκ − (γ′)κ}2 + o(γ2κ).

Moreover, C depends on only λ∗ and either Λ (if κ ∈ [1/2, 1)) or A (if κ = 1).

13
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(a) (b)

Figure 3: Results for estimating the symmetrized KL divergence with avgAdam in the case
of a Gaussian distribution N (0, V ) with d = 100 and Vij = j1[i = j] (diagonal
non-identity covariance). (a) Learning rate versus symmetrized KL divergence of
adjacent iterate averaged estimates of the optimal variational distribution. The
lines indicate the linear regression fits, with setting κ = 1. (b) Square root of
true symmetrized KL divergence versus the estimated value with 95% credible
interval. The uncertainty of the estimates decreases and remains well-calibrated
as the learning rate decreases.

See Appendix A.2 for the proof. Using Proposition 7 and omitting o(γ2κ) terms, we have
δγ ≈ Cγ2κ(1/ρκ − 1)2. To improve the reliability of the estimates based on Proposition 7,
we propose to use the symmetrized KL estimates between the variational approximations
obtained at successive fixed learning rates. Let γ0 denote the initial learning rate, so that
after t learning rate decreases, the learning rate is γt := γ0ρ

t. Let δt := SKL(qγt∗, qγt−1∗)
and assume the current learning rate is γT .

Depending on the optimization algorithm, we can estimate κ (or set κ = 1 if using
modified adaptive SGD algorithm with a mean-field Gaussian variation family) and C using
a regression model of the form

log δt = logC + 2 log(1/ρκ − 1) + 2κ log γt + ηt, t = 1, . . . , T, (6)

where ηt ∼ N (0, σ2). Given the estimate Ĉ for C and the estimate κ̂ for κ (or κ̂ = 1) , we
obtain the estimated relative SKL,

R̂SKL = ρκ̂ +
ξ

Ĉ1/2γκ̂t
.

Because we use the regression model in Eq. (6) in a low-data setting, we place (weak) priors
on logC and σ:

logC ∼ Cauchy(0, 10), σ ∼ Cauchy+(0, 10),
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Figure 4: Results for predicting the number of iterations needed to reach convergence at
each learning rate decrease in the case of Gaussian distribution N (0, V ) with
d = 100 and Vij = j1[i = j] (diagonal non-identity covariance). The blue points
(orange crosses) represent the true (predicted) number of iterations needed to
reach convergence.

where Cauchy+ is the Cauchy distribution truncated to nonnegative values. If we use an
adaptive stochastic optimization algorithm then we also place a prior on κ:

κ ∼ Unif(0, 1).

Also, because we expect early SKL estimates to be less informative about C (and κ) due
to the influence of o(γ2κ) terms, we use a weighted regression with the likelihood term for
(δt, γt) having weight

wt = {1 + (T − t)2/32}−1/4. (7)

The weight formula enables the amplification of the significance of the most recent obser-
vations, with down-weighting becomes more significant after there are about 3 additional
observations. On the other hand, the power of 1/4 ensures a gradual reduction in weight,
preventing a steep drop-off in importance.

We use the posterior mean(s) to estimate Ĉ (and κ̂). Figure 3 validates that, in the case
of avgAdam, the log of the learning rate and symmetrized KL divergence have approximately
a linear relationship and that our regression approach to estimating C leads to reasonable
estimates of SKL(qγ∗, q∗). See Fig. C.2 for similar results for other target distributions with
avgAdam.

To estimate the relative iteration increase RI, we need to estimate the number of it-
erations to reach convergence at the next learning rate γt+1. It is reasonable to assume
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(a) (b)

Figure 5: Results for the termination rule trigger point in the case of a Gaussian distribution
N (0, V ) with d = 100 and Vij = j1[i = j] (diagonal non-identity covariance). (a)
Learning rate versus square root of estimated symmetrized KL divergence with
95% credible interval (dashed blue line). The green vertical line indicates the
termination rule trigger point with the corresponding Î value. (b) Iterations
versus square root of symmetrized KL divergence between iterate average and
optimal variational approximation. The vertical lines indicate the convergence
detection points using R̂ (blue) and inefficiency index computation (Î) points
(orange) with corresponding values.
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that there is exponential growth in the number of iterations to reach convergence as the
learning rate decreases since stochastic gradient algorithms to converge at a polynomial rate
(Bubeck, 2015). Recall that Kγt is the number of iterations to reach convergence at the
current learning rate. We fit a weighted least square regression model of the form

logKγt = α log γt + β + νt, t = 1, . . . , T, (8)

where νt ∼ N (0, σ2
t ). We then use the coefficient estimates α̂ and β̂ to predict the number

of iterations required for convergence at the next learning rate to be K̂γt+1
:= γα̂t+1e

β̂. We
use the same weights given in Eq. (7) for observations of the regression model due to the
non-linear behavior of the earlier convergence iterate estimates. Figure 4 demonstrates that
linear relationship in Eq. (8) does in fact hold and that our weighted least square regression
model predicts the number of convergence iterations Kγt quite accurately. The estimated

relative iterations is then R̂I = K̂γt+1/(Kγt +K0).

Using the estimates R̂SKL and R̂I we obtain the termination rule Î = R̂SKL× R̂I > τ .
Figure 5 shows that when the user chosen target accuracy ξ = 0.1, the termination rule
triggers when the square root of the symmetrized KL divergence is approximately equal
to ξ. Figures C.3 to C.5 shows similar results of other Gaussian targets and posteriordb

models and data sets (see Section 7.2 for details).

5. Learning Rate Scheduler

For a fixed learning rate, computing the iterate average λ̂γ defined in Eq. (3) requires
determining the iteration kconv at which stationarity is reached and the number of iterations
kavg to use for computing the average. We address each of these in turn.

5.1 Detecting Convergence to Stationarity

We investigate two approaches to detecting stationarity: the SASA+ algorithm of Zhang
et al. (2020) and the R̂-based criterion from Dhaka et al. (2020). We make several ad-
justments to both approaches to reduce the number of tuning parameters and to make the
remaining ones more intuitive. In our empirical findings, we have observed that the R̂ cri-
terion outperforms the SASA+ criterion. Therefore, we describe the former here and the
latter in Appendix B.3.

Let R̂(λ
(k−W+1)
i , . . . , λ

(k)
i ) denotes the split-R̂ of the ith component of the last W iterates

and define

R̂max(W ) := max
1≤i≤m

R̂(λ
(k−W+1)
i , . . . , λ

(k)
i ).

An R̂max(W ) value close to 1 indicates the last W iterates are close to stationarity. In
MCMC applications having R̂max(W ) ≤ 1.01 is desirable (Vats and Knudson, 2021; Vehtari
et al., 2021). Dhaka et al. (2020) uses the weaker condition R̂max(W ) ≤ 1.1 since iterate
averaging does not require the same level of precision as MCMC. Dhaka et al. (2020)
take the window size W = 100, but in more challenging and high-dimensional problems
a fixed smaller W is insufficient. Therefore, we instead search over window sizes between
a minimum window size Wmin and 0.95k to find the one that minimizes R̂max(W ). The
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(a) (b)

Figure 6: Iteration number versus distance between iterate average and current iterate. The
vertical lines indicate convergence detection trigger points and (for SASA+ and
R̂) the colored portion of the accuracy values indicate they are part of the win-
dow used for convergence detection. (a) An uncorrelated Gaussian distribution
N (0, V ) with d = 500 and V = I. (b) A posteriordb data set/model mcycle gp
with d = 66.

minimum window size is necessary to ensure the R̂ values are reliable. We use the upper
bound 0.95k to always allow a small amount of “warm-up” without sacrificing more than 5%
efficiency. Therefore, we estimate Wopt = arg minWmin≤W≤0.95k R̂max(W ) using a grid search

over 5 equally spaced values ranging from Wmin to 0.95k and require R̂max(Wopt) ≤ 1.1 as
the stationarity condition.

Figure 6 compares our adaptive SASA+ and adaptive R̂ criteria to the criterion used in
Dhaka et al. (2020) with a fixed window size of W = 800 and ∆ELBO rule from Kucukelbir
et al. (2015), which is used Stan’s ADVI implementation (cf. the results of Dhaka et al.
(2020)). We do not use W = 100 as is done by Dhaka et al. (2020) because it was too small
to detect convergence. Additionally, Fig. 6 compares to another convergence detection
approach proposed by Pesme et al. (2020) (described in Appendix B.4), where they use
a distance-based statistic to detect convergence. While adaptive SASA+, ∆ELBO, fixed
window size R̂, and the distance-based statistic approach sometimes trigger too early or
too late or SASA+ use iterations before it reaches the convergence, adaptive R̂ consistently
triggers when the full window suggests convergence has been reached. See Fig. C.1 for
additional Gaussian target examples.
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5.2 Determining the Number of Iterates for Averaging

After detecting convergence to stationarity, we need to find kavg large enough to ensure the
iterative average is sufficiently close to the mean λ̄γt . But what is close enough? Building on
our discussion in Section 3, we aim to ensure the error in the variational parameter estimates
are small relative to the scale of uncertainty. For mean-field Gaussian distributions, the
following result allows us to make such a guarantee precise.

Proposition 8 Let Q be the family of mean-field Gaussian distributions. Let λ̂ = (τ̂ , ψ̂)
denote an approximation to λ̄ = (τ̄ , ψ̄). Define σ̂ := exp(ψ̂) and σ̄ := exp(ψ̄). If there exists
ε ∈ (0, 1/2) such that |τ̂i − τ̄i| ≤ εσ̂i and |ψ̂i − ψ̄i| ≤ ε, then

|σ̂i − σ̄i|
σ̄i

≤ 1.5ε and
|τ̂i − τ̄i|
σ̄i

≤ 1.75ε.

See Appendix A.4 for the proof. Based on Proposition 8, for mean-field Gaussian varia-
tional families we use the iterate average once the mean MCSEs d−1

∑d
i=1 MCSE(τ̂γ,i)/σ̂γ,i

and d−1
∑d

i=1 MCSE(ψ̂γ,i) are less than ε.For other variational families we rely on the less

rigorous condition that m−1
∑m

i=1 MCSE(λ̂γ,i) is less than ε. We also require the effective
sample sizes of all parameters to be at least 50 to ensure the MCSE estimates are reliable.

Because the MCSE check requires computing d ESS values, it can be computationally
expensive, especially for high-dimensional models. Therefore, it is important to optimize
when conducting the checks.A well-known approach in such situations is the “doubling
trick.” Let Wconv denote the window size when convergence is detected, and let Wopt

denote the minimal window size that satisfies the MCSE check. The doubling trick would
suggest checking at iteration numbers kconv + 2jWconv for j = 0, 1, . . . , in which case the
total computational cost is within a factor of 4 logWopt of the optimal scenario in in which
the check is only done at kconv +Wconv and kconv +Wopt). However, we can potentially do
substantially better by accounting for the different computational cost of the optimization
versus the MCSE check.

Proposition 9 Assume that the cost of the MCSE check using K iterates is CEK and the
cost of K iterations of optimization is COK. Let r := CO/CE, χ(r) := 1 + (1 + r)−1/2,
and g(r) := (2 + r + 2(1 + r)1/2)/(1 + r). If the MCSE check is done on iteration numbers
kconv +χ(r)jWconv for j = 0, 1, . . . , then the total computational cost will be within a factor
of g(r) of optimal.

See Appendix A.5 for the proof. Since g(0) = 4 and g(r) is monotonically decreasing in r,
when r ≈ 0; that is, CO is negligible compared to CE , we recover the doubling rule since
χ(0) = 2. However, as long as r is significantly greater than zero, the worst-case additional
cost factor can be substantially less than 4. Therefore we carry out the MCSE check on
iteration numbers kconv + χ(r)jWconv with r estimated based on the actual runtimes of the
optimization so far and the first MCSE check.

6. Complete Framework

Combining our innovations from Sections 4 and 5 leads to our complete framework. When
γ is fixed, our proposal from Section 5 is summarized in Algorithm 1, which we call fixed–
learning-rate automated stochastic optimization (FASO). Combining the termination rule
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from Section 4 with FASO, we get our complete framework, robust and automated black-
box variational inference (RABVI), which we summarize in Algorithm 2. We will verify
the robustness of RABVI through numerical experiments. RABVI is automatic since the
user is only required to provide a target distribution and the only tuning parameters we
recommend changing from their defaults are defined on interpretable, intuitive scales:

• accuracy threshold ξ: The symmetrized KL divergence accuracy threshold can
be set based on the expected accuracy of the variational approximation. If the user
expects KL(π | q∗) to be large, then we recommend choosing ξ ∈ [1, 10]. If the user
expects KL(π | q∗) to be fairly small, then we recommend choosing ξ ∈ [.01, 1]. Our
experiments suggest ξ = 0.1 is a good default value.

• inefficiency threshold τ : We recommend setting the inefficiency threshold τ = 1,
as this weights accuracy and computation equally. A larger value (for example, 2)
could be chosen if accuracy is more important while a smaller value (for example, 1/2)
would be appropriate if computation is more of a concern.

• maximum number of iterations Kmax: The maximum number of iterations can
be set by the user based on their computational budget. RABVI will warn the user
if the maximum number of iterations is reached without convergence, so the user can
either increase Kmax or accept the estimated level of accuracy that has been reached.

We expect the remaining tuning parameters will typically not be adjusted by the user.
We summarize our recommendations:

• initial learning rate γ0: When using adaptive methods such as RMSProp or Adam,
the initial learning rate can essentially be set in a problem-independent manner. We
use γ0 = 0.3 in all of our experiments. If using non-adaptive methods, a line search
rule such as the one proposed in Zhang et al. (2020) could be used to find a good
initial learning rate.

• minimum window size Wmin: We recommend taking Wmin = 200 so that that each
of the split-R̂ values are based on at least 100 samples.

• small iteration number K0: The value of K0 should represent a number of iter-
ations the user considers to be fairly small (that is, not requiring too much compu-
tational effort). We use K0 = 5Wmin = 1000 for our experiments, but it could be
adjusted by the user.

• initial iterate average relative error threshold ε0: We recommend scaling ε0

with ξ since more accurate iterate averages are required for sufficiently accurate sym-
metrized KL estimates. Therefore, we take ε0 = ξ by default.

• adaptation factor ρ: We recommend taking ρ = 0.5 because using a smaller ρ value
could lead to too few δt values for the estimation of C (and κ) and using a larger ρ
value would make the algorithm too slow.

• Monte Carlo samples M : We find that M = 10 provides a good balance between
gradient accuracy and computational burden but the performance is fairly robust to
the choice of M as long as it is not too small.
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Algorithm 1: Fixed–learning-rate automated stochastic optimization (FASO)

Input: initial variational parameter λ(0),
learning rate γ,
minimum window size Wmin,
initial iterate average relative error threshold ε,
maximum iterations Kmax

1 kconv ← null // iteration when stationarity reached

2 success ← false
3 for k = 1, . . . ,Kmax do

4 compute stochastic gradient ĝ(k)

5 compute descent direction dk
// step in descent direction

6 λ(k+1) ← λ(k) − γdk
7 if kconv = null and k mod kcheck = 0 then check for convergence

// define window-based ESS

8 R̂max(W ) := max1≤i≤m R̂(λ
(k−W+1)
i , . . . , λ

(k)
i )

// compute optimal window

9 Wopt ← arg minWmin≤W≤0.95k R̂max(W )

10 if R̂max(Wopt) ≤ 1.1 then
11 kconv ← k −Wopt

// window size at which to check MCSE

12 Wcheck ←Wopt

13 χ∗ ← χ(r) // see Prop. 9

14 if kconv 6= null and k − kconv = Wcheck then check for accuracy of iterate
average

15 W ←Wcheck

16 λ̂←W−1
∑k

i=k−W+1 λ
(i)

17 e← MCSE(λ(k−W ), . . . , λ(k))

18 ESSmin ← mini ESS(λ
(k−W )
i , . . . , λ

(k)
i )

19 if mean-field Gaussian family then ei ← ei/ exp(ψ̂i) for i = 1, . . . , d
20 if mean ei < ε and ESSmin ≥ 50 then
21 success ← true
22 break

23 else
24 Wcheck ← χ∗W

25 λ̄ ←W−1
∑k

i=k−W+1 λ
(i)

26 return (k, λ̄, success)
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Algorithm 2: Robust and automated black-box variational inference (RABVI)

Input: initial variational parameter λ(0),
maximum number of iterations Kmax,
initial learning rate γ0 (default: 0.3),
minimum window size Wmin (default: 200),
accuracy threshold ξ (default: 0.1),
inefficiency threshold τ (default: 1.0),
initial iterate average error threshold ε0 (default: 0.1),
adaptation factor ρ (default: 0.5)
small iteration number K0 (default: 1000)

1 λ̄curr ← λ(0) // current iterate average

2 γ ← γ0 // learning rate

3 ε← ε0 // iterate average error threshold

4 k ← 0 // total iterations

5 t← 0 // total epochs

6 while k < Kmax do
7 λ̄prev ← λ̄curr // record previous iterate average

8 knew, λ̄curr, success ← FASO(λ̄curr, γ,Wmin, ε,Kmax − k)
9 if not success then

10 print “Warning: failed to converge. Estimated error is error”
11 break

12 k ← k + knew // update total iterations

13 if t ≥ 1 then
14 δt ← SKL(qλ̄prev , qλ̄curr)

15 compute estimates Ĉ and κ̂ using weighted linear regression

16 R̂SKL← ρκ̂ + ξ/(Ĉ1/2γκ̂)

17 K̂γ ← k
(t)
new − k(t−1)

new

18 if t ≥ 2 then
// remove the converged iterations of initial variation

parameter

19 compute estimates α̂ and β̂ using weighted least squares

20 if β̂ < 0 then

21 K̂ργ ← (ργ)α̂eβ̂

22 else

23 K̂ργ ← K̂γ

24 R̂I← K̂ργ/(K̂γ +K0)

25 if R̂SKL · R̂I > τ then
26 break

27 γ ← ργ // decrease learning rate

28 ε← ρε // decrease iterate average error threshold

29 t← t+ 1 // increment epoch counter

30 return λ̄curr
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7. Experiments

Unless stated otherwise, all experiments use avgAdam to compute the descent direction,
mean-field Gaussian distributions as the variational family, and the tuning parameters val-
ues recommended in Section 6. We fit the regression model for C (and κ) in Stan, which
result in extremely small computational overhead of less than 0.5%. We compare RABVI to
FASO, Stan’s ADVI implementation, SGD using an exponential decay of the learning rate,
and fixed–learning rate versions of RMSProp, Adam, and a windowed version of Adagrad
(WAdagrad), which is the default optimizer in PyMC3. Moreover, we compare RABVI
with exponential decay and cosine learning rate schedules using Adam and RMSProp op-
timization methods. We run all the algorithms that do not have a termination criterion
for Kmax = 100,000 iterations and for the fixed–learning-rate algorithms we use learning
rate γ = 0.01 in an effort to balance speed with accuracy. For exponential decay, we use a
learning rate of γ = γ0δ

bk/sc, where γ0 denotes the initial learning rate, δ denotes the decay
rate, k denotes the iteration, and s denotes the decay step. We choose γ0 = 0.01, δ = 0.96,
and s = 900 so that the final learning rate is approximately 0.0001 (Chen et al., 2017).
For cosine schedule, we use a learning rate of γ = γmin + 1

2(γmax − γmin)(1 + cos( kKπ)),
where γmin and γmax denote the minimum and maximum values of learning rate, k denotes
the current iteration, and K denotes the maximum number of iterations (Loshchilov and
Hutter, 2017). We choose γmin = 0.0001, γmax = 0.01 to make it comparable with other
methods.

We use symmetrized KL divergence as the accuracy measure when we can compute the
ground-truth optimal variational approximation. Otherwise, we use the following metrics
(where µ and σ are, respectively, the posterior mean and standard deviation vectors):

• Relative mean error ‖(µ− µ̂)/σ‖2, where µ̂ is the variational approximation to µ.

• Relative standard deviation error ‖σ̂/σ − 1‖2, where σ̂ is the variational approxima-
tion to σ.

• Under coverage error of the variational approximation to the 95% credible intervals
min(0, |.95 − ci|), where ci := Π({θ : θi ∈ (ai, bi)}) and (ai, bi) is the variational
estimate of the central 95% credible interval for parameter θi.

• Maximum mean discrepancy (MMD) MMD2(P,Q) := E[k(x, x′)− 2 k(x, y) +k(y, y′)],

where x, x′ ∼ P and y, y′ ∼ Q are independent and k(x, y) = exp{−1
2

∥∥x−y
σ

∥∥2

2
} is the

squared exponential kernel (Gretton et al., 2006).

7.1 Accuracy with Gaussian Targets

First, to explore optimization accuracy relative to the optimal variational approximation,
we consider Gaussian targets of the form π = N (0, V ). In such cases, we can compute
the ground-truth optimal variational approximation either analytically (because the dis-
tribution belongs to the mean-field variational family and hence q∗ = π) or numerically
using deterministic optimization (since the KL divergence between Gaussians is available
in closed form). Specifically, we consider the following covariances that aid in assessing our
framework across a range of condition numbers from 1 to around 9000:
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• Identity covariance: V = I

• Diagonal non-identity covariance: Vij = j1[i = j]

• Uniform covariance with correlation 0.8: Vij = 1[i = j] + 0.81[i 6= j]

• Banded covariance with maximum correlation 0.8: Vij = 1[i = j] + 0.8|i−j|1[i 6= j]

• Diagonal non-identity banded covariance with maximum correlation 0.8: Vij = j1[i =
j] + 0.8|i−j|1[i 6= j]

• Diagonal identity (except first entry) uniform covariance with maximum correlation
0.8: Vij = 10001[i = j = 1] + 1[i = j 6= 1] + 0.81[i 6= j]

• Diagonal identity (except first entry) banded covariance with maximum correlation
0.8: Vij = 10001[i = j = 1] + 1[i = j 6= 1] + 0.8|i−j|1[i 6= j]

In our selection, we specifically included diagonal identity matrices (with the exception of
the first entry) combined with either uniform or banded covariance structures, showcasing
a maximum covariance of 0.8. This setting results in weaker correlation between the first
component and the others. This choice was strategic to achieve higher condition numbers
(around 5000 and 9000 respectively), given that correlations set at 0.8 or 0.8|i−j|1[i 6= j]
yield condition numbers around 400 and 80, respectively.

Figures 7, C.8 and C.9 show the comparison of RABVI to FASO, Stan’s ADVI imple-
mentation, SGD with exponential decay learning rate (SGD-ED), Adam with exponential
decay and cosine learning rates (Adam-ED, Adam-C), RMSProp with exponential decay
and cosine learning rates (RMSProp-ED, RMSProp-C), and fixed-learning rate versions
of RMSProp, Adam, Windowed Adagrad (WAdagrad). The findings demonstrate that
RABVI consistently outperforms ADVI, SGD-ED, both adaptive learning rate versions of
RMSProp, and the fixed-learning rate methods in a majority of the cases. While Adam and
SGD-ED occasionally reach performance levels similar to RABVI, they tend to converge
more slowly and with less reliability. Additionally, despite Adam-ED and Adam-C closely
matching RABVI’s performance on most problems, they lack a dependable mechanism for
determining when to terminate the optimization at a desired accuracy level. Although a
validation data set can be used, this requires the availability of such a data set and would
allow for control of the approximation accuracy. On the other hand, by varying the ac-
curacy threshold ξ, the quality of the final RABVI approximation q̂∗ also varies such that
SKL(q∗, q̂∗)

1/2 ≈ ξ.
To demonstrate the flexibility of our framework, we used RABVI with a variety of op-

timization methods: RMSProp, avgRMSProp, avgAdam, natural gradient descent (NGD),
and stochastic quasi-Newton (SQN). See Appendices B.5 and B.6 for details. Figure C.10
shows that avgAdam and avgRMSProp optimization methods have a similar improvement
in symmetrized KL divergence between optimal and estimated variational approximation
for all cases. NGD is not stable for the diagonal non-identity covariance structure and SQN
does not perform well with uniform covariance structure. Even though RMSProp shows an
improvement in accuracy for large step sizes, accuracy does not improve as the step size
decreases.
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(a) uncorrelated d = 100 (b) uncorrelated d = 500

(c) uniform correlated d = 100 (d) banded correlated d = 100

Figure 7: Accuracy comparison of variational inference algorithms using Gaussian targets,
where accuracy is measured in terms of the square root of symmetrized KL di-
vergence between iterate average and optimal variational approximation. The
vertical lines indicate the termination rule trigger points of FASO and RABVI.
Iterate averages for Adam, RMSProp, and WAdagrad computed at every 200th
iteration using a window size of 20% of iterations.
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7.2 Reliability Across Applications

To validate the robustness and reliability of RABVI across realistic use cases, we consider
18 diverse data set/model pairs found in the posteriordb package3 (see Appendix C for
details). The posteriordb package contains a wide range of real-world data and models
and is specifically designed to provide realistic performance evaluations of approximate pos-
terior inference algorithms. The accuracy was computed based on ground-truth estimates
obtained using the posterior draws included in posteriordb package if available. Other-
wise, we ran Stan’s dynamic HMC algorithm (Stan Development Team, 2020) to obtain the
ground truth (4 chains for 50,000 iterations each). To stabilize the optimization, we initial-
ize the variational parameter estimates using RMSProp for the initial learning rate only. A
comparison across optimization methods validates our choice of avgAdam over alternatives
(Fig. C.11).

Comparison to alternative optimization methods. To evaluate RABVI’s effective-
ness in real-world applications, we compared it against alternative optimization methods
with both fixed and adaptive learning rate schedules. Based on the results described in
Section 7.1, we opt to compare to Adam using either a fixed, exponential decay, or cosine
learning rate schedule since they perform best overall in the Gaussian target experiments.
Additionally, we include FASO, which used avgAdam, as another benchmark. Figure 8
shows RABVI is more consistent than all the alternative methods. While these methods
sometimes matched RABVI’s performance, RABVI’s ability to identify an appropriate stop-
ping point contributes to its overall efficiency, setting it apart from the competition.

Accuracy and robustness. First, we investigate the accuracy and algorithmic robust-
ness of RABVI. In terms of robustness, Figures 9, C.12 and C.13 validate our termination
criteria since after reaching the termination point there is no considerable improvement in
the accuracy for most of the models and data sets. While in many cases the mean estimates
are quite accurate, the standard deviation estimates tended to be poor, which is consis-
tent with typical behavior of mean-field approximations. To examine whether RABVI can
achieve more accurate results with more flexible variational families, we conduct the same
experiment using multivariate Gaussian approximation family and normalizing flow family
using real-NVP flow with 2 hidden layers, 8 hidden units, and 3 coupling layers (Dinh et al.,
2017). We employ FASO in our real-NVP experiments because the complexity of the ap-
proximation family prevents us from obtaining a closed form for the SKL divergence, which
is necessary for computing the termination rule in RABVI. In some cases the accuracy
of the mean and/or standard deviations estimates improve (bball 0, dogs log, 8schools c,
hudson lynx, hmm example, nes2000, and sblrc). However, the results are inconsistent and
sometimes worse due to the higher-dimensional, more challenging optimization problem.
Our findings underscore the necessity of supplementing an improved optimization frame-
work like RABVI with diagnostics for assessing the accuracy of the posterior approximation
(Yao et al., 2018; Huggins et al., 2020; Wang et al., 2023c).

3. https://github.com/stan-dev/posteriordb
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(a) arK (b) dogs (c) nes2000

(d) low dim gauss (e) 8schools c (f) 8schools nc

Figure 8: Accuracy comparison of variational inference algorithms using posteriordb mod-
els and data sets, where accuracy is measured in terms of relative mean error (top)
and relative standard deviation error (bottom). The vertical lines indicate the ter-
mination rule trigger points of FASO and RABVI. The iterate average for Adam
is computed at every 200th iteration using a window size of 20% of iterations.
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Comparison to MCMC. We additionally benchmarked the runtime and accuracy of
RABVI to Stan’s dynamic HMC algorithm, for which we ran 1 chain for 25,000 itera-
tions including 5,000 warmup iterations. We measure runtime in terms of the number of
likelihood evaluations and compared the relative error between the methods at the RABVI
termination rule trigger point or final likelihood evaluation of HMC (whichever comes first).
Figures 10, C.15 and C.16 show that RABVI tends to provide similar or better posterior
mean estimates (the exceptions are gp pois regr, hudson lynx, and sblrc). However, the
RABVI standard deviation estimates tend to be less accurate even when using the full-rank
Gaussian variational family. This could be because the optimization of full-rank Gaussian
is more challenging having more variational parameters to estimate (Bhatia et al., 2022).
Figure C.17 shows that, in terms of the MMD, the HMC approximation is closer to the
target than BBVI as one would expect. Overall, the MMD values for RABVI are reasonably
small.

We also compared the 95% quantiles posterior under coverage error between RABVI
and FASO methods using different approximation families and MCMC. Figure C.18 shows
that HMC and real-NVP flows do not undercover the posterior. However, the mean-field
and full-rank Gaussian families do.

7.3 Robustness to Tuning Parameters: Ablation Study

To validate the robustness of RABVI to different choices of algorithm tuning parameters,
we consider the Gaussian targets and two posteriordb data set/model pairs: dogs (logistic
mixed-effects model) and arK (AR(5) time-series model). We vary one tuning parameter
while keeping the recommended default values for all others. We consider the following
values for each parameter (default in bold):

• initial learning rate γ0: 0.01, 0.1,0.3, 0.5

• minimum window size Wmin: 100,200, 300, 500

• initial iterate average relative error threshold ε0: 0.05,0.1, 0.2, 0.5

• inefficiency threshold τ : 0.1, 0.5,1.0, 1.2

• Monte Carlo samples M : 1, 5,10, 15, 25.

We repeat each experimental condition 10 times to verify the robustness of different initial-
izations of the variational parameters. Figures 11 and C.19 to C.25 suggest that overall the
accuracy and runtime of RABVI is not too sensitive to the choice of the tuning parameters.
However, extreme tuning parameter choices (for example, γ = 0.01 or M ≤ 5) can lead to
longer runtimes.

8. Discussion

As we have shown through both theory and experiments, RABVI, our stochastic optimiza-
tion framework for black-box variational inference, delivers a number of benefits compared
to existing approaches:
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(a) arK (b) diamonds (c) dogs

(d) gp pois regr (e) sblrc (f) nes2000

Figure 9: Accuracy of mean-field (blue) and full-rank (orange) Gaussian family approxi-
mations for selected posteriordb data/models, where accuracy is measured in
terms of relative mean error (top) and relative standard deviation error (bottom).
The red dots indicate where the termination rule triggers.
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Figure 10: Results of RABVI with mean-field Gaussian and full-rank Gaussian family and
FASO with real NVP flows comparison to dynamic HMC at the same compu-
tational cost (likelihood evaluations) in terms of relative mean error (top) and
relative standard deviation error (bottom).
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(a) γ0 (b) Wmin (c) ε0 (d) τ

Figure 11: Robustness to tuning parameters (a) initial learning rate γ0, (b) minimum win-
dow size Wmin, (c) initial iterate average relative error threshold ε0, and (d)
inefficiency threshold τ using dogs data set from posteriordb package. (top)
Iterations versus symmetrized KL divergence between iterate average and opti-
mal variational approximation. The transparent lines represent repeated exper-
iments and the vertical lines indicate the termination rule trigger points. (bot-
tom) Iterations versus symmetrized KL divergence between iterate average and
optimal variational approximation at the termination rule trigger point.

• The user only needs to, at most, adjust a small number of tuning parameters which
empowers the user to intuitively control and trade off computational cost and accuracy.
Moreover, RABVI is robust, both in terms of accuracy and computational cost, to
small changes in all tuning parameters.

• Our framework can easily incorporate different stochastic optimization methods such
as adaptive versions, natural gradient descent, and stochastic quasi-Newton methods.
In practice, we found that the averaged versions of RMSProp and Adam we propose
perform particularly well. However the performance of RABVI will benefit from future
innovations in stochastic optimization methodology.

• RABVI allows for any choice of tractable variational family and stochastic gradient
estimator. For example, in many cases we find accuracy improves when using the
full-rank Gaussian variational family rather than the mean-field one.

Our empirical results also highlight some of the limitations of BBVI, which sometimes is
less accurate than dynamic HMC when given equal computational budgets. However, BBVI
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can be further sped up using, for example, data subsampling when the data set size is large
(which was not the case for the posteriodb data sets from our experiments).
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Appendix A. Proofs

A.1 Proof of Proposition 6

Since the KL divergence of mean-field Gaussians factors across dimensions, without loss of
generality we consider the case of dim = 1. The symmetrized KL divergence between two
Gaussians is

SKL(λ1, λ2) =
1

2

{
e2ψ1−2ψ2 + e2ψ2−2ψ1 + (τ1 − τ2)2(e−2ψ1 + e−2ψ2)− 2

}
=

1

2

{
e2ψ1−2ψ2 + e2ψ2−2ψ1 + (τ1 − τ2)2e−2ψ1(1 + e2ψ1−2ψ2)− 2

}
.

Recall our assumption that for some constants A = (Aτ , Aψ) and B = (Bτ , Bψ),

λ̄γ = λ∗ +Aγ +Bγ2 + o(γ2).

Hence

e2ψ̄γ−2ψ∗ = 1 + 2Aψγ + 2Bψγ
2 +

1

2
(2Aψγ + 2Bψγ

2)2 + o(γ2)

= 1 + 2Aψγ + 2Bψγ
2 + 2A2

ψγ
2 + o(γ2)

and similarly e2ψ∗−2ψ̄γ = 1−2Aψγ−2Bψγ
2+2A2

ψγ
2+o(γ2). Therefore e2ψ̄γ−2ψ∗+e2ψ∗−2ψ̄γ−

2 = 4A2
ψγ

2 + o(γ2) and (τ̄γ − τ∗)2 = A2
τγ

2 + o(γ2). Putting these results together, we have

SKL(λ̄γ , λ∗) =
1

2

[
4A2

ψγ
2 + o(γ2) +A2

τγ
2e−ψ∗{2− 2Aψγ − 2Bψγ

2 + 2γ2A2
ψ + o(γ2)}

]
= (2A2

ψ +A2
τe
−2ψ∗)γ2 + o(γ2).

Similarly, SKL(λ̄γ , λ̄γ′) = (γ − γ′)2(2A2
ψ +A2

τe
−2ψ∗) + o(γ2) as long as γ′ = O(γ). In other

words, letting λ̄0 := λ∗, we have the relation

SKL(λ̄γ , λ̄γ′) = C(γ − γ′)2 + o(γ2)

for some unknown constant C.

A.2 Proof of Proposition 7

Define the Fisher information matrix Fλ = Eθ∼qλ
[
−∇2

λ log{qλ(θ)}
]
. Since λ 7→ qλ(θ) is

three-times differentiable, locally the KL divergence behaves in a quadratic form (Amari,
2016):

SKL(λ1, λ2) =
1

2

{
(λ1 − λ2)>Fλ2(λ1 − λ2) + (λ2 − λ1)>Fλ1(λ1 − λ2)

}
+ o(‖λ1 − λ2‖2).

Moreover, by taking first-order Taylor expansion, we have

Fλi = Fλ∗ +O(‖λ∗ − λi‖2).
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If κ = 1, recall that for some constant vectors A and B,

λ̄γ = λ∗ +Aγ +Bγ2 + o(γ2).

Assume that γ1 = γ and γ2 = O(γ), so ‖λ∗ − λ̄γi‖2 = O(γ). For κ′ > 0, let εκ′ := γκ
′

1 − γκ
′

2 .
Then we have

SKL(λ̄γ1 , λ̄γ2) =
1

2

[
(Aε1 +Bε2 + o(γ2))>(Fλ∗ +O(γ))(Aε1 +Bε2 + o(γ2))

+ (−Aε1 −Bε2 − o(γ2))>(Fλ∗ +O(γ))(−Aε1 −Bε2 − o(γ2))

]

+ o(‖Aε1 +Bε2 + o(γ2)‖22)

= A>Fλ∗Aε
2
1 + o(γ2)

= C(γ1 − γ2)2 + o(γ2),

where C = A>Fλ∗A.
If κ ∈ [1/2, 1), recall that for some constant vectors Λ and A,

λ̄γ = λ∗ + Λγκ +Aγ + o(γ2κ).

Assume that γ1 = γ and γ2 = O(γ), so ‖λ∗ − λ̄γi‖2 = O(γκ). Then we have

SKL(λ̄γ1 , λ̄γ2) =
1

2

[
(Λεκ +Aε1 + o(γ2κ))>(Fλ∗ +O(γκ))(Λεκ +Aε1 + o(γ2κ))

+ (−Λεκ −Aε1 − o(γ2κ))>(Fλ∗ +O(γκ))(−Λεκ −Aε1 − o(γ2κ))

]
+ o(‖Λεκ +Aε1 + o(γ2κ)‖22)

= Λ>Fλ∗Λε
2
κ + 2Λ>Fλ∗Aεκε1 +A>Fλ∗Aε

2
1 + o(γ2κ)

= Λ>Fλ∗Λε
2
κ +O(γ1+κ) + o(γ2κ)

= C(γκ1 − γκ2 )2 + o(γ2κ),

where C = Λ>Fλ∗Λ.

A.3 Symmetric KL Divergence Termination Rule

We can use Proposition 7 to derive a termination rule. If γ is the current learning rate, the
previous learning rate was γ/ρ. Ignoring o(γ2κ) terms, we have

δγ := SKL(λ̄γ/ρ, λ̄γ) = Cγ2κ(1/ρκ − 1)2.

Therefore, we can estimate p and C using a regression model of the form

log δγ = logC + 2 log(1/ρκ − 1) + 2p log γ.

Given estimates κ̂ and Ĉ, we can estimate SKL(λ̄γ , λ∗) ≈ Ĉγ2κ̂.
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A.4 Proof of Proposition 8

Since for |x| < 1/2 it holds that | exp(x)− 1| ≤ 1.5|x|, we have

|σ̂i − σ̄i|
σ̄i

= | exp(ψ̂i − ψ̄i)− 1| ≤ 1.5ε

and

|τ̂i − τ̄i|
σ̄i

≤ ε′σ̂i/σ̄i ≤ ε′(1 + 1.5ε) ≤ 1.75ε.

A.5 Proof of Proposition 9

In the optimal case, the total cost for the iterations used for iterate averaging is

OPT = COWopt + CEWconv + CEWopt

= CE(rWopt +Wconv +Wopt).

On the other hand, if checking at window sizes Wj := χjWconv (j = 1, 2, . . . ), then the
window size at which convergence will be detected is j∗ := dlog(Wopt/Wconv)/ log(χ)e. In
particular,

Wj∗ ≤ χWopt.

Therefore we can bound the actual computational cost as

COWj∗ + CEWconv logWconv + CE

j∗∑
j=1

Wj

≤ COχWopt + CEWconv logWconv + CE

j∗∑
j=1

χjWconv

≤ COχWopt + CEWconv logWconv + CE
χ(χj∗ − 1)Wconv

χ− 1

≤ COχWopt + CEWconv logWconv + CE
χ2Wopt

χ− 1

= CE

[
χrWopt +Wconv +

χ2

χ− 1
Wopt

]
.

If χ = 2, then the actual computational cost is bounded by

CE [2rWopt +Wconv + 4Wopt] ≤ 4CE [rWopt +Wconv +Wopt]

= 4 OPT.

On the other hand, we can minimize the total cost by solving χ∗ := arg minχ>1{rχ+χ2/(χ−
1)} = χ(r). Plugging this back in, we get the bound

CE
2 + r + 2

√
1 + r

1 + r
(rWopt +Wconv logWconv +Wopt)

=
2 + r + 2

√
1 + r

1 + r
OPT

< 4 OPT.
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Appendix B. Further Details

B.1 Effective Sample Size (ESS) and Monte Carlo Standard Error (MCSE)

Let v(1), v(2), . . . denote a stationary Markov chain, let v̄ := E[v(1)] denote the mean at
stationarity, and let v̂ := K−1

∑K
k=1 v

(k) denote the Monte Carlo estimate for v̄. The
(ideal) effective sample size is defined as

ESS(K) := K/(1 +
∞∑
k=1

ρk),

where ρk is the autocorrelation of the Markov chain at lag k. The ESS can be efficiently es-
timated using a variety of methods (Geyer, 1992; Vehtari et al., 2021). We write ÊSS(v(1:K))
to denote an estimator for ESS(K) based on the sequence v(1:K) := (v(1), . . . , v(K)). The
Monte Carlo standard error of v̂ is given by

MCSE(v̂) := σ(v(1))/ESS(K),

where σ(v(1)) denote the standard deviation of the random variable v(1). Given the em-
pirical standard deviation of v(1), . . . , v(K), which we denote σ̂(v(1:K)), the MCSE can be
approximated by

M̂CSE(v(1:K)) := σ̂(v(1:K))/ÊSS(v(1:K)).

B.2 Total Variation Distance and KL Divergence

For distributions η and ζ, |Iη,i,a,b − Iζ,i,a,b| ≤
√

KL(η | ζ)/2 for all a < b and i. This
guarantee follows from Pinsker’s inequality, which relates the KL divergence to the total
variation distance

dTV(η, ζ) := sup
f :‖f‖∞≤1

∣∣∣∣∫ f(θ)η(dθ)−
∫
f(θ)ζ(dθ)

∣∣∣∣ ,
where ‖f‖∞ := supθ f(θ)−infθ f(θ). Specifically, Pinsker’s inequality states that dTV(η, ζ) ≤√

KL(η | ζ)/2 . Thus, small KL divergence implies small total variance distance, which im-
plies the difference between expectations for any function f such that ‖f‖∞ is small. In the
case of interval probabilities, since ‖1(· ∈ [a, b])‖∞ = 1, it follows that

|Iη,i,a,b − Iζ,i,a,b| =
∣∣∣∣∫ 1(θ ∈ [a, b])η(dθ)−

∫
1(θ ∈ [a, b])ζ(dθ)

∣∣∣∣
≤ ‖1(· ∈ [a, b])‖∞ dTV(η, ζ)

≤
√

KL(η | ζ)/2 .

B.3 Adaptive SASA+

The SASA+ algorithm of Zhang et al. (2020) generalizes the approach of Yaida (2019). The
main idea is to find an appropriate invariant function ∆(d, λ) that satisfies

∫
∆(d, λ)µγ(dd,dλ) =

0. Yaida (2019) derived valid forms of ∆ for specific choices of the descent direction,
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while Zhang et al. (2020) showed that for any optimizer of the form Eq. (1) that is time-
homogenous with γ(k) = γ, the map (d, λ) 7→ 2〈d, λ〉 − γ ‖d‖2 is a valid invariant function.
The SASA+ algorithm proposed by Zhang et al. (2020) uses a hypothesis test to determine

when the iterates are sufficiently close to stationarity. Let ∆(k) := 2〈d(k), λ(k)〉 − γ
∥∥d(k)

∥∥2

and let W = d%ke denote the window size to use for checking stationarity. Once W is at
least equal to a minimum window size Wmin, SASA+ uses ∆(k−W+1), . . . ,∆(k) to carry out
a hypothesis test, where the null hypothesis is that E[∆(k)] = 0.

We make several adjustments to reduce the number of tuning parameters and to make
the remaining ones more intuitive. Note that the SASA+ convergence criterion requires
the choice of three parameters: %, Wmin, and the size of the hypothesis test α. Zhang
et al. (2020) showed empirically and our numerical experiments confirmed that the choice
of α has little effect and therefore does not need to be adjusted by the user. The choices
for % and Wmin, however, have a substantial effect on efficiency. If % is too big, then
early iterations that are not at stationarity will be included, preventing the detection of
convergence. On the other hand, if % is too small, then the total number of iterations must
be large (specifically, greater than Wmin/%) before the window size is large enough to trigger
the first check for stationarity. Moreover, the correct choice of Wmin will vary depending
on the problem. If the iterates have large autocorrelation then Wmin should be large, while
if the autocorrelation is small or negative, then Wmin can be small.

Our approach to determining the optimal window size instead relies on the effective
sample size (ESS). Wopt that maximizes ÊSS(W ) := ÊSS(∆(k−W+1), . . . ,∆(k)), where k is
the current iteration. To ensure reliability, we impose additional conditions on Wopt. First,

we require that ÊSS(Wopt) ≥ Nmin, a user-specified minimum effective sample size. Unlike
Wmin, Nmin has an intuitive and direct interpretation. The second condition is, when finding
Wopt, the search over values of W is constrained to the lower bound of Nmin (to ensure the
estimator is sufficiently reliable) and the upper bound of 0.95k (to always allow for some
“burn-in”). In practice we do not check all W ∈ {Nmin, . . . , 0.95k}, but rather perform a
grid search over 5 equally spaced values ranging from Nmin to 0.95k.

A slightly different version which may improve power is to instead define the multivariate
invariant function ~∆(d, λ) = 2d � λ − d � d, where we recall that � denotes component-
wise multiplication. In this case a multivariate hypothesis test such as Hotelling’s T 2 test
or the multivariate sign test, where a single effective sample size (for example, the median
component-wise ESS) could be used. Alternatively, a separate hypothesis test for each of the
m components could be used, with stationarity declared once all tests confirm stationarity
(for example using a test size of α/m). While this approach might be more computationally
efficient when m is large, it could come at the cost of test power.

B.4 Distance Based Convergence Detection

Pesme et al. (2020) proposed a distance-based diagnostic algorithm to detect the stationarity
of the SGD optimization algorithm. The main idea behind this algorithm is to find the
distance between the current iterate λk and the optimal variational parameter λ∗, ‖ηk‖ :=
‖λk − λ∗‖. Since the optimal variational parameter, λ∗ is unknown, this distance cannot be
directly observed. Therefore, they suggested using the distance between the current iterate
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λk and the initial iterate of the current learning rate, ‖Ωk‖ := ‖λk − λ0‖ and showed that
‖ηk‖ and ‖Ωk‖ have a similar behavior.

Under the setting of the quadratic objective function with additive noise, they com-
puted the behavior of the expectation of ‖Ωk‖2 in closed-form to detect the convergence of
‖λk − λ0‖2. With the result, they have shown the asymptotic behavior of the E[‖Ωk‖2] in
the transient and stationary phases, where E[‖Ωk‖2] has a slope greater than 1 and slope

of 0 in a log-log plot respectively. Hence, the slope S := log‖λk−λ0‖2−log‖λk/q−λ0‖2
log k−log k/q computed

between iterations qn and qn+1 for q > 1 and n ≥ n0 where n0 ∈ N ∗ and if S < thresh
(thresh ∈ (0, 2]) then the convergence will be detected.

B.5 Stochastic Quasi-Newton Optimization

The algorithm of Liu and Owen (2021) provides a randomized approach of the classical
quasi-Newton (QN) method that is known as the stochastic quasi-Newton (SQN) method.
Even though, Liu and Owen (2021) uses randomized quasi-Monte Carlo (RMCQ) samples
we use Monte Carlo (MC) samples to compute the gradient. In classical quasi-Newton
optimization, the Newton update is

λ(k+1) ← λ(k) − (∇2
λ(k)

Dπ(qλ(k)))
−1∇λ(k)Dπ(qλ(k)),

where ∇2
λ(k)

Dπ(qλ(k)) is the Hessian matrix of Dπ(qλ(k)). However, the computation cost
of the Hessian matrix and its inverse is high, and it also requires a large amount of space.
Therefore, we can use BFGS (discovered by Broyden, Fletcher, Goldfarb, and Shanno)
method where it approximate the inverse of ∇2

λ(k)
Dπ(qλ(k)) using Hk at the kth iteration

by initializing it with an identity matrix. Then the update is modified by

λ(k+1) ← λ(k) − γ(k)H(k)∇λ(k)Dπ(qλ(k)),

where

H(k+1) ←
(
I −

sky
>
k

s>k yk

)
H(k)

(
I −

yks
>
k

s>k yk

)
+
sks
>
k

s>k yk
,

sk = λ(k+1) − λ(k), and yk = ∇λ(k+1)Dπ(qλ(k+1)) − ∇λ(k)Dπ(qλ(k)). Even using the above
Hessian approximation H(k) will require a large space for storage. To overcome that problem
we can use Limited-memory BFGS (L-BFGS) (Nocedal and Wright, 2006) that computes
H(k)∇λ(k)Dπ(qλ(k)) using m most recent (sk, yk) correction pairs. Liu and Owen (2021) use
the stochastic quasi-Newton approach proposed by Chen et al. (2019) and they compute
the correction pairs after every B iterations by computing the iterate average of parameters
using the most recent B iterations. To compute the yk, the gradients of the objective
function are estimated using Monte Carlo samples that are independent of the samples
used to compute the gradient in the update step.

B.6 Natural Gradient Descent Optimization

Khan and Lin (2017) proposed a natural gradient descent (NGD) approach for the varia-
tional inference that uses the information geometry of the variational distribution. Given
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the variational distribution is an exponential family distribution

qλ = h exp(φ>λ−A(λ))

the NGD update is

λ(k+1) ← λ(k) − γ(k)(F (λ(k)))−1∇λ(k)Dπ(qλ(k)),

where F (λ(k)) denotes the Fisher information matrix (FIM) of the distribution and λ denotes
its natural parameter. Without directly computing the inverse of FIM Khan and Lin (2017)
simplified the above update by using the relationship between natural parameter λ and
expectation parameter m = Eq[φ] of the exponential family

F (λ)−1∇λDπ(qλ) = ∇mDπ(qm).

Therefore, the natural-gradient update can be simplified as

λ(k+1) ← λ(k) − γ(k)∇m(k)Dπ(qm(k)).

This can be applied for the mean-field Gaussian variational family q =
∏d
i=1N (µi, σ

2
i ) where

we can define the natural parameters λi = (µi/σ
2
i ,−0.5/σ2

i ) and expectation parameters
m = (µi, µ

2
i + σ2

i ).

Appendix C. Additional Experimental Details and Results
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Table C.1: Datasets of PosteriorDB Package
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(a) uncorrelated d = 100 (b) uniform correlated d = 100

(c) banded correlated d = 100

Figure C.1: Iteration number versus distance between iterate average and current iterate
for Gaussian targets. The vertical lines indicate convergence detection trigger
points and (for SASA+ and R̂) the colored portion of the accuracy values
indicate they are part of the window used for convergence detection.
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(a) uncorrelated d = 500

(b) uniform correlated d = 100

(c) banded correlated d = 100

Figure C.2: Results for estimating the symmetrized KL divergence with avgAdam. (left)
Learning rate versus symmetrized KL divergence of adjacent iterate averaged
estimates of optimal variational distribution. The lines indicate the linear re-
gression fits, with setting κ = 1. (right) Square root of true symmetrized KL
divergence versus the estimated value with 95% credible interval. The uncer-
tainty of the estimates decreases and remains well-calibrated as the learning
rate decreases.
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(a) uncorrelated d = 500

(b) uniform correlated d = 100

(c) banded correlated d = 100

Figure C.3: Results of termination rule trigger point of Gaussian targets. (left) Learn-
ing rate versus square root of estimated symmetrized KL divergence with 95%
credible interval (dashed blue line). The green vertical line indicates the ter-
mination rule trigger point with corresponding Î value. (right) Iterations
versus square root of symmetrized KL divergence between iterate average and
optimal variational approximation. The vertical lines indicate the convergence
detection points using R̂ (blue) and inefficiency index computation (Î) points
(orange) with corresponding values.
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(a) dogs

(b) arK

(c) nes2000

Figure C.4: Results of termination rule trigger point of posteriordb package
datasets/models. (left) Learning rate versus square root of estimated sym-
metrized KL divergence with 95% credible interval (dashed blue line). The
green vertical line indicates the termination rule trigger point with correspond-
ing Î value. (right) Iterations versus square root of symmetrized KL diver-
gence between iterate average and optimal variational approximation. The
vertical lines indicate the convergence detection points using R̂ (blue) and in-
efficiency index computation (Î) points (orange) with corresponding values.
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(a) 8schools nc

(b) 8schools c

Figure C.5: Results of termination rule trigger point of posteriordb package
datasets/models. (left) Learning rate versus square root of estimated sym-
metrized KL divergence with 95% credible interval (dashed blue line). The
green vertical line indicates the termination rule trigger point with correspond-
ing Î value. (right) Iterations versus square root of symmetrized KL diver-
gence between iterate average and optimal variational approximation. The
vertical lines indicate the convergence detection points using R̂ (blue) and in-
efficiency index computation (Î) points (orange) with corresponding values.
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(a) uncorrelated d = 100 (b) uncorrelated d = 500

(c) uniform correlated d = 100 (d) banded correlated d = 100

Figure C.6: Learning rate versus κ̂ for Gaussian targets using RMSProp with 95% credible
interval. The estimates suggestion κ is approximately 0.5.
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(a) uncorrelated d = 100 (b) uncorrelated d = 500

(c) uniform correlated d = 100 (d) banded correlated d = 100

Figure C.7: Learning rate versus κ̂ for Gaussian targets using Adam with 95% credible
interval. The estimates suggest κ is less than 0.8, with all point estimates close
to 0.6.
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(a) diagonal non-identity banded correlated d =
100

(b) diagonal identity (except first entry) uniform
correlated d = 100

(c) diagonal identity (except first entry) banded
correlated d = 100

Figure C.8: Accuracy comparison of variational inference algorithms using Gaussian tar-
gets, where accuracy is measured in terms of the square root of symmetrized
KL divergence between iterate average and optimal variational approximation.
The vertical lines indicate the termination rule trigger points of FASO and
RABVI. Iterate averages for Adam, RMSProp, and WAdagrad computed at
every 200th iteration using a window size of 20% of iterations.
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(a) uncorrelated d = 100 (b) uncorrelated d = 500

(c) uniform correlated d = 100 (d) banded correlated d = 100

Figure C.9: Accuracy comparison across learning rate schedules with Gaussian targets
where accuracy is measured in terms of the square root of symmetrized KL di-
vergence between iterate average and optimal variational approximation. The
vertical lines indicate the termination rule trigger points of RABVI.
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(a) uncorrelated d = 100 (b) uncorrelated d = 500

(c) uniform correlated d = 100 (d) banded correlated d = 100

Figure C.10: Accuracy comparison of RMSProp, avgRMSProp, avgAdam, SQN, and NGD
optimization methods in RABVI using Gaussian targets where accuracy is
measured in terms of square root of symmetrized KL divergence between iter-
ate average and optimal variational approximation. The vertical lines indicate
the termination rule trigger points and the behavior of optimization methods
at the trigger points showed in inset plots.
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(a) dogs (b) arK (c) nes2000

(d) 8schools c (e) 8schools nc

Figure C.11: Accuracy comparison of RMSProp, avgRMSProp, and avgAdam optimization
methods in RABVI using posteriordb datasets, where accuracy measured in
terms of relative mean error (top) and relative standard deviation error (bot-
tom). The vertical lines indicate the termination rule trigger points.
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(a) arK (b) bball 0 (c) bball 1 (d) dogs log

(e) dogs (f) diamonds (g) 8schools c (h) 8schools nc

(i) hmm example (j) low dim gauss (k) nes2000 (l) sblrc

(m) earnings (n) garch (o) gp pois regr (p) gp regr

(q) hudson lynx (r) mcycle gp

Figure C.12: Accuracy of mean-field (blue) and full-rank (orange) Gaussian family approx-
imations for selected posteriordb data/models, where accuracy is measured
in terms of relative mean error. The red dots indicate where the termination
rule triggers
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(a) arK (b) bball 0 (c) bball 1 (d) dogs log

(e) dogs (f) diamonds (g) 8schools c (h) 8schools nc

(i) hmm example (j) low dim gauss (k) nes2000 (l) sblrc

(m) earnings (n) garch (o) gp pois regr (p) gp regr

(q) hudson lynx (r) mcycle gp

Figure C.13: Accuracy of mean-field (blue) and full-rank (orange) Gaussian family approx-
imations for selected posteriordb data/models, where accuracy is measured
in terms of relative standard deviation error. The red dots indicate where the
termination rule triggers
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(a) arK (b) bball 0 (c) bball 1 (d) dogs log

(e) dogs (f) diamonds (g) 8schools c (h) 8schools nc

(i) hmm example (j) low dim gauss (k) nes2000 (l) sblrc

(m) garch (n) gp pois regr (o) gp regr (p) hudson lynx

(q) mcycle gp

Figure C.14: Accuracy of mean-field (blue) and full-rank (orange) Gaussian family approx-
imations for selected posteriordb data/models, where accuracy is measured
in MMD. The red dots indicate where the termination rule triggers
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(a) arK (b) bball 0 (c) bball 1 (d) dogs logs

(e) dogs (f) 8schools nc (g) 8schools c (h) garch

Figure C.15: Results of RABVI with mean-field Gaussian (blue) and full-rank Gaussian
(green) family comparison to dynamic HMC (orange) in terms of relative mean
error (top) and relative standard error (bottom). Blue and green vertical lines
show the termination rule triggering points in RABVI and orange vertical line
shows the end of warm-up period in dynamic HMC.
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(a) gp pois regr (b) gp regr (c) hmm example (d) hudson lynx

(e) low dim gauss (f) mcycle gp (g) nes2000 (h) sblrc

Figure C.16: Results of RABVI with mean-field Gaussian (blue) and full-rank Gaussian
(green) family comparison to dynamic HMC (orange) in terms of relative mean
error (top) and relative standard error (bottom). Blue and green vertical lines
show the termination rule triggering points in RABVI and orange vertical line
shows the end of warm-up period in dynamic HMC.
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Figure C.17: Results of RABVI with mean-field Gaussian and full-rank Gaussian family
and FASO with NVP flows comparison to dynamic HMC at the same compu-
tational cost (likelihood evaluations) in terms of MMD.
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Figure C.18: Results of RABVI with mean-field Gaussian and full-rank Gaussian family
and FASO with NVP flows comparison to dynamic HMC at the same com-
putational cost (likelihood evaluations) in terms of posterior under coverage
error of 95% quantiles.
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(a) γ0 (b) Wmin (c) ε0 (d) τ

Figure C.19: Robustness to tuning parameters (a) initial learning rate γ0, (b) minimum
window size Wmin, (c) initial iterate average relative error threshold ε0, and
(d) inefficiency threshold τ . Results use Gaussian targetN (0, V ) with d = 100
and V = I (identity covariance). (top) Iterations versus symmetrized KL di-
vergence between iterate average and optimal variational approximation. The
distinct lines represent repeated experiments and the vertical lines indicate
the termination rule trigger points. (bottom) Iterations versus symmetrized
KL divergence between iterate average and optimal variational approximation
at the termination rule trigger point.
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(a) uncorrelated d = 100 (b) uncorrelated d = 500 (c) uniform correlated
d = 100

(d) banded correlated d =
100

Figure C.20: Robustness to initial learning rate γ0 using Gaussian targets. (top) Iterations
versus symmetrized KL divergence between iterate average and optimal vari-
ational approximation. The distinct lines represent repeated experiments and
the vertical lines indicate the termination rule trigger points. (bottom) Iter-
ations versus symmetrized KL divergence between iterate average and optimal
variational approximation at the termination rule trigger point.
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(a) uncorrelated d = 100 (b) uncorrelated d = 500 (c) uniform correlated
d = 100

(d) banded correlated d =
100

Figure C.21: Robustness to minimum window size Wmin,, using Gaussian targets. (top)
Iterations versus symmetrized KL divergence between iterate average and op-
timal variational approximation. The distinct lines represent repeated ex-
periments and the vertical lines indicate the termination rule trigger points.
(bottom) Iterations versus symmetrized KL divergence between iterate av-
erage and optimal variational approximation at the termination rule trigger
point.
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(a) uncorrelated d = 100 (b) uncorrelated d = 500 (c) uniform correlated
d = 100

(d) banded correlated d =
100

Figure C.22: Robustness to initial iterate average relative error threshold ε using Gaussian
targets. (top) Iterations versus symmetrized KL divergence between iterate
average and optimal variational approximation. The distinct lines represent
repeated experiments and the vertical lines indicate the termination rule trig-
ger points. (bottom) Iterations versus symmetrized KL divergence between
iterate average and optimal variational approximation at the termination rule
trigger point.
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(a) uncorrelated d = 100 (b) uncorrelated d = 500 (c) uniform correlated
d = 100

(d) banded correlated d =
100

Figure C.23: Robustness to inefficiency threshold τ using Gaussian targets. (top) Itera-
tions versus symmetrized KL divergence between iterate average and optimal
variational approximation. The distinct lines represent repeated experiments
and the vertical lines indicate the termination rule trigger points. (bottom)
Iterations versus symmetrized KL divergence between iterate average and op-
timal variational approximation at the termination rule trigger point.
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(a) uncorrelated d = 100 (b) uncorrelated d = 500 (c) uniform correlated
d = 100

(d) banded correlated d =
100

Figure C.24: Robustness to Monte Carlo samples M using Gaussian targets. (top) Itera-
tions versus symmetrized KL divergence between iterate average and optimal
variational approximation. The distinct lines represent repeated experiments
and the vertical lines indicate the termination rule trigger points. (bottom)
Iterations versus symmetrized KL divergence between iterate average and op-
timal variational approximation at the termination rule trigger point.
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(a) γ0 (b) Wmin (c) ε0 (d) τ

Figure C.25: Robustness to tuning parameters (a) initial learning rate γ0, (b) minimum
window size Wmin, (c) initial iterate average relative error threshold ε0, and
(d) inefficiency threshold τ using arK dataset from posteriordb package.
(top) Iterations versus symmetrized KL divergence between iterate average
and optimal variational approximation. The transparent lines represent re-
peated experiments and the vertical lines indicate the termination rule trigger
points. (bottom) Iterations versus symmetrized KL divergence between it-
erate average and optimal variational approximation at the termination rule
trigger point.

65



Welandawe, Andersen, Vehtari, and Huggins

References

Abhinav Agrawal, Daniel Sheldon, and Justin Domke. Advances in Black-Box VI: Normaliz-
ing Flows, Importance Weighting, and Optimization. In Advances in Neural Information
Processing Systems, 2020.

Shun-ichi Amari. Information geometry and its applications, volume 194. Springer, 2016.

F Bach and E Moulines. Non-strongly-convex smooth stochastic approximation with con-
vergence rate O(1/n). In Advances in Neural Information Processing Systems, pages 1–9,
2013.

Robert Bamler, Cheng Zhang, Manfred Opper, and Stephan Mandt. Perturbative black
box variational inference. Advances in Neural Information Processing Systems, 30, 2017.

Kush Bhatia, Nikki Lijing Kuang, Yi-An Ma, and Yixin Wang. Statistical and compu-
tational trade-offs in variational inference: A case study in inferential model selection.
arXiv preprint arXiv:2207.11208, 2022.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

D. M. Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational Inference: A Review for
Statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

François Bolley and C Villani. Weighted Csiszár-Kullback-Pinsker inequalities and appli-
cations to transportation inequalities. Annales de la faculte des sciences de Toulouse, 13
(3):331–352, 2005.

Ayman Boustati, Sattar Vakili, James Hensman, and ST John. Amortized variance reduc-
tion for doubly stochastic objective. In Conference on Uncertainty in Artificial Intelli-
gence, pages 61–70. PMLR, 2020.
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José Miguel Hernández-Lobato, Yingzhen Li, Mark Rowland, Thang D Bui, Daniel
Hernández-Lobato, and Richard E Turner. Black-Box Alpha Divergence Minimization.
In International Conference on Machine Learning, 2016.

G. E. Hinton and Tijmen Tieleman. Lecture 6.5 – Rmsprop: Divide the gradient by a
running average of its recent magnitude. In Coursera: Neural networks for machine
learning, 2012.

Jonathan H Huggins, Mikolaj Kasprzak, Trevor Campbell, and T. Broderick. Validated
Variational Inference via Practical Posterior Error Bounds. In International Conference
on Artificial Intelligence and Statistics, 2020.

Matthew J Johnson, D Duvenaud, Alexander B Wiltschko, Sandeep R Datta, and R P
Adams. Composing graphical models with neural networks for structured representations
and fast inference. In Advances in Neural Information Processing Systems, 2016.

Aldéric Joulin and Yann Ollivier. Curvature, concentration and error estimates for Markov
chain Monte Carlo. The Annals of Probability, 38(6):2418–2442, 2010.

Mohammad Emtiyaz Khan and Wu Lin. Conjugate-Computation Variational Inference :
Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate
Models. In International Conference on Artificial Intelligence and Statistics, 2017.

68



Improving the Reliability of BBVI

Kyurae Kim, Jisu Oh, Kaiwen Wu, Yian Ma, and Jacob R. Gardner. On the convergence
of black-box variational inference. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=dHQ2av9NzO.

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
International Conference on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In International
Conference on Learning Representations, 2014.

Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and D. M. Blei. Automatic Varia-
tional Inference in Stan. In Advances in Neural Information Processing Systems, June
2015.

Hunter Lang, Pengchuan Zhang, and Lin Xiao. Using Statistics to Automate Stochastic
Optimization. Advances in neural information processing systems, 32, 2019.
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