
Journal of Machine Learning Research 25 (2024) 1-29 Submitted 2/22; Revised 6/24; Published 7/24

Memory-Efficient Sequential Pattern Mining with Hybrid
Tries

Amin Hosseininasab amin.hosseininasab@warrington.ufl.edu
Warrington College of Business
University of Florida
Gainesville, FL, USA

Willem-Jan van Hoeve vanhoeve@andrew.cmu.edu
Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA, USA

Andre A. Cire andre.cire@rotman.utoronto.ca
Rotman School of Management
University of Toronto
Toronto, ON, Canada

Editor: Debdeep Pati

Abstract
This paper develops a memory-efficient approach for Sequential Pattern Mining (SPM), a
fundamental topic in knowledge discovery that faces a well-known memory bottleneck for
large data sets. Our methodology involves a novel hybrid trie data structure that exploits
recurring patterns to compactly store the data set in memory; and a corresponding mining
algorithm designed to effectively extract patterns from this compact representation. Numer-
ical results on small to medium-sized real-life test instances show an average improvement
of 85% in memory consumption and 49% in computation time compared to the state of the
art. For large data sets, our algorithm stands out as the only capable SPM approach within
256GB of system memory, potentially saving 1.7TB in memory consumption.
Keywords: Sequential pattern mining, Memory efficiency, Large-scale pattern mining,
Trie data set models.

1. Introduction

Data volume is growing at an exponential rate (Taylor, 2021), with modern machine learning
data sets often containing trillions of data points (Villalobos and Ho, 2022). While supervised
machine learning algorithms have thrived by training on such large data sets, unsupervised
algorithms face ongoing challenges in scalability due to their memory requirements. In
particular, Sequential Pattern Mining (SPM), a prominent topic in unsupervised learning,
encounters a well-known memory bottleneck in its two most prevalent algorithms. The
Apriori algorithm (Agrawal et al., 1994) suffers from the explosion of candidate patterns that
are costly to store in memory, and the prefix-projection algorithm (Han et al., 2001) requires
fitting the entire training data set into memory. This has limited extant SPM algorithms to
smaller-sized data sets and rendered them impractical for larger ones (Pillai and Vyas, 2011).
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Larger data sets are inherently richer in information, and mining them can uncover
intricate patterns that facilitate a deeper understanding of the relationships in data. This
includes rare-event patterns and those with long-term dependencies that are more prevalent
in larger samples of the population, but may be infrequent in smaller subsets. Such patterns
are of interest in numerous applications, such as fraud detection (Kim et al., 2022), medical
research (Ji et al., 2012), bioinformatics (Béchet et al., 2012), and market basket analysis
(Pillai and Vyas, 2011), to name a few. Additionally, patterns mined from a larger sample have
less variance and are statistically more robust than the same patterns mined from a smaller
subset (Hämäläinen and Nykänen, 2008). This highlights the need for memory-efficient
SPM algorithms that can handle larger data sets and adapt to their rapidly growing data
environment.

The primary approach to applying SPM algorithms on large data sets is by using more
hardware, either on a single computing unit or via a parallelized structure, such as Gan et al.
(2019); Huynh et al. (2018); Chen et al. (2017); Yu et al. (2019); Saleti and Subramanyam
(2019); Chen et al. (2013). However, using additional hardware is costly, requires specialized
machinery in the case of parallelization, and is often capped due to technology and other
system specifications. Maximizing performance under capped memory is thus a practical
use-case that is of interest in SPM (Wang et al., 2003), and has been shown to be beneficial in
various machine learning techniques such as Pleiss et al. (2017); Gruslys et al. (2016); Si et al.
(2017). Benefits include, for example, faster data set access and higher time efficiency, reduced
overhead and optimized resource utilization, reduced hardware maintenance costs, facilitation
of use in dynamic and online data streams, reduced environmental impact, and higher energy
efficiency. Most importantly, a memory-efficient algorithm makes SPM available to a broader
range of users who are constrained by hardware limitations.

Motivated by these benefits, this paper aims to enhance the memory efficiency of SPM
algorithms, while simultaneously preserving or increasing their time efficiency. We focus on
the prefix-projection algorithm, which has been shown to improve over other alternative
SPM algorithms in terms of time efficiency (Han et al., 2001). The memory bottleneck of
prefix-projection arises from the necessity to fit the entire data set into memory, prompting
a critical examination of how sequential data sets are modeled and stored. The dominant
approach is to model the data set using a relational or vector model, such as the ones
discussed in Fournier-Viger et al. (2017). An advantage of vector models is their simple
structure, leading to a straightforward mining process. Nevertheless, a major disadvantage of
vector models is their high memory usage which becomes increasingly inefficient as data sets
grow in size. This has led researchers to explore alternative models such as trie structures
which are known for their concise representation of strings.

A trie is a graph-based data structure commonly used to store associative arrays or sets
of strings in an efficient manner. A major advantage of trie models is their ability to model
multiple overlapping subsequences using only a single trie path, which can potentially lead
to higher time and memory efficiency in the mining algorithm (Mabroukeh and Ezeife, 2010).
For example, trie models of data sets have been shown to provide benefits such as faster
item-set mining (Han et al., 2004; Pyun et al., 2014; Borah and Nath, 2018), effective Apriori
and candidate pattern storage (Ivancsy and Vajk, 2005; Pyun et al., 2014; Huang et al., 2008;
Fumarola et al., 2016; Antunes and Oliveira, 2004; Wang et al., 2006; Bodon and Rónyai,
2003; Masseglia et al., 2000), effective web access mining (Yang et al., 2007; Pei et al., 2000;
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Lu and Ezeife, 2003), mining long biological sequences (Liao and Chen, 2014), up-down SPM
(Chen, 2009), incorporating constraints into SPM (Masseglia et al., 2009; Hosseininasab
et al., 2019; Wang et al., 2022; Kadıoğlu et al., 2023), progressive SPM (Huang et al., 2006;
El-Sayed et al., 2004), and faster SPM (Rizvee et al., 2020).

While trie models can provide a more memory-efficient model of the data set, using that
model for SPM poses an entirely different challenge. Unlike vector models which have a
one-to-one correspondence between their vectors and sequences of the data set, a single path
of a trie model may correspond to several sequences. This makes tracking the frequency of
patterns nontrivial, requiring additional information to be stored at the nodes of the trie. In
fact, the distinguishing factor between the many trie-based approaches in the literature is
the information stored at the nodes of their tries and how it is used in the mining algorithm.
Unfortunately, all current trie models involve storing a rich set of information at their nodes
in favor of time efficiency, often increasing their memory requirements beyond that of vector
models.

For example, in web access mining (a special case of SPM with simplified sequence
structures), Pei et al. (2000) propose to use a hash table of linked nodes to traverse and
scan their trie data set model. Using hash tables, the data set is recursively projected
onto conditional smaller tries and mined accordingly. The disadvantage of this approach is
the memory overhead of the hash table and the memory and time spent constructing the
conditional tries. Instead of constructing conditional tries, Lu and Ezeife (2003) propose to
store at each node of the trie model an integer position value, and Yang et al. (2007) propose
to recursively generate sub-header tables in the mining algorithm. Such integer position
values grow exponentially with the size of the trie, and similarly, the generation of many
sub-header tables leads to higher memory consumption.

Following works in web access mining, Rizvee et al. (2020) extend the trie model of a
sequential data set to accommodate SPM. This is a challenging task, due to the different
structural properties of data sets in SPM compared to web access mining (Mabroukeh and
Ezeife, 2010). Their TreeMiner algorithm uses a similar idea to hash tables, and stores at
each node of the trie a matrix of links that are used to traverse and mine the trie. Although
this can improve the time efficiency of the TreeMiner algorithm, the matrix of links grows
linearly with the size of the data set and makes the algorithm costly in memory usage.

To improve over the high memory usage of vector and trie models, we begin by introducing
a new binary trie model of the data set that stores a constant amount of information at each
node. We prove that this information suffices for SPM, and develop a novel algorithm with
significantly lower memory requirement than that of Rizvee et al. (2020). Furthermore, we
prove that our trie model is always asymptotically smaller than a vector model, giving it a
major advantage in SPM of large data sets. On the other hand, in data sets where only a few
subsequences overlap, such as smaller data sets or ones with longer sequences, the memory
overhead of modeling a sequence by a trie path may be higher than its vector representation.

To improve memory efficiency for such data sets, we build on our binary trie and develop
a hybrid trie-vector model of the data set. The idea is to take advantage of the strengths
of both trie and vector models and further increase the time and memory efficiency of the
subsequent SPM task. In particular, we exploit the fact that data set sequences have high
overlap in their initial entries (that is, their prefixes)—which can be effectively modeled via a
trie—and low overlap in their latter entries (that is, their suffixes)—which are more efficiently
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modeled via a vector. Our hybrid model is thus designed to find an effective transition from
a trie model of prefixes to a vector model of suffixes that improves memory consumption.

To mine our hybrid data set structure, we combine our binary trie mining algorithm with
a vector-based prefix-projection algorithm to develop a novel hybrid mining algorithm. We
experimentally show that our hybrid algorithm outperforms both trie and vector models in
time and memory usage. In particular, our hybrid algorithm can model and mine orders of
magnitude larger data sets that are out of reach for any other SPM algorithm. Although
primarily designed to handle large data sets, our algorithm improves time and memory usage
when applied to small to medium-sized data sets, showcasing its potential for larger data
sets in time efficiency.

The rest of the paper is organized as follows. We begin by discussing the preliminaries of
SPM in §2, including vector and trie models of the literature. We then develop our novel
binary trie and hybrid models and associated mining algorithms in §3. Numerical results on
real-life large-size data sets are given in §4, and the paper is concluded in §5.

2. Preliminaries

This section provides preliminaries on SPM, starting with the definition of vector models of
sequential data sets and followed by the definition of trie models. Throughout the paper,
and for a thorough space complexity analysis, we consider that a vector of integers uses
a constant cV memory overhead, and that an integer j has O(log(|j|)) space complexity
(Papadimitriou and Steiglitz, 1998). We also discuss the relaxation of the later assumption
for reasonably-sized integers that can be stored in memory using constant overhead.

2.1 Vector Models of the Data Set for SPM

Let E =
{
e1, . . . , e|E|

}
be a finite set of literals, representing possible events or items within

an application of interest. An itemset I =
{
e1, . . . , e|I|

}
is a set of events such that I ⊆ E.

Although events of an itemset can be of any order, they are generally assumed to satisfy a
monotone property and ordered accordingly (Han et al., 2001). A sequence Si =

〈
I1i , . . . , I

Li
i

〉
is an ordered list of Li itemsets, with size |Si| =

∑Li
j=1 |I

j
i |. An event e ∈ E can occur at most

once in an itemset, but the same itemset can occur multiple times in a sequence. Sequences
may be equivalently represented in the event space Si =

〈
ē1, . . . , ej , ēj+1, . . . , e|Si|

〉
, with

the first event of any itemset indicated by an accented event ē. This notation is adopted
throughout this paper.

A sequential data set SD is a list of N sequences SD = 〈S1, . . . ,SN 〉, with the size of its
largest sequence denoted by M = maxi∈{1,...,N} |Si|. Example 1 describes a small instance of
a sequential data set given in Table 1, which we use as a running example.

Example 1 Table 1 gives a vector model of a sequential data set that includes N = 20
sequences S1, . . . ,S20 with events E = {a, b, c}, and maximum sequence length M = 6.
Sequences are given in itemset form, but can be equivalently represented in their event
space. For instance, sequence S1 is a list of (ordered) itemsets 〈{a, b}, {a}, {b}〉 that can be
equivalently represented as 〈a, b, a, b〉.

4



Memory-Efficient Sequential Pattern Mining with Hybrid Tries

Table 1: Vector model of a sequential data set.

S1 〈{a, b}, {a}, {b}〉 S11 〈{a, c}, {a, c}〉
S2 〈{a, b, c}, {c}〉 S12 〈{a}〉
S3 〈{a}, {b}〉 S13 〈{a, b}, {a}, {b, c}〉
S4 〈{a, c}, {a}〉 S14 〈{a, c}, {a, c}, {a, c}〉
S5 〈{a, b, c}〉 S15 〈{a, c}, {a}〉
S6 〈{a, b}〉 S16 〈{a, b}, {a}, {b}〉
S7 〈{a, b, c}〉 S17 〈{a, b}, {a}, {b}, {a, c}〉
S8 〈{a, b, c}, {c}〉 S18 〈{a, c}, {a, c}, {b, c}〉
S9 〈{a, c}, {a}〉 S19 〈{a, b, c}, {c}〉
S10 〈{a, b}〉 S20 〈{a, b}, {a}〉

A sequence Si′ is said to be a subsequence of another sequence Si, denote Si′ v Si, if
there exist integers k1 < · · · < kLi′ such that Iji′ ⊆ Ikji for all j = 1, . . . , Li′ . A prefix Ši is
a contiguous subsequence of Si, with k1 = 1 and kj+1 = kj + 1 for all j = 1, . . . , |Ši| − 1.
Similarly, a postfix Ŝi is a contiguous subsequence of Si, with k1 = |Si| − |Ŝi| + 1 and
kj+1 = kj + 1 for all j = 1, . . . , |Ŝi| − 1.

The SPM task involves finding the set of frequent patterns within a data set SD. A
pattern P is a subsequence that satisfies P v Si for at least one sequence Si ∈ SD. The
support supp(P) ∈ Z>0 of a pattern P is the number of distinct sequences in SD for which
P v Si. A pattern is considered frequent if supp(P) ≥ θ × N , where 0 < θ ≤ 1 is a
user-defined minimum support threshold.

Frequent patterns are generally found iteratively, where at each iteration a frequent pattern
P is extended by a single event e ∈ E, to 〈P, e〉, and checked to satisfy supp(〈P, e〉) ≥ θ×N .
Pattern extensions are classified into an itemset extension or a sequence extension. In an
itemset extension, pattern P is extended to 〈P, e〉, extending its last itemset I|P| by a single
event. In a sequence extension, a pattern is extended to 〈P, ē〉, extending P by a new itemset
I = {ē}. Example 2 demonstrates a frequent pattern in our running example.

Example 2 Given a support threshold of θ = 0.2, an example frequent pattern in Table 1
is P = 〈{a, b}〉. The pattern has support supp(P) = 12 ≥ 4, as it is a subsequence of
sequences S1,S2,S5,S6 − S8,S10,S13,S16,S17,S19,S20 with k1 = 1, k2 = 2 for all sequences.
An example sequence extension of P is P ′ = 〈{a, b}, {c}〉 with support supp(P ′) = 5 (se-
quences S2,S8,S13,S17,S19). An example itemset extension is P ′′ = 〈{a, b, c}〉 with support
supp(P ′′) = 5 (sequences S2,S5,S7,S8,S19).

The literature generally models sequential data sets via vectors, where each sequence
Si ∈ SD is stored in memory using a single vector. Current state-of-the-art SPM algorithms
that use vector models store their entire representation of the data set in memory, which
can be costly in terms of memory usage. In particular, Lemma 1 gives the worst-case space
complexity of a vector-based SPM algorithm.

Lemma 1 The worst-case space complexity of a vector-based SPM algorithm is O (NM log(N)),
and O (NM) for reasonably-sized integers N .
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Proof A sequential data set SD uses one vector per sequence Si ∈ SD and stores an integer
j ≤ |E| per event e ∈ Si. Assuming that |E| ≤ N and M ≤ N (which generally hold in
practice), the worst-case space complexity of a vector model is O

(
NcV +NM log(|E|)

)
=

O (NM log(|E|)).
The most memory-efficient and basic SPM algorithm involves pseudo-projection (Han

et al., 2001). Pseudo-projection stores a sequence ID-integer position pair (i, j) (with i ≤ N
and j ≤M) for at most all Si ∈ SD and positions M . The worst-case space complexity of a
vector-based SPM algorithm is thus O(NM log(M) +NM log(N)) = O(NM log(N)).

Putting the two together, the worst-case space complexity of vector-based SPM algorithms
is O(NM log(|E|) +NM log(N)) = O (NM log(N)). Reasonably sized integers N consume
constant memory, and reduce the complexity to O (NM)

As shown in Lemma 1, the memory consumption of vector models and algorithms grows
linearly with N—for reasonably sized values of N . In practice, this can be highly memory-
consuming, for example, for the large-size data sets of Villalobos and Ho (2022); Criteo AI
Lab (2014); Consortium et al. (2015) that include billions to trillions of sequences. For such
large data sets, vector-based SPM algorithms cannot fit their data set representation into
system memory, which consequently prevents them from performing their mining task. To
improve on this memory deficiency, we next examine trie models of the data set, which have
the potential to conserve memory by representing multiple sequences of the sequential data
set using a single path.

2.2 Trie Models of the Data Set for SPM

For a sequential data set SD, let T := (N ,A,L) be its labeled trie model with node set N ,
arc set A, and a set of labels L. The node set N can be partitioned into M + 1 subsets
N0, . . . ,NM , referred to as layers. Layer N0 := {r} is a singleton containing auxiliary root
node r, and the remaining j = 1, . . . ,M layers model the events of sequences Si ∈ SD.
Accordingly, each node n ∈ N \ {r} is associated with an event label en ∈ L, which denotes
the event literal e ∈ E modeled by node n; and an itemset label In, which denotes the position
j of itemset Iji in the sequence Si modeled by path P.

Using event and itemset labels en, a trie path P = (r, n1, . . . , n|P|) models the sequence
Si = 〈en1 , . . . , en|P|〉 belonging to itemsets 〈In1 , . . . , In|P|〉. For notation convenience, we
specify the sequence Si modeled by a trie path P using a transformation function S(P) = Si.

The main advantage of trie models is their ability to model all overlapping prefixes Ši of
sequences in SD using only a single path P : S(P) = Ši. Accordingly, nodes n ∈ N \ {r} are
associated with a positive integer frequency label fn ∈ L that denotes the number of prefixes
Ši of sequences Si ∈ SD modeled by path P = (r, . . . , n). Example 3 illustrates the general
trie model of the data set in our running example.

Example 3 Figure 1 depicts the trie model of the data set given in Table 1. Event labels
are displayed inside each node, frequency labels are given above each node, and node layers
are given above each column of nodes. The trie models the 20 sequences of the sequential
data using 6 maximal paths and a total of |N | = 17 nodes. Note that a vector model uses 20
vectors and a total of

∑
Si∈SD |Si| = 72 units of memory to store the same data set. This is

considerably less memory efficient even for our small running example. Although the trie
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Figure 1: General trie model T of the data set in Table 1. Although the general trie
structure correctly models all sequences of the data set and their frequencies, its labels are

insufficient for SPM.

correctly models all sequences of the data set and their frequencies, its labels are insufficient
for SPM.

Forgoing the differences between web access mining and SPM, the trie models of Yang
et al. (2007); Pei et al. (2000); Lu and Ezeife (2003); Rizvee et al. (2020) are identical in their
node and arc set (N ,A). In particular, the contribution of the trie models in the literature
is the additional labels in L that are required to perform web access mining or SPM (see, for
example, Pei et al. (2000); Lu and Ezeife (2003); Yang et al. (2007); Rizvee et al. (2020)).
These label sets are critical in the mining process, and in the case of web access mining, do
not generalize to SPM. This is due to the inherent difference between web access mining
and SPM, where web access algorithms cannot distinguish between itemset and sequence
extensions (Mabroukeh and Ezeife, 2010).

In order to model and mine data sets in SPM, Rizvee et al. (2020) expand the label set L
of each node n ∈ N by two additional labels. The first “next-links” label is a matrix of node
pointers, where each row corresponds to an event e ∈ E, and each column points to the first
node n′ : en′ = e of each path (n, . . . , n′) spanning from node n. The second “parent-info”
label is a bitset that determines which events e ∈ E fall into the same itemset as event en
on the path (r, . . . , n). These labels are used in a tailored mining algorithm, TreeMiner, to
mine all patterns. Figure 2 shows the trie model of TreeMiner for our running example.

TreeMiner traverses its trie model using the next-link matrices and mines patterns using
the information stored in the parent-info and itemset labels. Although next-links can enable
faster traversal of the trie and SPM is possible using the parent-info and itemset labels,
storing them at each node of the trie model is costly in memory usage. In particular, Lemma 2
gives the worst-case space complexity of the TreeMiner algorithm.

Lemma 2 The worst-case space complexity of TreeMiner is O
(
min{N, |E|M}M |E|2 log(N)

)
,

and O
(
min{N, |E|M}M |E|2

)
for a reasonably-sized N .

Proof A node n ∈ T of the trie model of TreeMiner stores integer values fn, en, In,
which are all bounded by O(log(N)), a next-link matrix bounded by O((|E| + 1)cV +
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Figure 2: Trie model of TreeMiner for the data set of Table 1. The trie is updated with
itemset labels I, next-links displayed as a matrix adjacent to each node, and the parent-info
bitset displayed as a vector under each node. TreeMiner mines the trie by traversing it using

next-links and determining valid extensions using parent-info and itemset labels.

|E|2 log(N))), a parent-info bitset bounded by O(cV + |E|), and a children vector bounded
by O

(
cV + |E| log(N)

)
. The space complexity of a TreeMiner node is thus O

(
|E|2 log(N)

)
.

By definition, a node n of a trie model has at most 2|E| children, an event e ∈ E
representing an itemset extension and an event ē ∈ E representing a sequence extension. The
maximum number of children for a trie layer Nj is thus (2|E|)|Nj |. As |N0| = 1, the maximum
number of nodes for any layer is (2|E|)M . On the other hand, we can have at most N nodes
at any layer of a trie model of a sequential data set SD, where each sequence Si ∈ SD
is modeled by exactly one path. The maximum number of nodes in a trie model is thus
O
(
min{N, |E|M}M

)
. For TreeMiner, this gives the overall worst-case memory complexity

of its trie model as O
(
min{N, |E|M}M |E|2 log(N)

)
.

For its mining algorithm, TreeMiner stores one positional integer j ≤M for at most every
node in its trie, bounding its worst-case space complexity by O

(
min{N, |E|M}M log(N)

)
.

Putting the two together, gives the overall space complexity of TreeMiner as
O
(
min{N, |E|M}M |E|2 log(N)

)
. Reasonably sized integers N consume constant memory

and reduce the complexity to
O
(
min{N, |E|M}M |E|2

)
.

The memory efficiency of TreeMiner is highly dependent on the number of events |E| and
maximum sequence length M . Consequently, TreeMiner may use more memory than a
vector model when either value is high, and the data set does not contain many overlapping
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sequences. We indeed observe this in a number of data sets in our numerical results. For a
more memory-efficient SPM algorithm, we propose two novel approaches in the following
section.

3. Binary and Hybrid Tries for Memory Efficient SPM

We introduce our binary trie BT in §3.1, and its corresponding mining algorithm in §3.2. We
build on BT to develop a hybrid trie HT and its corresponding mining algorithm in §3.3.

3.1 Binary Tries

A binary trie BT is a doubly chained implementation of a trie T (Sussenguth Jr, 1963),
with a novel addition to its set of labels L. The binary structure of the trie is intended to
reduce memory consumption in practice by avoiding the use of vectors to store a node’s
children. Instead, a node n ∈ BT is associated with at most one child node chl(n) and one
sibling node sib(n). A child node chl(n) models the first child of node n, with the remaining
children modeled as contiguous siblings of chl(n).

The main contribution of BT is its updated set of labels which consumes a constant
amount of memory. In addition to event, frequency, and itemset labels of a general trie model,
BT stores at each node n ∈ N an additional ancestral label an ∈ L, given by Definition 3.

Definition 3 The ancestor label an of a node n ∈ BT is defined as:

an =

 n′
if ∃n′ : (n′, . . . , n) ∈ BT , en′ = en, and
en′′ 6= en∀n′′ ∈ (n′, . . . , n) : n′′ 6= n, n′′ 6= n′,

r otherwise.

Intuitively, the ancestor label of a node n tracks the first occurrence of event en prior to node
n, on the path (r, . . . , n) ∈ BT . As we later show, ancestor labels are sufficient to effectively
mine all patterns from a trie model, and can be efficiently generated during its construction.
Example 4 illustrates the binary-trie model for our running example.

Example 4 Consider the binary trie model of our running example given in Figure 3. The
nodes n2, n7, n8 are all siblings and model the children of their parent node n1. Similarly,
nodes n3 and n5 are siblings with parent node n2. The ancestor of node n7 is an7 = r as
there is no node n′ : en′ = en7 on the path (r, n1, n7). The ancestor of node n14 is an14 = n3,
as node n3 is the first prior node to n14 on the path (r, n1, n2, n3, n4, n14) with the same item
en14 = en3.

Construction of BT involves two scans of SD. In the first scan, we follow the works of Pei
et al. (2000) and Lu and Ezeife (2003) and perform support-based filtering on the data set.
Support-based filtering involves removing any infrequent event e ∈ E : supp(e) < θ×N from
SD. Such infrequent events cannot be part of any frequent pattern due to the antimonotone
property of supp(P), and thus can be removed without affecting the generation of frequent
patterns. In the next scan, BT is constructed by iterating over the sequences Si ∈ SD. In
each iteration, a sequence Si is modeled by increasing the frequency values fn for any node
n ∈ P : S(P) = Si constructed in previous iterations, or by creating a new node if no such
node exists in BT . The complete procedure is given in Algorithm 1.
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Figure 3: The BT model of the data set in Table 1. Sibling nodes are connected by dashed
arcs. The trie is updated with itemset labels In and ancestor labels an, which are sufficient

for SPM.

3.2 The BTMiner Algorithm

Given a data set SD, the SPM task involves finding all patterns P such that supp(P) ≥ θ×N .
In prefix-projection, the algorithm is initialized by frequent patterns containing a single
event, that is, P = 〈ē〉 : e ∈ E, supp(e) ≥ θ ×N . At each subsequent iteration, a pattern P
is extended by a single event e ∈ E to 〈P, e〉, and checked to satisfy supp(〈P, e〉) ≥ θ ×N .

To mine a BT model of the data set, we first define N (P) as the set of terminal nodes
{n} of all minimal paths P = (r, . . . , n) ∈ BT : P v S(P). Paths P are minimal in that
∀n′ ∈ (r, . . . , n) : n′ 6= n, we have P 6v S ((r, . . . , n′)). Proposition 4 proves that node sets
N (e) model all minimum-sized prefixes Ši v Si : P v Ši for all Si ∈ SD.

Proposition 4 Node set N (P), as defined above, models all minimum-sized prefixes Ši v
Si : P v Ši for all Si ∈ SD.

Proof The proof follows from the minimal property of paths P = (r, . . . , n) : n ∈ N (P). As-
sume by contradiction that the prefix Ši : P v Ši modeled by a minimal path P : S(P) = Ši
is not of minimum size. Then there must exist another prefix Š ′i : Š ′i @ Ši,P v Š ′i. Let
P′ = (r, . . . , n′) be the trie path that models prefix Š ′i. As trie paths are unique and Š ′i @ Ši,
we have P = 〈P′, . . . , n〉, a contradiction to the minimality of path P. As node set N (P)
contains all nodes n : P v S((r, . . . , n)), then it models all prefixes Ši v Si : P v Ši for all
Si ∈ SD.

Our mining algorithm, BTMiner, initializes with the set of pattern-node-set pairs (P =
{e},N (P)) for all events e ∈ E. This can be done effectively by tracking the first occurrence
of events e ∈ E of a sequence Si ∈ SD during the construction of BT . In the next
steps, BTMiner iteratively takes a pattern-node-set pair (P = {e},N (P)), and attempts to
construct sets N (〈P, e〉) by following Proposition 5
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Algorithm 1 Construction of BT .
1: Filter the data set and remove all events e ∈ E : supp(e) < θ ×N .
2: Initialize BT with N := {r}, A := ∅
3: Let n = r
4: for each Si ∈ SD do
5: Let Anct(e) = r for all e ∈ E.
6: Let ItmSet = 0.
7: for each ej ∈ Si do
8: if node n has a child n′ = chl(n) then
9: while en′ 6= ej and n′ has a sibling node n′′ = sib(n′) do

10: Let n = n′,
11: Let n′ = n′′.
12: if en′ = ej then
13: Update fn′ = fn′ + 1, and set n = n′.
14: else
15: Add n′ : en′ = ej , fn′ = 1, an′ = Anct(ej), In′ = ItmSet to Nj .
16: Add sibling arc (n, n′) to A.
17: else
18: Add n′ : en′ = ej , fn′ = 1, an′ = Anct(ej), In′ = ItmSet to Nj .
19: Add child arc (n, n′) to A.
20: if ej = ēj then
21: Update ItmSet = ItmSet + 1.
22: Update Anct(ej) = n′.
23: return BT .

Proposition 5 Given a node set N (P), node set N (〈P, e〉) is constructed by finding all
minimal paths (n, . . . , n′) ∈ BT : en′ = e, for all nodes n ∈ N (P).

Proof By Proposition 4, all paths (r, . . . , n) : n ∈ N (P) model all minimum-sized prefixes
Ši v Si : P v Ši for all Si ∈ SD. As paths (n, . . . , n′) are minimal by definition and have
en′ = e, then paths (r, . . . , n′) are also minimal and satisfy 〈P, e〉 v S ((r, . . . , n′)). Finding
all such paths for all nodes n ∈ N (P) thus constructs N (〈P, e〉).

Finding minimal paths (n, . . . , n′) in a trie is a chalenging task, with extant trie-based SPM
algorithms requiring a rich set of information to be stored at their nodes. For example,
TreeMiner requires traversing the tree using next-links and using parent info information to
determine valid pattern extensions. For BTMiner, the process involves a depth-first-search
of the sub-trie rooted at node n and finding nodes n′ according to Theorem 6.

Theorem 6 Let n′ be a node traversed on a path P = (n, . . . , n′) rooted at a node n ∈ N (P).
Path (n, . . . , n′) is minimal for the construction of set N (〈P, en〉) if and only if:

• For a sequence extension 〈P, ēn′〉 we have In′ 6= In and Ian′ ≤ In,

• For an itemset extension 〈P, en′〉 we have

11
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– In′ = In, or
– ∀ej ∈ I|P|, ∃n′′ ∈ P : en′′ = ej , In′′ = In′ and
∗ Ian′ < In, or
∗ ∀n′′′ ∈ P : en′′′ = en′ we have n′′′ /∈ N (〈P, en′〉).

Proof For a sequence extension 〈P, ēn′〉, assume by contradiction that P = (n, . . . , n′) is
minimal, but In′ = In or Ian′ > In. If In′ = In then node n′ belongs to the same itemset
as node n and cannot be used for a sequence extension, a contradiction. If Ian′ > In,
then we must have P = (n, . . . , an′ , . . . , n

′), and consequently 〈P, ēn′〉 v S ((n, . . . , an′)),
contradicting the minimality of P.

For the converse, assume by contradiction that In′ 6= In and Ian′ ≤ In, but that path
P is not minimal. Then path P must be of the form P = (n, . . . , n′′, . . . , n′), such that
P′ = (n, . . . , n′′) : 〈P, ēn′〉 v S ((n, . . . , an′′)) is minimal. As n′′ corresponds to a sequence
extension 〈P, ēn′〉, we must have en′′ = en′ , In′′ > In. This contradicts Ian′ ≤ In, by definition
of ancestor label an′ .

For an itemset extension 〈P, en′〉, assume by contradiction that P = (n, . . . , n′) is minimal,
but,

1. In′ 6= In and

2. ∃ej ∈ I|P| : @n′′ ∈ P : en′′ = ej , In′′ = In′ , or

3. ∀ej ∈ I|P|, ∃n′′ ∈ P : en′′ = ej , In′′ = In′ and

(a) Ian′ ≥ In, and
(b) ∃n′′′ ∈ P : en′′′ = en′ and n′′′ ∈ N (〈P, en′〉).

Consider conditions 1 and 2. Due to condition 1, node n′ models an event within another
itemset to the event modeled by node n. As path P is minimal, we must have I|P| @ IIn′ .
This means ∀ej ∈ I|P|,∃n′′ ∈ P : en′′ = ej , In′′ = In′ , a contradiction to condition 2. Consider
conditions 1 and 3. Due to condition 3b, path (n, . . . , n′′) is minimal, a contradiction to the
minimality of path P.

For the converse, assume by contradiction that the statement holds, but path P is not
minimal. Then there must exist a node n′′′ ∈ P, n′′′ 6= n′ such that path (n, . . . , n′′) is
minimal for the construction of set N (〈P, en′〉). This contradicts Ian′ < In by the definition
of ancestor label an′ , and contradicts n′′′ 6∈ N (〈P, en′〉) otherwise.

At each iteration, BTMiner takes a tuple (P,N (P)) and extends P by searching the
sub-tries rooted at nodes n ∈ N (P) and checking the conditions of Theorem 6. The process
can be made more efficient by following a two-phase depth-first-search procedure:

Phase 1: Search the paths rooted at node n up until the first node n′ : In′ 6= In. Here, the
conditions of Theorem 6 are automatically satisfied, with nodes n′′ 6= n′ modeling an itemset
extension and nodes n′ modeling a sequence extension, as proved in Lemma 7.

Lemma 7 Let P = (n, . . . , n′) ∈ BT be a path rooted at a node n ∈ N (P) and terminating
at the first node n′ : In′ 6= In. The node n′ models a sequence extension 〈P, ēn′〉, and all
nodes n′′ ∈ P : n′′ 6= n, n′′ 6= n′ model an itemset extension 〈P, en′′〉.
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Proof By the statement, all nodes n′′ ∈ P : n′′ 6= n′ have In′′ = In and thus belong to the
same itemset. By definition, events within an itemset are unique and cannot be repeated.
Therefore, we have Ian′′ < In, which by Theorem 6, means that all nodes n′′ model an itemset
extension 〈P, en′′〉.

Similarly, as node n′ is the first node in P such that In′ 6= In, its ancestor an′ must either
occur prior to node n or within the same itemset as node n. This means Ian′ ≤ In, which by
Theorem 6, means that node n′ models a sequence extension 〈P, en′〉.

Phase 2: Search the paths rooted at nodes n′ found in phase 1, and check the conditions of
Theorem 6 to determine itemset and sequence extensions for any traversed node.

The complete BTMiner algorithm for BT is given in Algorithm 2, proved to find all frequent
patterns in Theorem 8, and exemplified in Example 5.

Theorem 8 A pattern is frequent if and only if it is found by BTMiner.

Proof Assume that a pattern P is frequent, and thus has support supp(P) ≥ θ×N . By the
definition of support values, there exists at least θ ×N sequences Si ∈ SD such that P v Si.
By Proposition 4, node set N (P) models all minimum-sized prefixes Ši v Si : P v Ši for all
Si ∈ SD. By Proposition 5 and Theorem 6, all nodes belonging to set N (P) are found by
BTMiner. Therefore, BTMiner finds all sequences Si : P v Si.

Assume that a pattern P is found by BTMiner. This means that
∑

n∈N (P) fn ≥ θ ×N .
As nodes n ∈ N (P) model a minimum-sized prefix Ši v Si : P v Ši, then there must exist at
least θ ×N sequences Si ∈ SD such that P v Si. Therefore, supp(P) ≥ θ ×N , and pattern
P is frequent.

Example 5 In the first iteration, BTMiner initializes with pattern-node pairs
(〈ā〉, {n1}), (〈b̄〉, {n2, n7, n16}), (〈c̄〉, {n5, n8, n11, n15}). The mining algorithm takes a pattern-
node pair, for example, (〈ā〉, {n1}), and in the first phase performs a depth-first-search of the
subtrie rooted at node n1 to find the first nodes n′ : In′ 6= In. This results in finding nodes
n3, n6, n7, n9. All these nodes model a sequence extension according to Lemma 7, and give a
pattern-node pair

(
〈ā, ā〉, {n3, n9}), (〈ā, b̄〉, {n7}), (〈ā, c̄〉, {n6})

)
. On the other hand, any node

traversed on the paths P = (n1, . . . , n
′), n′ ∈ {n3, n6, n7, n9} models an itemset extension

according to Lemma 7, which gives pattern-node pairs (〈ā, b〉, {n2})(〈ā, c〉, {n5, n8}).
In the second phase, search is initiated from nodes n3, n6, n7, n9, found in phase 1. Any

pattern extension is determined by following Theorem 6. For example, Searching the sub-trie
rooted at node n9 first traverses node n10. To check for a sequence extension, we have
In10 6= In1 and Ian10

≤ In1, which satisfies the condition of Theorem 6. The corresponding
pattern-node pair is then updated to (〈ā, c̄〉, {n6, n10})).

To check for an itemset extension, we have In10 6= In1 which violates the first condition
of Theorem 6, but en9 = en1, In9 = In10 which satisfies the first part of the second condition.
Checking the second parts of the second condition, we have Ian10

= In1, and n8 ∈ N (〈ā, c〉)
which violates both conditions. Therefore, node n10 does not model an itemset extension.
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Algorithm 2 The BTMiner algorithm.
1: Initialize pattern-node pairs {(P,N (P))} for all P = 〈ē〉, e ∈ E : supp(e) ≥ θ ×N .
2: for each pair (P,N (P)) do
3: Let N (〈P, e〉) = ∅ for all e ∈ E, and j̄ = maxj′∈{1,...,|P|−1} j

′ : Ij′ 6= Ij′+1.
4: for each n ∈ N (P) do
5: Initialize DFS queues Q1

N = 〈n〉, Q2
N = 〈〉, QI = 〈〉.

6: while Q1
N is nonempty do

7: Take n′ from the front of queue QN .
8: for each child (or child-sibling) node n′′ of node n′ do
9: if In′ = In′′ then

10: Add node n′′ to N (〈P, en′′〉) as an itemset extension,
11: Add node n′′ to the front of queue Q1

N .
12: else
13: Add node n′′ to N (〈P, ēn′′〉) as a sequence extension,
14: Add node n′′ to the front of queue Q2

N .
15: if en′′ = ej̄ then
16: Add 1 to the front of queue QI.
17: else
18: Add 0 to the front of queue QI.
19: while Q2

N is nonempty do
20: Take n′ from the front of queue Q2

N , and integer k from front of queue QI.
21: for each child (or child-sibling) node n′′ of node n′ do
22: if In′ = In′′ then
23: if k = |P| − j and conditions of Theorem 6 are satisfied then
24: Add node n′′ to N (〈P, en′′〉) as an itemset extension.
25: if Conditions of Theorem 6 are satisfied then
26: Add node n′′ to N (〈P, ēn′′〉) as a sequence extension.
27: Add node n′′ to the front of queue Q2

N .
28: if k < |P| − j and en′′ = ej̄+k then
29: Add k + 1 to the front of queue QI.
30: else
31: Add k to the front of queue QI.
32: else
33: if conditions of Theorem 6 are satisfied then
34: Add node n′′ to N (〈P, ēn〉) as a sequence extension.
35: Add node n′′ to the front of queue Q2

N .
36: if en′′ = ej̄ then
37: Add 1 to the front of queue QI.
38: else
39: Add 0 to the front of queue QI.
40: for each e ∈ E do
41: if

∑
n∈N (〈P,e〉) fn ≥ θ ×N then

42: Add (〈P, e〉,N (〈P, e〉)) to the set of pattern-node pairs.
43: return Set of frequent patterns P :

∑
n∈N (P) fn ≥ θ ×N .
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The worst-case space complexity of BTMiner is given by Theorem 9.

Theorem 9 The worst-case space complexity of BTMiner is O
(
min{N, |E|M}M log(N)

)
,

and O
(
min{N, |E|M}M

)
for reasonably-sized integers N .

Proof A node n ∈ BT stores integer values fn, en, In, a positional value an, and two
positional values chl(n), sib(n). All values are bounded by O(log(N)).

As trie models of the data set are identical in their node set N , and by Lemma 2, the
number of nodes in a trie model is O

(
min{N, |E|M}M

)
. This gives the total worst-case

memory complexity of BT as O
(
min{N, |E|M}M log(N)

)
.

Similarly to TreeMiner, BT Miner stores a positional integer j ≤M for at most every
node n ∈ BT , bounding its worst-case space complexity by O

(
min{N, |E|M}M log(N)

)
. The

total space complexity of BTMiner is thus O
(
min{N, |E|M}M log(N)

)
. Reasonably sized

integers N consume constant memory and reduce the complexity to O
(
min{N, |E|M}M

)
.

Compared to TreeMiner, BTMiner is at least O(|E|2) times more memory efficient and
never larger. Similarly, BTMiner is always asymptotically smaller than a vector-based
SPM algorithm. In the best case for BTMiner, we have |E| = 1 and space complexity of
M log(N), leading to O(N) times more efficient memory consumption than a vector model for
reasonably-sized integers N . In the worst case, BT uses the same number of nodes as entries∑
Si∈SD |Si|. In practice, this leads to higher memory usage due to the memory overhead of

label sets Ln stored at each node n ∈ BT . We address this deficiency by developing a hybrid
model in the next section.

3.3 Hybrid Tries and the HTMiner Algorithm

Trie models are most memory-efficient when modeling sequences Si ∈ SD that highly overlap.
Such sequences can be represented by fewer nodes |N |, leading to a more compact model
that compensates for the higher memory overhead cT of each trie node. On the other hand,
when many sequences Si ∈ SD do not overlap, the model is less compact and can lead to
increased memory consumption in practice. For such data sets, vector models are a more
memory-efficient approach.

Regardless of the overlap for sequences Si ∈ SD, sequential data sets generally have a
high overlap on their prefixes Ši : Ši v Si ∈ SD. This is due to the lower number of possible
event combinations |E|j ≥ |Nj | at any length j ≤ |Si|, which is typically much lower than
N for smaller values of j. For such prefixes, a trie model is more memory efficient. As j
increases, so does the possible number of unique and non-overlapping sequences, leading to
potentially less overlap on postfixes Ŝi v Si ∈ SD. For such postfixes, a vector model is
more memory efficient in practice. We propose a hybrid model HT to take advantage of this
trade-off.

A hybrid model HT is a BT representation of all prefixes Ši v Si of length |Ši| = j∗,
that transitions into a vector model for the remaining postfixes Ŝi : |Ŝi| = |Si| − j∗. For
the subsequent mining task, HT also stores at each node n of the transitioning layer Nj∗ , a
vector of ancestor nodes ~a = 〈ae1 , . . . , ae|~a|〉 such that ae ∈ ~a if e ∈ S (r, . . . , n). For example,
Figure 4 illustrates an HT model for our running example that transitions at length j∗ = 4.

An important challenge of our hybrid model is determining the transition length j∗ that
provides the highest memory efficiency. This is data set dependent and determined based on
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Figure 4: An HT model of the data set in Table 1. The model transitions from a trie to a
vector representation at layer N4. Transitioning nodes n4, n10 are associated to an ancestor

vector that tracks the ancestors for all events e ∈ E : e ∈ S(r, . . . , nj), j ∈ {4, 10}.

the trade-off between the compression that a BT model can provide for layers Nj , 0 < j ≤ j∗,
versus the memory overhead introduced by the transition to a vector model for postfixes
Ŝi : |Ŝi| = M − j∗. We choose j∗ using Theorem 10, where Nj denotes the number of
sequences Si ∈ SD : |Si| ≥ j, recorded during the preprocessing step of constructing BT .

Theorem 10 It is most memory-efficient for a hybrid model HT to transition from a BT
representation to a vector representation at the layer N ∗j , where

j∗ = arg min
j∗∈{0,...,M}

cT cint
j∗∑
j=1

|Nj |+1(j∗ < M)
(
cV + cint min{|E|, j∗}

)
|Nj∗ |+ cVNj∗+1 + cint

M∑
j=j∗+1

Nj .

Proof For anHT transitioning at a layerNj′ ∈ HT : j′ ∈ {0, . . . ,M} involves a BT model of
all prefixes Ši v Si ∈ SD : |Ši| = j′, and a vector model of postfixes Ŝi @ Si : |Ŝi| = |Si| − j′.

The BT model of prefixes Ši consumes cT cint memory overhead per nodes n ∈ BT . If
j′ < M , HT also stores a vector of at most min{|E|, j∗} ancestors per node n ∈ Nj′ , which
has cV + cint min{|E|, j′} memory overhead. The total memory consumption of the BT model
of HT is thus cT cint∑j′

j=1 |Nj |+ 1(j∗ < M)
(
cV + cint min{|E|, j′}

)
|Nj′ |.

The vector model of postfixes Ŝi uses one vector perNj′+1 sequences Si ∈ SD : |Si| ≥ j′+1,
and cint memory overhead per events e ∈ Ŝi. This gives the total memory consumption of

the vector model of HT as cVNj′+1 + cint
M∑

j=j′+1

Nj .

The most memory-efficient transition layer Nj∗ is determined by the HT model with the
lowest memory consumption, that is,

j∗ = arg min
j∗∈{0,...,M}

cT cint
j∗∑
j=1

|Nj |+1(j∗ < M)
(
cV + cint min{|E|, j∗}

)
|Nj∗ |+ cVNj∗+1 + cint

M∑
j=j∗+1

Nj .

Theorem 10 is based on the size of each layer Nj ∈ BT . Unfortunately, these values
are unknown prior to the construction of the BT model, but following Theorem 9, can be
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Algorithm 3 Construction of HT .
1: Filter the data set and remove all events e ∈ E : supp(e) < θ ×N , and record Nj , |E|j

for all j ∈ {0, . . . ,M}.
2: Determine j∗ according to Theorem 10 and values Nj and |E|j .
3: for each Si ∈ SD do
4: Construct a BT model for prefix Ši v Si : |Ši| = j∗.
5: Add child arc (n, n′) to A, where n is the last node constructed by BT and n′ is

contains the vector that models Ŝi : Si = 〈Ši, Ŝi〉.
6: Store ancestor vector constructed at BT at n′.
7: return HT .

approximated by the upper bound |Nj | ≤ min{
∏j

j′=0 |E|j′ , Nj}. Here, |E|j is the number of
unique events at the length j of sequences Si ∈ SD, that are recorded during preprocessing.
Length j∗ is then found by iterating over j ∈ {0, . . . ,M} and calculating the equation of
Theorem 10. In the extreme case a trie representation does not provide any memory saving
potential, we have j∗ = 0 and HT = V. On the other hand, if a trie model of the entire
data set is predicted to be more efficient, we have j∗ = M and HT = BT . Algorithm 3
gives the full construction procedure for HT , and Example 6 demonstrates the procedure of
determining j∗ for our running example.

Example 6 We have Nj = 〈20, 19, 16, 10, 4, 3〉, and |E|j = 〈1, 3, 2, 3, 3, 2〉. For our system,
we have cint = 4, cV = 24, and by Theorem 9, cT = 6. Checking the equation of Theorem 10,
we have the following memory estimates for j ∈ {0, . . . , 6}:
j = 0: 24× 20 + 4× (20 + 19 + 16 + 10 + 4 + 3) = 768.

j = 1: 6× 4× 1 + (24 + 4× 1)× 1 + 24× 19 + 4× (19 + 16 + 10 + 4 + 3) = 716.

j = 2: 6× 4× (1 + 3) + (24 + 4× 2)× 3 + 24× 16 + 4× (16 + 10 + 4 + 3) = 708.

j = 3: 6× 4× (1 + 3 + 6) + (24 + 4× 3)× 6 + 24× 10 + 4× (10 + 4 + 3) = 764.

j = 4: 6× 4× (1 + 3 + 6 + 10) + (24 + 4× 3)× 10 + 24× 4 + 4× (4 + 3) = 964.

j = 5: 6× 4× (1 + 3 + 6 + 10 + 4) + (24 + 4× 3)× 4 + 24× 3 + 4× (3) = 804.

j = 6: 6× 4× (1 + 3 + 6 + 10 + 4 + 3) = 648.

We thus have j∗ = M = 6, and HT = BT for our running example.

To mine HT models, we combine BTMiner and prefix-projection into a novel HTMiner
algorithm. The HTMiner algorithm mines its trie model of prefixes Ši using the procedure
of BTMiner, and its vector model of postfixes Ŝi using prefix-projection. If the mining
algorithm traverses a transitioning node n ∈ Nj∗ , it uses the ancestor vector ~a and Theorem 6
to determine valid pattern extensions in the vector model. The complete procedure is given
in Algorithm 4.

The worst-case space complexity of HTMiner is given by Lemma 11.

Lemma 11 The worst-case space complexity of HTMiner is O (Nj∗M log(N)), and
O (Nj∗M) for reasonably-sized integers Nj∗.

Proof The largest layer of HT is Nj∗ , which is bounded by |Nj∗ | ≤ min{|E|j∗ , Nj∗}. At each
node of the transitioning layer Nj∗ the ancestor vector uses O(min{|E|j∗ , Nj∗}min{|E|, j∗})
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Algorithm 4 The HTMiner algorithm.

1: Initialize pattern-node pairs {(P,N (P))} for all P = 〈ē〉, e ∈ E, e ∈ Ši : |Ši| ≤
j∗, supp(e) ≥ θ ×N .

2: Initialize pattern-position pairs {(P, (i, j))} for all P = 〈ē〉, e ∈ E, e ∈ Ŝi : |Ŝi| =
|Si| − j∗,Si ∈ SD, supp(e) ≥ θ ×N .

3: for each pair (P, (i, j)) do
4: Mine the vector V pointed to by i starting from position j according to prefix-

projection.
5: Add pattern-position pairs

{(
〈P, ej′〉, (i, j′)

)}
for all events ej ∈ V that give an

extension for P.
6: for each pair (P,N (P)) do
7: for all nodes n ∈ N (P) do
8: Traverse all paths P = (n, . . . , n′) ∈ BT part of HT and mine it according to

Algorithm 2.
9: for all vector children V pointed by node n′ ∈ Q1

N in BTMiner do
10: Mine the vector V starting from position 1 according to prefix-projection.
11: Add pattern-position pairs {(〈P, ej〉, (i, j))} for all events ej ∈ V that give an

extension for P using ancestor vector ~a, and according to Theorem 6.
12: for all vector children V pointed by node n′ ∈ Q2

N in BTMiner do
13: Mine the vector V starting from position 1 according to prefix-projection.
14: Add pattern-position pairs {(〈P, ej〉, (i, j))} for all events ej ∈ V that give an

extension for P according to Theorem 6.
15: return Set of frequent patterns P :

∑
n∈N (P) fn ≥ θ ×N .

memory. By Theorem 9 this gives the worst-case space complexity of the BT part of HT
and its corresponding mining algorithm as O

(
min{|E|j∗ , Nj∗}j∗ log(N)

)
.

The largest number of sequences of the vector model of HT is Nj∗+1. By Lemma 1,
this has a worst-case space complexity of O (Nj∗+1(M − j∗) log(N)). As the number of
sequences are non-increasing in sequence length, we have Nj∗+1 ≤ Nj∗ . This gives the
worst-case space complexity of the vector part of HT and its corresponding algorithm as
O (Nj∗(M − j∗) log(N)).

Adding the two complexities together gives the total worst-case space complexity of
O
(
min{|E|j∗ , Nj∗}j∗ log(N) +Nj∗(M − j∗) log(N)

)
≤ O(Nj∗M log(N)). Reasonably sized

integers N consume constant memory and reduce the complexity to O(Nj∗M).

As j∗ ≤M , HTMiner is always asymptotically smaller and more memory efficient than
both BTMiner and vector-based SPM algorithms. Moreover, by Theorem 10, HTMiner is
also more memory efficient than BTMiner and vector-based SPM in practice. We indeed
observe this in our numerical results, given in the following section.
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Table 2: Data sets.

Size Name N |E| M avg(|Si|) max(|Ij |) avg(|Ij |)
∑
Si∈SD |Si|

Large Criteo 4,373,472,329 214 20 20 1 1 87,469,446,580
Genome 2,049,780,092 20 37 13 1 1 26,485,605,043

Medium Twitch 15,524,308 790,100 456 30.3 170 1.2 469,655,703
Spotify 124,950,054 5 20 2.4 5 1.1 294,302,842

Small Kosarak 990,002 41,270 2,498 8.1 1 1 8,019,015
MSNBC 989,818 17 14,795 4.8 1 1 4,698,794

4. Numerical Results

For our numerical tests, we evaluated the effect of different data set models on the per-
formance of state-of-the-art mining algorithms in large-scale SPM. We use PrefixSpan by
Han et al. (2001), which forms the basis of almost all state-of-the-art vector-based prefix-
projection algorithms, and TreeMiner (Rizvee et al., 2020), which is the only available trie
model for SPM. Note that TreeMiner uses several additional mining techniques, such as
co-occurrence information of events (Fournier-Viger et al., 2014) for faster SPM, which are
not implemented in our mining algorithms for a base-case comparison. Nonetheless, any
such algorithmic enhancement developed for time efficiency in the rich literature of SPM can
also be implemented on our models without loss of generality.

All algorithms were coded in C++ and executed on a PC with an Intel Xeon W-2255
processor, 256GB of memory, and Ubuntu 20.04.1 operating system.1 Note that our system
memory is considerably higher than an average PC, often ranging between 8-32GB. We limit
all tests to one core of the CPU and a 36,000-second time limit.

4.1 Data Sets

We used six real-life data sets in our numerical tests, given in Table 2. The data sets are chosen
based on common applications of SPM, namely, click-stream mining and bioinformatics
(Fournier-Viger et al., 2017). The data sets are grouped into three sizes: large, medium and
small.

The small data sets include Kosarak and MSNBC, which have been benchmark click-
stream instances for SPM since the early 2010s (Fournier-Viger et al., 2016). The medium
data sets include the Twitch data set (Rappaz et al., 2021), and the Spotify data set (Brost
et al., 2019). The Twitch data set includes user streaming content on the live streaming
platform Twitch. Here, events e ∈ E are defined as a unique streamer, and consecutive
streamers watched by a user form a sequence Si ∈ SD. Two consecutive events are assumed
to be in the same itemset if they are visited by the user within a one hour time frame.
The Spotify data set (Brost et al., 2019) is a collection of user music consumption on the
media streaming platform Spotify. Events e ∈ E are considered to be the time-signature
(refer to Brost et al. (2019) for definition of time-signature) of listened to tracks. Events
are considered to be in different itemsets if a context switch (refer to Brost et al. (2019) for
definition of a context switch) occurs between them.

1. Our algorithms are open source and available at https://github.com/aminhn/BDTrie
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Table 3: Number of frequent patterns by data set and support threshold.

Criteo (large)

θ 10% 8% 6% 4% 2% 0.5%

Patterns found 10,705 20,132 (41,559) (78,598) (88,434) (182,541)
Genome (large)

θ 10% 8% 6% 4% 2% 0.5%

Patterns found (264) (314) (459) (552) (598) (615)
Twitch (medium)

θ 8% 4% 2% 1% 0.5% 0.15%

Patterns found 2 14 160 1,382 13,493 789,685
Spotify (medium)

θ 1% 1e-1% 1e-2% 1e-3% 1e-4% 1e-5%

Patterns found 59 377 2,559 16,253 107,257 696,098
Kosarak (small)

θ 4% 2% 1% 0.5% 0.25% 0.1%

Patterns found 29 94 329 1,462 8,427 758,141
MSNBC (small)

θ 3% 1% 0.3% 0.1% 0.03% 0.01%

Patterns found 22 254 2,014 16,620 303,917 102,108,060
Note. Parenthesis represent lower bound.

The large data sets include the Criteo 1TB click-stream data set (Criteo AI Lab, 2014),
and the amino acid representation of the 1000 Genomes data set (Consortium et al., 2015).
Unfortunately, the full size of both data sets is larger than 1TB in size and impossible to fit
into memory for most systems, including ours. We thus use a subset of each data set for
our numerical tests. The Criteo data set includes 20 out of the 40 possible events in each
sequence, and the Genome data set includes the first subset “ERR3988796” of genomes as
specified by AWS (2023).

An important aspect of mining the above data sets is the imposed support threshold
θ. Higher support thresholds lead to fewer frequent patterns, mainly showcasing the time
and memory efficiency of building and storing a data set representation in memory. Lower
support thresholds lead to a larger number of frequent patterns, mainly showcasing the time
and memory efficiency of a mining algorithm. We choose a wide range of thresholds for each
data set tailored to observe and showcase both scenarios. The thresholds and number of
frequent patterns found for each data set are given in Table 3. Note that when all algorithms
exceeded the imposed time, the reported number of frequent patterns is a lower bound.

4.2 Memory Consumption

Figure 5 gives the peak memory consumption of all algorithms. In the small data set
Kosarak, all algorithms, with the exception of TreeMiner, consume less than 1GB of memory.
TreeMiner uses close to 57GB of memory, mainly due to the higher number of events |E| in
this data set which is detrimental to its memory efficiency. The HTMiner algorithm uses
less than 0.7GB of memory which amounts to an average improvement of 68% (less than
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Figure 5: Peak memory consumption. Algorithms that exceed system memory are shown in
gray.
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0.2GB) over PrefixSpan and 99.9% (more than 56GB) over TreeMiner. In contrast to all
other data sets, HTMiner uses slightly higher memory (0.1GB on average, and 0.4GB at
most) compared to BTMiner in lower support thresholds. This is mainly due to the heuristic
selection of the transitioning layer, where values |Nj | were overestimated, leading to a lower
than optimal value j∗.

In the small data set MSNBC, HTMiner shows an average improvement of 60% (less
than 0.1GB) over PrefixSpan and 93% (approximately 0.5GB) over TreeMiner. Similarly,
BTMiner shows an average improvement of 37% (less than 0.1GB) over PrefixSpan and 89%
(approximately 0.5GB) over TreeMiner. These improvements show the slight advantage of
compactly fitting the data in memory using a trie with efficient labels, even for smaller data
sets. HTMiner shows an average improvement of 36% (less than 0.1GB) over BTMiner,
mainly due to the longer sequences in the MSNBC data set which are more efficiently modeled
by a hybrid trie structure.

In the medium data set Twitch, PrefixSpan uses less than 16GB of memory, BTMiner
uses approximately 11GB of memory with an average improvement of 64% over PrefixSpan,
and HTMiner uses less than 3GB of memory with an average improvement of 89% over
PrefixSpan and 54% over BTMiner. The improvement of HTMiner and BTMiner is higher
for larger support thresholds due to a more compact representation of the data set. TreeMiner
exceeds the 256GB system memory and can only fit into memory only 0.6% of the Twitch
data set. This is again mainly due to the high number of events |E| which negatively affects
the memory efficiency of TreeMiner.

In the Spotify data set, the trie models show more than two orders of magnitude memory
saving over the vector model of PrefixSpan. In particular, PrefixSpan uses approximately
10GB of memory while TreeMiner uses 0.12GB of memory with an average improvement of
98.8%. The BTMiner and HTMiner algorithms use less than 0.02GB of memory and show
improvements of 99.7% over PrefixSpan and 78% over TreeMiner. These results are mainly
due to the low number of events |E| in the Spotify data set, which allows higher compression
in trie models. The BTMiner and HTMiner are equivalent in the Spotify data set as the
hybrid algorithm determined the transition length as j∗ = M , giving a full trie model of the
data set for HTMiner. Both algorithms are more efficient than TreeMiner due to their lower
memory overhead at each trie node.

The BTMiner and HTMiner algorithms enjoy the most significant improvements in large
data sets. In the Criteo data set, PrefixSpan exceeds the 256GB of system memory and is
only able to model 15% of the data set. Although TreeMiner can model the entire Criteo
data set, it exceeds system memory during its mining algorithm and terminates. This is in
contrast to BTMiner and HTMiner, which use at least 2GB and at most 25GB of memory
to mine the entire data set. This is more than an order of magnitude memory saving, and
potentially amounts to 1.7TB lower memory usage than PrefixSpan requires to model the full
data set into memory. This showcases the strength of trie models in modeling overlapping
sequences using only a single path, while vector models use multiple vectors. Similar to the
Spotify data set, BTMiner and HTMiner are equivalent with j∗ = M .

The Genome data set is the most memory intensive, with HTMiner the only capable
SPM algorithm within system memory. PrefixSpan exceeds system memory at 62% of the
Genome data set, TreeMiner at 3%, and BTMiner at 29%. This indicates a lower sequence
overlap in the Genome data set, which gives an advantage to HTMiner over BTMiner.
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Overall, HTMiner is the most memory-efficient SPM algorithm, closely followed by
BTMiner. TreeMiner is the least memory-efficient algorithm, using considerably higher
memory than all other algorithms and often failing to model medium to large data sets
within system memory. While less efficient, the memory usage of PrefixSpan is still within
the range of what is typical for regular PCs for small to medium data sets. However, this is
not the case for large data sets, with HTMiner being the only capable SPM algorithm. We
conclude that HTMiner provides compelling benefits in memory efficiency for any data set
size over all other alternatives.

4.3 Computational Time

Figure 6 gives the computational time of all algorithms. The computational time of any
algorithm that exceeds system memory is irrelevant and not reported.

In the small data set Kosarak, TreeMiner is the slowest algorithm, especially for higher
support thresholds. This is mainly due to the time required to populate its trie labels,
which turned out to be costly in both time and memory efficiency. All other algorithms are
mostly the same for higher support thresholds—where fewer patterns are mined. However,
the improvements of HTMiner and BTMiner over PrefixSpan become larger for smaller
thresholds, with more than a 60% speedup (approximately 800 seconds) for both algorithms.
Both algorithms show an average improvement of 95% over TreeMiner, emphasizing the
benefits in computational time provided by a less memory intensive trie model.

For the small data set MSNBC, all algorithms are mostly similar in time efficiency on
higher support thresholds, but significantly different on lower support thresholds. This
indicates that all algorithms are similar in constructing their data set representation, but not
in mining it. PrefixSpan and BTMiner require approximately 11,000 seconds to mine the
MSNBC data set at the lowest support threshold (mining more than 100,000,000 patterns).
In contrast, TreeMiner and HTMiner show close to an order of magnitude faster mining,
requiring approximately 1,800 seconds. The faster mining of TreeMiner shows the possible
benefits of a richer set of trie labels, which increases mining efficiency when it can be efficiently
modeled and fitted into memory. The faster mining of HTMiner shows the benefit of a
hybrid data structure in the mining process—equaling the benefits provided by richer trie
labels in time efficiency while consuming less memory.

In the medium-size Twitch data set, BT miner and HTMiner show an average speedup of
50% over PrefixSpan. Both the PrefixSpan and BTMiner reach the imposed time limit for
the lowest support threshold, where PrefixSpan finds 15% of total patterns and BTMiner
finds 65% of total patterns. HTMiner can mine the entire data set in approximately 9,000
seconds, showing at least a 75% speedup. These show the benefits of mining trie paths that
model multiple sequences over mining vector representations which model each sequence
separately. In particular, the mining algorithm can mine multiple sequences in a pass over a
single trie path (r, . . . , n), which requires fn more passes in vector models to mine the same
sequences. When fn is lower, such as in the postfixes of the longer sequences of the MSNBC
data set, HTMiner becomes more time-efficient than BTMiner.

Results on the Spotify data set show similar computational time on all algorithms, with
at most a [20 − 40] seconds difference. TreeMiner is slightly faster (20 seconds) in higher
support thresholds, while HTMiner and BTMiner are slightly faster (10 seconds) for lower
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Figure 6: Computation time.
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support thresholds. PrefixSpan is consistently slower (5-40 seconds), with the difference
highest for small support thresholds. This is mainly to the high compression of trie models
given the low number of events |E| in this data set. Interestingly, HTMiner and BTMiner
stay relatively constant in computational time over all support thresholds. This shows that
most patterns are shorter in length, and demonstrates the efficiency of using ancestor labels
in fast pruning of pattern extensions.

The BTMiner and HTMiner algorithms show high computational time in large data sets.
In the Criteo data set, both algorithms reach the imposed 36,000 seconds time limits for
support thresholds lower or equal to 6%. The computational time was considerably high for
the Genome data set, where HTMiner reached the time limit at all thresholds. In particular,
we observed slower than usual mining speed in the Genome data set as memory consumption
was near system limits, increasing the overhead of memory access by the CPU. This shows
that it is time-efficient to reduce memory consumption even when operating within—but
close to—system limits.

Overall, we observe that HTMiner is also faster than the state of the art, especially for
larger data sets. Note that this is generally not the case for memory-efficient algorithms, as
memory and time efficiency are often a trade-off. For both time and memory efficiency, we
thus conclude that HTMiner is superior to all other SPM alternatives, providing considerably
higher memory efficiency and often coupled with higher time efficiency.

5. Conclusion

This paper develops a memory-efficient SPM algorithm using trie models of the data set.
Our methodology involves a new binary trie model BT that stores minimal information
at its nodes to compactly represent the data set in memory. We show that this compact
representation is sufficient for the subsequent SPM task, and develop a novel BTMiner
algorithm to mine all sequential patterns. We build on our trie model to develop a hybrid
model HT that models prefixes with high overlap using a trie model, and postfixes with
low overlap using a vector model. We integrate BTMiner and prefix-projection to develop
HTMiner, which can effectively mine HT . We proved that HTMiner is always smaller and
more memory efficient than pure vector or trie models and their corresponding algorithms.

Numerical results on real-life test instances showed that on small and medium data
sets, HTMiner provides, on average, 79% (approximately 5GB) and 90% (approximately
19GB) memory savings compared to the state-of-the-art vector and trie models, respectively.
Furthermore, HTMiner was shown to be the only SPM algorithm capable of mining large
data sets within 256GB of system memory, potentially saving 1.7TB in memory consumption.
While memory efficiency is often a trade-off with time efficiency, HTMiner also showed lower
computational time than the state of the art, with an average improvement of 43% over
vector models and 54% over trie models.
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