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Abstract

Dot product kernels, such as polynomial and exponential (softmax) kernels, are among
the most widely used kernels in machine learning, as they enable modeling the interac-
tions between input features, which is crucial in applications like computer vision, natural
language processing, and recommender systems. We make several novel contributions for
improving the efficiency of random feature approximations for dot product kernels, to make
these kernels more useful in large scale learning. First, we present a generalization of exist-
ing random feature approximations for polynomial kernels, such as Rademacher and Gaus-
sian sketches and TensorSRHT, using complex-valued random features. We show empiri-
cally that the use of complex features can significantly reduce the variances of these approx-
imations. Second, we provide a theoretical analysis for understanding the factors affecting
the efficiency of various random feature approximations, by deriving closed-form expres-
sions for their variances. These variance formulas elucidate conditions under which certain
approximations (e.g., TensorSRHT) achieve lower variances than others (e.g., Rademacher
sketches), and conditions under which the use of complex features leads to lower vari-
ances than real features. Third, by using these variance formulas, which can be evaluated
in practice, we develop a data-driven optimization approach to improve random feature
approximations for general dot product kernels, which is also applicable to the Gaussian
kernel. We describe the improvements brought by these contributions with extensive ex-
periments on a variety of tasks and datasets.

Keywords: Random features, randomized sketches, dot product kernels, polynomial
kernels, large scale learning
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1. Introduction

Statistical learning methods based on positive definite kernels, namely Gaussian processes
(Rasmussen and Williams, 2006) and kernel methods (Scholkopf and Smola, 2002), are
among the most theoretically principled approaches in machine learning with competitive
empirical performance. Due to their strong theoretical guarantees, these methods should
be of primary choice in applications where the learning machine should behave in an antici-
pated manner, e.g., when high-stake decision-making is involved or when safety is required.
However, a well-known drawback of these methods is their high computational costs, as
naive implementations usually require the computational complexity of O(N3) or at least
O(N2), where N is the training data size. This unfavorable scalability is an obstacle for
these methods to handle a large amount of data. Moreover, it is problematic from a sus-
tainability viewpoint, since these methods may perform essentially redundant computations
and thus waste available computational resources.

The scalability issue has been a focus of research since the earliest literature (Wahba,
1990, Chapter 7), and many approximation methods for reducing the computational costs
have been developed (e.g., Williams and Seeger 2000; Rahimi and Recht 2007; Titsias 2009;
Hensman et al. 2018). One of the most successful approximations are those based on random
features, initiated by Rahimi and Recht (2007). This approach constructs a random feature
map Φ that transforms an input point x to a finite dimensional feature vector Φ(x) ∈ RD, so
that the inner product of two feature maps Φ(x)>Φ(y) approximates the kernel value k(x,y)
of the two input points x,y ∈ Rd. The resulting computational complexity is dominated
by the dimensionality D of the random features, and thus the computational costs can be
drastically reduced if D is much smaller than the training data size N . Rahimi and Recht
(2007) proposed random Fourier features for shift-invariant kernels on the Euclidean space
Rd. These are kernels that depend only on the difference of two input points, i.e., of the
form k(x,y) = k(x− y), such as the Gaussian and Matérn kernels. For a recent overview
of random Fourier features and their extensions, see Liu et al. (2020).

Another important class of kernels are dot product kernels, which can be written as
a function of the dot product (or the inner product) between two input points, i.e., ker-
nels of the form k(x,y) = k(x>y). Representative examples include polynomial kernels,
k(x,y) = (x>y + ν)p with ν ≥ 0 and p ∈ N, and exponential kernels (or softmax kernels),
k(x,y) = exp(x>y/σ2) with σ > 0 . These kernels can model the interactions between
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input features1 (e.g., Agrawal et al., 2019), and thus are useful in applications such as ge-
nomic data analysis (Aschard, 2016; Weissbrod et al., 2016), recommender systems (Rendle,
2010; Blondel et al., 2016), computer vision (Lin et al., 2015; Gao et al., 2016; Fukui et al.,
2016), and natural language processing (Yamada and Matsumoto, 2003; Chang et al., 2010;
Vaswani et al., 2017). Recent notable applications of dot product kernels include bilinear
pooling in computer vision (Lin et al., 2015), which essentially uses a polynomial kernel,
and the dot product attention mechanism in the Transformer architecture (Vaswani et al.,
2017), which uses an exponential kernel.

As for kernel methods in general, approximations are necessary to make use of dot prod-
uct kernels in large scale learning. However, since dot product kernels are not shift-invariant,
one cannot apply random Fourier features for their approximations, except for some specific
cases (c.f. Pennington et al., 2015; Choromanski et al., 2021). Therefore, alternative random
feature approximations have been proposed for dot product kernels in the literature, with
a particular focus on polynomial kernels (Kar and Karnick, 2012; Pham and Pagh, 2013;
Hamid et al., 2014; Avron et al., 2014; Ahle et al., 2020; Song et al., 2021). These approxi-
mations are based on sketching (Woodruff, 2014), which is a randomized linear projection
of input feature vectors into a low dimensional space. Random feature approximations play
a key role in the above applications of dot product kernels (e.g., Gao et al., 2016; Fukui
et al., 2016; Choromanski et al., 2021).

This paper contributes to the above line of research, by suggesting various approaches
to improving the efficiency of random feature approximations for dot product kernels. Our
overarching goal is to make these kernels more useful in large scale learning, thereby widen-
ing their applicability. Specifically, we make the following contributions: (From now on, we
refer to sketching-based random feature approximations for polynomial kernels as polyno-
mial sketches for brevity.)

Complex-valued features. We propose a generalization of polynomial sketches using
complex-valued random features. This generalization is applicable to all polynomial sketches2,
including those using i.i.d. Gaussian or Rademacher features (Kar and Karnick, 2012; Hamid
et al., 2014) and structured sketches such as TensorSRHT (Hamid et al., 2014; Ahle et al.,
2020). Our approach is an extension of complex-valued random features for the linear ker-
nel discussed in Choromanski et al. (2017) to polynomial kernels. We empirically show that
the generalized polynomial sketches using complex features are statistically more efficient
than those using real features (in terms of the resulting variances) in particular for higher
degree polynomial kernels, and that the former leads to better performance in downstream
learning tasks. To corroborate these empirical findings, we provide a theoretical analysis of
the variances of these sketches, as explained below.

1. As explained in Section 5.1, any dot product kernel can be written as a weighted sum of polynomial
kernels. Since each polynomial kernel models multiplicative interactions between input features (See
Section 3), the resulting dot product kernel also implicitly models such interactions.

2. There exists a recent line of research on improving the efficiency of polynomial sketches using a hierarchi-
cal feature construction (e.g., Ahle et al., 2020; Song et al., 2021). One can also use the proposed complex
polynomial sketches as base sketches in such a hierarchical construction. Therefore, our contributions
are complementary to this line of research.
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Variance formulas. We derive closed-form formulas for the variances of the Gaussian
and Rademacher polynomial sketches (Kar and Karnick, 2012; Hamid et al., 2014) and
TensorSRHT (Hamid et al., 2014; Ahle et al., 2020) as well as for their complex generaliza-
tions. These variance formulas provide new insights into the factors affecting the efficiency
of these polynomial sketches, complementing existing theoretical results (c.f. Kar and Kar-
nick, 2012; Hamid et al., 2014; Ahle et al., 2020). Specifically, they elucidate conditions
under which certain approximations (e.g., TensorSRHT) achieve lower variances than others
(e.g, Rademacher sketches), and conditions under which the use of complex features leads to
lower variances than real features. Importantly, these variance formulas can be evaluated in
practice, and thus can be optimized; this is how we develop a novel optimization approach
to random feature construction, explained next.

Optimized Maclaurin approximation for general dot product kernels. Using the
derived variance formulas, we develop a data-driven optimization approach to random fea-
ture approximations for general dot product kernels, which is also applicable to the Gaussian
kernel. Inspired from the randomized Maclaurin approximation of Kar and Karnick (2012),
we use a finite-degree Maclaurin approximation of the kernel, given as a weighted sum of
polynomial kernels of different degrees. Our approach optimizes the cardinalities of ran-
dom features for approximating the polynomial kernels of different degrees (given a total
number of random features), so as to minimize the mean square error of the approximate
kernel with respect to the data distribution – we utilize the variance formulas to define
this optimization objective. This optimized Maclaurin approach is compatible with exiting
polynomial sketches as well as their complex generalizations, and enhances the efficiency of
these sketches to achieve state-of-the-art performance, as we show in our experiments.

Extensive empirical comparison. We conduct extensive experiments to study the ef-
fectiveness of the suggested approaches. Our investigations include the approximations of
polynomial and Gaussian kernels, and cover various random feature approximations. We
study not only the quality of kernel approximation, but also the performance in downstream
learning tasks of Gaussian process regression and classification. We generally observe that
the proposed approaches lead to significant reduction of kernel approximation errors, and
also to state-of-the-art performance in the downstream tasks on most datasets.

Software package. We provide a GitHub repository3 with modern implementations for
all the methods studied in this work supporting GPU acceleration and automatic differ-
entiation in PyTorch (Paszke et al., 2019). Since version 1.8, PyTorch natively supports
numerous linear algebra operations on complex numbers4. The same is true for NumPy
(Harris et al., 2020) and TensorFlow (Abadi et al., 2016). Therefore, it is straightforward
to implement the complex-valued polynomial sketches proposed in this work.

This paper is organized as follows. Section 2 presents preliminaries. In Section 3, we
review polynomial sketches using i.i.d. random features and introduce their complex gener-
alizations. We also provide a theoretical analysis and derive variance formulas. In Section 4,
we study structured polynomial sketches and their complex generalizations, also deriving

3. Our code is available at: https://github.com/joneswack/dp-rfs
4. The PyTorch 1.8 release notes are available at: https://github.com/pytorch/pytorch/releases/tag/v1.8.0
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their variance formulas. In Section 5, we study the approximation of general dot product
kernels, and present the optimized Maclaurin approach. In Section 6, we report the results
of extensive experiments. The appendix contains many supplementary materials, includ-
ing proofs for theoretical results, additional experiments, and an explanation of Gaussian
process regression and classification using complex random features.

2. Preliminaries

This section serves as preliminaries for describing our main contributions. We first introduce
basic notation and definitions in Section 2.1. We then define positive definite kernels in
Section 2.2.

2.1 Notation

Let N and R denote the sets of natural and real numbers, respectively, and let Rd denote
the real vector space of dimension d ∈ N. Let C be the set of complex numbers, and c for
c ∈ C be the complex conjugate of c. Let i :=

√
−1 be the imaginary unit.

We use X to denote a set of input points, and we generally assume X ⊆ Rd. We write
the vector-valued inputs by bold-faced letters, e.g., x ∈ Rd. For x := (x1, . . . , xd)

> ∈ Rd,
let ‖x‖ := ‖x‖2 :=

√∑d
i=1 x

2
i be the 2-norm, and ‖x‖1 :=

∑d
i=1 |xi| be the 1-norm. We

may interchangeably use ‖x‖ and ‖x‖2 depending on the context.

For any two vectors a ∈ Rd1 and b ∈ Rd2 , a ⊗ b := vec(ab>) ∈ Rd1·d2 denotes the
vectorized outer product between a and b.

We denote by E[·] the expected value and by V[·] the variance of a random variable.
For complex-valued vectors z = x + iy ∈ Cd, with x,y ∈ Rd, we define R{z} := x and
I{z} := y to be their real and imaginary parts, respectively.

We further define b·c and d·e to be the floor and ceil operators that round a floating
point number down/up to the next integer, whereas mod(a, b) with a, b ∈ N is the arithmetic
modulus that gives the rest after dividing a by b.

2.2 Positive Definite Kernels

Let X be a nonempty set. A symmetric function k : X × X → R is called positive definite
kernel, if for every m ∈ N, x1, . . . , xm ∈ X and c1, . . . , cm ∈ R

m∑
i=1

m∑
j=1

cicjk(xi, xj) ≥ 0.

We may simply call such k kernel. Popular examples include Gaussian kernels and polyno-
mial kernels, among many others.

For any kernel k, there exists a corresponding reproducing kernel Hilbert space (RKHS)
consisting of functions on X . In kernel methods (Scholkopf and Smola, 2002), the RKHS
provides implicit feature representations for points in X , where each feature vector can be
potentially infinite dimensional. A learning method is defined conceptually on such feature
representations in the RKHS, but the resulting concrete algorithm can be formulated as
a finite dimensional optimization problem defined through the evaluations of the kernel k
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evaluated at given data points x1, . . . , xN :

k(xi, xj), i, j = 1, . . . , N. (1)

This reduction to a finite dimensional optimization problem is the core idea of kernel meth-
ods, enabled by the so-called kernel trick. However, the exact solution to the optimization
problem often requires the computational complexity of O(N3) or at least O(N2) with N
being the data size, which poses a computational challenge to kernel methods.

Similarly, any positive definite kernel k can be used to define a Gaussian process whose
covariance function is k (Rasmussen and Williams, 2006). In Bayesian nonparametric learn-
ing, a Gaussian process is used to define a prior distribution over functions on X , and the
resulting posterior distribution is given in terms of the values of k evaluated on the data
points. Like kernel methods, Gaussian processes also face a computational challenge, as
naively computing the posterior requires the complexity of O(N3) or at least O(N2).

Various techniques have been proposed to speed up Gaussian processes and kernel meth-
ods by approximately computing the solution of interest. Approximations based on random
features are one of the most successful approximation approaches, and these are the main
topic of this paper.

3. Polynomial Sketches

We study here random feature approximations of polynomial kernels, defined as

k(x,y) = (x>y + ν)p, (2)

where ν ≥ 0 and p ∈ N. We call such random features polynomial sketches. Since poly-
nomial kernels are not shift-invariant, widely known random Fourier features (Rahimi and
Recht, 2007) cannot be applied directly. Polynomial sketches are a fundamentally different
approach, and can be understood as implicit randomized projections of the explicit high
dimensional feature maps of polynomial kernels.

For simplicity, we focus on homogeneous polynomial kernels of the form

k(x,y) = (x>y)p, (3)

i.e., ν = 0 in (2). The inhomogeneous case ν > 0 can be reduced to the homogeneous
case, by appending

√
ν to the input vectors, i.e., by setting x̃ := [x>,

√
ν]> ∈ Rd+1 and

ỹ := [y>,
√
ν]> ∈ Rd+1, we have

(x>y + ν)p = (x̃>ỹ)p

In this way, polynomial sketches for the homogeneous case can also be applied to the
inhomogeneous case.

We first review existing polynomial sketches with i.i.d. real-valued features in Section
3.1. In Section 3.2, we propose polynomial sketches with complex-valued features. These
complex-valued sketches are an extension of the complex-valued sketches for the linear
kernel discussed in Choromanski et al. (2017) to polynomial kernels. We derive the variance
formulas of these complex sketches in Section 3.3 and present a probabilistic error bound
in Section 3.4.
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3.1 Real-valued Polynomial Sketches

We first study polynomial sketches proposed by Kar and Karnick (2012), which are also
discussed in Hamid et al. (2014). We do not cover here TensorSketch of Pham and Pagh
(2013), as it is conceptually different from the other polynomial sketches discussed in this
paper.5

Let D ∈ N be the number of random features, and p ∈ N be the degree of the polynomial
kernel (3). Suppose we generate p×D i.i.d. random vectors

wi,` ∈ Rd satisfying E[wi,`w
>
i,`] = Id, i ∈ {1, . . . , p}, ` ∈ {1, . . . , D}, (4)

where Id ∈ Rd×d denotes the identity matrix.
Then we define a random feature map as

ΦR(x) :=
1√
D

[
(

p∏
i=1

w>i,1x), . . . , (

p∏
i=1

w>i,Dx)

]>
∈ RD. (5)

The resulting approximation of the polynomial kernel (3) is given by

k̂R(x,y) := ΦR(x)>ΦR(y), (6)

which is unbiased, as the expectation with respect to the random vectors (4) gives

E
[
ΦR(x)>ΦR(y)

]
=

1

D

D∑
`=1

p∏
i=1

x>E[wi,`w
>
i,`]y = (x>y)p.

Kar and Karnick (2012) suggest to define random vectors in (4) using the Rademacher dis-
tribution: each element of wi,` is independently drawn from {−1, 1} with equal probability.
We study later how the distribution of the random vectors affects the quality of kernel
approximation.

Implicit sketching of high-dimensional features. The random feature map (5) can
be interpreted as a linear sketch (projection) of an explicit high-dimensional feature vec-
tor for the polynomial kernel. To describe this, consider the case D = 1 and let wi =
(wi,1, . . . , wi,d)

> ∈ Rd, i = 1, . . . , p, be i.i.d. random vectors satisfying E[wiw
>
i ] = Id. Then,

the random feature map ΦR(x) (which is one dimensional in this case) for x := (x1, . . . , xd)
>

is given by

ΦR(x) =

p∏
i=1

w>i x =

p∏
i=1

d∑
j=1

wi,jxj =

d∑
j1=1,...,jp=1

w1,j1xj1 · · ·wp,jpxjp = w(p)>x(p), (7)

where x(p) ∈ Rdp and w(p) ∈ Rdp are defined as (recall the notation in Section 2.1)

x(p) := x⊗ · · ·⊗︸ ︷︷ ︸
p times

x ∈ Rd
p
, w(p) := w⊗ · · ·⊗︸ ︷︷ ︸

p times

w ∈ Rd
p
,

5. However, we will include TensorSketch in our empirical evaluation in Section 6.
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Therefore, for D = 1, the approximate kernel is given as

k̂R(x,y) := ΦR(x) · ΦR(y) = w(p)>x(p) ·w(p)>y(p) (8)

On the other hand, the polynomial kernel can be written as (Scholkopf and Smola, 2002,
Proposition 2.1):

(x>y)p = (x(p))>y(p),

where y(p) = y⊗· · ·⊗y ∈ Rdp . Thus, x(p) and y(p) are the exact feature maps of the input
vectors x and y, respectively. The comparison of this expression with (8) implies that the
random feature map ΦR(x) = w(p)>x(p) ∈ R in (7) is a projection of the exact feature map
x(p) ∈ Rdp onto R.

Similarly, if D > 1, the random feature map ΦR(x) ∈ RD in (5) can be interpreted as
a projection of the exact feature map x(p) onto RD. A remarkable point of this random
feature map is that it can be obtained without constructing the exact feature vector x(p),
the latter being infeasible if d or p is large.6 Indeed, the computational complexity of
constructing the random feature map ΦR(x) is O(pdD), while the exact feature map x(p)

requires O(dp).

3.2 Complex-valued Polynomial Sketches

We now introduce complex-valued polynomial sketches, one of our novel contributions.
We do this by extending the analysis of Choromanski et al. (2017) for linear sketches to
polynomial sketches.7

As before, without loss of generality, we focus on approximating the homogeneous poly-
nomial kernel k(x,y) = (x>y)p of degree p ∈ N. Let D ∈ N. Suppose we generate p ×D
complex-valued random vectors satisfying

zi,j ∈ Cd satisfying E[zi,jzi,j
>] = Id, i ∈ {1, . . . , p}, j ∈ {1, . . . , D} (9)

We then define a complex-valued random feature map as

ΦC(x) :=
1√
D

[
(

p∏
i=1

z>i,1x), . . . , (

p∏
i=1

z>i,Dx)

]>
∈ CD, x ∈ Rd, (10)

and the resulting approximate kernel as

k̂C(x,y) := ΦC(x)>ΦC(y) =
1

D

D∑
j=1

p∏
i=1

(z>i,jx)(z>i,jy), x,y ∈ Rd. (11)

6. The exact feature expansion x(p) leads to dp dimensional vectors. By grouping up equal terms, we can
reduce the dimensionality to

(
d+p−1

p

)
, which still leads to unrealistic dimensional feature vectors as soon

as d is large. For example, working with MNIST images of size 28x28 (d = 784) leads to 307,720 features
for p = 2 and to 80,622,640 features for p = 3. This justifies the need for randomized approximations of
the polynomial kernel.

7. More specifically, Choromanski et al. (2017) analyze the variance of the real part of the approximate
complex-valued kernel in Eq. (11) for p = 1. In contrast, we study Eq. (11) with generic p ∈ N, and
analyze the variance of Eq. (11) itself, including both the real and imaginary parts.
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Eq. (11) is a generalization of the approximate kernel (6) with real-valued features, as
Eq. (6) can be recovered by defining the complex random vectors zi,k in Eq. (9) as real
random vectors wi,k in Eq. (4); in this case the requirement E[zi,jzi,j

>] = E[wi,jw
>
i,j ] = Id

is satisfied.
For example, complex-valued random vectors zi,j satisfying Eq. (9) can be generated as

follows.

Example 1 Suppose we generate 2× p×D independent real-valued random vectors

vi,j , wi,j ∈ Rd satisfying E[vi,j ] = E[wi,j ] = 0, E[vi,jv
>
i,j ] = E[wi,jw

>
i,j ] = Id (12)

for i ∈ {1, . . . , p}, j ∈ {1, . . . , D}. Then one can define complex-valued random vectors (9)
as

zi,j :=

√
1

2
(vi,j + iwi,j) ∈ Cd, i ∈ {1, . . . , p}, j ∈ {1, . . . , D}. (13)

The following two examples are specific cases of Example 1 and are complex versions of
the real-valued Rademacher and Gaussian sketches discussed previously.

Example 2 (Complex Rademacher Sketch) In Example 1, suppose that elements of
random vectors vi,j and wi,j are independently sampled from the Rademacher distribution,
i.e., sampled uniformly from {1,−1}. Then the resulting random vectors vi,j, wi,j satisfy
the conditions in Eq. (12) and thus the complex random vectors in Eq. (13) satisfy the
condition Eq. (9).

Example 3 (Complex Gaussian Sketch) In Example 1, suppose that elements of ran-
dom vectors vi,j and wi,j are independently sampled from the standard Gaussian distribu-
tion, N (0, 1). Then the resulting random vectors vi,j, wi,j satisfy the conditions in Eq. (12)
and thus the complex random vectors in Eq. (13) satisfy the condition Eq. (9).

Example 4 Suppose the elements of each random vector zi,j ∈ Cd are independently sam-
pled from the uniform distribution on {1,−1, i,−i}. Then the requirement in Eq. (9) is
satisfied.

Example 4 is essentially identical to the complex Rademacher sketch in Example 2, in
that each element of zi,j in Example 4 can be obtained by multiplying eiπ/4 to an element
of zi,j in Example 2, and vice versa. The multiplication by eiπ/4 is equivalent to rotating
an element counter-clockwise by 45 degrees. See Fig. 1 for an illustration. One can see that
this multiplication by eiπ/4 does not change the resulting approximate kernel (11). In this
sense, the constructions of Example 2 and Example 4 are equivalent. However, the sketch
in Example 4 gives a computational advantage over Example 2: Since every element of each
random vector zi,j is either real or imaginary, the inner products z>i,jx in Eq. (10) can be
computed at the same cost as for real polynomial sketches.

We show in the following proposition that the approximate kernel (11) is an unbiased
estimator of the polynomial kernel (x>y)p.

Proposition 1 Let x,y ∈ Rd be arbitrary, and k̂C(x,y) be the approximate kernel in (11).
Then we have

E[k̂C(x,y)] = (x>y)p

10
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Real

Imaginary

1-1

1

-1

Real

Imaginary

1-1

1

-1

· exp(i π/4)

1/√2 + i 1/√2 = exp(i π/4)-1/√2 + i 1/√2 = exp(i 3/4π)

-1/√2 - i 1/√2 = exp(i 5/4π) 1/√2 - i 1/√2 = exp(i 7/4π)

i

-i

1-1

Figure 1: Multiplying each element of a random vector zi,j in Example 2 by exp(i π4 ) corresponds
to a counter-clockwise rotation of that element by 45 degrees on the complex plane. The support of
the resulting elements is {1,−1, i,−i} and the construction of Example 4 is obtained.

Proof Since Eq. (11) is the empirical average of D terms, it is sufficient to show the
unbiasedness of each term. To this end, we consider here the case D = 1 and drop the
index j. We have

E

[
p∏
i=1

(
z>i x

) (
z>i y

)]
=

p∏
i=1

E
[(
z>i x

) (
z>i y

)]
=

p∏
i=1

x>E
[
zizi

>
]
y = (x>y)p.

where we used Eq. (9) in the last identity.

3.3 Variance of Complex-valued Polynomial Sketches

We now study the variance of the approximate kernel (11) with the complex-valued random
feature map (10). We consider the case D = 1 and drop the index j:

k̂C(x,y) =

p∏
i=1

(
z>i x

) (
z>i y

)
. (14)

The variance of the case D > 1 can be obtained by dividing the variance of Eq. (14) by D,
since the approximate kernel (11) is the average of D i.i.d. copies of Eq. (14). We denote
by zi,k the k-th element of zi.

Note that the variance of a complex random variable Z ∈ C is defined by

V[Z] := E[|Z − E[Z]|2] = E[(Z − E[Z])(Z − E[Z])] = E[|Z|2]− |E[Z]|2

Theorem 2 below characterizes the variance in terms of the input vectors x,y ∈ Rd and the
distribution of the complex weight vectors (9). The proof is given in Appendix A.1.

Theorem 2 Let x := (x1, . . . , xd)
> ∈ Rd and y := (y1, . . . , yd)

> ∈ Rd be any input vectors.
Let z1, . . . ,zp ∈ Cd be i.i.d. random vectors satisfying (9), such that elements zi1, . . . , zid of
each vector zi = (zi1, . . . , zid)

> are themselves i.i.d. Let z = (z1, . . . , zd)
> ∈ Cd be a random

11
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vector independently and identically distributed as z1, . . . ,zp, and write zk = ak + ibk with
ak, bk ∈ R. Suppose

E[akbk] = 0, E[a2k] = q, E[b2k] = 1− q where 0 ≤ q ≤ 1. (15)

Then, for the approximate kernel (14), we have

V[k̂C(x,y)] =

( d∑
k=1

E[|zk|4]x2ky2k + ‖x‖2‖y‖2 −
d∑

k=1

x2ky
2
k

+
(
(2q − 1)2 + 1

) (
(x>y)2 −

d∑
k=1

x2ky
2
k

))p
− (x>y)2p (16)

Theorem 2 applies to a spectrum of complex polynomial sketches in terms of q, where
the case q = 1 is the case of real-valued polynomial sketches in Eq. (8). Indeed, to our
knowledge, this result is also new for real-valued polynomial sketches. This variance formula
is not only of theoretical interest, but also offers a way of estimating the variance from data.
It will be used later to define the objective function of the proposed optimized Maclaurin
approach.

Condition in Eq. (15). The key condition is Eq. (15),8 where the constant q is the
average length of the real part ak of each random element zk = ak + ibk. Note that
E[b2k] = 1 − q follows from E[a2k] = q since 1 = E[|zk|2] = a2k + b2k. Eq. (15) is satisfied
for Examples 2, 3 and 4 with q = 1/2 and for the real-valued Rademacher and Gaussian
sketches with q = 1. If zk is sampled uniformly from {i,−i}, which is eligible as it satisfies
Eq. (9), then q = 0. If zk is sampled uniformly from {1,−1} with probability q and from
{i,−i} with probability 1− q, then Eq. (15) is satisfied with this q.

Lower Bound. The variance in Eq. (16) can be lower-bounded by using Jensen’s inequal-
ity E[|zk|4] ≥ (E[|zk|2])2 = 1:

V[k̂C(x,y)] ≥

(
‖x‖2‖y‖2 +

(
(2q − 1)2 + 1

) (
(x>y)2 −

d∑
k=1

x2ky
2
k

))p
− (x>y)2p. (17)

Eq. (17) is the smallest possible variance attainable by complex polynomial sketches satisfy-
ing the conditions in Theorem 2. For q = 1/2, this lower bound is attained by the complex
Rademacher sketch (Example 2) and its equivalent construction (Example 4), for which we
have E[|zk|4] = 1. On the other hand, for the complex Gaussian sketch (Example 3) we
have E[|zk|4] = E[(a2k + b2k)

2] = 2.

8. Eq. (15) implies that zk is a proper complex random variable (Neeser and Massey, 1993).

12
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Concrete Examples. Below, we summarize the variance formula for the real and complex
Rademacher sketches, and the real and complex Gaussian sketches:

(Real Radem.) V
[
k̂R(x,y)

]
=

(
‖x‖2 ‖y‖2 + 2

[
(x>y)2 −

d∑
k=1

x2ky
2
k

])p
− (x>y)2p,

(18)

(Comp. Radem.) V[k̂C(x,y)] =

(
‖x‖2 ‖y‖2 + (x>y)2 −

d∑
k=1

x2ky
2
k

)p
− (x>y)2p (19)

(Real Gauss.) V
[
k̂R(x,y)

]
=
(
‖x‖2‖y‖2 + 2(x>y)2

)p
− (x>y)2p. (20)

(Comp. Gauss.) V[k̂C(x,y)] =
(
‖x‖2‖y‖2 + (x>y)2

)p
− (x>y)2p (21)

Comparing the Real and Complex Polynomial Sketches. Let us now compare the
variances of real (q = 1) and complex (q 6= 1) polynomial sketches. First, it is easy to see
that the variance of the complex Gaussian polynomial sketch (Eq. (21)) is upper-bounded
by the variance of the real Gaussian sketch (Eq. (20)). For the lower bound in Eq. (17),
which is attained by the Rademacher sketches, a more detailed analysis is needed. To this
end, consider the term that depends on q:

(
(2q − 1)2 + 1

) (
(x>y)2 −

d∑
k=1

x2ky
2
k

)
The variance in Eq. (16) is a monotonically increasing function of this term. Suppose

(x>y)2 −
d∑

k=1

x2ky
2
k =

d∑
i=1

d∑
j=1
j 6=i

xixjyiyj ≥ 0 (22)

Then q = 1/2 (e.g., complex sketches in Examples 2, 3 and 4) makes the term the smallest,
while q = 1 and q = 0 (purely real and imaginary polynomial sketches) makes it the largest.
In other words, for input vectors x and y satisfying Eq. (22), complex-valued sketches with
q = 1/2 result in a lower variance than the real-valued counterparts with q = 1. On the
other hand, if Eq. (22) does not hold, real-valued sketches result in a lower variance than
the complex-valued counterparts.

Therefore, whether complex-valued Rademacher sketches (q = 1/2) yield a lower vari-
ance than real-valued Rademacher sketches (q = 1) depends on whether Eq. (22) holds. For
example, Eq. (22) holds true if input vectors x = (x1, . . . , xd)

> and y = (y1, . . . , yd)
> are

nonnegative: x1, ..., xd ≥ 0 and y1, . . . , yd ≥ 0. Nonnegative input vectors are ubiquitous in
real-world applications, e.g., where each input feature represents the amount of a certain
quantity, where input vectors are given by bag-of-words representations, one-hot encoding
(categorical data), or min-max feature scaling, and where they are outputs of a ReLU neural
network9. For such applications with nonnegative input vectors, complex-valued polynomial
sketches always yield a smaller variance than the real-valued counterparts.

9. c.f. DeepFried Convnets (Yang et al., 2015) and fine-grained image recognition (Gao et al., 2016).
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3.4 Probabilistic Error Bounds for Rademacher Sketches

We present here probabilistic error bounds for the approximate kernel in Eq. (11) in terms
of the number D of random features, using the variance formula obtained in the previous
subsection and focusing on Rademacher sketches. The proof of the following result is given
in Appendix A.2.

Theorem 3 Let x,y ∈ Rd be arbitrary input vectors. For 0 ≤ q ≤ 1, consider a polynomial
sketch in Theorem 2 such that E[|zk|4] = 1 and thus it attains the variance in Eq. (17).
Define a constant σ2 ≥ 0 by

σ2 :=
1

‖x‖2p‖y‖2p

[(
‖x‖2‖y‖2 +

(
(2q − 1)2 + 1

) (
(x>y)2 −

d∑
k=1

x2ky
2
k

))p
− (x>y)2p

]

Let ε, δ > 0 be arbitrary, and D ∈ N be such that

D ≥ 2

(
2

3ε
+
σ2

ε2

)
log

(
2

δ

)
. (23)

Then, for the approximate kernel k̂C(x,y) in Eq. (11), we have

Pr
[∣∣∣k̂C(x,y)− (x>y)p

∣∣∣ ≤ ε ‖x‖p1 ‖y‖p1] ≥ 1− δ.

Eq. (23) shows that the required number D of random features to achieve the relative
accuracy of ε (where the “relative” is with respect to ‖x‖p1 ‖y‖

p
1) with probability at least

1− δ. For small ε, the second term σ2/ε2 dominates the first term 2/(3ε). This second term
depends on σ2, which is a scaled version of the variance in Eq. (17) of the approximate
kernel for D = 1. Thus, if the variance in Eq. (17) is smaller (resp. larger), one needs a
smaller (resp. larger) number of random features to achieve the relative accuracy of ε.

Let us now compare the real-valued (q = 1) and complex-valued (q = 1/2) Rademacher
sketches. As discussed earlier, the complex Rademacher sketch has a smaller variance than
the real Rademacher sketch when the inequality in Eq. (22) holds for the two input vectors
x,y. In particular, this inequality always holds when the input vectors are nonnegative.
Therefore, in this case, the complex Rademacher sketch requires a smaller number of random
features than the real Rademacher sketch to achieve a given accuracy.

When the inequality in Eq. (22) holds, the advantage of the complex Rademacher sketch
becomes more significant for larger p. We illustrate this behavior in Fig. 2, where vectors
x and y are sampled randomly in the positive quadrant by first drawing x̃ and ỹ from
N (0, Id) and then by computing x = |x̃|/‖x̃‖,y = |ỹ|/‖ỹ‖. (Here |x̃| denotes the vector
whose elements are the absolute values of the elements of x̃.) In the figure we report
the mean squared error of the approximate kernel for d = 8 and d = 32 for Gaussian
and Rademacher sketches. To facilitate quantitative analysis of the improvement offered by
complex random features, we also report the ratio between the mean squared error obtained
by complex and real random features. As expected from the theoretical analysis, the results
show a decreasing error ratio for increasing values of p, with an improvement of Rademacher
over Gaussian, which is slightly larger for lower d.
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Figure 2: This plot shows the mean squared error E[|k̂(x,y)− (x>y)p|2] for different values of the
degree p as well as the mean squared error ratio of the complex sketches over their real analogues.
We sample 1,000 independent vector pairs (x,y) ∈ Rd × Rd with x = |x̃|/‖x̃‖,y = |ỹ|/‖ỹ‖ and
x̃, ỹ ∼ N (0, Id). The mean is then taken over 1,000 independent constructions of the approximate

kernel k̂(x,y), and over every input pair (x,y).

In Fig. 2 we also included the tree construction in Ahle et al. (2020, Alg. 1) with
(complex) Rademacher sketches as nodes. This approach has an improved scaling w.r.t.
p compared to our method; however, for commonly used degrees p = 2, 3 our method
outperforms it. Another interesting observation from the figure is that Ahle et al. (2020)
does not benefit from complex sketches in the same way as our approach, even though this
yields an error ratio below one. Based on these results, we recommend our approach over
the tree method by Ahle et al. (2020) for low degrees p = 2, 3 as it is competitive and easier
to implement. In § 6 we provide more evidence to support these results.

4. Structured Polynomial Sketches

We study here structured polynomial sketches and their extensions with complex features.
In Section 3, we studied polynomial sketches in Eq. (5) (or Eq. (10) for complex extensions),
where the p×D random vectors wi,` ∈ Rd (i = 1, . . . , p, ` = 1, . . . , D) are generated in an
i.i.d. manner. By putting a structural constraint on these vectors, one can construct more
efficient random features with a lower variance. Moreover, such a structural constraint leads
to a computational advantage, as the imposed structure may be used for implementing an
efficient algorithm for fast matrix multiplication.

We consider structured polynomial sketches known as TensorSRHT (Tensor Subsampled
Randomized Hadamard Transform). Tropp (2011) studied TensorSRHT for p = 1 (linear
case) and Hamid et al. (2014); Ahle et al. (2020) extended it10 to arbitrary polynomial
degrees p. Ahle et al. (2020) introduced the name TensorSRHT, which refers to the fact
that it implicitly sketches from the dp-dimensional space of tensorized inputs x(p), as shown
in Eq. (7).

10. The sketches proposed by Hamid et al. (2014) and Ahle et al. (2020) are similar but not exactly the
same. Hamid et al. (2014) uses p × B independent linear SRHT sketches (see Tropp, 2011), where
B :=

⌈
D
d

⌉
is the number of SRHT blocks per degree. The elements of these sketches are then shuffled

across degrees and blocks, and the blocks are multiplied elementwise over p. Ahle et al. (2020) compute
only p independent sketches and subsample from their tensor product instead.
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In Section 4.1, we introduce TensorSRHT with real features, and present its extension
using complex features in Section 4.2. We then make a comparison between the real and
complex versions of TensorSRHT in Section 4.3.

Note that the TensorSRHT algorithm presented here is a slight modification11 of the
one proposed by Hamid et al. (2014). We show that our modification still yields unbiased
approximations of polynomial kernels. It further allows us to derive the variance of the
sketch in closed form, which has not been done in any of the previous works. We show, for
the first time, that TensorSRHT is more efficient than Rademacher sketches for odd p.

4.1 Real TensorSRHT

TensorSRHT imposes an orthogonality constraint on the vectors wi,1, . . . ,wi,D through
predefined structured matrices, specifically unnormalized Hadamard matrices. Let n := 2m

with m ∈ N, and define Hn ∈ {1,−1}n×n to be the unnormalized Hadamard matrix, which
is recursively defined as

H2n :=

[
Hn Hn

Hn −Hn

]
, with H2 :=

[
1 1
1 −1

]
. (24)

From now on, we always use Hd ∈ {1,−1}d×d with d being the dimensionality of input
vectors, assuming d = 2m for some m ∈ N. If d 6= 2m for any m ∈ N, we pad 0 to
input vectors until their dimensionality becomes 2m for some m ∈ N. For i = 1, . . . , d, let
hi ∈ {1,−1}d be the i-th column of Hd, i.e.,

Hd = (h1, . . . ,hd) ∈ {1,−1}d×d.

Note that we have HdH
>
d = H>dHd = dId, which implies that distinct columns (and rows)

of Hd are orthogonal to each other, i.e., h>i hj = 0 for i 6= j.

Case D = d. For ease of explanation, suppose here that the number D of random features
is equal to the dimensionality d of input vectors: D = d. For i = 1, . . . , p, define wi ∈ Rd
as a random vector whose elements are i.i.d. Rademacher random variables:

wi := (wi,1, . . . , wi,d)
> ∈ Rd, wi,j

i.i.d.∼ unif({1,−1}) (j = 1, . . . , d)

Consider a random permutation of the indices π : {1, . . . , d} → {1, . . . , d}, and let

π(1), . . . , π(d)

be the permuted indices. For i = 1, . . . , p and ` = 1, . . . , D, we then define a random vector
si,` ∈ Rd as the Hadamard product (i.e., element-wise product) of the Rademacher vector
wi and the permuted column hπ(`) of the Hadamard matrix:

si,` := wi ◦ hπ(`) = (wi,1hπ(`),1, . . . , wi,dhπ(`),d)
> ∈ Rd, (25)

where hπ(`),j denotes the j-th element of hπ(`).

11. Instead of permuting elements across degrees and blocks, we only permute the elements inside each block
as it is done for SRHT (see Tropp, 2011). Our sketch and the one proposed by Ahle et al. (2020) are
equivalent when D ≤ d and different when D > d.
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Because of the orthogonality of the columns h1, . . . ,hd of the Hadamard matrix Hd, the
random weight vectors si,1, . . . , si,d are orthogonal to each other almost surely: for ` 6= m,
we have

s>i,`si,m = (wi ◦ hπ(`))>(wi ◦ hπ(m)) =
d∑
j=1

w2
i,jhπ(`),jhπ(m),j = h>π(`)hπ(m) = 0.

Note also that, given the permutation π(1), . . . , π(d), the elements of each random vector
si,` in (25) are i.i.d. Rademacher variables.

Finally, we define a random feature map ΦR(x) : Rd → RD for the case D = d as

ΦR(x) :=
1√
D

[
(

p∏
i=1

s>i,1x), . . . , (

p∏
i=1

s>i,dx)

]>
∈ Rd, (26)

which defines an approximate kernel as

k̂R(x,y) := ΦR(x)>ΦR(y) =
1

D

D∑
`=1

Φ(x)R,`Φ(y)R,`

where Φ(·)R,` denotes the `-th element of ΦR(·).
The orthogonality of the weight vectors in Eq. (25) leads to negative covariances between

the terms Φ(x)R,`Φ(y)R,` and Φ(x)R,mΦ(y)R,m with distinct indices ` 6= m in the approx-
imate kernel. These negative covariances decrease the overall variance of the approximate
kernel, as we will show later in Theorem 5 and Appendix C.1

Case D 6= d. We now explain the case D 6= d. If D < d, we first compute the feature map
in Eq. (26) and keep the first D components of it. If D > d, we independently generate the
feature map in Eq. (26) B :=

⌈
D
d

⌉
times and concatenate the resulting B vectors to obtain

a Bd-dimensional feature map, and then discard the redundant last Bd − D components
of it to obtain a D-dimensional feature map. In this way, we can obtain a D-dimensional
feature map for arbitrary D ∈ N, which we write as

ΦR(x) :=
1√
D

[
(

p∏
i=1

s>i,1x), . . . , (

p∏
i=1

s>i,Dx)

]>
∈ RD. (27)

The entire procedure for constructing the structured polynomial sketch in Eq. (27) is out-
lined in Algorithm 1, where we also cover the complex-valued case discussed later.

In Algorithm 1, we use an equivalent matrix formulation, since it enables the Fast
Walsh-Hadamard transform by employing the associativity, and thus the feature map can be
computed much faster. To explain this more precisely, let Di := diag(wi1, . . . , wid) ∈ Rd×d
be a diagonal matrix whose diagonal entries wi1, . . . , wid ∈ {1,−1} are i.i.d. Rademacher
random variables, and P π := (eπ(1), . . . , eπ(d)) ∈ Rd×d be a permutation matrix, where

eπ(`) ∈ Rd is a vector whose π(`)-th element is 1 and other elements are 0. We can then
compute

(s>i,1x, . . . , s
>
i,dx) = x>(si,1, . . . , si,d) = x>(DiHdP π) =

(
(x>Di)Hd

)
P π
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Algorithm 1: Real and Complex TensorSRHT

Result: A feature map ΦR/C(x)

Pad x with zeros so that d becomes a power of 2 ;

Let B =
⌈
D
d

⌉
be the number of stacked projection blocks ;

forall b ∈ {1, . . . , B} do
forall i ∈ {1, . . . , p} do

Real case Generate a random vector wi = (wi,1, . . . , wi,d)
> ∈ Rd as

wi,1, . . . , wi,d
i.i.d∼ unif({1,−1}), and define a diagonal matrix

Di := diag(wi) ∈ Rd×d;
Complex case Generate a random vector zi = (zi,1, . . . , zi,d)

> ∈ Cd as

zi,1, . . . , zi,d
i.i.d∼ unif({1,−1, i,−i}), and define a diagonal matrix

Di := diag(wi) ∈ Cd×d ;
Randomly permute the indices 1, . . . , d to π(1), . . . , π(d) ;

Let P π := (eπ(1), . . . , eπ(d)) ∈ Rd×d, where eπ(`) ∈ Rd is a vector whose

π(`)-th element is 1 and other elements are 0 (` = 1, . . . , d) ;
Let (si,1, . . . , si,d) := DiHdP π ;

end

Compute Φb(x) :=
√

1/D[(
∏p
i=1 s

>
i,1x), . . . , (

∏p
i=1 s

>
i,dx)]> ;

end
Concatenate the elements of Φ1(x), . . . ,ΦB(x) to yield a single projection vector
ΦR/C(x) and keep the first D entries ;

by 1) first computing x>Di, 2) then multiplying the Hadamard matrix Hd using the
Fast Walsh-Hadamard transform, and 3) lastly multiplying the permutation matrix P π,
which is more efficient than first precomputing DiHdP π and then multiplying x>. In this
way, thanks to the Fast Walsh-Hadamard transform, (s>i,1x, . . . , s

>
i,dx) can be computed in

O(d log d) instead of O(d2) (Fino and Algazi, 1976). The total computational complexity is
therefore O(pD log d) and the memory requirement is O(pD), and this is a computational
advantage of TensorSRHT.

The feature map in Eq. (27) induces an approximate kernel k̂R(x,y) = ΦR(x)>ΦR(y).
The following proposition summarizes that this approximate kernel is unbiased with respect
to the target polynomial kernel k(x,y) = (x>y)p. As mentioned earlier, TensorSRHT
discussed here is slightly different from the existing versions. Therefore this result is novel
in its own right. The result follows from Proposition 9 in the next subsection, so we omit
the proof.

Proposition 4 Let x,y ∈ Rd be arbitrary, and k̂R(x,y) = ΦR(x)>ΦR(y) be the approxi-
mate kernel with ΦR(x),ΦR(y) ∈ RD given by the random feature map in Eq. (27). Then
we have E[k̂R(x,y)] = (x>y)p.

We next study the variance of the approximate kernel given by TensorSRHT, which
is the mean squared error of the approximate kernel since it is unbiased as shown above.
The following theorem provides a closed form expression for the variance, whose proof is
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given for the more general complex case in Appendix B.2. It is a novel result and extends
Choromanski et al. (2017, Theorem 3.3) to the setting p > 1 and D > d.

Theorem 5 (Variance of Real TensorSRHT) Let x,y ∈ Rd be arbitrary, and k̂R(x,y) =
ΦR(x)>ΦR(y) be the approximate kernel with Φ(x),Φ(y) ∈ RD given by the random feature
map in Eq. (27). Then we have

V
[
k̂R(x,y)

]
=
V

(p)
Rad

D︸ ︷︷ ︸
(A)

− c(D, d)

D2

[
(x>y)2p −

(
(x>y)2 −

V
(1)
Rad

d− 1

)p]
︸ ︷︷ ︸

(B)

, (28)

where V
(p)
Rad ≥ 0 and V

(1)
Rad ≥ 0 are the variances of the real Rademacher sketch with a single

feature in Eq. (18) with generic p ∈ N and p = 1, respectively, and c(D, d) ∈ N is defined
by

c(D, d) := bD/dcd(d− 1) + mod(D, d)(mod(D, d)− 1). (29)

Remark 6 The constant c(D, d) in Eq. (29) is the number of pairs of indices `, `′ = 1, . . . , D
with ` 6= `′ for which the covariance of the weight vectors si,` and si,`′ in Eq. (27) is non-
zero (see the proof in Appendix B.2 for details). If D = Bd for some B ∈ N, this constant
simplifies to c(D, d) = Bd(d− 1), and the variance in Eq. (28) becomes

V
[
k̂R(x,y)

]
=

1

D
V

(p)
Rad −

d− 1

D

[
(x>y)2p −

(
(x>y)2 −

V
(1)
Rad

d− 1

)p]
.

An interesting subcase is p = 1, for which the variance becomes zero. Thus, setting D ∈
{kd | k ∈ N} for p = 1 is equivalent to using the linear kernel with the original inputs.

Theorem 5 enables understanding the condition under which TensorSRHT has a smaller
variance than the unstructured Rademacher sketch in Eq. (5). Note that the term (A) in
Eq. (28) is the variance of the approximate kernel with the Rademacher sketch with D
features. On the other hand, the term (B) in Eq. (28) can be interpreted as the effect
of the structured sketch. The term (B) always becomes non-negative when p is odd, and
thus the overall variance of TensorSRHT becomes smaller than the Rademacher sketch,
as summarized in the following corollary. Thus, when p is odd, TensorSRHT should be
preferred over the Rademacher sketch.

Corollary 7 Let p ∈ N be odd. Then, for all input vectors x,y ∈ Rd, the variance of the
approximate kernel with TensorSRHT in Eq. (28) is smaller or equal to the variance of the
approximate kernel with the Rademacher sketch:

V
(p)
Rad

D
− c(D, d)

D2

[
(x>y)2p −

(
(x>y)2 −

V
(1)
Rad

d− 1

)p]
≤
V

(p)
Rad

D

Proof Since, V
(1)
Rad ≥ 0, we have (x>y)2 − 1

d−1V
(1)
Rad ≤ (x>y)2. For odd p this leads to(

(x>y)2 − 1
d−1V

(1)
Rad

)p
≤ (x>y)2p. The assertion immediately follows.
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If p is even, on the other hand, the variance of TensorSRHT can be larger than the
Rademacher sketch for certain input vectors x,y ∈ Rd. For instance, if x and y are
orthogonal, i.e., x>y = 0, then the variance of TensorSRHT in Eq. (28) is

Eq. (28) =
V

(p)
Rad

D
+
c(D, d)

D2

(
V

(1)
Rad

d− 1

)p
≥
V

(p)
Rad

D
.

Therefore, for even p, we do not have a theoretical guarantee for the advantage of Ten-
sorSRHT over the Rademacher sketch in terms of their variances. In practice, however,
TensorSRHT has often a smaller variance than the Rademacher sketch also for even p,
as demonstrated in our experiments described later. Moreover, TensorSRHT has a com-
putational advantage over the Rademacher sketch, thanks to the fast Walsh-Hadamard
transform.

Remark 8 One can straightforwardly derive a probabilistic error bound for TensorSRHT
by using Theorem 5 and Chebyshev’s inequality. However, deriving an exponential tail bound
for TensorSRHT is more involved, because different features in the feature map ΦR(x) in
Eq. (26) are dependent for TensorSRHT and thus applying Bersnstein’s inequality is not
straightforward. One can find an exponential tail bound for TensorSRHT in Ahle et al.
(2020, Lemma 33 in the longer version), while they analyze a slightly different version of
TensorSRHT from ours and their bound is a uniform upper bound that holds for all input
vectors simultaneously.

Our variance formula in Eq. (28), which is a novel contribution to the literature, provides
a precise characterization of how the variance of the approximate kernel depends on the
input vectors x,y ∈ Rd, and shows when TensorSRHT is more advantageous than the
Rademacher sketch. Moreover, as the variance formula can be computed in practice, it can
be used for designing an objective function for a certain optimization problem, as we do in
Section 5.3 for designing a data-driven approach to feature construction.

4.2 Complex-valued TensorSRHT

We present here a generalization of TensorSRHT by allowing for complex features. To this
end, let z ∈ C be a random variable such that (i) |z| = 1 almost surely, (ii) E[z] = 0
and (iii) z is symmetric, i.e., the distributions of z and −z are the same. Define then
z1, . . . ,zp ∈ Cd as i.i.d. complex random vectors such that elements of each random vector
zi are i.i.d. realizations of z:

zi = (zi,1, . . . , zi,d)
> ∈ Cd, zi,j

i.i.d.∼ Pz (j = 1, . . . , d), (30)

where Pz denotes the probability distribution of z.
Let π : {1, . . . , d} → {1, . . . , d} be a random permutation of indices 1, . . . , d. For i =

1, . . . , p and ` = 1, . . . , D, we then define a random vector si,` ∈ Cd as the Hadamard
product of the random vector zi in (30) and the permuted column hπ(`) of the Hadamard
matrix Hd:

si,` := zi ◦ hπ(`) = (zi,1hπ(`),1, . . . , zi,dhπ(`),d)
> ∈ Cd, (31)
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With these weight vectors si,`, we define a random feature map exactly in the same
way as the feature map in Eq. (27) for the real TensorSRHT in Section 4.1. We define the
resulting feature map ΦC : Rd → CD by

ΦC(x) :=
1√
D

[
(

p∏
i=1

s>i,1x), . . . , (

p∏
i=1

s>i,Dx)

]>
∈ CD. (32)

We call this feature construction complex TensorSRHT.

Admissible examples of the distribution Pz in Eq. (30) include: (1) the uniform dis-
tribution on {1,−1}; (2) the uniform distribution on {1,−1, i,−i}; and (3) the uniform
distribution on the unit circle in Cd. Example (1) is where z is a real Rademacher random
variable, and in this case, the complex TensorSRHT coincides with the real TensorSRHT.
Thus, the complex TensorSRHT is a strict generalization of the real TensorSRHT.

We first show that the complex TensorSRHT provides an unbiased approximation of
the polynomial kernel k(x,y) = (x>y)p. Since the real TensorSRHT is a special case, its
unbiasedness follows from this result.

Proposition 9 Let x,y ∈ Rd be arbitrary, and k̂C(x,y) = ΦC(x)>ΦC(y) be the approxi-
mate kernel with ΦC(x),ΦC(y) ∈ CD given by the random feature map in Eq. (32). Then
we have E[k̂C(x,y)] = (x>y)p.

Proof We first show E[si,`si,`
>] = Id for all i = 1, . . . , p and ` = 1, . . . , D. This follows

from the fact that, for all t, u = 1, . . . , d, we have

E[(si,`si,`
>)tu] = E[zi,thπ(`),tzi,uhπ(`),u] =

{
E[|zi,t|2]E[h2π(`),t] = 1 (if t = u),

E[zi,t]E[zi,u]E[hπ(`),thπ(`),u] = 0 (if t 6= u),
.

Using this, we have

E
[
ΦC(x)>ΦC(y)

]
= E

[
1

D

D∑
`=1

p∏
i=1

x>si,`si,`
>y

]
=

1

D

D∑
`=1

p∏
i=1

x>E[si,`si,`
>]y = (x>y)p

We now study the variance of the approximate kernel given by the complex TensorSRHT
in Eq. (32). To this end, we use the same notation as Theorem 2 to write the real and
imaginary parts of the random variable z as z = a + ib with real-valued random variables
a, b ∈ R. The proof of the following theorem is provided in Appendix B.2.

Theorem 10 (Variance of Complex TensorSRHT) Let x,y ∈ Rd be arbitrary, and
k̂C(x,y) = ΦC(x)>ΦC(y) be the approximate kernel with ΦC(x),ΦC(y) ∈ CD given by the
complex random feature map in Eq. (32). For the random variable z defining Eq. (30), write
z = a+ ib with a, b ∈ R, and suppose that

E[ab] = 0, E[a2] = q, E[b2] = 1− q where 0 ≤ q ≤ 1.
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Then we have

V[k̂C(x,y)] =
V

(p)
q

D︸︷︷︸
(A)

− c(D, d)

D2

[
(x>y)2p −

(
(x>y)2 − V

(1)
q

d− 1

)p]
︸ ︷︷ ︸

(B)

, (33)

where V
(p)
q ≥ 0 and V

(1)
q ≥ 0 are Eq. (17) with the considered value of p and p = 1,

respectively, and c(D, d) ∈ N is defined in (29).

Regarding Theorem 10, we make the following observations.

• The case q = 1 recovers Theorem 5 on the real TensorSRHT, where z ∈ {1,−1} is a
Rademacher random variable. The case q = 1/2 is the complex TensorSRHT with,
for instance, Pz being the uniform distribution on {1,−1, i,−i} or on the unit circle
in C. Other values of q ∈ [0, 1] can also be considered, but we do not discuss them
further.

• The first term (A) in Eq. (33) is the variance of the unstructured polynomial sketch

in Eq. (10) with D features, since V
(p)
q is its variance with a single feature (D = 1) in

Eq. (17). The second term (B) in Eq. (33) is the effect of using the structured sketch.

The quantity V
(1)
q is the variance of the unstructured sketch in Eq. (10) with a single

feature in Eq. (17) with p = 1.

• As for the real case, the variance (33) becomes zero when p = 1 and D ∈ {kd | k ∈ N}.

As we discussed for the real TensorSRHT in Corollary 7, Theorem 10 enables under-
standing a condition under which the complex TensorSRHT is advantageous over the cor-
responding unstructured complex sketch in Eq. (10). As for the real case, the condition is
that the degree p of the polynomial kernel is odd, as stated in the following.

Corollary 11 Let p ∈ N be odd. Then, for all input vectors x,y ∈ Rd, the variance of the
approximate kernel with the complex TensorSRHT in Eq. (33) is smaller or equal to the
variance of the approximate kernel with the corresponding unstructured polynomial sketch:

V
(p)
q

D
− c(D, d)

D2

[
(x>y)2p −

(
(x>y)2 − V

(1)
q

d− 1

)p]
≤ V

(p)
q

D

Proof Since, V
(1)
q ≥ 0, we have (x>y)2 − 1

d−1V
(1)
q ≤ (x>y)2. For odd p this leads to(

(x>y)2 − 1
d−1V

(1)
q

)p
≤ (x>y)2p. The assertion immediately follows.

As discussed for the real case, if p is even, the variance of the complex TensorSRHT can
be larger than the corresponding unstructured sketch for certain input vectors x,y ∈ Rd
(e.g., when x>y = 0). Empirically, however, the complex TensorSRHT often has a smaller
variance also for even p, as we demonstrate later.
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4.3 Comparing the Real and Complex TensorSRHT

Let us now compare the real and complex TensorSRHT. To make the discussion clearer,
suppose that the number of random features satisfies D = Bd for some B ∈ N, as in Remark
6. Then the variance formula in Eq. (33) simplifies to

V[k̂C(x,y)] =
V

(p)
q

D︸︷︷︸
(A)

− d− 1

D

[
(x>y)2p −

(
(x>y)2 − V

(1)
q

d− 1

)p]
︸ ︷︷ ︸

(B)

. (34)

Recall that setting q = 1 and q = 1/2 recover the variances of real and complex Ten-
sorSRHT, respectively. Thus, let us compare these two cases. We make the following
observations:

• As discussed in Section 3.3, it holds that V
(p)
1/2 ≤ V

(p)
1 and V

(1)
1/2 ≤ V

(1)
1 given that the

input vectors x = (x1, . . . , xd),y = (y1, . . . , yd) satisfy the inequality in Eq. (22), i.e.,∑
i 6=j xixjyiyj ≥ 0, which is satisfied when x and y are non-negative vectors.

• Thus, if Eq. (22) is satisfied, the first term (A) becomes smaller for q = 1/2 (complex
case) than q = 1 (real case). On the other hand, if p is odd, the second term (B)
becomes smaller for q = 1/2 than q = 1; thus, the variance reduction (i.e., −(B)) is
smaller for q = 1/2 than q = 1.

The above observations suggest that, even when Eq. (22) is satisfied, whether the com-
plex TensorSRHT (q = 1/2) has a smaller variance than the real TensorSRHT (q = 1)
depends on the balance between the two terms (A) and (B) and on the properties of the
input vectors x,y ∈ Rd. We have not been able to provide a theoretical characterization
of exact situations where the complex TensorSRHT has a smaller variance than the real
TensorSRHT.

To complement the lack of a theoretical characterization, we performed experiments to
compare the variances of real and complex TensorSRHT, whose results are shown in Fig. 3.
We evaluated the variance formula in Eq. (34) for q = 1 (real) and q = 1/2 (complex),
for 1000 pairs of input vectors x,y randomly sampled from a given dataset (EEG, CIFAR
10 ResNet34 features, MNIST and Gisette). For each pair x,y, we computed the ratio
of Eq. (34) with q = 1/2 divided by Eq. (34) with q = 1, and Fig. 3 shows the empirical
cumulative distribution function of this ratio for the 4 datasets. In these datasets, the input
vectors are nonnegative.

Fig. 3 shows that, for 100%, 100%, 97.8%, and 100% of the cases of the 4 datasets,
respectively, the variance of the complex TensorSRHT is smaller than that of the real
TensorSRHT. Moreover, the ratio of the variances tends to be even smaller for a larger
value of p. These results suggest that the complex TensorSRHT is effective in reducing
the variance of the real TensorSRHT, and the variance reduction is more significant for a
larger value p of the polynomial degree. We leave a theoretical analysis for explaining this
improvement of the complex TensorSRHT for future work.
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Figure 3: Empirical cumulative distribution of pairwise ratios Var(Compl. TensorSRHT) /
Var(Real TensorSRHT) on a subsample (1000 samples) of four different datasets (EEG, CIFAR10
ResNet34 features, MNIST, Gisette) with unit-normalized data where D = d. The datasets are not
zero-centered and therefore entirely positive.

5. Approximating Dot Product Kernels

We discuss here how polynomial sketches described so far can be used for approximating
more general dot product kernels, i.e., kernels whose values depend only on the inner product
of input vectors.

In Sections 5.1 and 5.2, we first review a key result on the Maclaurin expansion of dot
product kernels and the resulting random sketch approach by Kar and Karnick (2012), and
show how the polynomial sketches described so far can be used. In Section 5.3, we then
introduce a data-driven optimization approach to improving the random sketches based
on the Maclaurin expansion. In Section 5.4, we describe how to apply this approach for
approximating the Gaussian kernel. In Section 5.5, we provide a numerical illustration of
the optimization objective.

5.1 Maclaurin Expansion of Dot Product Kernels

Let X ⊂ Rd be a subset, and let k : X × X :→ R be a positive definite kernel on X . The
kernel k is called dot product kernel, if there exists a function f : R→ R such that

k(x,y) = f(x>y) for all x,y ∈ X . (35)

Examples of dot product kernels include polynomial kernels k(x,y) = (x>y + ν)p with
ν ≥ 0 and p ∈ N, which have been our focus in this paper, and exponential kernels k(x,y) =
exp(x>y/l2) with l > 0. Other examples of dot product kernels can be found in, e.g., Smola
et al. (2000).

We focus on dot product kernels for which the function f in Eq. (35) is an analytic
function whose Maclaurin expansion has non-negative coefficients: f(x) =

∑∞
n=0 anx

n and
an ≥ 0 for n ∈ {0} ∪ N. In other words, we consider dot product kernels that can be
expanded as

k(x,y) =

∞∑
n=0

an(x>y)n for all x,y ∈ X , (36)

with an ≥ 0 for all n ∈ {0} ∪ N.
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Many dot product kernels can be expanded as Eq. (36). In fact, Kar and Karnick (2012,
Theorem 1) show that, if X is the unit ball of Rd, the function k of the form of Eq. (35) is
positive definite on X if and only if it can be written as Eq. (36).

We show here a few concrete examples. The polynomial kernel k(x,y) = (x>y + ν)p

with p ∈ N and ν ≥ 0 can be expanded as

(x>y + ν)p =

p∑
n=0

(
p

n

)
νp−n(x>y)n, (37)

and thus an =
(
p
n

)
νp−n ≥ 0 for n ∈ {0, . . . , p} and an = 0 for n > p in Eq. (36). The

exponential kernel k(x,y) = exp(x>y/l2) can be expanded as

exp

(
x>y

l2

)
=
∞∑
n=0

1

n!l2n
(x>y)n (38)

and thus an = 1/(n!l2n) for n ∈ N in Eq. (36).

Gaussian kernel as a weighted dot product kernel The Gaussian kernel defined as
k(x,y) = exp(−‖x−y‖2/(2l2)) with l > 0 can be written as a weighted exponential kernel:

exp

(
−‖x− y‖

2

2l2

)
= exp

(
−‖x‖

2

2l2

)
exp

(
−‖y‖

2

2l2

)
exp

(
x>y

l2

)
= exp

(
−‖x‖

2

2l2

)
exp

(
−‖y‖

2

2l2

) ∞∑
n=0

1

n!l2n
(x>y)n, (39)

where the second identity uses the Maclaurin expansion of the exponential kernel in Eq. (38).
For approximating the Gaussian kernel, Cotter et al. (2011) proposed a finite dimensional
feature map based on a truncation of this expansion.

5.2 Random Sketch based on the Maclaurin Expansion

We describe here the approach of Kar and Karnick (2012) on the unbiased approximation
of dot product kernels based on the Maclaurin expansion in Eq. (36). We discuss this
approach to provide a basis and motivation for our new approach for approximating dot
product kernels.

First, we define a probability measure µ on {0} ∪ N. Kar and Karnick (2012) propose
to define µ as

µ(n) ∝ c−(n+1), n ∈ {0} ∪ N, (40)

for a constant c > 1 (e.g., c = 2). Using this probability measure and the Rademacher
sketch, Kar and Karnick (2012) propose a doubly stochastic approximation of the dot
product kernel in Eq. (36). This approach first generates an i.i.d. sample of size D ∈ N
from this probability measure µ

n1, . . . , nD
i.i.d.∼ µ (41)

and defines Dn for n ∈ {0} ∪ N as the number of times n appears in n1, . . . , nD; thus∑∞
n=0Dn = D.
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Then, for each n ∈ {0}∪N with Dn > 0, construct a random feature map Φn : X → RDn

with Dn features of the form in Eq. (5) that provide an unbiased approximation of the
polynomial kernel kn(x,y) := (x>y)n of degree n:

E[Φn(x)>Φn(y)] = (x>y)n. (42)

The original formulation of Kar and Karnick (2012) uses the Rademacher sketch as Φn, but
one can use other sketches in Sections 3 and 4, such as the Gaussian sketch and TensorSRHT.

Finally, defining a random variable n∗ ∼ µ, the dot product kernel in Eq. (36) is rewritten
and approximated as

k(x,y) =

∞∑
n=0

an(x>y)n =

∞∑
n=0

an
µ(n)

µ(n)(x>y)n = En∗∼µ
[
an∗

µ(n∗)
(x>y)n

∗
]

≈ 1

D

∑
n∈{n1,...,nD}

Dn
an
µ(n)

(x>y)n =
1

D

∑
n:Dn>0

Dn
an
µ(n)

(x>y)n

≈ 1

D

∑
n:Dn>0

Dn
an
µ(n)

Φn(x)>Φn(y), (43)

where the first approximation is the Monte Carlo approximation of the expectation En∗∼µ
using the i.i.d. sample in Eq. (41) and the second approximation is using the random feature
map in Eq. (42). The approximation in Eq. (43) is unbiased, since the two approximations
are statistically independent and both are unbiased.

The first approximation for Eq. (43) can be interpreted as first selecting polynomial
degrees n ∈ {0}∪N and assigning the number of features Dn to each selected degree, given
a budget constraint D =

∑
n:Dn>0Dn. While performing these assignments by random

sampling as in Eq. (41) makes the approximation in Eq. (43) unbiased, the resulting variance
of Eq. (43) can be large. In the next subsection, we introduce a data-driven optimization
approach to this feature assignment problem, to achieve a good balance between the bias
and variance.

5.3 Optimization for a Truncated Maclaurin Approximation

We develop here an optimization algorithm for selecting the polynomial degrees n and
assigning the number of random features to each selected polynomial degree in the Maclaurin
sketch in Eq. (43) . The objective function is an estimate of the expected bias and variance
of the resulting approximate kernel, and we define it using the variance formulas derived in
Sections 3 and 4.

We consider a biased approximation obtained by truncating the Maclaurin expansion in
Eq. (36) up to the p-th degree polynomials, where p is to be determined by optimization.
Let Dtotal ∈ N be the total number of random features, which is specified by a user. For
each n = 1, . . . , p, let Dn ∈ {0} ∪ N be the number of random features for approximating
the n-th term (x>y)n of the Maclaurin expansion in Eq. (36), such that

∑p
n=1Dn = Dtotal.

The numbers Dn are to be determined by optimization. Let Φn : Rd → CDn be a (possibly
complex) random feature map defined in Sections 3 and 4 such that E[Φn(x)>Φn(y)] =
(x>y)n for all x,y ⊂ X ⊂ Rd. Note that Φn can be a real-valued feature map, but we use
the notation for the complex case since it subsumes the real case.
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We then define an approximation to the dot product kernel in Eq. (36) as

k̂(x,y) := a0 +

p∑
n=1

anΦn(x)>Φn(y), x,y ∈ X (44)

This approximation is biased, since it ignores the polynomial terms whose degrees are higher
than p in the expansion of Eq. (36). One can reduce this bias by increasing p, but this may
lead to a higher variance. Therefore, there is a bias-variance trade-off in the choice of p.
We describe below how to choose p and the number of features Dn of each random feature
map Φn(x),Φn(y) ∈ CDn for n = 1, . . . , p.

5.3.1 Optimization Objective

For a given learning task, we are usually provided data points generated from an unknown
probability distribution P (x) on the input domain X ⊂ Rd. The approximate kernel k̂(x,y)
in Eq. (44) should be an accurate approximation of the target kernel k(x,y) for input vectors
x,y drawn from this unknown data distribution P (x). Therefore, we consider the following
integrated mean squared error as our objective function:∫ ∫

E
[(
k(x,y)− k̂(x,y)

)2]
dP (x)dP (y) (45)

=

∫ ∫
V[k̂(x,y)]︸ ︷︷ ︸

variance

dP (x)dP (y) +

∫ ∫ (
k(x,y)− E

[
k̂(x,y)

])2
︸ ︷︷ ︸

bias2

dP (x)dP (y) (46)

where the expectation E[·] and variance V[·] are taken with respect to the random feature
maps in the approximate kernel in Eq. (44), and the identity follows from the standard
bias-variance decomposition.

We study the variance and bias terms in Eq. (46). Let δ[Dn > 0] be an indicator such
that δ[Dn > 0] = 1 if Dn > 0 and δ[Dn > 0] = 0 otherwise. Using this indicator, and
since the p random feature maps Φ1, . . . ,Φp in Eq. (44) are statistically independent, the
variance term in Eq. (46) can be written as

V
[
k̂(x,y)

]
=

p∑
n=1

δ[Dn > 0] a2nV
[
Φn(x)>Φn(y)

]
. (47)

Each individual term V[Φn(x)>Φn(y)] in Eq. (47) is the variance of the approximate kernel
k̂n(x,y) := Φn(x)>Φn(y) for approximating the polynomial kernel kn(x,y) := (x>y)n of
degree n = 1, . . . , p. Therefore, one can explicitly compute V[Φn(x)>Φn(y)] for any given
x,y ∈ Rd using the variance formulas derived in Sections 3 and 4. For the convenience of
the reader, we summarize the variance formulas for specific cases in Table 1. Regarding the
bias term in Eq. (46), the expectation of the approximate kernel (44) is given by

E
[
k̂(x,y)

]
=

p∑
n=0

δ[Dn > 0] an(x>y)n, (48)

since E
[
Φn(x)>Φn(y)

]
= (x>y)n for n = 1, . . . , p with Dn > 0.
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Sketch Variance

Real Gaussian
D−1

[(
‖x‖2‖y‖2 + 2(x>y)2

)n
− (x>y)2n

]
Complex Gaussian

D−1
[(
‖x‖2‖y‖2 + (x>y)2

)n
− (x>y)2n

]
Real Rademacher

D−1
[(
‖x‖2‖y‖2 + 2

(
(x>y)2 −

∑d
k=1 x

2
ky

2
k

))n
− (x>y)2n

]
Complex Rademacher

D−1
[(
‖x‖2‖y‖2 + (x>y)2 −

∑d
k=1 x

2
ky

2
k

)n
− (x>y)2n

]
Real TensorSRHT Real Rademacher Variance

− c(D,d)
D2

[
(x>y)2n −

(
(x>y)2 − 1

d−1

(
‖x‖2‖y‖2 + (x>y)2 − 2

∑d
k=1 x

2
ky

2
k

))n]
Complex TensorSRHT Complex Rademacher Variance

− c(D,d)
D2

[
(x>y)2n −

(
(x>y)2 − 1

d−1

(
‖x‖2‖y‖2 −

∑d
k=1 x

2
ky

2
k

))n]
Conv. Sur. TensorSRHT

 D−1
(
V

(n)
q + (d− 1)Cov

(n)
q

)
if Cov

(n)
q > 0 or D > d,

D−1
(
V

(n)
q − Cov

(n)
q

)
+ Cov

(n)
q otherwise.

(Real case: q = 1) V
(n)
q =

(
‖x‖2 ‖y‖2 + ((2q − 1)2 + 1)((x>y)2 −

∑d
k=1 x

2
ky

2
k)
)n
− (x>y)2n

(Complex case: q = 1/2) Cov
(n)
q =

(
(x>y)2 − V

(1)
q

d−1

)n
− (x>y)2n

Table 1: Closed-form expressions for the variance V
[
Φn(x)>Φn(y)

]
for different random feature

maps Φn : Rd → CD to approximate polynomial kernel of order n ∈ N. Here, D ∈ N is the number
of random features and c(D, d) := bD/dcd(d− 1) + (D mod d)(D mod d− 1). See Sections 3 and
4 for details and more generic results. We also show convex surrogate functions in Eq. (70) and
Eq. (71) for the variance of TensorSRHT derived in Appendix C.

Note that the integrals in Eq. (46) with respect to P are not available in practice, as
P is the unknown data distribution. We instead assume that an i.i.d. sample x1, . . . ,xm of
size m ∈ N from P is available. This sample may be a subsample of a larger dataset from
P . For example, in a supervised learning problem, x1, . . . ,xm may be a random subsample
of training input points.

Using the i.i.d. sample x1, . . . ,xm, the objective function in Eq. (46) can then be unbi-
asedly approximated in a U-statistics form as

1

m(m− 1)

∑
i 6=j

V[k̂(xi,xj)] +
1

m(m− 1)

∑
i 6=j

(
k(xi,xj)− E[k̂(xi,xj)]

)2
=

1

m(m− 1)

p∑
n=1

δ[Dn > 0] a2n
∑
i 6=j

V
[
Φn(xi)

>Φn(xj)
]

(49)

+
1

m(m− 1)

∑
i 6=j

(
k(xi,xj)−

p∑
n=0

δ[Dn > 0] an(x>i xj)
n

)2

, (50)

=: g(p, (Dn)pn=1) (51)

where we used Eq. (47) and Eq. (48).
Finally, we formulate our optimization problem. To make the problem tractable, we

search for the degree p of the approximate kernel in Eq. (44) from the range {p∗min, p
∗
min +
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1, . . . , p∗max}, where p∗min, p
∗
max ∈ N with p∗min < p∗max are lower and upper bounds of p

selected by the user. We then define our optimization problem as follows:

min
p,(Dn)

p
n=1

g(p, (Dn)pn=1) subject to p ∈ {p∗min, p
∗
min + 1, . . . , p∗max}, (52)

Dn ∈ {0, . . . Dtotal},
p∑

n=1

Dn = Dtotal, Dn ≥ 1 if and only if an > 0 (n = 1, . . . , p).

where g(p, (Dn)pn=1) is defined in Eq. (51).
To present our approach to solving Eq. (52), we will first define a simplified optimization

problem and describe an algorithm for solving it. We will then use this simplified problem
and its solver to develop a solver for the full problem in Eq. (52).

5.3.2 Solving a Simplified Problem

We consider a simplified problem of Eq. (52) in which the polynomial degree p ∈ N is
fixed and given, and the number of random features Dn is positive, Dn ≥ 1, for every
polynomial degree n = 1, . . . , p with an > 0. Note that the bias term of the objective
function g(p, (Dn)nn=1), i.e. Eq. (50), only depends on (Dn)nn=1 through the indicator
function δ[Dn > 0]. Therefore, under the constraint that Dn ≥ 1 for all n = 1, . . . , p with
an > 0, Eq. (50) becomes constant with respect to (Dn)pn=1.

Thus, the optimization problem Eq. (52) under the additional constraint of p being fixed
and Dn ≥ 1 for all n = 1, . . . , p with an > 0 is equivalent to the following optimization
problem:

min
(Dn)

p
n=1

1

m(m− 1)

p∑
n=1

a2n
∑
i 6=j

V
[
Φn(xi)

>Φn(xj)
]

subject to (53)

Dn ⊂ {0, . . . Dtotal},
p∑

n=1

Dn = Dtotal, Dn ≥ 1 if and only if an > 0 (n = 1, . . . , p).

This is a discrete optimization problem with one equality constraint, and is an instance of
the so-called Resource Allocation Problem (Floudas and Pardalos, 2009).

We discuss properties of the objective function in Eq. (53) and describe a solver. To this
end, we first consider the case where Φn : Rd → CDn is one of the unstructured polynomial
sketches in Section 3; we will later explain its extension to structured sketches from Section

4. In this case, we have V
[
Φn(x)>Φn(y)

]
= C

(n)
x,y/Dn for a constant C

(n)
x,y depending on

x,y ∈ Rd and the polynomial degree n ∈ N but not on Dn, as summarized in Table 1.
Therefore,

a2n
∑
i 6=j

V
[
Φn(xi)

>Φn(xj)
]

=
a2n
Dn

∑
i 6=j

C
(n)
xi,xj (54)

is convex and monotonically decreasing with respect to Dn. From this property, one can
use the Incremental Algorithm (Floudas and Pardalos, 2009, p. 384) to directly solve the
optimization problem (53).

Algorithm 2 describes the Incremental Algorithm for solving the simplified problem in
Eq. (53). At every iteration, the algorithm finds n ∈ {1, . . . , p} such that adding one more
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Algorithm 2: Incremental Algorithm

Result: Optimal solution D1, . . . , Dp ≥ 1 to the optimization problem (53).
Input: Dot product kernel k(x,y) =

∑∞
n=0 an(x>y)n with an ≥ 0, truncation

order p ∈ N, the total number of random features Dtotal ∈ N ;
Initialize D1 = · · · = Dp = 1 and t = 0 ;

Let f(D1, . . . , Dp) :=
∑p

n=1 a2n
∑

i 6=j V
[
Φn(xi)

>Φn(xj)
]
.

while t < Dtotal do
Find j∗ = arg minj∈{1,...,p} f(D1, . . . , Dj + 1, . . . , Dp) ;

Dj∗ = Dj∗ + 1 ;
t = t+ 1 ;

end

feature to the feature map Φn (i.e., Dn = Dn + 1) decreases the objective function most,

and sets Dn = Dn + 1. Note again that a closed form expression for V
[
Φn(xi)

>Φn(xj)
]

is

available from Table 1.

Time and space complexities. The time and space complexities of Algorithm 2 are
O(pDtotal) and O(p), respectively. Note that from Eq. (54), the objective function can be
written as

f(D1, . . . , Dp) :=

p∑
n=1

a2n
∑
i 6=j

V
[
Φn(xi)

>Φn(xj)
]

=

p∑
n=1

a2n
Dn

∑
i 6=j

C
(n)
xi,xj

with an and C
(n)
xi,xj not depending on the optimizing variable Dn. Therefore, one can

precompute the term
∑

i 6=j C
(n)
xi,xj for each n = 1, . . . , p before starting the iterations in

Algorithm 2, and during the iterations one can use the precomputed values of
∑

i 6=j C
(n)
xi,xj .

Thus, while the complexity of precomputing
∑

i 6=j C
(n)
xi,xj is O(m2), where m is size of the

dataset x1, . . . ,xm defining the objective function (53), the time and space complexities of
Algorithm 2 do not depend on m.

Structured case. We assumed here that Φn is one of the unstructured sketches studied
in Section 3. This choice of Φn makes Eq. (54) convex and monotonically decreasing with
respect to Dn, which enables the Incremental Algorithm to solve the optimization problem
in Eq. (53).

However, if Φn is a structured sketch (i.e., either real or complex TensorSRHT) in
Section 4, Eq. (54) is not convex with respect to Dn, and the Incremental Algorithm is
not directly applicable. To overcome this problem, when Φn is a structured sketch, we
propose to use convex surrogate functions in Eq. (70) and Eq. (71) derived in Appendix C

to replace V
[
Φn(xi)

>Φn(xj)
]

in the objective function (53), and then apply the Incremental

Algorithm. We summarize the concrete form of the convex surrogate function in Table 1.
For details, see Appendix C.
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Algorithm 3: Extended Incremental Algorithm

Result: Optimal polynomial degree p∗ ∈ {pmin, . . . , pmax} and feature cardinalities
D∗ = (D1, . . . , Dp∗) ∈ Np∗ to the full optimization problem (52).

Input: Dot product kernel k(x,y) =
∑∞

n=0 an(x>y)n with an ≥ 0, upper and
lower bounds pmin, pmax ∈ N, the total number of random features Dtotal ∈ N ;
Set g∗ =∞, p∗ = pmin and D∗ = {} ;
forall p ∈ {pmin, . . . , pmax} do

Solve Algorithm 2 to obtain D1, . . . , Dp ;
Compute g(p, (Dn)pn=1) in Eq. (51) ;
If g(p, (Dn)pn=1) < g∗, set g∗ = g(p, (Dn)pn=1), D

∗ = (Dn)pn=1 and p∗ = p ;

end

Algorithm 4: Improved Random Maclaurin (RM) Features

Result: Feature map Φ(x) ∈ CDtotal+1

Input: Dot product kernel k(x,y) =
∑∞

n=0 an(x>y)n with an ≥ 0, polynomial
degree p∗ ∈ N and feature cardinalities D1, . . . , Dp∗ from Algorithm 3 ;
Initialize Φ(x) := [

√
a0]

forall n ∈ {1, . . . , p∗} do
Let Φn(x) ∈ CDn be an unbiased polynomial sketch of degree n with Dn

features (see Sections 3 and 4) ;
Append

√
an Φn(x) to Φ(x) ;

end

5.3.3 Solving the Full Problem

We now address the full problem in Eq. (52) using Algorithm 2 developed for the simplified
problem in Eq. (53). Recall that, by fixing p ∈ {p∗min, . . . , p

∗
max} and constraining Dn ≥ 1 for

all n = 1, . . . , p, the full problem in Eq. (52) becomes equivalent to the simplified problem in
Eq. (53), which can be solved by Algorithm 2. Thus, we propose to solve the full problem in
Eq. (52) by i) first performing Algorithm 2 for each p ∈ {pmin, . . . , pmax}, ii) then evaluate
each solution (Dn)pn=1 by computing the objective function g(p, (Dn)pn=1) in Eq. (51), and
finally pick up p that gives the smallest objective function value.

Algorithm 3 summarizes the whole procedure for solving the full optimization prob-
lem in Eq. (52). Algorithm 3 returns the optimal truncation order p∗ ∈ {pmin, . . . , pmax}
with the corresponding feature cardinalities D∗ = (D1, . . . , Dp∗). Given these values, one
can construct a feature map as summarized in Algorithm 4. Note that the U-statistics
in the empirical objective (51) can be precomputed for all pmin, . . . , pmax before running
any optimization algorithm. They do not need to be re-evaluated for every execution of
Algorithm 2.

5.4 Approximating a Gaussian Kernel

Here we describe how to adapt Algorithm 2 and Algorithm 3 for approximating a Gaussian
kernel of the form k(x,y) = exp(−‖x− y‖2/(2l2)) with l > 0. By Eq. (39), this Gaussian
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kernel can be written as

k(x,y) = exp

(
−‖x‖

2

2l2

)
exp

(
−‖y‖

2

2l2

) ∞∑
n=0

an(x>y)n,

where an := 1/(n!l2n) for n ∈ N∪{0}. Notice that
(
−‖x‖

2

2l2

)
and

(
−‖y‖

2

2l2

)
are scalar values

and can be computed for any given input vectors x,y ∈ Rd.
Thus, the objective function g(p, (Dn)pn=1) in Eq. (51), which is an empirical approxi-

mation of the bias-variance decomposition of the mean squared error in Eq. (46) using an

i.i.d. sample x1, . . . ,xm
i.i.d.∼ P , can be adapted as

g(p, (Dn)pn=1) (55)

=
1

m(m− 1)

p∑
n=1

δ[Dn > 0] a2n
∑
i 6=j

exp

(
−‖xi‖

2

l2

)
exp

(
−‖xj‖

2

l2

)
V
[
Φn(xi)

>Φn(xj)
]

+
1

m(m− 1)

∑
i 6=j

(
k(xi,xj)−

p∑
n=0

δ[Dn > 0] an exp

(
−‖xi‖

2

2l2

)
exp

(
−‖xj‖

2

2l2

)
(x>i xj)

n

)2

.

Accordingly, the objective function of the simplified problem in Eq. (53) is adapted as

f(D1, . . . , Dp) :=
1

m(m− 1)

p∑
n=1

a2n
∑
i 6=j

exp

(
−‖xi‖

2

l2

)
exp

(
−‖xj‖

2

l2

)
V
[
Φn(xi)

>Φn(xj)
]
.

By these modifications, Algorithm 2 and Algorithm 3 can be used to obtain the op-
timal truncation order p∗ ∈ {pmin, . . . , pmax} and the corresponding feature cardinali-
ties D1, . . . , Dp∗ . Lastly, Algorithm 4 can be adapted by multiplying the scalar value

exp
(
−‖x‖

2

2l2

)
to the feature map Φ(x) obtained from Algorithm 4: the new feature map is

defined as Φ′(x) := exp
(
−‖x‖

2

2l2

)
Φ(x).

5.5 Numerical Illustration of the Objective Function

To gain an insight about the behavior of Algorithm 3, we provide a numerical illustration
of the bias and variance terms in the objective function g(p, (Dn)pn=1) in Eq. (51) (or its
version adapted for the Gaussian kernel in Eq. (55)). To this end, we used the Fashion
MNIST dataset (Xiao et al., 2017) and randomly sampled data points x1, . . . ,xm with
m = 500 from the entire dataset of size 60, 000. As a target kernel to approximate, we
consider (i) a polynomial kernel k(x,y) = (x>y/8 + 7/8)20 of degree p = 20; and (ii) the
Gaussian kernel k(x,y) = exp(−‖x − y‖2/(2l2)), where the length scale l > 0 is given
by the median heuristic (Garreau et al., 2017), i.e., the median of the pairwise Euclidean
distances of x1, . . . ,xm.

For the polynomial kernel (i), we computed (a) a2n
m(m−1)

∑
i 6=j V

[
Φn(xi)

>Φn(xj)
]

for

each n = 1, . . . , p (= 20), which is the variance component of the objective function in

Eq. (51); and (b) 1
m(m−1)

∑
i 6=j
(
k(xi,xj)−

∑n
ν=0 aµ(x>i xj)

ν
)2

for each n = 1, . . . , p (= 20),
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Figure 4: Numerical illustration of Section 5.5. The left two figures are box plots for the Gaussian
kernel (i), and the right two figures are those for the polynomial kernel (ii). The top figures show
the variance terms (a), and the bottom figures show the bias terms (b). See Section 5.5 for details.

which is the bias component in Eq. (51) computed up to n-th order. For the Gaussian ker-
nel (ii), we computed corresponding quantities from the objective function in Eq. (55):

(a) a2n
m(m−1)

∑
i 6=j exp

(
−‖xi‖2

l2

)
exp

(
−‖xj‖2

l2

)
V
[
Φn(xi)

>Φn(xj)
]

for n = 1, . . . , 10 and (b)

1
m(m−1)

∑
i 6=j

(
k(xi,xj)−

∑n
ν=0 aν exp

(
−‖xi‖2

2l2

)
exp

(
−‖xj‖2

2l2

)
(x>i xj)

ν
)2

for n = 1, . . . , 10.

We used the real Gaussian sketch for the feature map Φn, for which Eq. (20) gives a closed

form expression of the variance V
[
Φn(xi)

>Φn(xj)
]
; see also Table 1. We set Dn = 1 for

each n to be evaluated (i.e., Φn(x) ∈ R.)

To compute the means and standard deviations of the above quantities (a) and (b), we
repeated this experiment 100 times by independently subsampling x1, . . . ,xm with m =
500 from the entire dataset each time. Fig. 4 describes the results. First, we can see
that the standard deviations of the quantities (a) and (b) are relatively small, and thus a
subsample x1, . . . ,xm of size m = 500 is sufficient for providing accurate approximations
of the respective population quantities of (a) and (b) (where the empirical average with
respect to x1, . . . ,xm is replaced by the corresponding expectation) in this setting.

Regarding the polynomial kernel (i), the variance terms (a) for polynomial degrees
up to n = 3 have similar magnitudes, and they decay exponentially fast for polynomial
degrees larger than n = 3 (notice that the vertical axis of the plot is in log scale). On
the other hand, the bias term (b) decays exponentially fast as the polynomial degree n
increases. These trends suggest that Algorithm 3 would assign more features to lower order
degrees n, in particular to the degree 3 or less. One explanation of these trends is that the
parametrization of the kernel k(x,y) = (x>y/8 + 7/8)20 gives larger coefficients to lower
polynomial degrees in the Maclaurin expansion (see Eq. (37)), and that the distribution
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Figure 5: One-dimensional GP regression experiment in Section 5.6. The top row shows the
results of random Fourier features (Gaussian RFF), and the bottom row those of the optimized
Maclaurin approach. The left, middle, and right columns correspond to the ground-truth sinc
functions with frequencies of 5, 2, and 0.5, respectively. The values of l and σ2 are the kernel
hyperparameters obtained by maximizing the log likelihood of training data in the full GP (i.e.,
without approximation). Dashed black curves represent approximate GP posterior mean functions;
black curves represent the posterior means plus and minus 2 times approximate posterior standard
deviations; black curves represent the posterior mean functions of the full GP; and the shaded areas
are the full GP posterior means plus and minus 2 times the full GP posterior deviations.

of pairwise inner products of the data points x1, . . .xm is centered around zero in this
experiment.

Regarding the Gaussian kernel (ii), both the variance term (a) and the bias term (b)
decay exponentially fast as the polynomial degree n increases. This trend suggests that
Algorithm 3 would assign more features to lower order polynomial degrees n.

To summarize, these observations suggest that, to minimize the mean squared error of
the approximate kernel, it is more advantageous to assign more features to lower degree
polynomial approximations. Algorithm 3 automatically achieves such feature assignments.
Additional basic experiments for Algorithm 3 are reported in Appendix F.

5.6 Gaussian Process Regression Toy Example

We performed a toy experiment on one-dimensional Gaussian process (GP) regression,
whose results are described in Fig. 5. The purpose is to gain a qualitative understanding of
the optimized Maclaurin approximation in Section 5.3 (Algorithm 3). For comparison, we
also used Random Fourier Features (RFF) of Rahimi and Recht (2007) in this experiment.
We use the real Rademacher sketch in the optimized Maclaurin approach.

We define the ground-truth function as a sinc function, f(x) = sin(ax)/x, with a > 0,
for which we consider three settings: a ∈ {5, 2, 0.5}. We generated training data by adding
independent Gaussian noises of variance σ2noise = 0.01 to the ground-truth function f(x).
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With this value of noise variance σ2noise, we then fit a GP regressor using the Gaussian
kernel k(x, y) = σ2 exp(−(x − y)2/(2l2)) to the training data, where we determined the
hyperparameters l, σ2 > 0 by maximizing the log marginal likelihood (e.g., Rasmussen and
Williams, 2006, Chapter 2). We used the resulting posterior GP as a ground-truth and call
it “full GP”, treating it as a reference for assessing the quality of approximate GPs. As
such, we used the same hyperparameters as the full GP in approximate GPs; this enables
evaluating the effects of the approximation in the resulting GP predictive distributions.

We set the number of random features as D = 10. In this case, the optimized Maclaurin
approach in Algorithm 3 selects the truncation degree p∗ = 9 and simply allocates the
feature cardinalities as D1 = · · · = D9 = 1. (Note that one feature is always allocated
to the degree n = 0). This behavior is because the variance of the Rademacher sketch in
Eq. (18) is zero for all polynomial degrees n, as the input dimension is one (d = 1) in this
experiment.12

We can make the following observations from Fig. 5. First, with the optimized Maclaurin
approach, the approximate GP posterior mean function approximates the full GP posterior
mean function around x = 0 more accurately than RFF. Moreover, the range of x on which
the Maclaurin approach is accurate becomes wider for a lower frequency a of the ground-
truth sinc function (for which the length scale l is larger). This tendency suggests that the
Maclaurin approach may be more advantageous than RFF in approximating around x = 0
and when the length scale l is relatively large. Experiments in the next section, in particular
those with high dimensional datasets, provide further support for this observation.

One issue with the Maclaurin approximation is that, as can be seen from Fig. 5, the
approximate GP posterior variance tends to collapse for an input location x far from 0. This
behavior may be explained as follows. Recall that in general, the GP posterior variance at
location x with an approximate kernel k̂ can be written in the form

k̂(x,x)− ˆ̀
N (x,x), (56)

where ˆ̀
N (x,x) ≥ 0 is a data-dependent term (see e.g., Rasmussen and Williams, 2006,

Chapter 2). Since ˆ̀
N (x,x) is non-negative, the GP posterior variance is thus upper-bounded

by k̂(x,x). Note that the expectation of the Maclaurin-approximate kernel in Eq. (44) for
the Gaussian kernel (see also Eq. (39)) is given by

E[k̂(x,x)] = exp

(
−
∥∥∥x
l

∥∥∥2) · p∑
n=0

1

n!

∥∥∥x
l

∥∥∥2n ,
which decays to 0 when ‖x/l‖ is large (because of the finite truncation of the Maclaurin
expansion). Therefore, when ‖x/l‖ is large, the approximate GP posterior variance would
decay to 0 accordingly.

One possible (and easy) way of fixing this issue is to add a bias correction term k(x,x)−
E[k̂(x,x)] ≥ 0 to the posterior variance in Eq. (56). In this way, we can prevent the
underestimation of the posterior variances with the Maclaurin approach where ‖x/l‖ is
large, which is where the approximate GP posterior mean function may not be accurate
and thus preventing the underestimation is desirable.

12. Thus, the error of the optimized Maclaurin approach stems solely from the finite truncation of the
Maclaurin expansion in Eq. (44).
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Classification Num. data points N Dimensionality d Regression Num. data points N Dimensionality d

Adult 48,842 128 Boston 506 16
Cod rna 331,152 8 Concrete 1,030 8
Covertype 581,012 64 Energy 768 8
EEG 14,980 16 kin8nm 8,192 8
FashionMNIST 70,000 1,024 Naval 11,934 16
Magic 19,020 16 Powerplant 9,568 4
MNIST 70,000 1,024 Protein 45,730 16
Mocap 78,095 64 Yacht 308 8

Table 2: Datasets used in the experiments. The left and right columns are datasets for classification
and regression, respectively.

6. Experiments

In this section, we perform systematic experiments to evaluate the various approaches to
approximating dot product kernels discussed in this paper. These approaches include real
and complex polynomial sketches in Sections 3 and 4, as well as the optimized Maclaurin
approach in Section 5. We consider approximations of both polynomial kernels and Gaussian
kernels.

We evaluate the performance of each approximation approach in terms of both i) the
accuracy in kernel approximation and ii) the performance in downstream tasks. The down-
stream tasks we consider are Gaussian process regression and classification. For complete-
ness, we explain how to use complex-valued random features in Gaussian process inference
and discuss the resulting computational costs in Appendix D.

In Section 6.1, we first explain the setup of the experiments. In Section 6.2, we de-
scribe experiments on polynomial kernel approximation, comparing various approximation
approaches. In Section 6.3, we report the results of the wall-clock time comparison of real
and complex random features, focusing on the downstream task performance of GP classifi-
cation. In Section 6.4, we present detailed evaluations of the optimized Maclaurin approach
for polynomial and Gaussian kernel approximations in GP classification and regression.
Additional experiments are reported in Appendix E.

6.1 Experimental Setup

We explain here the common setup for the experiments in this section.

6.1.1 Datasets

Table 2 shows an overview of the datasets used in the experiments. All the datasets come
from the UCI benchmark (Dua and Graff, 2017) except for Cod rna (Uzilov et al., 2006),
FashionMNIST (Xiao et al., 2017), and MNIST (Lecun et al., 1998). We pad input vectors
with zeros so that the input dimensionality d becomes a power of two to support Hadamard
projections in TensorSRHT. The train/test split is 90/10 and is recomputed for every ran-
dom seed for the UCI datasets; otherwise it is predefined.

For each dataset, we use its random subsets of size m = min(5000, Ntrain) and m∗ =
min(5000, Ntest) to define training and test data in an experiment, respectively, where Ntrain

and Ntest are the sizes of the original training and test datasets. Denote by Xsub =
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{x1, . . . ,xm} and X∗,sub = {x∗,1, . . . ,x∗,m∗} those subsets for training and test, respec-
tively. We repeat each experiment 10 times independently using 10 different random seeds,
and hence with 10 different subset partitions.

6.1.2 Target Kernels to Approximate

We consider approximation of (i) polynomial kernels and (ii) Gaussian kernels.

(i) Polynomial kernel approximation. We consider a polynomial kernel of the form

k(x,y) = σ2
((

1− 2

a2

)
+

2

a2
x>y

)p
= σ2

(
1− ‖x− y‖

2

a2

)p
(57)

with p ∈ N, a ≥ 2, σ2 > 0, and ‖x‖ = ‖y‖ = 1. We choose this form of polynomial kernels
because we use Spherical Random Features (SRF) of Pennington et al. (2015) as one of
our baselines, and because SRF approximates the polynomial kernel in Eq. (57) defined on
the unit sphere of Rd. We follow a similar experimental setup to the one of Pennington
et al. (2015), by setting a = 2 and p ∈ {3, 7, 10} in Eq. (57). Compared to Pennington
et al. (2015) we drop the case p = 20 focusing on more realistic cases of smaller p. To
make SRF applicable, we unit-normalize the input vectors in each dataset so that they lie
on the unit sphere in Rd. In an experiment where we zero-centralize the input vectors, we
unit-normalize after applying the zero-centering. We set σ2 as the variance of the labels of
training subset Xsub.

(ii) Gaussian kernel approximation. We consider the approximation of the Gaussian
kernel k(x,y) = σ2 exp(−‖x − y‖2/(2l2)), where we choose the length scale l > 0 by the
median heuristic (Garreau et al., 2017), i.e., as the median of pairwise Euclidean distances
of input vectors in the training subset Xsub. We set σ2 > 0 as the variance of the labels
of Xsub.

6.1.3 Error Metrics

We define several error metrics for studying the quality of each approximation approach.

Relative Frobenius norm error. To define this error metric, we need to define some
notation. Let Φ : Rd → CD be the (either real or complex) feature map of a given approxi-
mation method. For test input vectors X∗,sub = {x∗,1, . . . ,x∗,m∗}, let K̂ ∈ Cm∗×m∗ be the

approximate kernel matrix such that K̂i,j = Φ(xi)
>Φ(xj). Similarly, let K ∈ Rm∗×m∗ be

the exact kernel matrix such that Ki,j = k(x∗,i,x∗,j) with k being the target kernel.

We then define the relative Frobenius norm error of K̂ against K as:

‖K − K̂‖F /‖K‖F :=

√√√√ m∑
i=1

m∑
j=1

|Ki,j − K̂i,j |2
/√√√√ m∑

i=1

m∑
j=1

K2
i,j . (58)

This error quantifies the quality of the feature map Φ in terms of the resulting approxima-
tion accuracy of the kernel matrix. As the target kernel matrix K is real-valued, we discard
the imaginary part of K̂ if it is complex-valued, unless otherwise specified.
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We define other error metrics in terms of two downstream tasks: Gaussian process (GP)
regression and classification (see Appendix D for details of these GP tasks).

Kullback-Leibler (KL) divergence. We measure the KL divergence between two pos-
terior predictive distributions at test input points: one is that of an approximate GP and
the other is that of the exact GP without approximation; see Eq. (91) in Appendix D for
details. For GP classification, we measure the KL divergence between the corresponding
latent GPs before transformation. Since there are as many GPs as the number of classes,
we report the KL divergence averaged over those classes.

Prediction performance. For GP classification, we use the test error rate (i.e., the
percentage of misclassified examples) for measuring the prediction performance. For GP
regression, we report the normalized mean squared error (norm. MSE) between the posterior
predictive outputs and true outputs, normalized by the variance of the test outputs. Here,
we use the full training data of size Ntrain for computing the approximate GP posterior and
the full test data of size Ntest for evaluating the prediction performance.13

Mean negative log likelihood (MNLL). We compute the mean negative log likelihood
(MNLL) of the test data for the approximate GP predictive distribution. MNLL can capture
the quality of prediction uncertainties of the approximate GP model (e.g. Rasmussen and
Williams, 2006, p. 23). We use the full training and test data for computing the MNLL, as
for the prediction performance.

6.1.4 Other Settings

Optimized Maclaurin approach. For the optimized Maclaurin approach in Algorithm 3,
we set pmin = 2 and pmax = 10. We use the training subset Xsub = {x1, . . . ,xm} to pre-
compute the U-statistics in Eq. (49) and Eq. (50).

Regularization parameters. We select the regularization parameter in GP classification
and regression by a training-validation procedure. That is, we use the 90 % of training data
for training and the remaining 10 % for validation, and select the regularization parameter
that maximizes the MNLL on the validation set. For GP classification, we choose the
regularization parameter from the range α ∈ {10−5, . . . , 10−0}. For GP regression, we
choose the noise variance from the range σ2noise ∈ {2−15, . . . , 215}. See Appendix D for the
definition of these parameters.

Importantly, we perform this selection procedure using a baseline approach,14 and after
selecting the regularization parameter, we set the same regularization parameter for all the
approaches (including our optimized Maclaurin approach) for computing error metrics. In
this way, we make sure that the selected regularization parameter is not in favour of our
approaches (and in this sense we give an advantage to the baseline).

13. We did not use the full training and test datasets for evaluating the KL divergence, since it requires
computing the exact GP posterior on the full training data of size Ntrain, which costs O(N3

train) and is
not feasible for datasets with large Ntrain.

14. More specifically, we use the Spherical Random Features (SRF) (Pennington et al., 2015) when the target
kernel is a polynomial kernel, and Random Fourier Features (Rahimi and Recht, 2007) when the target
kernel is Gaussian, for selecting the regularization parameter.
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6.2 Polynomial Kernel Approximation

We first study the approximation of the polynomial kernels in Eq. (57), comparing different
polynomial sketches in terms of the relative Frobenius norm error in Eq. (58) on Fashion-
MNIST. Fig. 6 describes the results. We consider the following polynomial sketches in this
experiment:

(i) Gaussian and Rademacher sketches (Section 3). We use the real Gaussian and
Rademacher sketches, i.e., the unstructured polynomial sketches in Eq. (5) with Gaussian
and Rademacher weights (“Gaussian” and “Rademacher”, respectively, in Fig. 6), along
with their complex counterparts (“Gaussian Comp.” and “Rademacher Comp.” in Fig. 6).

(ii) TensorSRHT (Section 4). We consider the real TensorSRHT in Eq. (27) with
Rademacher weights (“TensorSRHT” in Fig. 6), and the complex TensorSRHT in Eq. (32)
with complex Rademacher weights (“TensorSRHT Comp.” in the figure); see also Algo-
rithm 1.

(iii) Random Maclaurin (Section 5). We use the Random Maclaurin approach ex-
plained in Section 5.2. To improve its performance, we truncate the support of the impor-
tance sampling measure µ(n) = 2−(n+1) in Eq. (40) to degrees n ∈ {1, . . . , p}.15 Note that
the term n = 0 in Eq. (36) associated with coefficient a0 does not need to be approximated,
as we append

√
a0 to the feature map. We consider the Random Maclaurin approach using

the real Rademacher sketch (“Rnd. Macl. Radem.” in Fig. 6).

(iv) Optimized Maclaurin (Section 5). We consider the optimized Maclaurin ap-
proach in Section 5.3 using the Rademacher approach (“Opt. Macl. Radem.” in Fig. 6).
We also include the real and complex versions involving TensorSRHT (“Opt. Macl. Ten-
sorSRHT” and “Opt. Macl. TensorSRHT Comp.”, respectively, in Fig. 6).

(v) TensorSketch For completeness, we also include in this experiment TensorSketch of
Pham and Pagh (2013), a state-of-the-art polynomial sketch (“TensorSketch” in Fig. 6).

Setting. We perform the experiments using FashionMNIST (“Non-centered data” in
Fig. 6) and its centered version for which we subtract the mean of the input vectors from
each input vector (“Centered data” in Fig. 6). For each approach, the number of random
features is D ∈ {d, 3d, 5d}, where d = 1, 024 for FashionMNIST.

From the results in Fig. 6, we can make the following observations.

Effectiveness of the optimization approach. The optimized Maclaurin approach with
the Rademacher sketch (“Opt. Macl. Radem.”) achieves smaller errors than the correspond-
ing random Maclaurin approach (“Rnd. Macl. Rad.”) for all cases, and with a large margin
for p = 7 and p = 10. This improvement demonstrates the effectiveness of the proposed op-
timization approach that allocates more features to polynomial degrees with larger variance
reduction.

15. Without this restriction of the support, the randomized Maclaurin approach may sample polynomial
degrees n such that n > p from µ(n), for which the associated coefficient in the Maclaurin expansion
in Eq. (37) is zero. Therefore, the resulting feature maps may contain zeros, which are redundant and
make the kernel approximation inefficient.
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Figure 6: Results of the experiments in Section 6.2 using FashionMNIST. Each plot shows the
relative Frobenius norm errors in Eq. (58) of different sketches for approximating the polynomial
kernel in Eq. (57) with p ∈ {3, 7, 10} and D ∈ {1d, 3d, 5d}. The top and bottom rows show results
without and with zero-centring the data, respectively.

Variance reduction by complex features. Complex TensorSRHT achieves signifi-
cantly smaller errors than the real TensorSRHT (“TensorSRHT”), in particular for small
polynomial degrees p. These improvements show the effectiveness of complex features in
variance reduction, corroborating the preliminary results shown in Figures 2 and 3. The
optimized Maclaurin approach using complex features (“Opt. Macl. TensorSRHT Comp.”)
also achieves smaller errors than the optimized Maclaurin approach using real features
(“Opt. Macl. TensorSRHT”) and is quite significant across all methods.

Effectiveness of complex features on non-negative data. The improvements by
complex features are more significant for the non-centered data than those for the centered-
data. The non-centered data here consist of non-negative input vectors, as FashionMNIST
consists of such vectors. This observation agrees with the discussion in Section 3.3 suggesting
that complex features yield an approximate kernel whose variance is smaller than that of
real features, if the input vectors are non-negative.

TensorSRHT v.s. TensorSketch. While the real TensorSRHT produces larger errors
than TensorSketch for all the cases except p = 3, the complex TensorSRHT outperforms
TensorSketch for all the cases. This comparison shows that the use of complex features
can make TensorSRHT competitive to the state-of-the-art (and one can further improve its
performance by using it in the optimized Maclaurin approach).

6.3 Wall-Clock Time Comparison of Real and Complex Random Features in
GP Classification

We consider GP classification using the polynomial kernel in Eq. (57), and compare the
approximation quality of real and complex random features, in terms of both the number
of features and wall-clock time. As explained in Appendix D.3, the cost of computing an
approximate GP posterior using D complex random features is higher than that using D
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real features.16 Therefore, to evaluate the relevance of complex features in practice, we
investigate here the approximation quality of complex random features and that of real
random features in GP classification, when both are given the same computational budget
(in wall-clock time).

Setting. We use the Rademacher sketch and TensorSRHT, and their respective complex
versions. For each polynomial sketch, we compute the KL divergence (91) between the
approximate and exact GP posteriors (see Appendix D for details), and record wall-clock
time (in seconds) spent on constructing random features and on computing the approximate
GP posterior.17 We use FashionMNIST for this experiment.

Results. Fig. 7 describes the results. The approximate GPs using complex random fea-
tures achieve equal or lower KL-divergences than those using real features of the same
computation time, for all the cases. In particular, the improvements of complex features
are larger for higher polynomial degrees p and for the non-centered (and thus non-negative)
data. These observations agree with the corresponding observation in Section 6.2 and the
discussion in Section 3.3 on when complex features yield lower variances than real features.

6.4 Systematic Evaluation of the Optimized Maclaurin Approach

Lastly, we systematically evaluate the performance of the optimized Maclaurin approach
in Section 5. We run experiments on approximate GP classification and regression on a
variety of datasets, using a high-degree polynomial kernel and the Gaussian kernel.

Optimized Maclaurin approach. We consider the optimized Maclaurin approach in
Section 5.3. Similarly to the previous experiments, we compare the optimized version
for the Rademacher sketch (“Opt. Macl. Radem.”) and the real and complex versions
of the optimized Maclaurin method using TensorSRHT (“Opt. Macl. TensorSRHT” and
“Opt. Macl. TensorSRHT Comp.”).

Baselines. We use here approximation approaches based on Random Fourier Features
(RFF) (Rahimi and Recht, 2007) and their extensions such as Spherical Random Features
(SRF) (Pennington et al., 2015) and Structured Orthogonal Random Features (SORF) (Yu
et al., 2016) as baselines. The latter two approaches constitute the state-of-the-art.

These approaches generate a set of frequency samples ω1, . . . , ωD/2 ∈ Rd (suppose D
is even for simplicity) from a certain spectral density, and construct a feature map18 of

16. Specifically, if one uses D complex features, then the inversion of the matrix in Eq. (88) requires 4 times
as many floating point operations as the case of using D real features. Note that, if one instead uses 2D
real features, then the inversion of the matrix in Eq. (88) requires 8 times as many operations as the
case of using D real features. Thus, doubling the number of real features is 2 times more expensive than
using complex features. See Appendix D.3 for details.

17. We recorded the time measurements on an NVIDIA P100 GPU and PyTorch version 1.10 with native
complex linear algebra support.

18. There is another popular version of the feature map in Eq. (59) defined as ΦR(x) =√
2
D

[
cos(w>1 x + b1), . . . , cos(w>Dx + bD)

]> ∈ RD with b1, . . . , bD uniformly sampled on [0, 2π]. Fol-

lowing Sutherland and Schneider (2015) who suggested the superiority of Eq. (59), we use Eq. (59) here
in all the methods using RFF, including SRF and SORF.
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Figure 7: Results of the experiments in Section 6.3 on wall-clock time comparison of real and
complex random features in GP classification on FashionMNIST. In each plot, the vertical axis shows
the KL divergence (91) between the approximate and the exact GP posteriors for each polynomial
sketch, and the horizontal axis is wall-clock time (in seconds) spent on constructing random features
and on computing the approximate GP posterior. Each column corresponds to a different degree
p ∈ {3, 7, 10, 20} of the polynomial kernel in Eq. (57). The top row shows results on the non-centered
(thus non-negative) data, and the bottom row to those on the zero-centered data. The number of
random features is D ∈ {1d, . . . , 10d} for real features, and D ∈ {1d, . . . , 5d} for complex features,
as annotated next to the respective measurements in each plot.

dimension D as, for any x ∈ Rd,

ΦR(x) =

√
2

D

[
cos(w>1 x), . . . , cos(w>D/2x), sin(w>1 x), . . . , sin(w>D/2x)

]>
∈ RD. (59)

Each approach has its own way of generating the frequency samples ω1, . . . ,ωD/2: the
original RFF generates them in an i.i.d. manner from the spectral density of a kernel,
SORF uses structured orthogonal matrices (thus we may call it “RFF Orth.”), and SRF
uses a certain optimized spectral density.

For a thorough comparison, we also consider a complex version of these RFF-based
approaches. By generating frequency samples ω1, . . . ,ωD ∈ Rd in the specific way of each
approach, one can define a corresponding complex feature map as, for any x ∈ Rd,

ΦC(x) :=

√
1

D

[
exp(iω>1 x), . . . , exp(iω>Dx)

]>
∈ CD. (60)

One can see19 that Eq. (60) is a complex version of Eq. (59) by defining an approximate
kernel with ΦC(x) and taking its real part, which recovers Eq. (59) of dimension 2D.

19. Define an approximate kernel with Eq. (60) as k̂(x,y) := ΦC(x)>ΦC(y) = 1
D

∑D
i=1 exp(iω>i (x − y)) =

1
D

∑D
i=1 exp(iω>i x)exp(iω>i y). By taking its real part, we have R{k̂(x,y)} = 1

D

∑D
i=1 cos(w>i (x −

y)) = 1
D

∑D
i=1

(
cos(w>i x) cos(w>i y) + sin(w>i x) sin(w>i y)

)
=: ΦR(x)>ΦR(y), where ΦR(x) :=√

1
D

[
cos(w>1 x), . . . , cos(w>Dx), sin(w>1 x), . . . , sin(w>Dx)

]> ∈ R2D is the 2D-dim. version of Eq. (59).
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6.4.1 Approximate GP Inference with Polynomial Kernels

We first consider approximate GP classification and regression with polynomial kernels.

Setting. We set the polynomial degree to p = 3 and p = 7 to test various approaches on
low and moderate degrees. We apply zero-centering to each dataset (i.e., we subtract the
mean of input vectors from each input vector), as it improves the MNLL values on most
datasets (see Appendix E for supplementary experiments). We evaluate all the four error
metrics in Section 6.1.3, including the relative Frobenius norm error in Eq. (58). For each
approach, the number of random features is D ∈ {d, 3d, 5d} with d being the dimensionality
of input vectors.

Baselines. As a baseline, we use SRF (Pennington et al., 2015), a state-of-the-art ap-
proach to approximating polynomial kernels defined on the unit sphere in Rd. Pennington
et al. (2015) show that SRF works particularly well for approximating high degree poly-
nomial kernels, and significantly outperforms the Random Maclaurin approach (Kar and
Karnick, 2012) and TensorSketch (Pham and Pagh, 2013) for such kernels.

We also consider two other extensions of SRF for baselines. SRF generates the frequency
samples ω1, . . . ,ωD/2 in Eq. (59) from an optimized spectral density, by first drawing sam-

ples from the unit sphere in Rd. Therefore, by replacing these samples on the unit sphere
by structured orthogonal projections of SORF (Yu et al., 2016), one can construct a struc-
tured version of SRF. We use this structured SRF as another baseline (“SRF Orth.”).
Moreover, we consider a complex extension of the structured SRF in the form of Eq. (60)
( “SRF Orth. Comp.”). While these extensions are themselves novel, we include them in
the experiments, as they improve over the vanilla SRF and make the experiments more
competitive. Finally, we also include the method in Ahle et al. (2020) and its complex
version.

Fig. 8 and Fig. 9 show the results of approximate GP classification on four datasets
from Table 2. We present the results on the other four datasets as well as the results of
GP regression in Appendix E to save space. We can make the following observations from
these results.

Relative Frobenius norm error. For most cases, the optimized Maclaurin approaches
with TensorSRHT achieve lower relative Frobenius norm errors than the SRF approaches
and the method by Ahle et al. (2020). Across all methods, there are cases where the
improvements offered by the complex approach are quite large.

KL divergence. While the optimized Maclaurin approaches achieve lower KL divergences
than the SRF approaches for most cases, the margins are smaller than those for the relative
Frobenius norm errors. One possible reason is that the Maclaurin approaches in general
(either random or optimized) can be inaccurate in approximating the GP posterior variances
at test inputs far from x = 0, as discussed in Section 5.6. While we suggested a way of
fixing this issue in Section 5.6, we do not implement it to conduct a direct comparison with
the SRF approaches.

Classification errors and mean negative log likelihood (MNLL). The optimized
Maclaurin approaches with TensorSRHT achieve equal or lower classification errors and
MNLL than the SRF approaches. These results suggest that the optimized Maclaurin

43



Wacker, Kanagawa and Filippone

D=1d 3d 5d

100

Ke
rn

el
 R

el
. F

ro
b.

 E
rro

r

Codrna (p= 3)

D=1d 3d 5d

10−1

100

101
Codrna (p= 7)

D=1d 3d 5d

100

Magic (p= 3)

D=1d 3d 5d

100

Magic (p= 7)

D=1d 3d 5d

105

106

KL
 D

iv
er

ge
nc

e

D=1d 3d 5d

105

D=1d 3d 5d

105

D=1d 3d 5d

105

D=1d 3d 5d
0.0

0.1

0.2

0.3

Te
st

 E
rro

r

D=1d 3d 5d
0.0

0.1

0.2

0.3

0.4

D=1d 3d 5d
0.0

0.1

0.2

D=1d 3d 5d
0.0

0.1

0.2

0.3

D=1d 3d 5d
0.0

0.2

0.4

0.6

M
NL

L

D=1d 3d 5d
0.0

0.2

0.4

0.6

0.8

D=1d 3d 5d
0.0

0.2

0.4

0.6

D=1d 3d 5d
0.0

0.2

0.4

0.6

SRF
SRF Orth.

SRF Orth. Comp.
TensorSRHT

TensorSRHT Comp.
Ahle et al. TensorSRHT

Ahle et al. TensorSRHT Comp.
Opt. Macl. Radem.

Opt. Macl. TensorSRHT
Opt. Macl. TensorSRHT Comp.

Figure 8: Codrna and Magic results of the experiments in Section 6.4.1 on approximate GP
classification with polynomial kernels of degree p = 3 and p = 7. Lower values are better for all the
metrics. For each dataset, we show the number of random features D ∈ {1d, 3d, 5d} used in each
method on the horizontal axis, with d being the input dimensionality of the dataset.

approaches are promising not only in kernel approximation accuracy but also in downstream
task performance. Recall that we selected the regularization parameter in GP classification
by maximizing the MNLL of SRF (on the validation set), and used the same regularization
parameter in the other approaches (See Section 6.1.4). Therefore, the results of Fig. 8 and
Fig. 9 are in favor of the SRF approaches, and the optimized Maclaurin approaches may
perform even better if we choose the regularization parameter for them separately.

6.4.2 Approximate GP Inference with a Gaussian kernel

We next consider GP classification using a Gaussian kernel. As in Section 6.4.1, we apply
zero-centring to the input vectors of each dataset.

Baselines. We use RFF, SORF (“RFF Orth.”) and a complex extension of SORF (“RFF
Orth. Comp.”) as baselines (see the beginning of Section 6.4 for details). SORF is a state-of-
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Figure 9: Mocap and FashionMNIST results of the experiments in Section 6.4.1 on approximate
GP classification with polynomial kernels of degree p = 3 and p = 7. Lower values are better for
all the metrics. For each dataset, we show the number of random features D ∈ {1d, 3d, 5d} used in
each method on the horizontal axis, with d being the input dimensionality of the dataset.

the-art approach to approximating a Gaussian kernel (e.g. Choromanski et al., 2018). As in
Section 6.4.1, we consider its complex extension to make the experiments more competitive.

Results. Fig. 10 summarizes the results on four datasets from Table 2. We show the
results on the rest of the datasets as well as the results of GP regression in Appendix E.
We can make similar observations for Fig. 10 as for the polynomial kernel experiments in
Section 6.4.1 (and thus we omit explaining them). The results suggest the effectiveness of
the optimized Maclaurin approach with TensorSRHT in approximating the Gaussian kernel.

6.4.3 Influence of the Data Distribution on the Kernel Approximation

Lastly, we investigate a characterization of datasets for which the optimized Maclaurin
approach performs well. We focus on polynomial kernel approximation, and make a com-
parison with SRF as in Section 6.4.1.
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Figure 10: Results of the experiments in Section 6.4.2 on approximate GP classification with a
Gaussian kernel. Lower values are better for all the metrics. For each dataset, we show the number
of random features D ∈ {1d, 3d, 5d} used in each method on the horizontal axis, with d being the
input dimensionality of the dataset. We put the legend labels and the bars in the same order.

Fig. 11 describes a histogram of pairwise distances {‖x∗,i − x∗,j‖}i 6=j of the input vec-
tors in a test subset X∗,sub = {x∗,1, . . . ,x∗,m∗}, obtained after zero-centering and unit-
normalization, of each of four representative datasets (kin8nm, Cod rna, Naval, and Pro-
tein). For these datasets, the optimized Macluarin approach and SRF show stark contrasts
in their performances; see Section § 6.4.1 and Appendix E. Note that the polynomial kernel
in Eq. (57) is a shift-invariant kernel on the unit sphere of Rd, and thus its value depends
only on the distance τ := ‖x−y‖ between the input vectors x,y as long as ‖x‖ = ‖y‖ = 1.
This motivates us to study here the distribution of pairwise distances and its effects on
approximating the polynomial kernel in Eq. (57).

In Fig. 11, the optimized Maclaurin approach yields lower relative Frobenius norm errors
(58) than SRF for the left two plots, while the optimized Maclaurin approach is less accurate
than SRF for the right two plots. For the datasets of the right two plots (Naval and Protein),
the pairwise distances {‖x∗,i − x∗,j‖}i 6=j concentrate around τ = 0 (and there is a smaller
mass around τ = 2). In comparison, for the datasets of the left two plots (kin8nm and
Cod rna), the pairwise distances are relatively more evenly distributed across the possible
range τ ∈ [0, 2].

The above observation suggests that the optimized Maclaurin approach is more suitable
for datasets in which the pairwise distances {‖x∗,i−x∗,j‖}i 6=j are not concentrating around
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Figure 11: Histograms of pairwise Euclidean distances {‖x∗,i − x∗,j‖}i 6=j for test subsets of four
datasets (Section 6.4.3). On the top of each figure, we show the relative Frobenius norm errors (58)
of the optimized Maclaurin approach with real TensorSRHT and of SRF with structured orthog-
onal projections. The black curve represents the polynomial kernel in Eq. (57) with p = 20 as a
function of τ := ‖x− y‖ (the horizontal axis); the orange curves describe its degree n ∈ {1, 2, 3, 4}
approximations (i.e., the truncation of the Maclaurin expansion (37) of the polynomial kernel up to
the n-th degree terms.). The dashed curve represents the variance of the SRF approximation as a
function of τ = ‖x− y‖. The green vertical line shows the value of τ = ‖x− y‖ =

√
2 for which the

input vectors x,y are orthogonal, x>y = 0.

0, i.e., datasets in which there is a diversity in the input vectors {x∗,1, . . . ,x∗,m∗}. In fact,
for approximating the polynomial kernel (black curve in Fig. 11), the finite-degree Maclaurin
approximations (orange curves) tend to be less accurate for input vectors x,y close to each
other, τ = ‖x−y‖ ≈ 0, and become relatively more accurate as input vectors x,y approach
orthogonality, i.e. x>y = 0 (or τ = ‖x − y‖ =

√
2; the vertical green line); see also the

Maclaurin expansion (37) of the polynomial kernel. On the other hand, the variance of SRF
is the lowest around τ = ‖x − y‖ = 0 and increases as τ tends to 2. Therefore, the SRF
performs well if the pairwise distances {‖x∗,i − x∗,j‖}i 6=j concentrate around 0, and may
become inaccurate if they do not.

7. Conclusion

We made several contributions for understanding and improving random feature approxima-
tions for dot product kernels. First, we studied polynomial sketches, i.e., random features
for polynomial kernels, such as the Rademacher sketch and TensorSRHT, and discussed
their generalizations using complex-valued features. We derived closed form expressions for
the variances of these polynomial sketches, which are useful in both theory and practice.

On the theoretical side, these variance formulas provide novel insights into these poly-
nomial sketches, such as conditions for a structured sketch to have a lower variance than
the corresponding unstructured sketch, and conditions for a complex sketch to have a lower
variance than the corresponding real sketch. Our systematic experiments support these
findings. On the practical side, these variance formulas can be evaluated in practice, and
therefore enable us to estimate the mean squared errors of the approximate kernel for given
input points.

Based on the derived variance formulas, we developed a novel optimization algorithm for
data-driven random feature approximations of dot product kernels, which is also applicable
to the Gaussian kernel. This approach uses a finite Maclaurin approximation of the kernel,
which approximates the kernel as a finite sum of polynomial kernels of different degrees.
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Given a total number of random features, our optimization algorithm determines how many
random features should be used for each polynomial degree in the Maclaurin approximation.
We defined the objective function of this optimization algorithm as an estimate of the
averaged mean squared error regarding the data distribution, and used the variance formulas
for this purpose. We empirically demonstrated that this optimized Maclaurin approach
achieves state-of-the-art performance on a variety of datasets, both in terms of the kernel
approximation accuracy and downstream task performance.

As described in the introduction, dot product kernels have been actively used in many
domains of applications, such as genomic data analysis, recommender systems, computer
vision, and natural language processing. In these applications, interactions among input
variables have significant effects on the output variables of interest, and thus dot product
kernels offer an appropriate modeling tool. In particular, dot product kernels are being
used in an inner-loop of larger neural network models, such as the dot product attention
mechanism used in Transformer architectures (Vaswani et al., 2017; Choromanski et al.,
2021).

One major challenge of using dot product kernels is the computational efficiency, and
random feature approximations offer a promising solution. Our contributions improve the
efficiency of random feature approximations, and we hope that these contributions make
dot product kernels even more useful in the above application domains.
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Appendix A. Proofs for Section 3

A.1 Proof of Theorem 2

We first show

V[k̂C(x,y)] =

( d∑
k=1

E[|zk|4]x2ky2k + ‖x‖2‖y‖2 − 2

d∑
k=1

x2ky
2
k + (x>y)2

+
d∑
i=1

d∑
j=1
j 6=i

E[z2i ]E[zj
2]xixjyiyj

)p
− (x>y)2p. (61)

where z2i := zizi and zi
2 := zizi are in general different from |zi|2 = zizi. We have

V[k̂C(x,y)] = E[|k̂C(x,y)|2]− |E[k̂C(x,y)]|2 = E[|
p∏
i=1

z>i xz
>
i y|

2]− (x>y)2p

=

p∏
i=1

E[|z>i xz>i y|
2]− (x>y)2p = (E[|z>xz>y|2])p − (x>y)2p. (62)

Henceforth we focus on E[|z>xz>y|2] in the last expression (62). Write z = (z1, . . . , zd)
>,

x = (x1, . . . , xd)
>, and y = (y1, . . . , yd)

>. Since E[zz>] = Id, we have E[zizj ] = 1 if i = j
and E[zizj ] = 0 if i 6= j. Recall also that z1, . . . , zd ∈ C are i.i.d, and E[zi] = 0 for
i = 1, . . . , d. Then

E[|z>xz>y|2] = E

(
d∑
i=1

zixi)(
d∑
j=1

zjyj)(
d∑

k=1

zkxk)(
d∑
l=1

zlyl)


=

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

E[zizjzkzl]xiyjxkyl. (63)

The expected value E
[
zizjzkzl

]
is different from 0, only if:

(a) i = j = k = l, for which there are d terms and E
[
zizjzkzl

]
xiyjxkyl = E[|zi|4]x2i y2i .

(b) i = j 6= k = l, for which there are d(d − 1) terms and E
[
zizjzkzl

]
xiyjxkyl =

E[|zi|2]E[|zk|2]xixkyiyk.

(c) i = k 6= j = l, for which there are d(d − 1) terms and E
[
zizjzkzl

]
xiyjxkyl =

E[|zi|2]E[|zj |2]x2i y2j .

(d) i = l 6= j = k, for which there are d(d − 1) terms and E
[
zizjzkzl

]
xiyjxkyl =

E[z2i ]E[zj
2]xixjyiyj .
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Therefore,

(63) =

d∑
i=1

E[|zi|4]x2i y2i︸ ︷︷ ︸
case (a)

+

d∑
i=1

d∑
j=1
j 6=i

E[|zi|2]E[|zj |2]x2i y2j

︸ ︷︷ ︸
case (c)

+

d∑
i=1

d∑
j=1
j 6=i

E[|zi|2]E[|zj |2]xixjyiyj

︸ ︷︷ ︸
case (b)

+

d∑
i=1

d∑
j=1
j 6=i

E[z2i ]E[zj
2]xixjyiyj

︸ ︷︷ ︸
case (d)

=
d∑
i=1

E[|zi|4]x2i y2i +
d∑
i=1

d∑
j=1
j 6=i

x2i y
2
j +

d∑
i=1

d∑
j=1
j 6=i

xixjyiyj +
d∑
i=1

d∑
j=1
j 6=i

E[z2i ]E[zj
2]xixjyiyj

=
d∑
i=1

E[|zi|4]x2i y2i +

[
‖x‖2‖y‖2 −

d∑
i=1

x2i y
2
i

]
+

[
(x>y)2 −

d∑
i=1

x2i y
2
i

]

+

d∑
i=1

d∑
j=1
j 6=i

E[z2i ]E[zj
2]xixjyiyj

The proof of Eq. (61) completes by using this expression of E[(z>xz>y)2] in Eq. (62).
Eq. (16) follows from Eq. (61) and E[z2k] = E[zk

2] = 2q − 1, which uses Eq. (15).

A.2 Proof of Theorem 3

We make use of Bernstein’s inequality (e.g., Vershynin, 2018, Theorem 2.8.4): For indepen-
dent random variables X1, . . . , XD ∈ R such that E[Xi] = 0 and |Xi| ≤ R almost surely for
a constant R > 0, we have for any t > 0:

Pr

[∣∣∣∣∣
D∑
i=1

Xi

∣∣∣∣∣ ≥ t
]
≤ 2 exp

(
−t2/2∑D

i=1V [Xi] +Rt/3

)
(64)

We define Xi := ΦC(x)iΦC(y)i − (x>y)p/D ∈ R, where ΦC(x) ∈ CD is defined in Eq. (10):

ΦC(x) = 1√
D

[
(
∏p
i=1 z

>
i,1x), . . . , (

∏p
i=1 z

>
i,Dx)

]>
. Then we have E[Xi] = 0. Moreover,

|Xi| ≤ |ΦC(x)iΦC(y)i|+ |(x>y)p/D| = 1

D

 p∏
j=1

|z>j x||z>j y|+ |(x
>y)p|


≤ 1

D
(‖x‖p1 ‖y‖

p
1 + ‖x‖p2 ‖y‖

p
2) ≤

2

D
‖x‖p1 ‖y‖

p
1 =: R

where the first inequality is the triangle inequality. The second inequality uses Hölder’s
inequality (and that the absolute value of each element of zj is 1) as well as the upper
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bound x>y ≤ ‖x‖2‖y‖2. Furthermore, by assumption we have

V[Xi] =
σ2 ‖x‖2p2 ‖y‖

2p
2

D2
≤ σ2 ‖x‖2p1 ‖y‖

2p
1

D2

for some σ2 ≥ 0. Therefore, using Eq. (64) and setting t := ‖x‖p1 ‖y‖
p
1 ε, we have

Pr

[∣∣∣∣∣
D∑
i=1

Xi

∣∣∣∣∣ ≥ ε ‖x‖p1 ‖y‖p1
]
≤ 2 exp

(
−Dε2/2
2
3ε+ σ2

)

Setting D ≥ 2( 2
3ε + σ2

ε2
) log(2δ ) and taking the complementary probability gives the desired

result.

Appendix B. Proofs for Section 4

B.1 Key Lemma

First, we state a key lemma that is needed for deriving the variance of real and complex
TensorSRHT. This result is essentially given in Choromanski et al. (2017, Proof of Propo-
sition 8.2). However, their proof contains a typo missing the negative sign, and they use
a different definition of the Hadamard matrix from ours. Therefore, for completeness, we
state the result formally and provide a proof.

Lemma 12 Let d = 2m for some m ∈ N and Hd = (h1, . . . ,hd) ∈ {1,−1}d×d be the
unnormalized Hadamard matrix defined in Eq. (24), where h` = (h`,1, . . . , h`,d)

> ∈ {1,−1}d
for ` ∈ {1, . . . , d}. Let π : {1, . . . , d} → {1, . . . , d} be a uniformly random permutation.
Then for any `, `′ ∈ {1, . . . , d} with ` 6= `′ and t, u ∈ {1, . . . , d} with t 6= u, we have

E[hπ(`),thπ(`′),thπ(`),uhπ(`′),u] = − 1

d− 1
,

where the expectation is with respect to the random permutation π.

Proof We first derive a few key identities needed for our proof. For simplicity of notation,
define

α` := h`,th`,u, ` ∈ {1, . . . , d}.

Since any two distinct rows (and any two distinct columns) of Hd are orthogonal, we have

d∑
`=1

α` =

d∑
`=1

h`,th`,u = 0.

Since α` ∈ {−1, 1}, this identity implies that exactly d/2 elements in {α1, . . . , αd} are 1,
and the rest are −1. Note that for each ` ∈ {1, . . . , d} the randomly permuted index π(`)
takes values in {1, . . . , d} with equal probabilities. Therefore, the probability of απ(`) being
1 and that of απ(`) being −1 are equal:

Pr(απ(`) = 1) = Pr(απ(`) = −1) = 0.5.
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Note that πb(`) 6= πb(`′) since ` 6= `′ and π is a (random) permutation. Therefore, we have
the following conditional probabilities:

Pr(απ(`′) = a | απ(`) = b) =

{
d/2−1
d−1 if a = b = 1 or a = b = −1
d/2
d−1 if a = 1, b = −1 or a = −1, b = −1

Using the above identities, we now prove the assertion:

E[hπb(`),thπb(`′),thπb(`),uhπb(`′),u] = E[απ(`)απ(`′)]

= Pr(απ(`) = 1)E[απ(`)απ(`′) | απ(`) = 1] + Pr(απ(`) = −1)E[απ(`)απ(`′) | απ(`) = −1]

=
1

2
E[απ(`′) | απ(`) = 1]− 1

2
E[απ(`′) | απ(`) = −1]

=
1

2

(
d/2− 1

d− 1
− d/2

d− 1

)
− 1

2

(
d/2

d− 1
− d/2− 1

d− 1

)
= − 1

d− 1
.

B.2 Proof of Theorem 10

We first clarify the notation we use. Recall that our feature map Φ(x) ∈ CD is given by

Φ(x) =
1√
D

[
(

p∏
i=1

s>i,1x), . . . , (

p∏
i=1

s>i,Dx)

]>
∈ CD.

The random vectors si,` ∈ Cd are independently generated blockwise, and there are B :=
dD/de blocks in total (and note that D = (B − 1)d+ mod(D, d)): For each i = 1, . . . , p,

(si,1, . . . , si,d)︸ ︷︷ ︸
Block 1

, (si,d+1, . . . , si,2d)︸ ︷︷ ︸
Block 2

, . . . ,

(si,(B−2)d+1, . . . , si,(B−1)d)︸ ︷︷ ︸
Block B−1

, (si,(B−1)d+1, . . . , si,(B−1)d+mod(D,d))︸ ︷︷ ︸
Block B

=: (s1i,1, . . . , s
1
i,d)︸ ︷︷ ︸

Block 1

, (s2i,1, . . . , s
2
i,d)︸ ︷︷ ︸

Block 2

, . . . , (sB−1i,1 , . . . , sB−1i,d )︸ ︷︷ ︸
Block B−1

, (sBi,1, . . . , s
B
i,mod(D,d))︸ ︷︷ ︸

Block B

,

where we introduced in the second line a new notation:

sbi,` := si,(b−1)d+` (b = 1, . . . , B, ` = 1, . . . , d.).

Here b serves as the indicator of the b-th block. Thus, using this notation,

sbi,` = zbi ◦ hπb(`) ∈ Cd (` = 1, . . . , d),

where zbi = (zbi,1, . . . , z
b
i,d)
> ∈ Cd is a random vector whose elements zbi,1, . . . , z

b
i,d are i.i.d.,

and πb : {1, . . . , d} → {1, . . . , d} is a random permutation of the indices. Note that zbi and
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πb are generated independently for each b ∈ {1, . . . , B}. Therefore, the random vectors sbi,`
and sb

′
i,`′ are statistically independent if they are from different blocks, i.e., if b 6= b′.

For each b = 1, . . . , B, define zb = (zb1, . . . , z
b
d)
> ∈ Cd as a random vector independently

and identically distributed as zb1, . . . ,z
b
p. Define

sb` := zb ◦ hbπ(`) = (zb1hπb(`),1, . . . , z
b
dhπb(`),d)

> =: (sb`,1, . . . , s
b
`,d)
> ∈ Cd. (65)

Then sb` is independently and identically distributed as sb1,`, . . . , s
b
p,`. Moreover, given the

permutation πb fixed, sb` is identically distributed as zb. This is because 1) zb1, . . . , z
b
d are

i.i.d., 2) each zbt is symmetrically distributed (t = 1, . . . , d), and 3) hπb(`),1, . . . , hπb(`),d ∈
{1,−1}.

Now let us start proving the assertion. We first have

V[k̂(x,y)] = E[|k̂(x,y)|2]− |E[k̂(x,y)]|2 = E[|k̂(x,y)|2]− (x>y)2p,

where the second identity follows from the approximate kernel being unbiased for both real
and complex TensorSRHT. Thus, from now on we study the term E[|k̂(x,y)|2].

For simplicity of notation, define Ib := {1, . . . , d} for b = 1, . . . , B − 1 and Ib :=
{1, . . . ,mod(D, d)} for b = B. Since the approximate kernel can be written as

k̂(x,y) := Φ(x)>Φ(y) =
1

D

D∑
`=1

p∏
i=1

(
s>i,`x

)(
s>i,`y

)
=

1

D

B∑
b=1

∑
`∈Ib

p∏
i=1

(
sb>i,`x

)(
sb>i,` y

)
its second moment can be written as

E[|k̂(x,y)|2] =
1

D2

B∑
b,b′=1

∑
`∈Ib

∑
`∈Ib′

E

[
p∏
i=1

(
sb>i,`x

)(
sb>i,` y

)(
sb
′>
i,`′ x

)(
sb
′>
i,`′ y

)]

=
1

D2

B∑
b,b′=1

∑
`∈Ib

∑
`∈Ib′

p∏
i=1

E
[(
sb>i,`x

)(
sb>i,` y

)(
sb
′>
i,`′ x

)(
sb
′>
i,`′ y

)]

=
1

D2

B∑
b,b′=1

∑
`∈Ib

∑
`∈Ib′

(
E
[(
sb>` x

) (
sb>` y

)(
sb
′>
`′ x

) (
sb
′>
`′ y

)])p
. (66)

Now we study individual terms in (66), categorizing the indices b, b′ ∈ {1, . . . , B} and
`, `′ ∈ {1, . . . , d} of indices into the following 3 cases:

1. b = b′ and ` = `′ (D terms): As mentioned earlier, conditioned on the permutation πb,

sb` is identically distributed as zb (see the paragraph following Eq. (65)). Thus,

E
[(
sb>` x

)2 (
sb>` y

)2]
= Eπb

[
E
[(
sb>` x

)2 (
sb>` y

)2
| πb
]]

= Eπb

[
E
[(
zb>x

)2 (
zb>y

)2]]
= E

[(
zb>x

)2 (
zb>y

)2]
= E

[(
z>x

)2 (
z>y

)2]
,

where Eπb denotes the expectation with respect to πb and z ∈ Cd is a random vector
identically distributed as z1, . . . ,zB.
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2. b = b′ and ` 6= `′ (c(D, d) terms, where c(D, d) is defined in Eq. (29)): This case requires
a detailed analysis, which we will do below.

3. b 6= b′ (The rest of terms = D2 −D − c(D, d) terms): Since sb` and sb
′
`′ are indepen-

dent in this case, we have

E
[(
sb>` x

) (
sb>` y

)(
sb
′>
`′ x

) (
sb
′>
`′ y

)]
= E

[(
sb>` x

) (
sb>` y

)]
E
[(
sb
′>
`′ x

) (
sb
′>
`′ y

)]
= E[k̂(x,y)]E[k̂(x,y)] = (x>y)2,

where the last equality follows from the approximate kernel being unbiased.

We now analyze the case 2:

E
[(
sb>` x

) (
sb>` y

)(
sb>`′ x

) (
sb>`′ y

)]
=

d∑
t,u,w,v=1

E[sb`,ts
b
`,us

b
`′,vs

b
`′,w]xtyuxvyw

=

d∑
t,u,w,v=1

E[zbt z
b
uz
b
vz
b
w] E[hπb(`),thπb(`),uhπb(`′),vhπb(`′),w]︸ ︷︷ ︸

=:E

xtyuxvyw

Note that we have E[zbt z
b
uz
b
vz
b
w] = 0 unless:

(a) t = u = v = w: E[zbt z
b
uz
b
vz
b
w] = E[|zbt |4] = 1 and E = E[h2

πb(`),t
h2
πb(`′),t

] = 1.

(b) t = u 6= v = w: E[zbt z
b
uz
b
vz
b
w] = E[|zbt |2|zbv|2] = 1 and E = E[h2

πb(`),t
h2
πb(`′),v

] = 1.

(c) t = v 6= u = w: E[zbt z
b
uz
b
vz
b
w] = E[|zbt |2|zbu|2] = 1 and E = E[hπb(`),thπb(`),uhπb(`′),thπb(`′),u].

(d) t = w 6= u = v: E[zbt z
b
uz
b
vz
b
w] = E[(zbt )

2(zbu)2] = (2q−1)2 and E = E[hπb(`),thπb(`),uhπb(`′),uhπb(`′),t].

Therefore, we have

E
[(
s>` x

)(
s>` y

)(
s>`′x

)(
s>`′y

)]
=

d∑
t=1

x2t y
2
t +

∑
t6=v

xtytxvyv +
∑
t6=u

E[hπb(`),thπb(`′),thπb(`),uhπb(`′),u]
(
x2t y

2
u + (2q − 1)2xtytxuyu

)
= (x>y)2 − 1

d− 1

∑
t6=u

(
x2t y

2
u + (2q − 1)2xtytxuyu

)
(∵ Lemma 12)

= (x>y)2 − V
(1)
q

d− 1
,

where V
(1)
q :=

∑
t6=u
(
x2t y

2
u + (2q − 1)2xtytxuyu

)
is Eq. (17) with p = 1, which is the variance

of the unstructured polynomial sketch (10) with a single feature.
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Now, using these identities in Eq. (66), the variance of the approximate kernel can be
expanded as

V[k̂(x,y)] = E[k̂(x,y)2]− (x>y)2p

=
1

D

(
E
[(
z>x

)2 (
z>y

)2])p
+
c(D, d)

D2

(
(x>y)2 − V

(1)
q

d− 1

)p
+
D2 −D − c(D, d)

D2
(x>y)2p − (x>y)2p

=
1

D

[(
E
[(
z>x

)2 (
z>y

)2])p
− (x>y)2p

]
− c(D, d)

D2

[
(x>y)2p −

(
(x>y)2 − V

(1)
q

d− 1

)p]

=
1

D
V (p)
q − c(D, d)

D2

[
(x>y)2p −

(
(x>y)2 − V

(1)
q

d− 1

)p]

where V
(p)
q ≥ 0 is Eq. (17) with the considered value of the polynomial degree p, which is the

variance of the unstructured polynomial sketch (10) with a single feature. This completes
the proof.

Appendix C. Convex Surrogate Functions for TensorSRHT Variances

To extend the applicability of the Incremental Algorithm in Algorithm 2 to TensorSRHT,
we derive here convex surrogate functions for the variances of TensorSRHT, To this end,
we first analyze the variances of TensorSRHT in Appendix C.1. We then derive convex
surrogate functions in Appendix C.2.

C.1 Analyzing the Variances of TensorSRHT

We first derive another form of the variance of TensorSRHT given in Eq. (33) of Theorem 10,
which we will use in a later analysis. Let Φn : Rd → CD be a complex TensorSRHT sketch
of degree n ∈ N satisfying the assumptions in Theorem 10 with 0 ≤ q ≤ 1. For q = 1 we
recover the real TensorSRHT and for q = 1/2 the complex one.

As shown in Appendix B.2, the approximate kernel of the complex TensorSRHT can be
written as

k̂(x,y) := Φn(x)>Φn(y) =
1

D

B∑
b=1

∑
`∈Ib

n∏
i=1

(
sb>i,`x

)(
sb>i,` y

)
,

where B := dD/de, Ib := {1, . . . , d} for b = 1, . . . , B − 1 and Ib := {1, . . . ,mod(D, d)} for
b = B, and sbi,` ∈ Cd are the structured random weights defined in Eq. (65). We can then
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write the variance of the approximate kernel as

V[k̂(x,y)] =
1

D2

B∑
b=1

V

∑
`∈Ib

n∏
i=1

(
sb>i,`x

)(
sb>i,` y

)
=

1

D2

B∑
b=1

∑
`∈Ib

V

[
n∏
i=1

(
sb>i,`x

)(
sb>i,` y

)]
︸ ︷︷ ︸

= V
(n)
q

+
1

D2

B∑
b=1

∑
`,`′∈Ib,
6̀=`′

Cov

(
n∏
i=1

(
sb>i,`x

)(
sb>i,` y

)
,

n∏
i=1

(
sb>i,`′x

)(
sb>i,`′y

))
︸ ︷︷ ︸

=: Cov
(n)
q

=
V

(n)
q

D
+
c(D, d)

D2
Cov(n)

q = Eq. (33), (67)

where c(D, d) = bD/dcd(d− 1) + mod(D, d)(mod(D, d)− 1) and the last line follows from

that the values of V
(n)
q and Cov

(n)
q do not depend on the choice of `, `′ and b (which can be

shown from the arguments in Appendix B.2). Here, V
(n)
q is the variance of the unstructured

Rademacher sketch with a single feature in Eq. (17) with p = n, and Cov
(n)
q is the covariance

for distinct indices `, `′ inside each block b. By comparing Eq. (33) and Eq. (67), the concrete

form of Cov
(n)
q is given by

Cov(n)
q = −

[
(x>y)2n −

(
(x>y)2 − V

(1)
q

d− 1

)n]
Eq. (67) is a useful representation of the variance of TensorSRHT in Eq. (33) for studying

its (non-)convexity with respect to D. The following result shows a range of values of D
for which Eq. (33) is convex.

Theorem 13 The variance of the TensorSRHT sketch in Eq. (33) is convex and monoton-
ically decreasing with respect to D ∈ {1, . . . , d} and with respect to D ∈ {kd | k ∈ N}.

Proof If D ∈ {1, . . . , d}, we have c(D, d) = D(D − 1) in Eq. (67). Therefore, Eq. (67) is
equal to

1

D
V (n)
q +

(
1− 1

D

)
Cov(n)

q =
1

D

(
V (n)
q − Cov(n)

q

)
+ Cov(n)

q . (68)

For two random variables X,Y it generally holds that |Cov(X,Y )| ≤
√
V[X]V[Y ] by the

Cauchy-Schwarz inequality. Hence, we have |Cov
(n)
q | ≤ V

(n)
q and thus V

(n)
q − Cov

(n)
q ≥ 0.

Therefore, Eq. (68) is proportional to 1/D with a non-negative coefficient, and thus it is
convex and monotonically decreasing for D ∈ {1, . . . , d}.

Next, suppose D = kd for some k ∈ N, in which case we have c(D, d) = kd(d − 1) in
Eq. (67). Therefore Eq. (67) is equal to

1

kd

(
V (n)
q + (d− 1)Cov(n)

q

)
=

1

D

(
V (n)
q + (d− 1)Cov(n)

q

)
. (69)
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The term in the parenthesis is non-negative, because (67) is the variance of TensorSRHT
and thus non-negative. Therefore, (67) is convex and monotonically decreasing with respect
to D ∈ {kd | k ∈ N}.

As we do next, Theorem 13 is useful for designing a convex surrogate function for
Eq. (33), as it shows the range of D on which Eq. (33) is already convex and does not need
to be modified.

C.2 Convex Surrogate Functions

Based on Eq. (33), we now propose a convex surrogate function for the variance of Ten-

sorSRHT in Eq. (33). We consider the following two cases separately: i) Cov
(n)
q ≤ 0 and ii)

Cov
(n)
q > 0. For each case, we propose a convex surrogate function.

i) Case Cov
(n)
q ≤ 0. We define a surrogate function of Eq. (33) by concatenating the two

expressions of Eq. (67) for D ∈ {1, . . . , d} and D ∈ {kd | k ∈ N} given in Eq. (68) and
Eq. (69), respectively, and extend their ranges to the entire domain D ∈ N:

V
(n)
Surr.(D) :=


1
D

(
V

(n)
q − Cov

(n)
q

)
+ Cov

(n)
q if D ≤ d

1
D

(
V

(n)
q + (d− 1)Cov

(n)
q

)
if D > d.

(70)

ii) Case Cov
(n)
q > 0. We use the expression (69) to define a surrogate function on D ∈ N:

V
(n)
Surr.(D) :=

1

D

(
V (n)
q + (d− 1)Cov(n)

q

)
(71)

The convexity of Eq. (71) immediately follows from V
(n)
q + (d− 1)Cov

(n)
q ≥ 0, which holds

as we show in the proof of Theorem 13. Note that Cov
(n)
q > 0 can only occur when n is

even, as shown in Corollary 11 of Section 4.
We defined the surrogate function in Eq. (70) by interpolating the variances of Ten-

sorSRHT in Eq. (33) for D ∈ {1, . . . , d} and D ∈ {kd | k ∈ N} and extending the domain to
N. In fact, for D ∈ {1, . . . , d} and D ∈ {kd | k ∈ N}, Eq. (70) is equal to Eq. (33), as shown
in the proof of Theorem 13. Fig. 12 illustrates the convex surrogate function in Eq. (70)

and the variance of TensorSRHT in (33) when Cov
(n)
q ≤ 0 holds.

Note that, as mentioned later in Remark 15, the surrogate function in Eq. (70) may not

be convex over D ∈ N if the condition Cov
(n)
q ≤ 0 does not hold. This is why we defined

another convex surrogate function as in Eq. (71) for the case Cov
(n)
q > 0.

The following theorem shows that the surrogate function in Eq. (70) is convex in the

considered case of i) Cov
(n)
q ≤ 0.

Theorem 14 If Cov
(n)
q ≤ 0, Eq. (70) is convex with respect to D ∈ N.

Proof As shown in Theorem 13, V
(n)
Surr.(D) = 1

D (V
(n)
q − Cov

(n)
q ) + Cov

(n)
q is convex over

D ∈ {1, . . . , d}. Likewise, V
(n)
Surr.(D) = 1

D (V
(n)
q +(d−1)Cov

(n)
q ) is convex over D ∈ [d,∞)∩N,

since V
(n)
q + (d− 1)Cov

(n)
q ≥ 0 holds as we show in the proof of Theorem 13.
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Figure 12: Convex surrogate functions in Eq. (70) and the variances of TensorSRHT in (33) as a
function of the number of random features D, with polynomial degrees n = 1, 2 and input vectors
x = y = [

√
1/2,

√
1/2]> (d = 2). For comparison, we also plot the variances of the real Rademacher

sketch in Eq. (18) and the complex Rademacher sketch in Eq. (19).

Therefore, the proof completes by showing that the concatenated function V
(n)
Surr.(D) in

Eq. (70) is also convex over D ∈ {d− 1, d, d+ 1}, i.e.,

1

2

(
V

(n)
Surr.(d− 1) + V

(n)
Surr.(d+ 1)

)
≥ V (n)

Surr.(d). (72)

By using the definition in Eq. (70), this inequality is equivalent to

1

2

(
1

d− 1

(
V (n)
q + (d− 2)Cov(n)

q

)
+

1

d+ 1

(
V (n)
q + (d− 1)Cov(n)

q

))
≥ 1

d

(
V (n)
q + (d− 1)Cov(n)

q

)
. (73)

Note that we have V
(n)
q +(d−1)Cov

(n)
q ≥ 0 , as mentioned earlier. If V

(n)
q +(d−1)Cov

(n)
q = 0

holds, then we have V
(n)
Surr.(D) = 0 for D ≥ d by the definition in Eq. (70), and thus Eq. (72)

holds (which concludes the proofs). Therefore, we assume the inequality to be strict, i.e.,

V
(n)
q + (d− 1)Cov

(n)
q > 0.

Dividing the both sides of Eq. (73) by (V
(n)
q + (d− 1)Cov

(n)
q ), we obtain

1

2

(
1

d− 1

V
(n)
q + (d− 2)Cov

(n)
q

V
(n)
q + (d− 1)Cov

(n)
q

+
1

d+ 1

)
≥ 1

d
,

which after some rearrangement gives

V
(n)
q + (d− 2)Cov

(n)
q

V
(n)
q + (d− 1)Cov

(n)
q

≥ 1− 2

d2 + d
. (74)

This inequality holds because we have (d − 2)Cov
(n)
q ≥ (d − 1)Cov

(n)
q , which follows from

our assumption Cov
(n)
q ≤ 0. Therefore Eq. (73) holds.
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Remark 15 Theorem 14 shows the convexity of the surrogate function in Eq. (70), as-

suming Cov
(n)
q ≤ 0. If this condition does not hold, i.e., if Cov

(n)
q > 0, then the surrogate

function in Eq. (70) may not be convex. To see this, let d = 2,x = (a, 0)> with a > 0,

y = (0, b)> with b > 0, and n be even; then we have V
(n)
q = Cov

(n)
q = a2nb2n > 0, and

the inequality in Eq. (74) in the proof of Theorem 14 does not hold, which implies that the
surrogate function in Eq. (70) is not convex.

As mentioned in Section 4, the variance of TensorSRHT in Eq. (33) becomes zero if
n = 1 and D ∈ {kd | k ∈ N}, i.e., V[Φ1(x)>Φ1(y)] = 0 holds. Therefore, because the convex
surrogate functions in Eq. (70) and Eq. (71) are equal to the variance of TensorSRHT in
Eq. (33) for D ∈ {kd | k ∈ N}, these surrogate functions also become zero for n = 1 and
D ∈ {kd | k ∈ N}. Thus, the Incremental Algorithm (Algorithm 2), when used with the
surrogate functions in Eq. (70) and Eq. (71), will not assign more than D = d random
features to the polynomial degree n = 1. Note that assigning D = d random features is
equivalent to appending the input vectors x and y to the approximate kernel (44), which is
called H0/1 heuristic in Kar and Karnick (2012). Therefore, the Incremental Algorithm with
the surrogate functions in Eq. (70) and Eq. (71) automatically achieve the H0/1 heuristic.

Finally, we describe briefly how to use the convex surrogate functions in Eq. (70) and
Eq. (71) in the Incremental Algorithm in Algorithm 2. To this end, we rewrite Eq. (54)

using the surrogate functions as follows: (Here, we make the dependence of V
(n)
q and Cov

(n)
q

on the input vectors x,y ∈ Rd explicit and write them as V
(n)
q (x,y) and Cov

(n)
q (x,y),

respectively.)

Eq. (54) =


a2n
Dn

(∑
i 6=j V

(n)
q (xi,xj) + (d− 1)

∑
i 6=j Cov

(n)
q (xi,xj)

)
if
∑

i 6=j Cov
(n)
q (xi,xj) > 0 or Dn > d,

a2n
Dn

(∑
i 6=j V

(n)
q (xi,xj)−

∑
i 6=j Cov

(n)
q (xi,xj)

)
+ a2n

∑
i 6=j Cov

(n)
q (xi,xj)

otherwise.

After precomputing the constants
∑

i 6=j V
(n)
q (xi,xj) and

∑
i 6=j Cov

(n)
q (xi,xj) for each n ∈

{1, . . . , p}, which can be done in O(m2) time, one can directly use the above modification of
Eq. (54) in the objective function in Eq. (53). In this way, we adapt the objective function in
(53) to be convex, so that the Incremental Algorithm in Algorithm 2 is directly applicable.

Appendix D. Gaussian Processes with Complex Random Features

We describe here how to use complex random features in Gaussian process (GP) regression
and classification. Since real random features are special cases of complex random features,
all derivations for the complex case also hold for the real case as well.

For GP classification, we employ the framework of Milios et al. (2018), which formulates
GP classification using GP regression and provides a solution in closed form. Therefore,
closed form solutions are available for both GP regression and classification, and this enables
us to compare different random feature approximations directly.20

20. If we use a formulation of GP classification that requires an optimization procedure, comparisons of
random feature approximations become more involved, as we need to perform convergence verification
for the optimization procedure.
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Notation and definitions. For a matrix A ∈ Cn×m with n,m ∈ N, denote by AH :=

A
> ∈ Cm×n be its conjugate transpose. Note that if A ∈ Rn×m, then AH = A> ∈ Rm×n.

For n ∈ N, In ∈ Rn×n be the identity matrix.
For µ ∈ Cn and positive semi-definite21 Σ ∈ Cn×n with n ∈ N, we denote by CN (µ,Σ)

the n-dimensional proper complex Gaussian distribution with mean vector µ and covaraince
matrix Σ, whose density function is given by (e.g., Neeser and Massey, 1993, Theorem 1)

CN (v;µ,Σ) :=
1

πn
√
|Σ|

exp
(
−(v − µ)HΣ−1(v − µ)

)
, v ∈ Cn,

where |Σ| is the determinant of Σ. If a random vector f ∈ Cn follows CN (v;µ,Σ), we have
E[f ] = µ, E[(f − µ)(f − µ)H ] = Σ, and E[(f − µ)(f − µ)>] = 0, where the last property
is the definition of f being a proper complex random variable (Neeser and Massey, 1993,
Definition 1).

D.1 Complex GP Regression

We first describe the approach of complex GP regression (Boloix-Tortosa et al., 2018), a
Bayesian nonparametric approach to complex-valued regression.

Suppose that there are training data (xi, yi)
N
i=1 ⊂ Rd×C for a complex-valued regression

problem with N ∈ N, and let X := (x1, . . . ,xN )> ∈ RN×d and y := (y1, . . . , yN )> ∈ CN .
We assume the following model for the training data:

yi = f(xi) + εi, (i = 1, . . . , N), (75)

where f : Rd → C is an unknown complex-valued function, and εi ∼ CN (0, σ2i ) is an
independent complex Gaussian noise with variance σ2i > 0. Let σ2 := (σ21, . . . , σ

2
N )> ∈ RN .

The task of complex-valued function is to estimate the unknown complex-valued function
f in Eq. (75) from the training data (xi, yi)

N
i=1 ⊂ Rd × C. In complex GP regression, one

defines a complex GP prior distribution for the unknown function f , and derives a complex
GP posterior distribution of f , given the data (xi, yi)

N
i=1 ⊂ Rd×C and the likelihood function

given by Eq. (75). For the prior, we focus on a proper complex GP (Boloix-Tortosa et al.,
2018, Section II-C), which we describe below.

Proper complex Gaussian processes. A complex-valued function k : Rd × Rd → C is
called positive definite kernel, if 1) k(x,x′) = k(x′,x) for all x,x′ ∈ Rd; and ii) for all n ∈ N
and all x1, . . . ,xn ∈ Rd, the matrix K ∈ Cn×n with Ki,j = k(xi, xj) satisfies vHKv ≥ 0.

Let f : Rd → C be a zero-mean complex-valued stochastic process, and k : Rd ×
Rd → C be a positive definite kernel. We call f a (zero-mean) proper complex GP with
covariance kernel k, if for all n ∈ N and all x1, . . . ,xn ∈ Rd, the random vector f :=
(f(x1), . . . , f(xn))> ∈ Cn follows the proper complex Gaussian distribution CN (0,K) with
covariance matrix K ∈ Cn×n with Ki,j = k(xi,xj). If f is a zero-mean proper complex
GP with covariance kernel k, we write f ∼ CGP(0, k).

We now describe the approach of complex GP regression. For the unknown f in Eq. (75),
we define a proper complex GP prior with kernel k, assuming that

f ∼ CGP(0, k) (76)

21. A Hermitian matrix Σ ∈ Cn×n is called positive semi-definite, if for all v ∈ Cn, we have vHΣv ≥ 0.
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Then the observation model (75) and the prior (76) induce a joint distribution of the
unknown function f and the training observations y = (y1, . . . , yN )>. Conditioned on y,
we obtain the posterior distribution of f , which is also a proper complex GP (Boloix-Tortosa
et al., 2018, Section II-C):

f | y ∼ CGP(µN , kN ), (77)

where µN : Rd → C is the posterior mean function and kN : Rd × Rd → C is the posterior
covariance function given by

µN (x) := k(x)H(K + diag(σ2))−1y, x ∈ Rd (78)

kN (x,x′) := k(x,x′)− k(x)H(K + diag(σ2))−1k(x), x,x′ ∈ Rd, (79)

where k(x) := (k(x,x1), . . . , k(x,xN ))> ∈ CN , K ∈ CN×N with Ki,j = k(xi,xj), and
diag(σ2) ∈ Rd×d is the diagonal matrix with diagonal elements σ2 = (σ21, . . . , σ

2
N )>.

Notice that, if the kernel k is real-valued and so are the observations y, Eq. (78) and
Eq. (79) reduce to the posterior mean and covariance functions of standard real-valued
GP regression (e.g., Rasmussen and Williams, 2006, Chapter 2). In this sense, complex GP
regression with a proper GP prior is a natural complex extension of standard GP regression.

D.2 GP Regression with Complex Features

We next describe how to use complex features in GP regression. Let Φ : Rd → CD be a
complex-valued (random) feature map,22 and let k̂(x,x′) := Φ(x)>Φ(x′) be the approxi-
mate kernel. Define

Φ(X) := (Φ(x1), . . . ,Φ(xN ))> ∈ CN×D, K̂ := Φ(X)Φ(X)H ∈ CN×N , (80)

where x1, . . . ,xN ∈ RD are training inputs. Note that K̂i,j = Φ(xi)
>Φ(xj) = k̂(xi,xj),

i.e., K̂ is the kernel matrix with kernel k̂.
The approximate kernel k̂ : Rd × Rd → C is complex-valued, and thus induces a proper

complex GP, f ∼ CGP(0, k̂). Using this GP as a prior for the unknown function f in the
observation model (75), and conditioning on the observations y = (y1, . . . , yN )>, we obtain
the following approximate complex GP posterior:

f | y ∼ CGP(µ̂N , k̂N ), (81)

where µ̂N : Rd → C is an approximate posterior mean function and k̂N : Rd × Rd → C is
an approximate posterior covariance function, defined as

µ̂N (x) := k̂(x)H(K̂ + diag(σ2))−1y, x ∈ Rd (82)

k̂N (x,x′) := k̂(x,x′)− k̂(x)H(K̂ + diag(σ2))−1k̂(x), x,x′ ∈ Rd, (83)

where k̂(x) := (k̂(x,x1), . . . , k̂(x,xN ))> ∈ CN , and K̂ ∈ CN×N with K̂i,j = k̂(xi,xj).
Finally, we define a real-valued approximate GP posterior using the real parts of Eq. (82)

and Eq. (83). That is, define µ̂N,R : Rd → R as the real part of the approximate posterior

22. Again, this subsumes the case of real-valued feature maps.
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mean function in Eq. (82) , and k̂N,R as the real part of the approximate covariance function
in Eq. (83):

µ̂N,R(x) := R{µ̂N (x)} , x ∈ Rd, (84)

k̂N,R(x,x′) := R
{
k̂N (x,x′)

}
, x,x′ ∈ Rd. (85)

Then, we define a real-valued GP with mean function µ̂N,R and covariance function k̂N,R:

f |y ∼ GP(µ̂N,R, k̂N,R).

We use this approximate GP for prediction tasks in our experiments.
Note that naive computations of Eq. (82) and Eq. (83) require O(N3+N2D) complexity,

and thus do not leverage the computational advantage of random features. We will show
next how to reformulate Eq. (82) and Eq. (83) to compute them in O(D3 + ND2), which
is linear in the number of training data points N .

D.3 Computationally Efficient Implementation

We describe how to efficiently compute the approximate posterior mean and covariance
functions in Eq. (82) and Eq. (83), respectively. To this end, recall the notation in Eq. (80).
Let σ−1 := (σ−11 , . . . , σ−1N )> ∈ RN and σ−2 := (σ−21 , . . . , σ−2N )> ∈ RN .

First we deal with Eq. (82). For a matrix A ∈ CN×D, we have (AHA + IN )AH =
AH(AAH + ID), and thus AH(AAH + IN )−1 = (AHA + ID)−1AH . By using this last
identity with A = diag(σ−1)Φ(X) ∈ CN×D, we can rewrite Eq. (82) as

µ̂N (x) = k̂(x)H(K̂ + diag(σ2))−1y,

= Φ(x)>Φ(X)H
(
Φ(X)Φ(X)H + diag(σ2)

)−1
y

= Φ(x)>Φ(X)H diag(σ−1)
(
diag(σ−1)Φ(X)Φ(X)H diag(σ−1) + IN

)−1
diag(σ−1)y

= Φ(x)>
(
Φ(X)H diag(σ−2)Φ(X) + ID

)−1
Φ(X)H diag(σ−2)y. (86)

Next we deal with Eq. (83). For matrices A,C,U, V of appropriate sizes with A in-
vertible, the Woodbury matrix identity states that A−1−A−1U(C−1 +V A−1U)−1V A−1 =
(A+UCV )−1. By using the Woodbury identity with A = ID, C = diag(σ−2), U = Φ(X)H

and V = Φ(X), we can rewrite Eq. (83) as

k̂N (x,x′) = k̂(x,x′)− k̂(x)H(K̂ + diag(σ2))−1k̂(x)

= Φ(x)>Φ(x)− Φ(x)>Φ(X)H
(
Φ(X)Φ(X)H + diag(σ2)

)−1
Φ(X)Φ(x)

= Φ(x)>
(
ID − Φ(X)H

(
diag(σ2) + Φ(X)Φ(X)H

)−1
Φ(X)

)
Φ(x)

= Φ(x)>
(
ID + Φ(X)H diag(σ−2)Φ(X)

)−1
Φ(x). (87)

We now study the costs of computing Eq. (86) and Eq. (87). For both Eq. (86) and
Eq. (87), the bottleneck is the computation of the inverse of the following matrix.

B := Φ(X)H diag(σ−2)Φ(X) + ID ∈ CD×D. (88)
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The time complexity of computing B is O(ND2), and that of the inverse B−1 is O(D3),
the latter being the complexity of computing the Cholesky decomposition B = LLH with
L ∈ CD×D being a lower triangular matrix. Thus, the overall cost of computing B−1 is
O(ND2 +D3).

We next conduct a more detailed analysis of the costs of B and its Cholesky decom-
position, and compare them with the computational costs for the corresponding matrix in-
version using real-valued features (i.e., when Φ(X) ∈ RN×D). Below we use the shorthand
Φ̃(X) := diag(σ−1)Φ(X) so that B = Φ̃(X)HΦ̃(X) + ID. Then the real and imaginary
parts of B can be written as

R{B} = R{Φ̃(X)HΦ̃(X)}+ ID = R{Φ̃(X)}>R{Φ̃(X)}+ I{Φ̃(X)}>I{Φ̃(X)}+ ID

I{B} = I{Φ̃(X)HΦ̃(X)} = R{Φ̃(X)}>I{Φ̃(X)} − I{Φ̃(X)}>R{Φ̃(X)}.

Since (R{Φ̃(X)}>I{Φ̃(X)})> = I{Φ̃(X)}>R{Φ̃(X)}, one can compute I{B} by only
computing R{Φ̃(X)}>I{Φ̃(X)}. Therefore, the computation of B requires the computa-
tions of the three real D-by-D matrices (i.e., R{Φ̃(X)}>R{Φ̃(X)}, I{Φ̃(X)}>I{Φ̃(X)},
and R{Φ̃(X)}>I{Φ̃(X)}). Thus, the total number of operations for computing B is
3 · (ND2) + 2 ·D2, where 3 · (ND2) is operations for the matrix products and 2 ·D2 for the
addition and subtraction inside R{B} and I{B}, respectively. Hence, assuming N � D,
the computational cost for B is roughly 3 times more expensive than the corresponding
cost when Φ is real-valued.

Computing the Cholesky decomposition of a D by D matrix requires roughly 1
6D

3 sub-
tractions and 1

6D
3 multiplications (e.g., Trefethen and Bau, 1997, p. 175). Therefore, when

Φ is real-valued (and thus B is real-valued), the Cholesky decomposition of B requires
1
6D

3 + 1
6D

3 = 1
3D

3 FLOPS. On the other hand, when Φ is complex-valued, the Cholesky
decomposition of B requires 4

3D
3 FLOPS: one complex subtraction requires 2 real sub-

tractions, and thus subtractions in total require 1
6D

3 × 2 = 1
3D

3 FLOPS; one complex
multiplication requires 4 real multiplications and 2 real subtractions, and thus multiplica-
tions in total require 1

6D
3× 6 = D3 FLOPS; thus 1

3D
3 +D3 = 4

3D
3 FLOPS in total. Thus,

the cost for computing the Cholesky decomposition of B when Φ is complex-valued is 4
times more expensive than the real-valued case.

The memory requirement for the complex case is 2 times as large as the real case, since
the complex case requires storing both real and imaginary parts.

Note that, if one uses a 2D-dimensional real feature map (i.e., Φ(X) ∈ RN×2D), then
this requires 4 times as much memory, 4 times as many operations to compute the matrix
B, and 8 times as many operations for the Cholesky decomposition of B as those required
for a D-dimensional real feature map. Therefore, using a 2D-dimensional real feature map
is computationally more expensive than using a D-dimensional complex feature map, since
the latter only requires 2 times as much memory, 3 times as many operations for computing
B, and 4 times as many operations for computing the Cholesky decomposition of B as
those required for a D-dimensional real feature map, as shown above. Note also that the
performance improvement from using a D-dimensional complex feature map is typically
larger than using a 2D-dimensional real feature map; see the experiments in Section 6.
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D.4 GP Classification as Closed-form Multi-output Regression

We now describe the GP classification approach of Milios et al. (2018), and how to use
approximate posteriors for GP regegression in this approach.

We assume that there are C ∈ N classes and that output labels are expressed by one-
hot encoding. Thus, for each class c ∈ {1, . . . , C} and each training input xi ∈ Rd with
i = 1, . . . , N , there exist an output yc,i ∈ {0, 1} such that yc,i = 1 if xi belongs to class c
and yc,i = 0 otherwise.

The approach of Milios et al. (2018). Let α > 0 be a constant. For each class
c ∈ {1, . . . , C}, Milios et al. (2018) define transformed versions ỹc,1, . . . , ỹc,N ∈ R of the
training outputs yc,1, . . . , yc,N as

ỹc,i := log(yc,i + α)− σ2c,i/2, where σ2c,i := log((yc,i + α)−1 + 1), i = 1, . . . , N.

Milios et al. (2018) then define an observation model of ỹc,1, . . . , ỹc,N as

ỹc,i = fc(xi) + εc,i, i = 1, . . . , N, (89)

where fc : Rd → R is a latent function and εc,i ∼ N (0, σ2c,i) is an independent Gaussian

noise with variance σ2c,i. Milios et al. (2018) propose to model fc for each c ∈ {1, . . . , C}
independently as a GP:

fc ∼ GP(0, k), (90)

where k : Rd × Rd → R is a kernel. Eq. (89) and Eq. (90) define the joint distribution
of the latent function fc and the transformed labels ỹc,1, . . . , ỹc,N . Thus, conditioning on
ỹc,1, . . . , ỹc,N , one obtains a GP posterior of fc. In other words, one can obtain a GP
posterior of fc by performing GP regression for each class c ∈ {1, . . . , C} using (xi, ỹc,i)

N
i=1

as training data.
The constant α is a hyperparameter, which Milios et al. (2018) propose to choose by

cross validation, using the Mean Negative Log Likelihood (MNLL) (e.g., Rasmussen and
Williams, 2006, p. 23) as an evaluation criterion.

Using approximate GP posteriors. We now explain how to use approximate poste-
riors for GP regression in the above approach: For each class c ∈ {1, . . . , C}, we perform
approximate GP regression using (xi, ỹc,i)

N
i=1 as training data, to obtain an approximate

GP posterior for the latent function fc in Eq. (89). For instance, with our approach on ap-
proximate GP regression using complex random features in Appendix D.2, we obtain a GP
posterior fc ∼ GP(µ̂N,R,c, k̂N,R,c) for each class c ∈ {1, . . . , C}, where µ̂N,R,c : Rd → R and

k̂N,R,c : Rd × Rd → R are the approximate GP posterior mean and covariance functions in
Eq. (84) and Eq. (85), respectively, with y := (ỹc,1, . . . , ỹc,N )> and σ2 := (σ2c,1, . . . , σ

2
c,N )>.

For a given test input x ∈ Rd, one can obtain its posterior predictive probabilities over
the C classes in the following way. For each class c ∈ {1, . . . , C}, we first generate a sample
zc ∈ R from the posterior distribution of the latent function value fc(x). We then apply
the softmax transformation to z1, . . . , zC to obtain probabilities p1, . . . , pC ≥ 0 over the C
class labels: pc := exp(zc)/

∑C
j=1 exp(zj). Milios et al. (2018) show that these probabilities

p1, . . . , pC are approximately a sample from a Dirichlet distribution, yielding well-calibrated
predictions.
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D.5 Kullback-Leibler (KL) Divergence

In the experiments in Section 6, we use the Kullback-Leibler (KL) divergence between the ex-
act and approximate GP posteriors, to evaluate the quality of each approximation approach.
Let µexact(x) and σ2exact(x) be the posterior mean and variance at x ∈ Rd from the exact GP
posterior, and let µappr(x) and σ2appr(x) be those from an approximate GP posterior. Let

x∗,1, . . . ,x∗,m∗ ∈ Rd be test input points. Define µexact := (µexact(x∗,1), . . . , µexact(x∗,m∗))
>,

σ2
exact := (σ2exact(x∗,1), . . . , σ

2
exact(x∗,m∗))

>, µappr := (µappr(x∗,1), . . . , µappr(x∗,m∗))
>, and

σ2
appr := (σ2appr(x∗,1), . . . , σ

2
appr(x∗,m∗))

>.

We then measure the KL divergence between two diagonal Gaussian distributions,
N (µappr,diag(σ2

appr)) and N (µexact,diag(σ2
exact)):

KL
[
N (µappr,diag(σ2

appr)) || N (µexact, diag(σ2
exact))

]
=

1

2

m∗∑
i=1

(
σ2exact(x∗,i)

σ2appr(x∗,i)
+ log

σ2exact(x∗,i)

σ2appr(x∗,i)
− 1 +

(µexact(x∗,i)− µappr(x∗,i))2

σ2appr(x∗,i)

)
, (91)

We consider these diagonal Gaussian distributions, since the focus of our experiments in
Section 6 is the prediction performance at test input points x∗,1, . . . ,x∗,m∗ ∈ Rd.

Appendix E. Additional Experiments

We present here additional experimental results, supplementing those in Section 6. Ta-
ble 3 shows the effects of applying zero-centering to input vectors in the polynomial kernel
approximation experiments. Fig. 13, Fig. 14 and Fig. 15 show the results of additional ex-
periments on GP regression. Fig. 16 and Fig. 17 show the results of additional experiments
on GP classification.

MNLL Rel. Frob. Error
Non-centred Centred Non-centred Centred

Dataset SRF Gaus. Opt. Macl. Rad. SRF Gaus. Opt. Macl. Rad. SRF Gaus. Opt. Macl. Rad. SRF Gaus. Opt. Macl. Rad.

Boston 3.410±0.37 3.447±0.38 3.449±0.62 3.161±0.28 0.044±0.02 0.212±0.15 0.356±0.05 0.421±0.06
Concrete 3.779±0.07 3.811±0.04 3.660±0.12 3.542±0.07 0.019±0.01 0.276±0.17 0.610±0.07 0.482±0.03
Energy 6.090±0.12 6.090±0.12 5.116±0.20 5.012±0.13 0.003±0.00 0.222±0.14 0.507±0.08 0.484±0.05
kin8nm -0.203±0.07 -0.310±0.03 -0.203±0.07 -0.323±0.03 0.946±0.04 0.525±0.04 0.947±0.03 0.521±0.03
Naval -6.069±0.03 -6.066±0.03 -8.083±0.04 -7.788±0.10 0.040±0.03 0.183±0.06 0.112±0.04 0.384±0.11
Powerplant 3.064±0.03 3.061±0.06 3.282±0.14 3.400±0.73 0.001±0.00 0.062±0.04 0.609±0.09 0.527±0.10
Protein 3.233±0.01 3.233±0.01 3.072±0.02 3.060±0.02 0.000±0.00 0.002±0.00 0.277±0.05 0.429±0.14
Yacht 4.317±0.45 4.478±0.45 3.773±0.21 3.844±0.28 0.028±0.01 0.276±0.11 0.512±0.04 0.484±0.03

Cod rna 0.307±0.00 0.308±0.00 0.288±0.06 0.151±0.01 0.022±0.01 0.087±0.05 0.641±0.05 0.467±0.05
Covertype 0.821±0.01 - 0.650±0.01 0.639±0.01 0.024±0.01 - 0.361±0.01 0.300±0.01
Drive 1.446±0.02 1.453±0.03 0.677±0.02 0.497±0.01 0.068±0.02 0.135±0.05 0.348±0.01 0.312±0.02
FashionMNIST 0.353±0.00 0.364±0.00 0.364±0.00 0.361±0.00 0.029±0.00 0.062±0.01 0.099±0.00 0.104±0.01
Magic 0.453±0.01 0.452±0.01 0.381±0.02 0.350±0.01 0.068±0.01 0.147±0.05 0.430±0.03 0.418±0.04
Miniboo 0.253±0.01 - 0.239±0.01 0.213±0.01 0.027±0.01 - 0.214±0.01 0.229±0.02
MNIST 0.076±0.00 0.074±0.00 0.290±0.02 0.353±0.09 0.073±0.00 0.082±0.00 0.085±0.00 0.089±0.01
Mocap 0.360±0.01 0.334±0.01 0.357±0.02 0.289±0.01 0.115±0.01 0.187±0.04 0.414±0.01 0.290±0.02

Table 3: GP regression (top) and classification (bottom) for centred vs. non-centred data with
D = 5d features. Non-centred Miniboo and Covertype led to numerical issues for Maclaurin (no
scores reported).
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Figure 13: Additional results of the experiments in Section 6.4.1 on approximate GP regression
with a p = 7 polynomial kernel. Lower values are better for all the metrics. For each dataset, we
show the number of random features D ∈ {1d, 3d, 5d} used in each method on the horizontal axis,
with d being the input dimensionality of the dataset. The dashed black line shows test errors and
MNLL values for the full target GP. In some cases performance is worse than the actual kernel
because D = 5d is still too small for some datasets. However, there is an indication that the test
errors improve as we increase the number of features getting us closer to the true GP.

Appendix F. Additional Results for the Optimized Maclaurin Method

We present here additional results for Algorithm 3 in § 5.3. In Fig. 18 and Fig. 19 we
analyze the output of the optimization phase involved in the Maclaurin approximation with
Rademacher and TensorSRHT sketches, respectively. We focus on the approximation of
the Gaussian kernel and determine p∗ using pmin = 1 and pmax = 20. The algorithm is
repeated for 20 different random seeds, and the resulting histogram of p∗ is shown in the
upper figures of Fig. 18 and Fig. 19; the bottom figures show the average and the standard
deviation of the number of features assigned to each degree.

We observe that we need relatively few data samples (only 2000 out of 60000 training
samples for FashionMNIST) to achieve a stable feature distribution. This supports our

66



Improved Random Features for Dot Product Kernels

D=1d 3d 5d
10−2

10−1

100

101

Ke
rn

el
 R

el
. F

ro
b.

 E
rro

r

Naval (p= 7)

D=1d 3d 5d
10−2

10−1

100

Powerplant (p= 7)

D=1d 3d 5d

10−1

100

Protein (p= 7)

D=1d 3d 5d

100

Yacht (p= 7)

D=1d 3d 5d
10−1

100

101

102

103

KL
 D

iv
er

ge
nc

e

D=1d 3d 5d
104

105

106

D=1d 3d 5d

104

D=1d 3d 5d
102

103

104

D=1d 3d 5d
0.0

0.2

0.4

0.6

0.8

Te
st

 E
rro

r

D=1d 3d 5d
0.00

0.25

0.50

0.75

1.00

D=1d 3d 5d
0.0

0.2

0.4

0.6

0.8

D=1d 3d 5d
0.00

0.25

0.50

0.75

1.00

D=1d 3d 5d

−2.0

−1.5

−1.0

−0.5

0.0

M
NL

L

D=1d 3d 5d
0.0

2.5

5.0

7.5

10.0

D=1d 3d 5d
0

1

2

3

D=1d 3d 5d
0

5

10

SRF
SRF Orth.

SRF Orth. Comp.
TensorSRHT

TensorSRHT Comp.
Ahle et al. TensorSRHT

Ahle et al. TensorSRHT Comp.
Opt. Macl. Radem.

Opt. Macl. TensorSRHT
Opt. Macl. TensorSRHT Comp.

Figure 14: Additional results of the experiments in Section 6.4.1 on approximate GP regression
with a p = 7 polynomial kernel. Lower values are better for all the metrics. For each dataset, we
show the number of random features D ∈ {1d, 3d, 5d} used in each method on the horizontal axis,
with d being the input dimensionality of the dataset. The dashed black line shows test errors and
MNLL values for the full target GP. Interestingly, in the Naval data set, the sketching approaches
provide some form of regularization, yielding better generalization error than the GP with full kernel.

choice in the experiments in § 6, where we used considerably more (5000) data samples
to estimate this. The value of p∗ converges more slowly because sometimes very few (e.g.,
1) random features are still allocated to high polynomial degrees. This does not harm the
overall feature distribution too much since most features are already allocated to degrees
1-3 even for small sample sizes (e.g., 500 samples).

Interestingly, most features are allocated to low rather than high degrees, which is due
to the variance distribution (see also Fig. 4). This supports our choice of pmax = 10 in the
experiments because most random features are allocated to small degrees. We set pmin = 2
in the experiments to exclude purely linear approximations of the non-linear kernel. The
low-degree allocation phenomenon was the same across datasets in Section 6 as long as the
data is zero-centered. If it is not, this may change as shown in Wacker and Filippone (2021).
Then high degrees may receive more features than lower ones.
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Figure 15: Additional results of the experiments in Section 6.4.2 on approximate GP regression
with a Gaussian kernel. Lower values are better for all the metrics. For each dataset, we show the
number of random features D ∈ {1d, 3d, 5d} used in each method on the horizontal axis, with d
being the input dimensionality of the dataset. We put the legend labels and the bars in the same
order.

In the case of TensorSRHT, degree 1 is already perfectly approximated when D1 = d
random features are used because the TensorSRHT variance always turns out to be zero for
p = 1. The algorithm therefore starts investing random features into higher degrees once
D1 = d. So the next degree 2 is chosen to be the most dominant (for Rademacher it was
degree 1). This explains the performance gain of Maclaurin TensorSRHT over Maclaurin
Rademacher; we invest less random features into the first degree and use them to decrease
the variances of other degrees.

Time Complexity for Different Values of pmin and pmax. Here, we report a theoret-
ical runtime analysis of the Maclaurin method. In Section 5.3, we have already reported
an analysis of the incremental algorithm, giving a time complexity in O(pDtotal). In or-
der to find the optimal p∗, we need to run the incremental algorithm pmax − pmin + 1 ∈
O(pmax) times. Additionally, the algorithm requires the precomputed variance estimates
costing O(pmaxm

2), where m is the sample size. This gives a total time complexity of
O(p2maxDtotal + pmaxm

2) for the feature allocation optimization.

Note that a simple Johnsson-Lindenstrauss projection costs O(ndD) for n data points,
d input dimensions and D features. Note also that p2max is much smaller than nd though
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Figure 16: Additional results of the experiments in Section 6.4.1 on approximate GP classification
with a p = 7 polynomial kernel. Lower values are better for all the metrics. For each dataset, we
show the number of random features D ∈ {1d, 3d, 5d} used in each method on the horizontal axis,
with d being the input dimensionality of the dataset.

and pmaxm
2 is also small as long as m � n. The Maclaurin optimization has therefore a

comparable time complexity to a Johnsson-Lindenstrauss projection for reasonable m.
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A. Smola, Z. Óvári, and R. C. Williamson. Regularization with dot-product kernels. In Ad-
vances in Neural Information Processing Systems 13, pages 308–314. Curran Associates,
Inc., 2000.

Z. Song, D. Woodruff, Z. Yu, and L. Zhang. Fast sketching of polynomial kernels of polyno-
mial degree. In Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 9812–9823. PMLR, 2021.

D. J. Sutherland and J. Schneider. On the error of random fourier features. In Proceedings
of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pages 862–871.
AUAI Press, 2015.

M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Pro-
ceedings of the Twelfth International Conference on Artificial Intelligence and Statistics,
volume 5 of JMLR Proceedings, pages 567–574. JMLR, 2009.

L. N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997.

J. A. Tropp. Improved analysis of the subsampled randomized Hadamard transform. Ad-
vances in Adaptive Data Analysis, 3(1-2):115–126, 2011.

A. V. Uzilov, J. M. Keegan, and D. H. Mathews. Detection of non-coding RNAs on the basis
of predicted secondary structure formation free energy change. BMC Bioinformatics, 7:
173, 2006.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.

R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge University Press, 2018.

J. Wacker and M. Filippone. Local random feature approximations of the gaussian kernel.
In Proceedings of the 26th International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems, Procedia Computer Science. Elsevier, 2021.

G. Wahba. Spline Models for Observational Data. SIAM, 1990.

74



Improved Random Features for Dot Product Kernels

O. Weissbrod, D. Geiger, and S. Rosset. Multikernel linear mixed models for complex
phenotype prediction. Genome Research, 26(7):969–979, 2016.

C. K. Williams and M. Seeger. Using the Nyström method to speed up kernel machines.
In Advances in Neural Information Processing Systems 13, pages 682–688. Curran Asso-
ciates, Inc., 2000.

D. P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends
in Theoretical Computer Science, 10(1-2):1–157, 2014.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. CoRR, abs/1708.07747, 2017.

H. Yamada and Y. Matsumoto. Statistical dependency analysis with support vector ma-
chines. In Proceedings of the Eighth International Conference on Parsing Technologies,
pages 195–206, 2003.

Z. Yang, M. Moczulski, M. Denil, N. D. Freitas, A. Smola, L. Song, and Z. Wang. Deep fried
convnets. Proceedings of the 2015 IEEE International Conference on Computer Vision,
pages 1476–1483, 2015.

F. X. Yu, A. T. Suresh, K. Choromanski, D. Holtmann-Rice, and S. Kumar. Orthogo-
nal random features. In Advances in Neural Information Processing Systems 30, page
1983–1991. Curran Associates Inc., 2016.

75


	Introduction
	Preliminaries
	Notation
	Positive Definite Kernels

	Polynomial Sketches
	Real-valued Polynomial Sketches 
	Complex-valued Polynomial Sketches
	Variance of Complex-valued Polynomial Sketches
	Probabilistic Error Bounds for Rademacher Sketches

	Structured Polynomial Sketches 
	Real TensorSRHT
	Complex-valued TensorSRHT
	Comparing the Real and Complex TensorSRHT

	Approximating Dot Product Kernels
	Maclaurin Expansion of Dot Product Kernels
	Random Sketch based on the Maclaurin Expansion
	Optimization for a Truncated Maclaurin Approximation 
	Optimization Objective
	Solving a Simplified Problem
	Solving the Full Problem

	Approximating a Gaussian Kernel
	Numerical Illustration of the Objective Function
	Gaussian Process Regression Toy Example

	Experiments
	Experimental Setup
	Datasets
	Target Kernels to Approximate
	Error Metrics
	Other Settings

	Polynomial Kernel Approximation
	Wall-Clock Time Comparison of Real and Complex Random Features in GP Classification 
	Systematic Evaluation of the Optimized Maclaurin Approach
	Approximate GP Inference with Polynomial Kernels
	Approximate GP Inference with a Gaussian kernel
	Influence of the Data Distribution on the Kernel Approximation


	Conclusion
	Proofs for Section 3
	Proof of Theorem 2
	Proof of Theorem 3

	Proofs for Section 4
	Key Lemma
	Proof of Theorem 10

	Convex Surrogate Functions for TensorSRHT Variances
	Analyzing the Variances of TensorSRHT
	Convex Surrogate Functions

	Gaussian Processes with Complex Random Features
	Complex GP Regression
	GP Regression with Complex Features
	Computationally Efficient Implementation
	GP Classification as Closed-form Multi-output Regression
	Kullback-Leibler (KL) Divergence

	Additional Experiments
	Additional Results for the Optimized Maclaurin Method

