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Abstract

In this paper, we revisit the problem of Differentially Private Stochastic Convex Optimiza-
tion (DP-SCO) and provide excess population risks for some special classes of functions
that are faster than the previous results of general convex and strongly convex functions.
In the first part of the paper, we study the case where the population risk function satisfies
the Tysbakov Noise Condition (TNC) with some parameter θ > 1. Specifically, we first
show that under some mild assumptions on the loss functions, there is an algorithm whose

output could achieve an upper bound of Õ(( 1√
n

+ d
nε )

θ
θ−1 ) and Õ(( 1√

n
+

√
d log(1/δ)

nε )
θ

θ−1 )

for ε-DP and (ε, δ)-DP, respectively when θ ≥ 2, where n is the sample size and d is the
dimension of the space. Then we address the inefficiency issue, improve the upper bounds
by Poly(log n) factors and extend to the case where θ ≥ θ̄ > 1 for some known θ̄. Next, we
show that the excess population risk of population functions satisfying TNC with param-

eter θ ≥ 2 is always lower bounded by Ω(( dnε )
θ

θ−1 ) and Ω((

√
d log(1/δ)

nε )
θ

θ−1 ) for ε-DP and
(ε, δ)-DP, respectively, which matches our upper bounds. In the second part, we focus on
a special case where the population risk function is strongly convex. Unlike the previous
studies, here we assume the loss function is non-negative and the optimal value of population
risk is sufficiently small. With these additional assumptions, we propose a new method

whose output could achieve an upper bound of O(d log(1/δ)n2ε2 + 1
nτ ) and O( d2

n2ε2 + 1
nτ ) for any

τ > 1 in (ε, δ)-DP and ε-DP model respectively if the sample size n is sufficiently large.
These results circumvent their corresponding lower bounds in (Feldman et al., 2020) for
general strongly convex functions. Finally, we conduct experiments of our new methods on
real-world data. Experimental results also provide new insights into established theories.
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1. Introduction

Preserving the privacy of training data has become an important consideration and now is a
challenging task for machine learning algorithms. To address the privacy issue, Differential
Privacy (DP) (Dwork et al., 2006), which roots in cryptography, is a strong mathematical
scheme for privacy preservation. It allows for rich statistical and machine learning analysis
and is now becoming a de facto notation for private data analysis. Methods to guarantee
differential privacy have been widely studied, and recently adopted in industry (Tang et al.,
2017; Ding et al., 2017).

As one of the most important problems in Machine Learning and Differential Privacy
community, the Empirical Risk Minimization problem in the DP model, i.e., DP-ERM, has
been studied quite well in the last decade, starting from (Chaudhuri et al., 2011), such as
(Bassily et al., 2014; Wang et al., 2017, 2019a; Wu et al., 2017; Kasiviswanathan and Jin,
2016; Kifer et al., 2012; Smith et al., 2017; Wang et al., 2018a, 2019b; Asi et al., 2021a). Be-
sides DP-ERM, its population (or expected) version, namely Differentially Private Stochas-
tic Convex Optimization (DP-SCO), has received much attention in recent years, starting
from (Bassily et al., 2014). Specifically, (Bassily et al., 2019) first provides the optimal
rate of DP-SCO with general convex loss functions in (ε, δ)-DP, which is quite different
from the optimal rate in DP-ERM. Later, (Feldman et al., 2020) extends this problem to
strongly convex and (or) non-smooth cases by providing a general localization technique.
Moreover, their methods have linear time complexity if the loss functions are smooth. For
non-smooth loss functions, (Kulkarni et al., 2021) recently proposes a new method that
only needs subquadratic gradient complexity. While there are already a large number of
studies on DP-SCO, the problem is still far from well understood. A key observation is that
all of the previous works only focus on the case where the loss functions are either general
convex or strongly convex. However, there are also many problems that are even stronger
than strongly convex functions, or fall between convex and strongly convex functions. In
the non-private counterpart, various studies have attempted to get faster rates by imposing
additional assumptions on the loss functions. And it has been shown that it is indeed pos-
sible to achieve rates that are faster than the rates of general convex loss functions (Yang
et al., 2018; Koren and Levy, 2015; van Erven et al., 2015), or it could even achieve the
same rate as in the strongly convex case even if the function is not strongly convex (Karimi
et al., 2016; Liu et al., 2018; Xu et al., 2017). Motivated by this, our question is,

For the problem of DP-SCO with special classes of population risk functions,
is it possible to achieve faster rates of excess population risk than the optimal
ones of general convex and (or) strongly convex cases?

In this paper, we provide an affirmative answer by studying some classes of population
risk functions. Particularly, we will mainly focus on the case where the population risk
function satisfies the Tysbakov Noise Condition (TNC) 1, which includes strongly convex
functions, SVM, `1-regularized stochastic optimization and linear regression as special cases

1. In some related work, it is also called the Error Bound Condition or the Growth Condition (Liu et al.,
2018; Xu et al., 2017).
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Method Assumptions Upper Bound Lower Bound

Algorithm 2♣

F (·) satisfies (θ, λ)-TNC, θ ≥
2 is unknown, the loss func-
tion is convex, smooth and
Lipschitz

O
(
( 1√

n
+

√
d log(1/δ)

nε )
θ
θ−1 ·Poly(log n)

)
Ω

(
(

√
d log(1/δ)

nε )
θ
θ−1

)[Theorem 19]

Algorithm 4?
F (·) satisfies (θ, λ)-TNC, θ >
1 is known, the loss function is
convex, smooth and Lipschitz

O
(
( 1√

n
+

√
d log(1/δ)

nε )
θ
θ−1 ·Poly(log n)

)

Algorithm 5♠

F (·) satisfies (θ, λ)-TNC,
θ unknown but is lower
bounded by some known
θ̄ > 1(θ ≥ θ̄ > 1), the loss
function is convex, smooth
and Lipschitz

O
(
( 1√

n
+

√
d log(1/δ)

nε )
θ
θ−1
)

Algorithm 8]

F (·) is λ-strongly convex, β-
smooth and Lipschitz, the loss
function is nonnegative, n ≥
κτ for some constant τ > 1
with κ = β

λ

O
(d log(1/δ)

n2ε2
+

4τ · F (w∗)

n

+
22τ2+4τ

nτ
+

24τ2+10τ · d log(1/δ)

n2τ · ε2
) (Bassily et al., 2019)

Ω
(

1
n + d log(1/δ)

n2ε2

)

Table 1: Summary of the main results (in terms of the excess population risk) of the (ε, δ)-
DP algorithms proposed in our paper. All the methods can be extended to the ε-

DP case and the term of O(

√
d log(1/δ)

nε ) will be replaced by O( dnε) in the above upper
bounds and lower bound. The Big-O and Big-Ω notations omit other terms of λ,
smoothness, and Lipschitz constant. For Algorithm 2, 4 and 5, the smoothness
assumption can be further removed with the same upper bounds (see Section 4.2
for details). ♣: The algorithm needs to efficiently implement the projection of
a given vector onto the intersection of the underlying constraint set W and any
given `2-norm ball, which is difficult to implement in practice. ?: The algorithms
needs the prior knowledge of θ, i.e., θ should be an input of the algorithm. ♠:
Here θ could be unknown in advance but we assume that θ ≥ θ̄ > 1 for some
known θ̄, i.e., θ̄ will be an input of the algorithm. Unlike other upper bounds, here
the upper bound is not for the exact excess population risk (see Theorem 12). ]:
F (w∗) is the optimal minimal function value of F (·).

(see Fact 1-4 for details). Our contributions can be summarized as follows (see Table 1 for
details).

• In the first part of the paper, we study the problem where the population risk satisfying
TNC with parameter θ and propose three methods. When θ ≥ 2, we first propose a

method that could achieve an excess population risk of Õ(( 1√
n

+ d
nε)

θ
θ−1 ) and Õ(( 1√

n
+

√
d log(1/δ)

nε )
θ
θ−1 ) in ε-DP and (ε, δ)-DP model respectively under the assumption that

the loss function is smooth and Lipschitz, where n is the sample size of the data and d is
the dimension of the space. We then propose another method to resolve the inefficiency
issue under the assumption that θ is known. Moreover, we propose an improved
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method. Compared with the previous two methods, it improves the upper bounds of
error by Poly(log n) factors. And it only needs a relaxed assumption of θ ≥ θ̄ > 1
for some known θ̄ instead of θ being known or θ ≥ 2. Moreover, it outperforms
the previous methods practically. Next, we focus on the lower bounds of the excess
population risk. Specifically, for any θ ≥ 2, we show that there is a population
risk function satisfying TNC with parameter θ such that for any ε-DP ((ε, δ)-DP)

algorithm, its output achieves an excess risk of Ω(( dnε)
θ
θ−1 ) ( Ω((

√
d log(1/δ)

nε )
θ
θ−1 )) with

high probability.

• In the second part of the paper, we will focus on the problem where the population risk
function is strongly convex, which is a special case of TNC functions with θ = 2. Unlike
the previous studies, here we assume the loss function is non-negative and the optimal
value of the population is sufficiently small. With these additional assumptions, we
propose a new method whose output could achieve an upper bound of O(d log(1/δ)

n2ε2
+ 1
nτ )

and O( d2

n2ε2
+ 1
nτ ) for any τ > 1 in (ε, δ)-DP and ε-DP model respectively if the sample

size n is sufficiently large. These rates circumvent their corresponding lower bounds
for general strong convex functions in (Feldman et al., 2020), i.e., Θ( d2

n2ε2
+ 1

n) for

ε-DP and Θ(d log(1/δ)
n2ε2

+ 1
n) for (ε, δ)-DP.

2. Related Work

Starting from (Chaudhuri et al., 2011), a long list of works have attacked the problems of
DP-ERM from different perspectives: (Bassily et al., 2014; Iyengar et al., 2019; Zhou et al.,
2020; Song et al., 2020; Wang et al., 2017; Zhang et al., 2017) studied the problems in the
low dimensional case and the central model, (Kasiviswanathan and Jin, 2016; Kifer et al.,
2012; Talwar et al., 2015; Wang and Gu, 2020; Cai et al., 2020) considered the problems in
the high dimensional sparse case and the central model, (Smith et al., 2017; Duchi et al.,
2013; Wang et al., 2020a; Duchi et al., 2018) focused on the problems in the local model.
However, almost all of these works only focus the case where the empirical risk function is
either general convex or strongly convex. For a special class of functions, (Wang et al., 2017)
studies the empirical risk functions satisfying Polyak-Lojasiewicz (PL) condition, which is
weaker than strongly convexity and show that it is possible to achieve an excess empirical
risk of O(d log(1/δ)

n2ε2
), which is the same as the strongly convex loss. As we will mention in

Remark 16, the PL condition is equivalent to TNC with parameter θ = 2. Thus, in this
paper, we extend the result from the empirical risk to the population risk function.

For the problem of DP-SCO, besides the related work we mentioned in the previous
section, there is another direction that studies some special cases of DP-SCO. For example,
(Bassily et al., 2021) and (Asi et al., 2021a) consider the case where the underlying constraint
set W has specific geometric structures, such as polyhedron. (Guzmán et al., 2021) studies
the (non)smooth and (non)convex generalized linear loss. (Wang et al., 2020b) and (Kamath
et al., 2021) focus on the case where the distribution of the data or the gradient of the loss
function is heavy-tailed. However, none of these works study the case where the population
risk satisfies TNC. (Liu et al., 2021) recently studies the theoretical guarantees of the
PATE model (Papernot et al., 2016) under the assumption that the population risk function
satisfies TNC and shows that it is possible to achieve faster rates than in the convex case
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(Bassily et al., 2018). However, since here we focus on a different problem, their results
cannot be used for DP-SCO.

2.1 Comparison with Concurrent Work

We notice that (Asi et al., 2021b) also studies DP-SCO with TNC population risk functions
concurrently. However, compared with its results there are several critical differences. In
the following, we will give the details of these differences.

1) For the upper bound, the idea of Algorithm 2 in (Asi et al., 2021b) is similar to
Algorithm 2 in our paper. However, the idea of proof and the choice of parameters are
quite different. Moreover, we then propose new methods and get improved upper bounds
(Theorem 14) as compared to Theorem 2 and 3 in (Asi et al., 2021b).

2) There are some efficiency issues on implementing Algorithm 2 in (Asi et al., 2021b).
Firstly, the algorithm in (Asi et al., 2021b) heavily depends on a localization algorithm
(Algorithm 1 in (Asi et al., 2021b)) that needs to get the exact optimal solution of some
ERM problem, which is inefficient in general. Compare to it, our Algorithm 2 does not need
to exactly solve ERM problems. Moreover, even if we are allowed to use some optimization
methods to solve the ERM problem in (Asi et al., 2021b) at each phase, we still need a
subroutine of projecting a vector onto the ball W ∩ B(ŵk−1, Rk−1) at each iteration of the
optimization method. However, such a projection step could be costly and even inefficient.
Compared to (Asi et al., 2021b), we further propose two other more efficient and practical
algorithms (Algorithm 3 and 5) with nearly the same utility upper bounds.

3) For lower bounds, (Asi et al., 2021b) also considers the (ε, δ)-DP model (for excess

empirical risk). Specifically, they also shows a worst-case lower bound of Ω((

√
d log(1/δ)

nε )
θ
θ−1 )

for θ ≥ 2 (Theorem 6 and Proposition 3 in (Asi et al., 2021b)), which is the same as
our Theorem 19. Although the hard instance in (Asi et al., 2021b) is similar to ours, the
proofs of lower bounds are different. Specifically, (Asi et al., 2021b) shows a reduction
in solving general convex ERM in the DP model while we construct hard instances under
the TNC condition. For ε-DP, (Asi et al., 2021b) considers the minimax rate and shows

an information-theoretic lower bound of Ω̃(( 1
n + d2

n2ε2
)

θ
2(θ−1) ) for κ ≥ 2 (Theorem 4 in

(Asi et al., 2021b)) while we show a worst-case lower bound of Ω(( d2

n2ε2
)

θ
2(θ−1) ). It is

also notable that for the case where d = 1, (Asi et al., 2021b) also shows an information-

theoretic lower bound of Ω̃(( 1
n+ 1

n2ε2
)

θ
θ−1 ) for κ ∈ (1, 2] (Theorem 5 in (Asi et al., 2021b)).

Thus, due to different notations of the lower bound, our results on ε-DP are incomparable
to the results in (Asi et al., 2021b).

4) In this paper, we also provide experimental results on the problem which has not
been studied in (Asi et al., 2021b).

5) Besides TNC population risk functions, in this paper we also provide faster rates of
DP-SCO with strongly convex loss function with additional assumptions which also has not
been studied in (Asi et al., 2021b).
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3. Preliminaries

Definition 1 (Differential Privacy (Dwork et al., 2006)) Given a data universe X ,
we say that two datasets S, S′ ⊆ X are neighbors if they differ by only one entry, which is
denoted as S ∼ S′. A randomized algorithm A is (ε, δ)-differentially private (DP) if for all
neighboring datasets S, S′ and for all events E in the output space of A, the following holds

P(A(S) ∈ E) ≤ eεP(A(S′) ∈ E) + δ.

If δ = 0, we call algorithm A is ε-DP.

In this paper, we will focus on both ε and (ε, δ)-DP and we will mainly use the Gaussian
mechanism and Laplacian mechanism to guarantee the DP property.

Definition 2 (Gaussian Mechanism) Given any function q : X n → Rd, the Gaussian

mechanism is defined as q(S) + ξ where ξ ∼ N (0,
16∆2

2(q) log(1/δ)
ε2

Id), 2 where where ∆2(q)
is the `2-sensitivity of the function q, i.e., ∆2(q) = supS∼S′ ||q(S) − q(S′)||2. Gaussian
mechanism preserves (ε, δ)-DP for 0 < ε, δ ≤ 1.

Definition 3 (Laplacian Mechanism) Given any function q : X n → Rd, the Laplacian
mechanism is defined asMG(S, q, ε) = q(S)+(Y1, Y2, · · · , Yd), where each Yi is i.i.d. drawn

from a Laplacian Distribution Lap(∆1(q)
ε ), where ∆1(q) is the `1-sensitivity of the function

q, i.e., ∆1(q) = supS∼S′ ||q(S)− q(S′)||1. For a parameter λ, the Laplacian distribution has
the density function: Lap(x|λ) = 1

2λ exp(−x
λ). Laplacian Mechanism preserves ε-DP.

Definition 4 (DP-SCO (Bassily et al., 2014)) Given a dataset S = {x1, · · · , xn} from
a data universe X where xi are i.i.d. samples from some unknown distribution D, a convex
loss function f(·, ·), and a convex constraint set W ⊆ Rd, Differentially Private Stochastic
Convex Optimization (DP-SCO) is to find wpriv so as to minimize the population risk, i.e.,
F (w) = Ex∼D[f(w, x)] with the guarantee of being differentially private. The utility of the
algorithm is measured by the (expected) excess population risk, that is

EA[F (wpriv)]− min
w∈W

F (w),

where the expectation of A is taken over all the randomness of the algorithm. Besides
the population risk, we may also measure the empirical risk of dataset S: F̄ (w, S) =
1
n

∑n
i=1 f(w, xi).

Definition 5 A function f :W 7→ R is L-Lipschitz over the domainW if for all w,w′ ∈ W,
|f(w)− f(w′)| ≤ L||w − w′||2.

Definition 6 A function f :W 7→ R is β-smooth over the domain W if for all w,w′ ∈ W,

f(w) ≤ f(w′) + 〈∇f(w′), w − w′〉+
β

2
||w − w′||22.

2. For simplicity to theoretical analysis, throughout the paper we use constant 16 for Gaussian mechanism.
In practice we can use smaller constants.
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Definition 7 A function F : W 7→ R is λ-strongly convex over the domain W if, for all
w,w′ ∈ W,

F (w) + 〈∇F (w), w′ − w〉+
λ

2
||w′ − w||22 ≤ F (w′).

Let w∗ = arg minw∈W F (w) be the minimizer, strongly convexity implies (Hazan and
Kale, 2011):

F (w)− F (w∗) ≥ λ

2
||w − w∗||22, ∀w ∈ W. (1)

Previous work on DP-SCO only focused on cases where the loss function is either convex or
strongly convex (Bassily et al., 2019; Feldman et al., 2020). In this paper, we will mainly
study the case where the population risk satisfies the Tysbakov Noise Condition (TNC)
(Ramdas and Singh, 2012; Liu et al., 2018; Ramdas and Singh, 2013), which has been
studied quite well and has been shown that it could achieve faster rates than the optimal
one of general convex loss functions in the non-private case. Below we provide the definition
of TNC.

Definition 8 For a convex function F (·), let W∗ = arg minw∈W F (w) denote the optimal
set and for any w ∈ W, let w∗ = arg minu∈W∗ ‖u − w‖2 denote the projection of w onto
the optimal set W∗. Function F satisfies (θ, λ)-TNC for some θ > 1 and λ > 0 if for any
w ∈ W the following inequality holds

F (w)− F (w∗) ≥ λ||w − w∗||θ2. (2)

From the definition of TNC and (1) we can see that for a λ-strong convex function it is
(2, λ2 )-TNC. Moreover, if a function is (θ, λ)-TNC, then it is also (θ′, λ)-TNC for any θ < θ′.
Throughout the whole paper we will assume that θ is a constant and thus we will omit the
term of cθ in the Big-O notation if c is a constant.

Lemma 9 (Lemma 2 in (Ramdas and Singh, 2012)) If the function F (·) is (θ, λ)-

TNC and L-Lipschitz, then we have ||w−w∗||2 ≤ (Lλ−1)
1
θ−1 and F (w)−F (w∗) ≤ (Lθλ−1)

1
θ−1

for all w ∈ W, where w∗ is defined as in Definition 8.

4. Optimal Rates of Excess Population Risk

4.1 Upper Bounds of Excess Population Risk

In this section, we will concentrate on the case where the population risk function is (θ, λ)-
TNC and provide some upper bounds of its excess population risk. To provide a clear
intuition of our methods, we will first assume that the loss functions are smooth. Later we
will extend to the non-smooth case based on the same ideas.

We first consider an easier case, where the TNC parameter θ satisfies θ ≥ 2. Our
algorithm is based on the localization technique proposed by (Feldman et al., 2020), which
provides an algorithm, namely Phased-SGD (Algorithm 1) for DP-SCO with general convex
loss functions and shows that the algorithm could achieve the optimal rate of expected excess
population risk.
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Lemma 10 (Theorem 4.4 in (Feldman et al., 2020)) Let W ⊆ Rd be a closed convex
set and f(·, x) be β-smooth, convex and L-Lipschitz function over W for each x. If we set
η = D

L min{ 4√
n
, ε

2
√
d log(1/δ)

} and if η ≤ 1
β (i.e., n is sufficiently large), then Algorithm 1 will

be (ε, δ)-DP for all ε ≤ 2 log(1/δ). The output satisfies

E[F (wk)]− min
w∈W

F (w) ≤ 10LD

(
1√
n

+

√
d log(1/δ)

εn

)
.

Set η = D
L min{ 4√

n
, εd} and if η ≤ 1

β , then Algorithm 1 will be ε-DP. Moreover, the output

satisfies

E[F (wk)]− min
w∈W

F (w) ≤ 10LD

(
1√
n

+
d

nε

)
,

where D > 0 satisfies that ||w0 − w∗||2 ≤ D.

We propose our adaptive stochastic approximation algorithm, which is presented in
Algorithm 2. The updates are divided into m stages. At each stage, the Phased-SGD
algorithm is applied with n0 samples. Each employment of the Phased-SGD algorithm is
warm-started by the initial point that is returned from the last stage.

Algorithm 1 Phased-SGD(w0, η, n,W) algorithm (Feldman et al., 2020)

1: Input: Dataset S = {x1, · · · , xn}, convex function f : W × X 7→ R, initial point
w0 ∈ W, step size η (will be specified later), privacy parameter ε and (or) δ.

2: Set k = dlog2 ne. partition the whole dataset S into k subsets {S1, · · · , Sk}. Denote ni
as the number of samples in Si, i.e., |Si| = ni, where ni = b2−inc.

3: for i = 1, · · · , k do
4: Let ηi = 4−iη, w1

i = wi−1.
5: for t = 1, · · · , ni do
6: Update wt+1

i =
∏
W(wti − ηi∇wf(wti , x

t
i)), where xti is the t-th sample of the set

Si.
7: end for

8: Set wi = 1
ni+1

ni+1∑
t=1

wti .

9: For (ε, δ)-DP, wi = wi + ξi, where ξi ∼ N (0, σ2
i Id) with σi =

4Lηi
√

log(1/δ)

ε .

10: For ε-DP, wi = wi+ξi, where ξi = (ζ1, · · · , ζd) with each ζj ∼ Lap(λ) and λ = 4Lηi
√
d

ε .
11: end for
12: return wk

The following theorem states that the output of Algorithm 2 achieves an excess popula-

tion risk of Õ(( 1√
n

+ d
nε)

θ
θ−1 ) and Õ(( 1√

n
+

√
d log(1/δ)

nε )
θ
θ−1 ) for ε-DP and (ε, δ)-DP, respectively,

if the population risk function satisfies TNC with θ ≥ 2.

Theorem 11 Assume that F (·) satisfies (θ, λ)-TNC and f(·, x) is convex, β-smooth and
L-Lipschitz for each x. Then Algorithm 2 is ε-DP or (ε, δ)-DP based on different stepsizes
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Algorithm 2 Private Stochastic Approximation(w1, n,R0)

1: Input: Dataset S = {x1, · · · , xn}, convex function f : W × X 7→ R, initial point
w0 ∈ W, privacy parameter ε and (or) δ, R0 satisfies R0 ≥ ‖w0 − w∗‖2.

2: Set ŵ0 = w0,m = b1
2 log2

2n
log2 n

c − 1, n0 = b nmc.
3: partition the data S into m disjoint subsets {S1, · · · , Sm} with each Si containing n0

samples.
4: for k = 1, · · · ,m do

5: For (ε, δ)-DP, set γk =
Rk−1

L ·min

{
4√
n0
, ε

2
√
d log(1/δ)

}
and Rk =

Rk−1

2 .

6: For ε-DP, set γk =
Rk−1

L ·min
{

4√
n0
, εd

}
and Rk =

Rk−1

2 .

7: Denote ŵk = Phased-SGD(ŵk−1, γk, n0,W ∩ B(ŵk−1, Rk−1)), where B(ŵk−1, Rk−1)
is a ball with center ŵk−1 and radius Rk−1. The Phased-SGD runs on the k-th subset
Si.

8: end for
9: return ŵm

{γk}mk=1 and noises if γk ≤ 1
β . Moreover, if θ ≥ 2 and n is sufficiently large such that

n ≥ 256 and ‖w0 − w∗‖2 ≤ R0, for (ε, δ)-DP we have

E[F (ŵm)]− min
w∈W

F (w) = O

(Lθ
λ

) 1
θ−1

·

(√
log n√
n

+

√
d log(1/δ) log n

nε

) θ
θ−1

 .

And for ε-DP we have E[F (ŵm)]−minw∈W F (w) = O

((
Lθ

λ

) 1
θ−1 ·

(√
logn√
n

+ d logn
nε

) θ
θ−1

)
.

Algorithm 3 Phased-SGD-SC(w0, γ, ε, δ,W)

1: Input: Dataset S = {x1, · · · , xn}, convex function f : W × X 7→ R, initial point
w0 ∈ W, privacy parameter ε and (or) δ. D is a constant satisfying D ≥ ‖w0 − w∗‖2.

2: partition the data S into k disjoint subsets {S1, · · · , Sk}, where k = dlog logne and for

each i ∈ [k], |Si| = ni = b2i−2n
logn c.

3: for t = 1, · · · , s do
4: Let wt = Phased-SGD(wt−1, ηt, nt,W), where the Phased-SGD runs on the t-

th subset Si with loss function f(w, x) + 1
2γ ‖w − w0‖22. For (ε, δ)-DP, ηt =

D
L min{ 4√

nt
, ε

2
√
d log(1/δ)

}. For ε-DP, ηt = D
L min{ 4√

nt
, εd}.

5: end for
6: return ws

In practice, the main difficulty in implementing Algorithm 2 is the projection onto the
ball W ∩ B(ŵk−1, Rk−1) in each iteration of the Phased-SGD in each phase. In practice,
this could be solved by using the Dykstra’s algorithm (Dykstra, 1983; Boyle and Dyk-
stra, 1986), which studied the best approximation problem: given m closed and convex sets
W1, · · · ,Wm ⊆ Rd and a point y ∈ Rd, we seek the point in W1

⋂
· · ·
⋂
Wm (assumed

9
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Algorithm 4 Private Stochastic Approximation-II(w0, n,W)

1: Input: Dataset S = {x1, · · · , xn}, convex function f : W × X 7→ R, initial point
w0 ∈ W, privacy parameter ε and (or) δ, χ0 is a constant such that χ0 ≥ F (w0) −
minw∈W F (w), TNC parameter θ.

2: For (ε, δ)-DP, set m = b− θ
2(θ−1) log2( L

2

λ
2
θ

( 1
n + d log(1/δ)

n2ε2
))c, n0 = b nmc. For ε-DP, set

m = b− θ
2(θ−1) log2( L

2

λ
2
θ

( 1
n + d2

n2ε2
))c, n0 = b nmc. partition the dataset S into m disjoint

subsets {S1, · · · , Sm} with each Si containing n0 samples.

3: Set γ0 = χ0/(6400L2( 1
n0

+ d log(1/δ)
n2

0ε
2 )) for (ε, δ)-DP and γ0 = χ0/(6400L2( 1

n0
+ d2

n2
0ε

2 )) for

ε-DP.
4: for k = 1, · · · ,m do
5: Set γk =

γk−1

2 .
6: Denote wk = Phased-SGD-SC(wk−1, γk, ε, δ,W).
7: end for
8: return wm

nonempty) closest to y, and solve minu∈W1
⋂
···

⋂
Wm
‖u− y‖2. However, in theory, the theo-

retical guarantee of Theorem 11 may not be held if we use Dykstra’s algorithm under the
privacy constraint. The main reason is that Dykstra’s algorithm can only provide an ap-
proximate solution for the projection step. However, the approximate solution may not have
the same `2 (or `1)-norm sensitivity as the exact solution. Thus, from this view, Algorithm
2 lacks efficiency.

Instead of using Dykstra’s algorithm, motivated by (Xu et al., 2017), in the following, we
present a new algorithm that only needs the projection onto W. Briefly speaking, instead
of considering the original stochastic function, we focus on the problem with an additional
strongly convex regularization, i.e., minw∈W F (w) + 1

2γ ‖w − w1‖22, where w1 ∈ W is some
reference point and γ is some parameter.

Specifically, the same as in Algorithm 2, we first divide the whole algorithm into m
stages. In each stage we hope to find a private estimator wk such that wk ≈ arg minw∈W F (w)+

1
2γk
‖w − wk−1‖22 with γk changing with k. Specifically, we use Algorithm 3 to get such a

private estimator. Note that due to the additional `2 regularization, now the function is
strongly convex. Thus, instead of using the original Phased-SGD (Algorithm 1) for general
convex loss, here we use a strongly convex version of Phased-SGD, which is adapted from
(Feldman et al., 2020). Moreover, since now we have an additional `2-norm regulariza-
tion, here we do not need the projection onto the balls W ∩ B(ŵk−1, Rk−1) during updates
compared with Algorithm 2.

Theorem 12 Assume that F (·) satisfies (θ, λ)-TNC and f(·, x) is convex, β-smooth and
L-Lipschitz for each x. Then Algorithm 4 is ε-DP or (ε, δ)-DP based on different stepsizes,

noises and {γk}mk=1, under the assumption that n is sufficiently large such that γ0 ≥ ‖W‖2L ,
where ‖W‖2 is the diameter of the set W, i.e., ‖W‖2 = maxw,w′∈W ‖w − w′‖2. Moreover,

if θ is known in advance and n is sufficiently large such that θ ≥ 2
log logn

logn , for (ε, δ)-DP, we

10
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have

min
k=1,··· ,m

E[F (wk)]− min
w∈W

F (w) = O

((
L2

λ
2
θ

(
log n

n
+
d log n2 log(1/δ)

n2ε2

)) θ
2(θ−1)

)
.

For ε-DP we have mink=1,··· ,m E[F (wk)]−minw∈W F (w) = O

((
L2

λ
2
θ

(
logn
n + d2 logn2

n2ε2

)) θ
2(θ−1)

)
.

So far we have proposed two algorithms. However, there are still several issues: First,
both of the previous methods need strong assumptions on θ. To achieve those utility upper
bounds, Algorithm 4 needs θ to be known in advance while Algorithm 2 needs to assume θ ≥
2. Thus, can we develop a method that only needs a weaker assumption on θ to get similar
utility upper bounds? Secondly, both of the previous two algorithms could achieve rates of

Õ(( 1√
n

+ d
nε)

θ
θ−1 ) and Õ(( 1√

n
+

√
d log(1/δ)

nε )
θ
θ−1 ) for ε-DP and (ε, δ)-DP, respectively. Can we

further improve these bounds? Thirdly, the two methods are either impractical or inefficient.
Specifically, for Algorithm 4, as we can see from our theoretical analysis, we need to exactly
set γ0 as χ0/(6400L2( 1

n0
+ d log(1/δ)

n2
0ε

2 )) with χ0 ≥ F (w0) − minw∈W F (w) in the (ε, δ)-DP

model (similar to ε-DP). However, getting such an upper bound of F (w0)−minw∈W F (w)
in general is difficult to get. And we can see that in Theorem 12 we can only guarantee
there exists a wk that achieves the upper bound of error, it is still unknown how to find
such wk privately with the same theoretical guarantees. For Algorithm 2, it runs several
times longer than other algorithms due to the approximate projection steps. Thus, how to
design improved methods both theoretically and practically? In the following, we will focus
on these three issues by developing a new method.

The idea of our algorithm is as follows: assuming that the value of θ is unknown, but
θ is lower bounded by some known constant θ̄ > 1, namely θ ≥ θ̄ > 1. We first divide
the whole dataset into k = b(logθ̄ 2) · log log nc disjoint subsets, where the i-th subset has

ni = 2i−1n

(logn)logθ̄ 2 samples; then we repeat the Algorithm 1 for k times where each phase runs

on the i-th subset and is initialized at the output of the previous phase. See Algorithm 5
for details.

Algorithm 5 Iterated Phased-SGD(w1, n,W, θ̄)

1: Input: Dataset S = {x1, · · · , xn}, convex function f : W × X 7→ R, initial point
w0 ∈ W, privacy parameter ε and (or) δ, D is a constant satisfying D ≥ ‖w0 − w∗‖2.

2: partition the data S into k disjoint subsets {S1, · · · , Sk}, where k = b(logθ̄ 2) · log log nc
and for each i ∈ [k], |Si| = ni = b 2i−1n

(logn)logθ̄ 2 c.
3: for t = 1, · · · , k do
4: Let wt = Phased-SGD(wt−1, ηt, nt,W), where the Phased-SGD runs on the t-th

subset Si. For (ε, δ)-DP, ηt = D
L min{ 4√

ni
, ε

2
√
d log(1/δ)

}. For ε-DP, ηt = D
L min{ 4√

ni
, εd}.

5: end for
6: return wk

Remark 13 Although both Algorithm 5 and 2 partition the data into several parts and
perform the Phased-SGD several times. There are several differences: First, the sizes of

11
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subsets in Algorithm 2 are equal, while we partition the data aggressively in Algorithm 5.
Secondly, in each phase of Algorithm 5, the convex set to be projected is invariant while in
Algorithm 2 we constantly replace it to W∩B(ŵk−1, Rk−1), which is necessary based on our
theoretical analysis.

Theorem 14 Assume that F (·) is (θ, λ)-TNC with θ ≥ θ̄ > 1 for some known constant
θ̄, and f(·, x) is convex, β-smooth and L-Lipschitz for each x. If the sample size n is

sufficiently large such that θ̄ ≥ 2
log logn

(logn)−1 , then Algorithm 5 is either ε-DP or (ε, δ)-DP for
any ε ≤ 2 log(1/δ), based on different step sizes and noises under the assumption that
ηt ≤ 1

β . Moreover, for (ε, δ)-DP, the output satisfies

E[F (wk)]− min
w∈W

F (w) = O

(Lθ
λ

) 1
θ−1

·

(
1√
n

+

√
d log(1/δ)

εn

) θ
θ−1

 .

For ε-DP, we have

E[F (wk)]− min
w∈W

F (w) = O

((
Lθ

λ

) 1
θ−1

·
(

1√
n

+
d

εn

) θ
θ−1

)
.

Remark 15 Compared with Theorem 11 and 12, we can see the upper bounds in Theorem
14 improve factors of Poly(log n) in both ε-DP and (ε, δ)-DP models. Moreover, instead of
θ ≥ 2, we only need the assumption of θ ≥ θ̄ for some known θ̄ > 1 in Theorem 14. And as
we will see in the experimental part, Algorithm 5 achieves good performance.

Remark 16 We can see that it is possible to get faster rates than the rates of strongly
convex loss if θ < 2. For example, when θ = 3

2 , the upper bound of error becomes

O(( 1√
n

+

√
d log(1/δ)

εn )3) in the (ε, δ)-DP model. Moreover, when θ > 1, then the bounds

will be always higher than the optimal rate for general convex loss as θ
θ−1 > 1. When θ = 2,

we have an excess population risk of O(( 1√
n

+

√
d log(1/δ)

nε )2) and O(( 1√
n

+ d
εn)2) for ε-DP

and (ε, δ)-DP respectively, which matches the optimal rate of DP-SCO with strongly convex
function (Feldman et al., 2020). Besides strongly convex functions, there are other problems
that satisfy (2, λ)-TNC, such as the functions satisfying Weak Strong Convexity, Restricted
Secant Inequality (RSI), Error Bound (EB) and Polyak-Lojasiewicz (PL) conditions (see
Section 2.1 in (Karimi et al., 2016) for details). Thus, Theorem 14 with θ = 2 could be
seen as a generalization of the strongly convex case. For Polyak- Lojasiewicz (PL) functions,

(Wang et al., 2018b) shows an upper bound of O(d log(1/δ)
n2ε2

) for the empirical risk. However,
their method cannot be extended to the population risk. In the following we provide some
examples that satisfy TNC with θ = 2.

Fact 1 (Quadratic Problem (Liu et al., 2018)) Consider the quadratic problem F (w) =
wTEx[A(x)]w + wTEx[b(x)] + c, where c is a constant. If E[A(x)] is a positive semi-
definite matrix, the loss function f(w, x) = wTA(x)w + wT b(x) + c is Lipschitz (e.g.,
max{‖A(x)‖2, ‖b(x)‖2} ≤ O(1)) and W is a bounded polyhedron (e.g., `1-norm or `∞-norm

12
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ball), then the population risk function will be TNC with θ = 2 and the problem will satisfy
the assumptions in Theorem 14.

Moreover, for the `p regularized quadratic problem F (w) = wTEx[A(x)]w+wTEx[b(x)]+
c+λ‖w‖pp for any p ≥ 2. Under the same assumptions as above, the population risk function
will be TNC with θ = p and the problem will satisfy the assumptions in Theorem 14.

By Fact 1 we can see that for the linear regression problem where F (w) = E(xTw−y)2 over

a bounded polyhedron W. It is possible to achieve an upper bound of O( 1
n + d log(1/δ)

n2ε2
) and

O( 1
n + d2

n2ε2
) for the excess population risk in the (ε, δ)-DP and ε-DP model, respectively.

Fact 2 (SCO over `2-norm ball (Liu et al., 2018)) Consider the problem of SCO over
`2-norm ball min‖w‖2≤B F (w) = E[f(w, x)]. If f(·, x) is convex, smooth and Lipschitz, and
minw∈Rd F (w) < min‖w‖2≤B F (w). Then the population risk is TNC with θ = 2 and satisfies
the assumptions in Theorem 14.

4.2 Extension to Non-smooth Loss

In the previous section, we provided several methods for TNC population risk functions
under the assumption that the loss function is smooth. However, we constantly meet the
case where the loss is non-smooth. In this section, we will extend the previous methods
to the non-smooth case. The observation is that, in both Algorithm 5 and Algorithm 2,
we use the Phased-SGD (Algorithm 1) as a sub-routine for several phases. And we need
the smoothness condition in Phased-SGD to get the upper bounds in Lemma 10. Thus,
to extend to the non-smooth case, the most direct way is to change Phased-SGD to a
non-smooth version in both Algorithm 5 and Algorithm 2. (Feldman et al., 2020) provided
non-smooth version of Phased-SGD based on proximal mapping for (ε, δ)-DP model, namely
Phased-ERM, which is shown in Algorithm 6.

Algorithm 6 Phased-ERM(w0, η, n,W) algorithm (Feldman et al., 2020)

1: Input: Dataset S = {x1, · · · , xn}, convex function f : W × X 7→ R, initial point
w0 ∈ W, step size η (will be specified later), privacy parameters ε, δ.

2: Set k = dlog2 ne. partition the whole dataset into k subsets {S1, · · · , Sk} where |Si| =
b2−inc.

3: for t = 1, · · · , k do
4: Let ni = 2−in, ηi = 4−iη.

5: Compute w̃i ∈ W such that Fi(w̃i)−minw∈W Fi(w) ≤ L2ηi
ni

with probability at least
1− δ for

Fi(w) =
1

ni

∑
x∈Si

f(w, x) +
1

ηini
‖w − wi−1‖22.

6: Set wi = w̃i + ξi, where ξi ∼ N (0, σiId) with σi =
4Lηi
√

log(1/δ)

ε .
7: end for
8: return wk
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Lemma 17 (Theorem 4.8 in (Feldman et al., 2020)) Set η = D
L min{ 4√

n
, ε

2
√
d log(1/δ)

}.
Then for the output of Algorithm 6 we have

E[F (ŵ)]− min
w∈W

F (w) ≤ 10LD

(
1√
n

+

√
d log(1/δ)

nε

)
.

By using Algorithm 6 as subroutine in Algorithm 5 and 2 we have the following result,
which is similar to Theorem 14 and 11.

Theorem 18 Assume that F (·) is (θ, λ)-TNC and f(·, x) is convex and L-Lipschitz for
each x. For any 0 < ε, δ < 1, if we replace the Phased-SGD with Phased-ERM in Algorithm
5 and 2 (we also change the stepsizes), then the two algorithms are (ε, δ)-DP. Moreover, in
Algorithm 5, the output satisfies

E[F (wk)]− min
w∈W

F (w) = O

(Lθ
λ

) 1
θ−1

·

(
1√
n

+

√
d log(1/δ)

nε

) θ
θ−1

 .

If n is sufficiently large such that n ≥ 256, in Algorithm 2, the output satisfies

E[F (ŵm)]− F (w∗) = O

(Lθ
λ

) 1
θ−1

·

(√
log n√
n

+

√
d log(1/δ) log n

nε

) θ
θ−1

 .

In the following, we provide some examples that satisfy TNC with θ = 2 and with non-
smooth loss.

Fact 3 (Hinge Loss (Xu et al., 2017)) Consider the SVM problem with hinge loss

min
w∈W

F (w) = E[(1− y〈w, x〉)+],

where W is an `1-norm or `∞-norm ball and |〈w, x〉| ≤ 1 for all x and w ∈ W. Then F (·)
satisfies TNC with θ = 2.

Fact 4 (`1-regularized Problems (Xu et al., 2017)) Consider the following `1-regularized
problem

min
‖w‖1≤B

F (w) = E[f(w, x)] + λ‖w‖1,

where E[f(w, x)] is convex quadratic or piecewise linear, then F (w) satisfies TNC with
θ = 2.

4.3 Lower Bounds of Excess Population Risk

In the previous section, we provide an algorithm whose output could achieve an excess

population risk of O(( 1√
n

+

√
d log(1/δ)

nε )
θ
θ−1 ) and O(( 1√

n
+ d

εn)
θ
θ−1 ) for ε-DP and (ε, δ)-DP

respectively. The question is, can we further improve these bounds? In this section, we

show that for all θ ≥ 2, the term of O((

√
d log(1/δ)

nε )
θ
θ−1 ) and O(( dεn)

θ
θ−1 ) cannot be further

improved. We consider the following loss function. Define

f(w, x) = −〈w, x〉+
1

θ
‖w‖θ2, ‖w‖2 ≤ 1, x ∈ {− 1√

d
,

1√
d
}d. (3)
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Theorem 19 (Lower bound of (ε, δ)-DP ) Let n, d ∈ N, θ ≥ 2, ε > 0 and δ = o( 1
n)

such that n ≥ Ω(

√
d log(1/δ)

ε ). For every (ε, δ)-Differentially Private algorithm, there is a
dataset S = {x1, · · · , xn} where each xi ∈ {− 1√

d
, 1√

d
}d such that with probability at least 1

3

over the randomness of the algorithm, its output wpriv satisfies

F (wpriv)− min
‖w‖2≤1

F (w) = Ω

(
(

√
d log(1/δ)

nε
)

θ
θ−1

)
,

where the loss function is given by (3) which is O(1)-Lipschitz, and the population risk
satisfies (θ,O(1))-TNC.

Theorem 20 (Lower bound of ε-DP ) Let n, d ∈ N, θ ≥ 2 and ε > 0 such that n ≥
Ω(
√
d
ε ). For every ε-Differentially Private algorithm, there is a dataset S = {x1, · · · , xn}

where each xi ∈ {− 1√
d
, 1√

d
}d such that with probability at least 1

3 over the randomness of

the algorithm, its output wpriv satisfies

F (wpriv)− min
‖w‖2≤1

F (w) = Ω

((
d

nε

) θ
θ−1

)
,

where loss function is given by (3) which is O(1)-Lipschitz, and the population risk satisfies
(θ,O(1))-TNC.

Remark 21 From the above theorems, we can see that for the case where θ = 2, the loss
function in (3) is reduced to the squared loss, which was used to the lower bound proof of
strongly convex loss in (Bassily et al., 2014).

5. Improved Rates for Strongly Convex Loss

In the previous section, we showed upper and lower bounds of the excess population risk
for general TNC population risk functions. Moreover, from Theorem 18 we can see that
we get asymptotically the same bound for smooth and non-smooth loss functions in the
(ε, δ)-DP model. However, in the non-private case, it has been shown that for the strongly
convex loss functions, it is possible to get an improved rate compared with the non-smooth
ones (Zhang and Zhou, 2019). Thus, our question is, can we get improved rates if the loss
functions have additional properties? In the following we will study the strongly convex
loss case. Specifically, we will show that when the loss function f(·, x) has additional
assumptions on non-negativity and if the optimal value F (w∗) is sufficiently small, it is

possible to achieve an upper bound of O(d log(1/δ)
n2ε2

+ 1
nτ ) for any τ > 1 if the sample size n

is sufficiently large.
There are two parts in the algorithm. In the first part, we perform the original Iterated

Phased-SGD (Algorithm 5) on the first half of the data to get a good solution to the optimal
parameter w∗. After that we perform a new method, namely Epoch-DP-SGD (Algorithm
7) on the second half of the data, which may also be used in other problems. We note that
although Algorithm 7 and Algorithm 1 both perform the original DP-SGD algorithm in
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Algorithm 7 Epoch-DP-SGD(η1, n1, n, w0)

1: Input: Parameter λ, dataset S = {x1, · · · , xn}, convex function f : W × X 7→ R, the
first partition n1, initial point w0 ∈ W, privacy parameter ε and (or) δ.

2: Set k = dlog n
2n1

+ 1e and partition the whole dataset into {S1, S2, · · · , Sk}. Denote
ni = |Si|, which satisfies ni+1 = 2ni (if there are left samples, we will add them to the
last subset).

3: for t = 1, · · · , k do
4: Set w1

i = wi−1.
5: for t = 1, · · · , ni do
6: Update

wt+1
i =

∏
W

(wti − ηi∇wf(wti , x
t
i)), (4)

where xti is the t-th sample in the set Si.
7: end for

8: Update wi = 1
ni+1

ni+1∑
t=1

wti .

9: Let wi = wi + ξi, where ξi ∼ N (0, σ2
i Id) with σi =

4L2
√

log(1/δ)

niελ
for (ε, δ)-DP and

ξi = (ζ1, · · · , ζd) with each ζj ∼ Lap(λ) and λ = 4L2
√
d

λniε
for ε-DP.

10: Set ηi+1 = ηi/2.
11: end for
12: return wk

Algorithm 8 Faster-DPSGD-SC

1: Input: Parameter β, λ, κ = β
λ and τ . Dataset S = {x1, · · · , xn}, convex function

f :W ×X 7→ R, initial point w0 ∈ W, privacy parameter ε and (or) δ.
2: Split the dataset S into S1, S2 where |S1| = |S2| = n

2 .
3: Perform Iterated Phased-SGD(w0,

n
2 ,W) with θ = 2 on S1. Denote the returned solution

as ŵ.
4: Perform Epoch-DP-SGD( 1

4β , 2
2τ+3 · κ, n2 , ŵ) on S2. Denote the returned solution by w̃.

5: return w̃

(Bassily et al., 2014) for several phases or epochs. They are quite different: First, as the
phase/epoch increases, we decrease the size of the subset (or the number of iterations) in
Algorithm 1. While in Algorithm 7 we will increase the size of the subset (or the number of
iterations). As we will see in the proof, this increase is necessary. Specifically, we can show
that, for strongly convex loss functions, by using our strategy on the size of the subset and
stepsize, for any epoch e in Algorithm 7, we have

E[F (we)]− F (w∗) ≤
(

32dL4β log(1/δ)

n2
eε

2λ2
+

22τ+3 · κ · F (w∗)

ne

)
·

e∑
i=1

1

22(i−1)(τ−1)

+
c2

1L
2

λ

(
22τ2+τ

nτe
+

24τ2+4τ · d log(1/δ)

n2τ
e · ε2

)
.

16



Faster Rates of DP-SCO

Thus, to get a low utility upper bound, we need a large ne at the last iteration, and
decreasing the size of the subset in Algorithm 1 cannot get such a bound. The second
difference is that the initial size of the subset in Algorithm 1 is n

2 while it is 22τ+3κ in
Algorithm 7, where κ is the condition number κ = β/λ of the population risk functions.

Theorem 22 Given ε and δ, if f(·, x) is convex, L-Lipschitz and β-smooth for all x, Algo-
rithm 8 is either ε-DP or (ε, δ)-DP, based on different choices on the stepsizes and noises,
under the assumption that ηk ≤ 2

β in Algorithm 5.

Theorem 23 Denote minw∈W F (w) = F (w∗) and suppose n ≥ κτ for some constant τ > 1,
and F (w) is L-Lipschitz, λ-strongly convex and β-smooth. For (ε, δ)-DP, the output returned
by algorithm 8 satisfies

E[F (w̃)]−F (w∗) = O

(
L4βd log(1/δ)

λ2n2ε2
+

4τ · κF (w∗)

n
+
L2

λ

(
22τ2+4τ

nτ
+

24τ2+10τ · d log(1/δ)

n2τ · ε2

))
.

Specifically, when τ = logκ n, we have for any n,

E[F (w̃)]− F (w∗) = O
(L4βd log(1/δ)

λ2n2ε2
+

κF (w∗)

n1−2 logκ 2
+

L2

λ

(
1

n(1−4 logκ 2) logκ n−4 logκ 2
+

24τ2+10τ · d log(1/δ)

n(2−4 logκ 2−10 logκ 2) logκ n · ε2

))
.

For ε-DP, the output returned by algorithm 8 satisfies

E[F (w̃)]− F (w∗) = O

(
L4βd2

λ2n2ε2
+

4τ · κF (w∗)

n
+
L2

λ

(
22τ2+4τ

nτ
+

24τ2+10τ · d2

n2τ · ε2

))
.

We note that recently (Wang et al., 2020b) also showed that when the loss function is
non-negative and the optimal value of the population risk is small, it is possible to get a
non-trivial upper bound for DP-SCO. However, there are some differences: Firstly, (Wang
et al., 2020b) only studied the case of DP-SCO with heavy-tailed data while here we study
DP-SCO with strongly convex functions. Thus, the problems are different. Moreover, their
method is based on the sample-and-aggregate framework, which is impractical, and their

result is O(d
3F (w∗)
nε4

) under the assumption that ∇F (w∗) = 0, which may not hold in the
case where W is a close set. Compared with their work, we do not need such a strong
assumption and in general, our bound is much smaller than theirs for F (w∗) = O(1).

Remark 24 Theorem 23 implies that when n = Ω(κτ ), the output of Algorithm 8 achieves

excess population risks of O(d log(1/δ)
n2ε2

+ F (w∗)
n + 1

nτ ) and O( d2

n2 ε2
+ F (w∗)

n + 1
nτ ) for (ε, δ)-

DP and ε-DP, respectively, which are faster than the optimal rates of O( 1
n + d log(1/δ)

n2ε2
)

and O( d2

n2 ε2
+ 1

n) for general strongly convex loss functions, under the assumption that the
optimal risk F (w∗) is relatively small. It is also notable that the bounds in Theorem 23
have exponential dependence on the parameter τ , which means τ also cannot be very large.
Moreover, due to the large (hidden) constant in the upper bound, the practical performance
of Theorem 23 is poor. We leave the problem of designing more practical algorithms for
future research.
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Remark 25 It is notable that recently (Asi et al., 2022) studies the problem of DP-SCO
under TNC with θ = 2 and in the interpolation regime, which is similar to our problem
in this section. An instance of SCO is an interpolation problem if there exists w∗ ∈ W∗
such that 0 ∈ ∂f(w∗, x) for all x ∼ D, where W∗ = arg minw∈W F (w) denote the optimal
set. In other words, an interpolation SCO problem indicates that there exists a solution that
simultaneously minimizes all the sample losses. Specifically, (Asi et al., 2022) shows that it

is possible to achieve an excess population risk of O
(

1
nτ + exp(−Θ̃(n)) + exp(−Θ̃(nεd ))

)
and

O

(
1
nτ + exp(−Θ̃(n)) + exp(−Θ̃( nε√

d log(1/δ)
))

)
for ε-DP and (ε, δ)-DP, respectively, where

τ > 0 is any constant. It seems like their results are better than ours. However, we claim
that due to different assumptions, our results are incomparable to theirs. Note that here
we assume the loss is non-negative and the minimal value of F (w∗) is small, which may
not satisfy the interpolation problem condition that needs all sample losses to achieve the
minimal value simultaneously (unless F (w∗) = 0). On the other hand, for an interpolation
problem, we also cannot say its minimal value F (w∗) is small.

6. Experiments

In this section, we provide experimental studies to compare the effectiveness of the proposed
methods for several problems satisfying TNC.

Experimental Settings

For the instances satisfying TNC, here we study three examples that have been studied in
the previous related work such as (Liu et al., 2018; Xu et al., 2017). The first one is linear
regression and the constrained set is the unit `1-norm ball. As we mentioned in Fact 1, it
satisfies TNC with parameter θ = 2. Specifically, we have

min
||w||1≤1

F (w)
∆
= E[(〈w, x〉 − y)2]. (5)

We also study the `2-norm regularized logistic regression (with the regularization parameter
λ) under the unit `2-norm ball constraint, which is λ-strongly convex and thus satisfies
(2, λ)-TNC. Specifically, let hw(x) = 1

1+e−〈x,w〉
and y ∈ {0, 1}, the problem can be written

as

min
||w||2≤1

F (w)
∆
= E[−y log hw(x)− (1− y) log(1− hw(x))] +

λ

2
||w||22. (6)

Here we will set the parameter λ = 10−3.

Finally, we consider the `1 constrained `4-norm linear regression, which has been studied
in (Xu et al., 2017) and satisfies TNC with θ = 4 (Liu et al., 2018). Specifically, it can be
written as the following.

min
||w||1≤1

F (w)
∆
= E[(〈w, x〉 − y)4]. (7)
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Methods

Although we studied both (ε, δ)-DP and ε-DP, in practice we are preferable to (ε, δ)-DP.
Consequently, this section exclusively concentrates on the discussion of (ε, δ)-DP. In the
context of the three aforementioned instances, we will consider the following baseline meth-
ods.

• DP-SGD (Abadi et al., 2016). Notably, the initial version of DP-SGD was intro-
duced in (Bassily et al., 2014). However, its practical performance in its original form
was found to be unsatisfactory, as highlighted in (Wang et al., 2017). To address this,
we adopt the batched and clipped variant as proposed by (Abadi et al., 2016), which
demonstrates improved practical performance. It’s important to mention, though,
that the algorithm presented in (Abadi et al., 2016) with a general clipping threshold
lacks a theoretical guarantee on the excess population risk. Our approach involves
conducting hyperparameter tuning to yield optimal outcomes, and we will present the
results based on the selected hyperparameters.

• Phased-SGD (Algorithm 1). Theoretically, Phased-SGD in (Feldman et al., 2020)
could be considered as the state-of-the-art method for DP-SCO with smooth convex
loss functions. Here we adopt the parameter settings delineated in the theoretical
results given by (Feldman et al., 2020).

• Phased-SGD-SC (Algorithm 3). Theoretically, Phased-SGD-SC in (Feldman
et al., 2020) could be considered as the state-of-the-art method for DP-SCO with
smooth and strongly convex loss functions. Here we will follow the parameter setting
in the theoretical results given by (Feldman et al., 2020).

• SC-psgd (Wu et al., 2017). The Private Perturbation-based SGD (SC-psgd) for
strongly convex loss method proposed by (Wu et al., 2017) is a practically feasible
variant of the output perturbation method. As suggested by Iyengar et al. (2019),
here we set constant learning rates as this scheme produces the most accurate models.

Regarding our methodologies, it’s important to highlight that we will exclude the investiga-
tion of Algorithm 4 and Algorithm 8. A closer examination reveals that these algorithms,
from a theoretical perspective, incorporate notably large constants, thereby diminishing
their practical feasibility. As a result, our focus will be on assessing PSA (Algorithm 2) and
Iterated Phased-SGD (Algorithm 5, we denote it as Iterated SGD) with parameter values
θ̄ = 1.5 and 2 using comparative analysis. As for the initial point in these algorithms, it
will be randomly sampled from the constrained set W.

Note that all the algorithms presented in the experimental results are conducted for 20
random runs and we take their averaged testing error over the 20 runs.

Dataset and Parameter Settings

We will implement all the above methods on four real-world datasets from the libsvm
website3, namely a8a (n = 22, 696, d = 123 for training, and n = 9, 865 for testing), a9a

3. https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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(n = 32, 561, d = 123 for training, and n = 16, 281 for testing), ijcnn1 (n = 49, 990, d = 22
for training, and n = 91, 701 for testing), and w7a (n = 24, 692, d = 300 for training, and
n = 25, 057 for testing). For each sample in each dataset, we preprocess it to make its
feature vector satisfy ‖x‖1 ≤ 1 so that the loss function will be Lipschitz for some constant.

Since it is difficult to get the exact value of the population risk function, here we will
use the testing error to approximate it, which is the value of the empirical risk on test
data. In the experimental part, we study the above-mentioned three TNC problems and
their corresponding testing errors with various sample sizes and privacy budgets ε. When
performing the results for different sample sizes, we will fix ε = 0.5 and consider different
sample sizes n that are at most 3.5×104. When performing the results for different privacy
budgets ε, we will use n = 104 samples and choose ε = {0.5, 1, 1.5, 2} respectively. We will
set δ = 1

n1.1 for all experiments.

Experimental Results

In Figure 1, we show the performance of Iterated SGD with different θ̄ comparing with
three baseline methods for `2-norm regularized logistic regression. First, we can see that for
all four datasets, DP-SGD and SC-psgd perform better than Phased-SGD-SC and Iterated
SGD, indicating that the latter two methods are less efficient, although they have better
upper bounds theoretically. Secondly, compared with Phased-SGD-SC, our methods are
better, which is consistent with the observation that the previous linear-time optimal DP-
SCO algorithms in (Feldman et al., 2020) do not perform well in practice. Finally, from
the results of Iterated SGD with θ̄ = 2 and θ̄ = 1.5, we can see that our method is quite
flexible as the performance difference between these methods is slight. This is due to that
we showed that Theorem 14 will hold as long as θ ≥ θ̄ > 1. However, we note that the
performance could still be different for θ̄ = 1.5 and θ̄ = 2, and we find that θ̄ = 1.5 is
better than θ̄ = 2. We conjecture it is because the hidden constant in the upper bound of
Theorem 14 in the case of θ̄ = 1.5 is relatively smaller than the case of θ̄ = 2.

Figure 2 shows the results of linear regression for our three methods (Iterated SGD(θ̄ =
2), Iterated SGD(θ̄ = 1.5), and PSA) and three baseline methods. We can observe that our
methods perform better than Phased-SGD in most cases, except the case when n is large in
ijcann1 where Phased-SGD is better than Iterated SGD. However, we think it is acceptable
as we can see such a gap is small. Moreover, we can see that compared with Iterated
SGD, PSA performs better for all datasets. However, since PSA requires projection to the
intersection of two convex sets, it is still inefficient and the performance depends heavily
on how accurately we can do the projection while its efficiency depends on the efficiency of
the projection. We can also see that DP-SGD and SC-psgd are still the best two methods.

We study the behaviors of our methods and baselines with different privacy budget ε in
Figure 3-5 for linear regression, `2-norm regularized logistic regression, and `4-norm linear
regression. We can first see that for almost all the cases, DP-SGD and SC-psgd are the two
best methods. However, for `4-norm linear regression and when ε is small, we can see PSA
may be the best, e.g., Figure 5 (b). We think this is because PSA could leverage the TNC
with θ = 4 for `4-norm linear regression. Secondly, we can see unlike linear regression or
`4-norm linear regression, PSA has worse performance than Iterated SGD on IJCNN data.
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Figure 1: Results of l2-norm regularized logistic regression with different training sample
sizes.
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Figure 2: Results of linear regression with different training sample sizes.
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Figure 3: Results of linear regression with different privacy budget ε.

Thus, we conjecture the performance of PSA and Iterated SGD heavily depends on the
dataset.
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Figure 4: Results of l2-norm regularized logistic regression with different privacy budget ε.

7. Conclusion

In this paper, we studied DP-SCO with special classes of population functions. In the first
part of the paper, we study the case where the population function satisfies TNC with the
parameter θ > 1. Specifically, we first provided several methods which could achieve upper

bounds of Õ(( 1√
n

+ d
nε)

θ
θ−1 ) and Õ(( 1√

n
+

√
d log(1/δ)

nε )
θ
θ−1 ) for ε-DP and (ε, δ)-DP, respectively.

Then we showed that for any θ > 1, there is a population risk function satisfies TNC with θ
such that for any ε-DP ((ε, δ)-DP) algorithm, the excess population risk of its output is lower

bounded by Ω(( dnε)
θ
θ−1 ) and Ω((

√
d log(1/δ)

nε )
θ
θ−1 ) for ε-DP and (ε, δ)-DP, respectively. In the

second part of the paper, we revisited DP-SCO with strongly convex loss functions. We
claimed that when the loss function is non-negative and the optimal value of the population
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Figure 5: Results of `4-norm linear regression with different privacy budget ε.

function is small enough, it is possible to achieve an upper bound of O(d log(1/δ)
n2ε2

+ 1
nτ ) and

O( d2

n2ε2
+ 1

nτ ) for any τ > 1 in (ε, δ)-DP and ε-DP model respectively if the sample size n is
sufficiently large.

Besides the open problems we mentioned in the previous parts, there are other unsolved
problems: 1) From the theoretical results in this paper, we can see there is still a gap of
O( 1

n
θ

2(θ−1)

) between upper bounds and lower bounds in both ε-DP and (ε, δ)-DP models.

Thus, the optimal rates of excess population risk is still unknown. 2) In this paper we
provide faster rates of DP-SCO with special class of functions, especially for TNC population
functions. However, besides TNC, there are other special classes of functions which have
faster rates in the non-private case, such as exponential concave loss (Koren and Levy,
2015). It is still unknown whether we can get faster rates under the differential privacy
constraint. We will leave these problems for future research.
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Appendix A. Omitted Proofs

Proof [Proof of Theorem 11] For convenience here we only show the proof of (ε, δ)-DP.

The proof of ε-DP is almost the same by replacing the term ( 1√
n

+

√
d log(1/δ)

εn ) to ( 1√
n

+ d
nε)

in the following proof.

The guarantee of (ε, δ)-DP is just followed by Lemma 10 and the parallel theorem of
Differential Privacy. In the following we will focus on the utility.

For simplicity, we denote a(n) = 10L

(
1√
n

+

√
d log(1/δ)

εn

)
. We set µ0 = 2R1−θ

0 a(n0),

µk = 2(θ−1)kµ0 and Rk = R0

2k
, where k = 1, · · · ,m.

Then we have µk ·Rθk = 2−kµ0R
θ
0. We can also assume that λ ≤ L

Rθ−1
0

, otherwise we can

set λ = L
Rθ−1

0

, which makes TNC still hold.

Recall that m = b1
2 log2

2n
log2 n

c − 1, when n ≥ 256, it follows that

0 <
1

2
log2

2n

log2 n
− 2 ≤ m ≤ 1

2
log2

2n

log2 n
− 1 ≤ 1

2
log2 n.

Thus, we have 2m ≥ 1
4

√
2n

log2 n
.

Thus

µm = 2(θ−1)mµ0 ≥ 2mµ0

≥ 1

4

√
2n

log2 n
· 2 ·R1−θ

0 a(n0)

= 5 · LR1−θ
0

√
2n

log2 n

(
1√
n
m

+

√
d log(1/δ)

ε · nm

)

≥ 5 · LR1−θ
0

√
2n

log2 n

 1√
2n

log2 2n−log2 log2 n−4


= 5 · LR1−θ

0

√
log2 2n− log log2 n− 4

log2 n

≥ LR1−θ
0

(
Since 5 ·

√
log2 2n− log log2 n− 4

log2 n
≥ 1 when n ≥ 256

)
≥ λ (By assumption).

(8)

where the third inequality is given by throwing away the

√
d log(1/δ)

ε· n
m

term and substituting

m in term 1√
n
m

with 1
2 log2

2n
log2 n

− 2.

Below, we consider the following two cases.

Case 1 If λ ≥ µ0, then µ0 ≤ λ ≤ µm. We have the following lemma.
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Lemma 26 Let k∗ satisfies µk∗ ≤ λ ≤ 2θ−1µk∗, then for any 1 ≤ k ≤ k∗, the points
{ŵk}mk=1 generated by Algorithm 2 satisfy

E[||ŵk−1 − w∗||2] ≤ Rk−1 = 2−(k−1) ·R0, (9)

E[F (ŵk)]− F (w∗) ≤ µkRθk = 2−kµ0R
θ
0. (10)

Moreover, for k ≥ k∗, we have

E[F (ŵk)]− E[F (ŵk∗)] ≤ µk∗Rθk∗ . (11)

Proof [Proof of Lemma 26] We prove (9), (10) by induction. Note that (9) holds for k = 1.
Assume (9) is true for some k > 1, then we have

E[F (ŵk)]− F (w∗) ≤ 10Rk−1 · L

(
1
√
n0

+

√
d log(1/δ)

ε · n0

)
= Rk−1a(n0)

=
1

2
µk2

(1−θ)kRθ−1
0 Rk−1

= µkR
θ
k

(12)

Which is (10). By the definition of TNC, we have

E||ŵk − w∗||θ2 ≤
1

λ
(E[F (ŵk)]− F (w∗))

≤ E[F (ŵk)]− F (w∗)

µk∗

≤
µkR

θ
k

µk∗
≤ Rθk

(13)

Thus (9) is true for k + 1.
Now we prove (11). Referring to Lemma 10, we know that

E[F (ŵk)]− E[F (ŵk−1)] ≤ Rk−1 · a(n0)

= 2k
∗−kRk∗−1a(n0)

= 2k
∗−kµk∗R

θ
k∗

= µkR
θ
k

Thus, for k > k∗,

E[F (ŵk)]− E[F (ŵk∗)] =

k∑
j=k∗+1

(E[F (ŵj)]− E[F (ŵj−1)])

≤
k∑

j=k∗+1

2k
∗−jµk∗R

θ
k∗

= (1− 2k
∗−k)µk∗R

θ
k∗

≤ µk∗Rθk∗
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Here completes the proof of the lemma.

Now we proceed to prove theorem 11 in this case.

E[F (ŵm)]− F (w∗) = (E[F (ŵm)]− E[F (ŵk∗)]) + (E[F (ŵk∗)]− F (w∗))

≤ 2µk∗R
θ
k∗

≤ 4
(µk∗
λ

) 1
θ−1

µk∗R
θ
k∗ (Since

(µk∗
λ

) 1
θ−1 ≥ 1

2
)

= 4

(
2(θ−1)k∗µ0

λ

) 1
θ−1

µk∗R
θ
k∗

= 4(2k
∗
µk∗R

θ
k∗µ

1
θ−1

0

(
1

λ

) 1
θ−1

)

= 4(µ0R
θ
0µ

1
θ−1

0

(
1

λ

) 1
θ−1

)

= 4(Rθ0µ
θ
θ−1

0

(
1

λ

) 1
θ−1

)

= 4 · ((2 · a(n0))
θ
θ−1

(
1

λ

) 1
θ−1

)

= 4 ·
(

1

λ

) 1
θ−1

·

(
20L

(√
m√
n

+
m

n

√
d log(1/δ)

ε

)) θ
θ−1

(14)

where m = O(log2 n).(Recall that m ≤ 1
2 log2 n).

Case 2 If λ < µ0, then

E[F (ŵ1)]− F (w∗) ≤ R0a(n0)

=

(
2

µ0

) 1
θ−1

· a(n0)
θ
θ−1

<

(
2

λ

) 1
θ−1

· a(n0)
θ
θ−1

Also, we have

E[F (ŵm)]− E[F (ŵ1)] =

m∑
j=2

(E[F (ŵj)]− E[F (ŵj−1)])

≤
m∑
j=2

Rj−1 · a(n0)

=
m∑
j=2

2−(j−1)R0 · a(n0)

= (1− (1/2)m−1)R0 · a(n0) < R0 · a(n0)
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By a similar argument process as in Case 1, we have

E[F (ŵm)]− F (w∗) = (E[F (ŵm)]− E[F (ŵ1)]) + (E[F (ŵ1)]− F (w∗))

≤ 2R0a(n0) ≤ 2

(
2

λ

) 1
θ−1

· a(n0)
θ
θ−1

= 2 ·
(

2

λ

) 1
θ−1

·

(
10L

(√
m√
n

+
m

n

√
d log(1/δ)

ε

)) θ
θ−1

(15)

Combining the two cases, we conclude that

E[F (ŵm)]− F (w∗) ≤ O

(Lθ
λ

) 1
θ−1

·

(√
log n√
n

+

√
d log(1/δ) · log n

nε

) θ
θ−1



Proof [ Proof of Theorem 12] Before our proof, we provide some notations. We denote
F ∗ = minw∈W F (w). For a given error ρ, we denote Lρ the ρ-level set of function F (W )
and Sρ the ρ-sublevel set F (w), respectively, i.e., Lρ = {w ∈ W : F (w) = F ∗ + ρ},
Sρ = {w ∈ W : F (w) ≤ F ∗ + ρ}. For any w ∈ W, we denote w+

ρ as the closet point in the
ρ-sublevel set to w, i.e.,

w+
ρ = arg min

v∈Sρ
‖v − w‖22.

Using the KKT condition, it is easy to check that when w 6∈ Sρ then w+
ρ ∈ Lρ. We first

recall the following lemma, given by (Yang and Lin, 2018).

Lemma 27 (Lemma 1 in (Yang and Lin, 2018)) For any w ∈ W and ρ > 0 we have

‖w − w+
ρ ‖2 ≤

dist(w+
ρ ,W∗)
ρ

(F (w)− F (w+
ρ )),

where W∗ = {w : w ∈ arg minw∈W F (w)} and dist(w+
ρ ,W∗) is the distance from the point

w+
ρ to the set W∗.

Lemma 28 If f(·, x) is convex, β-smooth and L-Lipschitz for each x and γ ≥ ‖W‖2L , where
‖W‖2 is the diameter of the set W, i.e., ‖W‖2 = maxw,w′∈W ‖w−w′‖2. Based on different
noises and stepsizes in Algorithm 3, Algorithm 3 is (ε, δ) or ε-DP if η ≤ 1

β . Given w0 ∈ W,
for the output wk in Algorithm 3. In the case of (ε, δ)-DP, we have

E[F̂ (ws)]− min
w∈W

F̂ (w) ≤ 3200L2γ(
1

n
+
d log(1/δ)

n2ε2
).

In the case of ε-DP, we have

E[F̂ (ws)]− min
w∈W

F̂ (w) ≤ 3200L2γ(
1

n
+

d2

n2ε2
),

where F̂ (w) = F (w) + 1
2γ ||w − w0||22 and w0 is the initial point.
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Proof [Proof of Lemma 28] We can see the regularized function of F̂ (w) as a population
risk with loss function f̃(w, x) = f(w, x)+ 1

2γ ‖w−w0‖22. Thus, by the assumption of f(·, x),

we have f̃(·, x) is L+ ‖W‖2
γ ≤ 2L-Lipschitz, β+ 1

γ -smooth and 1
γ -strongly convex. Thus, by

Theorem 5.1 in (Feldman et al., 2020) we have the results.

Next we start our proof. For convenience here we only focus on (ε, δ)-DP, the proof of ε-DP
is almost the same. The guarantee of (ε, δ)-DP is simply followed by Lemma 28. We also
note that Lemma 28 implies that for any w ∈ W,

E[F (wk)]− F (w) ≤ 1

2γ
||w − w0||22 + 3200L2γ(

1

n
+
d log(1/δ)

n2ε2
). (16)

We denote ρ = (8×3200L2

λ
2
θ

( 1
n0

+ d log(1/δ)
n2

0ε
2 ))

θ
2(θ−1) , χk = χ0

2k
and γk = γ0

2k
. Then we have

1

γ0
=

λ
2
θ

4χ0
ρ

2(θ−1)
θ =

2k−2λ
2
θ

χk
ρ

2(θ−1)
θ . (17)

We assume that for all i ∈ {0, 1 · · · ,m − 1}, E[F (wi)] − F ∗ > 2ρ. Otherwise we have
proved the theorem.

We will show by induction that

E[F (wk)]− F ∗ ≤ χk + ρ. (18)

If this is true then when w = m we have

E[F (wk)]− F ∗ ≤ O
(

(
L2

λ
2
θ

(
1

n0
+
d log(1/δ)

n2
0ε

2
))

θ
2(θ−1)

)
.

In the following we will show (18). For k = 0, by the definition of χ, it is true. Now,
consider the k-th phase. By (16) we have

E[F (wk)− F (w+
k−1,ρ)] ≤

1

2γk
E‖w+

k−1,ρ − wk−1‖22︸ ︷︷ ︸
A

+ 3200L2γk(
1

n0
+
d log(1/δ)

n2
0ε

2
)︸ ︷︷ ︸

B

.

Since wk−1 6∈ Sρ, w+
k−1,ρ ∈ Lρ. Moreover, since we have E[F (wk−1)] − F (w∗) ≤ χk−1 + ρ,

we have E[F (wk−1)]− E[F+(wk−1,ρ)] ≤ χk. For term A, by Lemma 27 we have

E‖w+
k−1,ρ − wk−1‖2 ≤

1

λ
1
θ ρ1− 1

θ

χk−1.

Thus,

1

2γk
E‖w+

k−1,ρ − wk−1‖22 ≤
1

2γk
(

1

λ
2
θ ρ

2(θ−1)
θ

χ2
k−1) =

χk−1

4
,

where the last equality is due to (17).
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For term B, we have

3200L2γk(
1

n0
+
d log(1/δ)

n2
0ε

2
) = 3200L2 4χ0

2kλ
2
θ ρ

2(θ−1)
θ

(
1

n0
+
d log(1/δ)

n2
0ε

2
) =

χ0

4× 2k−1
=
χk−1

4
,

where the first equality is due to (17). Thus, in total we have

E[F (wk)− F (w+
k−1,ρ)] ≤

χk−1

2
= χk.

That is E[F (wk)]− F ∗ ≤ χk + ρ.

Proof [Proof of Theorem 14] In the following we only consider the (ε, δ)-DP case. It is
almost the same for ε-DP.

The guarantee of (ε, δ)-DP is just followed by Lemma 10 and the parallel theorem of
Differential Privacy. In the following we will focus on the utility.

Since k = b(logθ̄ 2) · log lognc, then k ≤ (logθ̄ 2) · log logn, namely 2k ≤ (log n)logθ̄ 2 and
2k−1

(logn)logθ̄ 2 ≤ 1. Observe that the total sample number used in the algorithm is
∑k

i=1 ni ≤∑k
i=1

2i−1n

(logn)logθ̄ 2 = (2k−1)n

(logn)logθ̄ 2 ≤ n.

For the output of phase i, denote ∆i = E[F (wi)] − F (w∗), and let Dθ
i = E[||wi −

w∗||θ2]. The assumption of TNC implies that F (wi)− F (w∗) ≥ λ||wi − w∗||θ2, which will be
E[F (wi)]− F (w∗) ≥ λE[||wi − w∗||θ2] when we take expectations at both sides, namely

∆i ≥ λDθ
i . (19)

Thus, we have

∆i ≤ cLDi−1(
1
√
ni

+

√
d log(1/δ)

εni
)

(19)

≤ cL(
∆i−1

λ
)

1
θ (

1
√
ni

+

√
d log(1/δ)

εni
), (20)

where the first inequality comes from Lemma 10 and the second inequality uses (19). Denote

Ei = cθLθ

λ ( 1√
ni

+

√
d log(1/δ)

εni
)θ. Then (20) can be simplified as

∆i ≤ (∆i−1Ei)
1
θ . (21)

Notice that ni/ni−1 = 2, then Ei−1

Ei
≤ ( ni

ni−1
)θ = 2θ, namely:

Ei ≥ 2−θEi−1. (22)

Then we can rearrange the above inequality as

∆i

E
1
θ−1

i

≤ (∆i−1Ei)
1
θ

E
1
θ−1

i

≤ 2
1
θ−1

∆i−1

E
1
θ−1

i−1

 1
θ

, (23)

where the first inequality uses (21) and the second inequality applies (22).
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It can be verified that (23) is equivalent to

∆i

2
θ

(θ−1)2E
1
θ−1

i

≤

 ∆i−1

2
θ

(θ−1)2E
1
θ−1

i−1

 1
θ

≤

 ∆1

2
θ

(θ−1)2E
1
θ−1

1

 1

θi−1

.

According to Lemma 9, ∆1 ≤ (Lθλ−1)
1
θ−1 . Also observe that

E1 =
cθLθ

λ
(

1
√
n1

+

√
d log(1/δ)

εn1
)θ ≥ cθLθ

λ

1

(
√
n1)θ

≥ cθL
θ

λ

1

nθ
.

Let c1 = c
θ
θ−1 2

θ
(θ−1)2 , then ∆1

2
θ

(θ−1)2 E
1
θ−1
1

≤ n
θ
θ−1

c1
, which implies that for k = b(logθ̄ 2) ·

log lognc,

∆k

2
θ

(θ−1)2E
1
θ−1

k

≤

(
n

θ
θ−1

c1

) 1

θk−1

.

Let C1 = 2
θ3

θ−1
+θ2| log c1|. In the following we will prove that(

n
θ
θ−1

c1

) 1

θk−1

≤ C1.

Since k + 1 ≥ (logθ̄ 2) log log n ≥ (logθ 2) log log n, it follows that

(k − 1) log θ + log logC1 ≥ log(
θ

θ − 1
+ | log c1|) + log log n,

which indicates

(
θ

θ − 1
+ | log c1|) log n ≤ θk−1 logC1.

Thus we have θ
θ−1 log n−log c1 ≤ θk−1 logC1, which is equivalent to our object

(
n

θ
θ−1

c1

) 1

θk−1

≤

C1.
Now we know

∆k

2
θ2

(θ−1)2E
1
θ−1

k

≤

(
n

θ
θ−1

c1

) 1

θk−1

≤ C1,

which indicates that ∆k

E
1
θ−1
k

≤ 2
θ

(θ−1)2C1 = 2
θ2( θ

2−θ+1

(θ−1)2
+| log c1|)

:= C.

As a result, we hold a solution with error:

E[F (wk)]− F (w∗) ≤ CE
1
θ−1

k = C

(
cθLθ

λ

) 1
θ−1

(
1
√
nk

+

√
d log(1/δ)

εnk

) θ
θ−1

≤ 2
3θ

2(θ−1) · C
(
cθLθ

λ

) 1
θ−1
(

1

n
+
d log(1/δ)

ε2n2

) θ
2(θ−1)
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where we use the fact that nk = 2k−1

(logn)logθ̄ 2 ≥ 1
2n and (a+ b)2 ≤ 2(a2 + b2).

Remark 29 To perform valid Phased SGD (Subroutine of Iterated Phased-SGD) for k

times, it should satisfy ni = 2i−1n

(logn)logθ̄ 2 ≥ 2 for any i ∈ [k]. Otherwise, the Phased SGD

cannot function properly to get the bound in Lemma 10. As a result, n should be sufficiently

large such that θ̄ ≥ 2
log logn

(logn)−1 .

Proof [Proof of Theorem 19]
Based on the fact that a lower bound on excess empirical risk implies nearly the same

lower bound on the excess population risk (Bassily et al., 2019), here we consider the
empirical risk, then we can use the boosting technique to the population loss. See (Bassily
et al., 2019) for details.

Based on the definition of the loss function in (3), we can see that f(w, x) is 2-Lipschiz
in ||w||2 ≤ 1, and it is (θ, λ)-TNC with some constant λ (Sridharan and Tewari, 2010).

For any dataset S = {x1, · · · , xn} with data point drawn from x ∈ {− 1√
d
, 1√

d
}d, and

any w ∈ W, we define the empirical risk function as the following,

F̂ (w;S) =
n∑
i=1

1

n
f(w, xi) = −〈w, 1

n

n∑
i=1

xi〉+
1

θ
||w||θ2.

In the following, we first show that there is a point w∗ satisfying ||w∗||2 ≤ 1, s.t. ∇F̂ (w∗;S) =
0. To prove this, we first take the derivative of F̂ (w;S) and let it be 0, so we get

∇F̂ (w∗;S) = 0⇔ ||w∗||θ−2
2 · w∗ =

∑n
i=1 xi
n

(24)

That is ||w∗||θ−1
2 = ||

∑n
i=1 xi
n ||2 ≤ 1, thus w∗ must satisfies ‖w∗‖2 ≤ 1 when θ > 1.

In the following, we denote Z =
∑n
i=1 xi
n , then ||w∗||2 = ||Z||

1
θ−1

2 . Thus from (24) we can

get w∗ = Z

||Z||
θ−2
θ−1
2

. Let wpriv denote the output of the (ε, δ)-differentially private algorithm

A, we will show that with probability at least 1
3 ,

||wpriv − w∗|| ≥ Ω

(√d log(1/δ)

nε

) 1
θ−1


We prove it by showing that the following inequality leads to contradiction.

||wpriv − w∗|| ≤ O

(√d log(1/δ)

nε

) 1
θ−1

 (25)

If (25) holds, then

||||Z||
θ−2
θ−1

2 wpriv − Z|| ≤ O

(√d log(1/δ)

nε

) 1
θ−1

· ||Z||
θ−2
θ−1

2

 (26)

Recall the following lemma.

36



Faster Rates of DP-SCO

Lemma 30 (Lemma 5.1 in (Steinke and Ullman, 2015; Bassily et al., 2014)) Let

n, d ∈ N, ε > 0 and δ = o( 1
n). There is a number M = Ω

(
min

(
n,

√
d log(1/δ)

ε

))
such that

for every (ε, δ)-differentially private algorithm A, there is a dataset S = {x1, · · · , xn} ⊆
{− 1√

d
, 1√

d
}d with ||

∑n
i=1 xi||2 ∈ [M − 1,M + 1] such that w.p. 1

3 , we have

||A(S)− 1

n

n∑
i=1

xi||2 = Ω

(
min

(
1,

√
d log(1/δ)

εn

))

For the sake of contradiction, we consider such S described in the above lemma, with
probability more than 2

3 , (25) holds. Let Ã be an (ε, δ)-differentially private algorithm that

first runs A on the data and then outputs ||Z||
θ−2
θ−1

2 wpriv, and let n be sufficiently large that

n ≥
√
d log(1/δ)

ε .

Then we have ||Z||
θ−2
θ−1

2 = Θ

((√
d log(1/δ)

nε

) θ−2
θ−1

)
, and (26) will become

||||Z||
θ−2
θ−1

2 wpriv − Z|| = ||Ã − Z|| ≤ O

(√
d log(1/δ)

nε

)

which contradicts to Lemma 30. Thus

F̂ (wpriv, S)− F̂ (w∗, S) ≥ Ω

(√d log(1/δ)

nε

) θ
θ−1

 (27)

By the boosting technique in (Bassily et al., 2019), we have with probability at least 1
3 ,

F (wpriv)− min
‖w‖2≤1

F (w) ≥ Ω

(√d log(1/δ)

nε

) θ
θ−1

 .

Proof [Proof of Theorem 20] The proof of Theorem 20 is almost the same as the proof
of Theorem 19. Instead of using Lemma 30 we use the following lemma:

Lemma 31 (Lemma 5.1 in (Bassily et al., 2014)) Let n, d ∈ N, ε > 0 such that n ≥
Ω(dε ). There is a number M = Ω

(
min

(
n, dε

))
such that for every (ε, δ)-differentially private

algorithm A, there is a dataset S = {x1, · · · , xn} ⊆ {− 1√
d
, 1√

d
}d with ||

∑n
i=1 xi||2 ∈ [M −

1,M + 1] such that w.p. 1
3 , we have

||A(S)− 1

n

n∑
i=1

xi||2 = Ω

(
min

(
1,
d

εn

))
. (28)
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Proof [Proof of Theorem 22] For simplicity, here we only focus on (ε, δ)-DP. It is almost
the same for ε-DP.

In the first step we perform Algorithm 1, which is (ε, δ)-DP. Thus, it is sufficient to
show that Algorithm 7 is also (ε, δ)-DP, i.e., each epoch is (ε, δ)-DP. To prove this, we first
revoke the stability of One -Pass Projected SGD for strongly convex loss functions, which
is given by (Hardt et al., 2015).

Lemma 32 [Theorem 3.9 in (Hardt et al., 2015)] Assume the loss function f(·, x) is λ-
strongly convex and β-smooth with respect to w ∈ W for all x. Let Si and S

′
i be two samples

of size ni differing in only a single element. Denote wti and w′ti as the outputs of the
projected stochastic gradient method (4) on datasets Si and S

′
i respectively, then if η ≤ 1

β
we have

||wti − w′
t
i|| ≤

2L2

λni
(29)

Recall that in each epoch we perform projected gradient descent for ni steps using ni
samples, according to Lemma 32, we can bound the sensitivity of wti for each t and we have

||wti − w′
t
i|| ≤ 2L2

λni
for all t, where wti and w′ti correspond to the solution of two neighboring

dataset Si and S
′
i that differs in one sample.

Thus, the sensitivity of wi = 1
ni

ni∑
t=1

wti is also 2L2

λni
. By the Gaussian mechanism, adding

Gaussian noise with σi =
8L2
√

log(1/δ)

niλε
will preserve (ε, δ)-DP.

Proof [Proof of Theorem 23] For convenience here we only focus on (ε, δ)-DP, the proof
is almost the same as for ε-DP.

Since F (·) is λ-strongly convex, it satisfies (2, λ2 )-TNC. Thus, by Theorem 11 we have

E[F (ŵ)]− F (w∗) ≤ c2L2

λ/2

(
1

n/2
+
d log(1/δ)

ε2(n/2)2

)
≤ c2

1L
2

λ

(
1

n
+
d log(1/δ)

ε2n2

)
≤ c2

1L
2

λ

(
1

κτ
+
d log(1/δ)

ε2κ2τ

)
, (30)

where c and c1 are universal constants and the last inequality is due to the condition of
n ≥ κτ .

Now we proceed to analyze the solution returned by Epoch-DP-SGD (Algorithm 7).
The following lemma shows how the excess population risk decreases in each epoch.

Lemma 33 (Lemma 1 in (Zhang and Zhou, 2019)) Assume f(·, x) is non-negative and
β-smooth for all x and F (·) is convex. Apply ni iterations of (4), i.e., wt+1

i =
∏
W(wti −

ηi∇wf(wti , x
t
i)) with ηi < 1/(2β). Then for any w ∈ W, we have

E[F (wi)]− F (w) ≤ 1

2ηini(1− 2ηiβ)
E[||w1

i − w||2] +
2ηiβ

(1− 2ηiβ)
F (w),

where wi = 1
ni

ni∑
t=1

wti.
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Since f(·, x) is β-smooth for all x, we have

f(wi)− f(wi) ≤〈∇f(wi), wi − wi〉+
β

2
||wi − wi||22

=〈∇f(wi), ξi〉+
β

2
||ξi||22

Take expectations on both sides w.r.t the data and ξi we get

E[F (wi)]− F (wi) ≤
β

2
E[||ξi||22] =

dβσ2
i

2
=

32dL4β log(1/δ)

n2
i ε

2λ2
.

Combining with Lemma 33, we have

E[F (wi)]− F (w∗)

=E[F (wi)]− F (wi) + F (wi)− F (w∗)

≤32dL4β log(1/δ)

n2
i ε

2λ2
+

1

2ηini(1− 2ηiβ)
E[||w1

i − w∗||2] +
2ηiβ

(1− 2ηiβ)
F (w∗)

(31)

Based on the above result, we establish the following result of excess population risk of each
epoch in Epoch-DP-SGD (Algorithm 7).

Lemma 34 For any epoch e in Epoch-DP-SGD (Algorithm 7), we have

E[F (we)]− F (w∗) ≤
(

32dL4β log(1/δ)

n2
eε

2λ2
+

22τ+3 · κ · F (w∗)

ne

)
·

e∑
i=1

1

22(i−1)(τ−1)

+
c2

1L
2

λ

(
22τ2+τ

nτe
+

24τ2+4τ · d log(1/δ)

n2τ
e · ε2

)

Proof [Proof of Lemma 34] We will prove the lemma by induction on e.

Note that by iteration rules in our algorithm, w1
1 = ŵ, w1

e+1 = we, also, by the algorithm
setting, we have for any epoch e,

ηeβ ≤ η1β =
1

4
. (32)

ηene = η1n1 = 22τ+3κ · 1

4β
. (33)
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When e = 1, from (31), we have

E[F (w1)]− F (w∗) ≤32dL4β log(1/δ)

n2
1ε

2λ2
+

1

2η1n1(1− 2η1β)
E[||w1

1 − w∗||2] +
2η1β

(1− 2η1β)
F (w∗)

(33)

≤ 32dL4β log(1/δ)

n2
1ε

2λ2
+

λ

22τ+1
E[||w1

1 − w∗||2] + 4η1βF (w∗)

≤32dL4β log(1/δ)

n2
1ε

2λ2
+

λ

22τ+1
· 2

λ
E[F (w1

1)− F (w∗)] + 4η1βF (w∗)

(30)

≤ 32dL4β log(1/δ)

n2
1ε

2λ2
+

1

22τ

c2
1L

2

λ

(
1

κτ
+
d log(1/δ)

ε2κ2τ

)
+ 4η1βF (w∗)

(33)

≤ 32dL4β log(1/δ)

n2
1ε

2λ2
+

1

22τ

c2
1L

2

λ

(
22τ2+3τ

nτ1
+

24τ2+6τd log(1/δ)

ε2n2τ
1

)
+

22τ+3 · κF (w∗)

n1

≤32dL4β log(1/δ)

n2
1ε

2λ2
+
c2

1L
2

λ

(
22τ2+τ

nτ1
+

24τ2+4τd log(1/δ)

ε2n2τ
1

)
+

22τ+3 · κF (w∗)

n1
.

Thus the lemma holds for e = 1. Now we assume the lemma is true for some e ≥ 1, then
for e+ 1,

E[F (we+1)]− F (w∗)

(31)

≤ 32dL4β log(1/δ)

n2
e+1ε

2λ2
+

1

2ηe+1ne+1(1− 2ηe+1β)
E[||w1

e+1 − w∗||2] +
2ηe+1β

(1− 2ηe+1β)
F (w∗)

(32)

≤ 32dL4β log(1/δ)

n2
e+1ε

2λ2
+

1

ηe+1ne+1
E[||w1

e+1 − w∗||2] + 4ηe+1βF (w∗)

(33)

≤ 32dL4β log(1/δ)

n2
e+1ε

2λ2
+

λ

22τ+1
· 2

λ
E[F (we)− F (w∗)] +

κ · 22τ+3

ne+1
F (w∗)

≤32dL4β log(1/δ)

n2
e+1ε

2λ2
+

1

22τ

(
32dL4β log(1/δ)

n2
eε

2λ2
+

22τ+3 · κ · F (w∗)

ne

)
·

e∑
i=1

1

22(i−1)(τ−1)

+
1

22τ

c2
1L

2

λ

(
22τ2+τ

nτe
+

24τ2+4τ · d log(1/δ)

n2τ
e · ε2

)
+
κ · 22τ+3

ne+1
F (w∗)

<
32dL4β log(1/δ)

n2
e+1ε

2λ2

(
1 +

1

22τ−2
·

e∑
i=1

1

22(i−1)(τ−1)

)
+
c2

1L
2

λ

(
22τ2+τ

nτe+1

+
24τ2+4τ · d log(1/δ)

n2τ
e+1 · ε2

)

+
κ · 22τ+3

ne+1
F (w∗)

(
1 +

1

22τ−1

e∑
i=1

1

22(i−1)(τ−1)

)

<

(
32dL4β log(1/δ)

n2
e+1ε

2λ2
+

22τ+3 · κ · F (w∗)

ne+1

)
·
e+1∑
i=1

1

22(i−1)(τ−1)

+
c2

1L
2

λ

(
22τ2+τ

nτe+1

+
24τ2+4τ · d log(1/δ)

n2τ
e+1 · ε2

)
.

Thus the lemma holds for e+ 1 which completes the proof.
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Now we go back to our proof. The number of epochs made is given by the largest e which

satisfies
e∑
i=1

ni ≤ n
2 , i.e.,

e∑
i=1

ni = n1(1 + 2 + · · ·+ 2e−1) = n1(2e − 1) ≤ n

2

which means the largest value is E = blog2( n
2n1

+ 1)c and the final solution is w̃ = wE .
From Lemma 34, we have

E[F (wE)]− F (w∗) ≤
(

32L4βd log(1/δ)

λ2n2
E · ε2

+
22τ+3 · κF (w∗)

nE

)
·
E∑
i=1

1

22(i−1)(τ−1)

+
c2

1L
2

λ

(
22τ2+τ

nτE
+

24τ2+4τ · d log(1/δ)

n2τ
E · ε2

)

≤
(

32L4βd log(1/δ)

λ2n2
Eε

2
+

22τ+3 · κF (w∗)

nE

)
· 22τ−2

22τ−2 − 1

+
c2

1L
2

λ

(
22τ2+τ

nτE
+

24τ2+4τ · d log(1/δ)

n2τ
E · ε2

)

≤
(

22τ+9L4βd log(1/δ)

λ2n2ε2
+

24τ+4 · κF (w∗)

n

)
· 1

22τ−2 − 1

+
c2

1L
2

λ

(
22τ2+4τ

nτ
+

24τ2+10τ · d log(1/δ)

n2τ · ε2

)

=O

(
L4βd log(1/δ)

λ2n2ε2
+

4τ · κF (w∗)

n
+
c2

1L
2

λ

(
22τ2+4τ

nτ
+

24τ2+10τ · d log(1/δ)

n2τ · ε2

))

where the last step is due to the fact that nE = n12E−1 ≥ n1
4 ( n

2n1
+ 1) ≥ n

8 .
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