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Abstract

We provide a nonasymptotic analysis of the convergence of the stochastic gradient Hamil-
tonian Monte Carlo (SGHMC) to a target measure in Wasserstein-2 distance without as-
suming log-concavity. Our analysis quantifies key theoretical properties of the SGHMC as a
sampler under local conditions which significantly improves the findings of previous results.
In particular, we prove that the Wasserstein-2 distance between the target and the law of
the SGHMC is uniformly controlled by the step-size of the algorithm, therefore demonstrate
that the SGHMC can provide high-precision results uniformly in the number of iterations.
The analysis also allows us to obtain nonasymptotic bounds for nonconvex optimization
problems under local conditions and implies that the SGHMC, when viewed as a noncon-
vex optimizer, converges to a global minimum with the best known rates. We apply our
results to obtain nonasymptotic bounds for scalable Bayesian inference and nonasymptotic
generalization bounds.

Keywords: Non-convex optimization, underdamped Langevin Monte Carlo, non-log-concave
sampling, nonasmyptotic bounds, global optimization.

1. Introduction

We are interested in nonasymptotic estimates for the sampling problem from the probability
measures of the form

mg(df) oc exp(—pU())d6. (1)

when only the noisy estimate of VU is available. This problem arises in many cases in
machine learning, most notably in large-scale (mini-batch) Bayesian inference (Welling and
Teh, 2011; Ahn et al., 2012) and nonconvex stochastic optimization as for large values of
B, a sample from the target measure (1) is an approximate minimizer of the potential U
(Gelfand and Mitter, 1991). Consequently, nonasymptotic error bounds for the sampling
schemes can be used to obtain guarantees for Bayesian inference or nonconvex optimization.
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An efficient method for obtaining a sample from (1) is simulating the overdamped
Langevin stochastic differential equation (SDE) which is given by

ALy = —h(Ly)dt + \/gdBt, 2)

with a random initial condition Lo := 6y where h := VU and (Bi)¢>0 is a d-dimensional
Brownian motion. The Langevin SDE (2) admits 7g as the unique invariant measure,
therefore simulating this process will lead to samples from 73 and can be used as a Markov
chain Monte Carlo (MCMC) algorithm (Roberts et al., 1996; Roberts and Stramer, 2002).
Moreover, the fact that the limiting probability measure w5 concentrates around the global
minimum of U for sufficiently large values of § makes the diffusion (2) also an attractive
candidate as a global optimizer (see, e.g., Hwang (1980)). However, since the continuous-
time process (2) cannot be simulated, its first-order Euler discretization with the step-size
1 > 0 is used in practice, termed the Unadjusted Langevin Algorithm (ULA) (Roberts et al.,
1996). The ULA scheme has become popular in recent years due to its advantages in high-
dimensional settings and ease of implementation. Nonasymptotic properties of the ULA
were recently established under strong convexity and smoothness assumptions by Dalalyan
(2017); Durmus et al. (2017, 2019) while some extensions about relaxing smoothness as-
sumptions or inaccurate gradients were also considered by Dalalyan and Karagulyan (2019);
Brosse et al. (2019). The similar attractive properties hold for the ULA when the potential
U is nonconvex (Gelfand and Mitter, 1991; Raginsky et al., 2017; Xu et al., 2018; Erdogdu
et al., 2018; Sabanis and Zhang, 2019). In recent works, ULA has been extended for non-
convex cases in several different directions, e.g., under log-Sobolev inequality (Vempala
and Wibisono, 2019), under Hélder continuity and specific tail growth conditions (Erdogdu
and Hosseinzadeh, 2021), under Poincaré inequality (Chewi et al., 2022). Further work
has extended these results, see, e.g., Balasubramanian et al. (2022) for averaged Langevin
schemes, Erdogdu et al. (2022) for the analysis under dissipativity in Chi-squared and Renyi
divergences, Mou et al. (2022) for results under dissipativity with smooth initalisation, and
finally under weak Poincaré inequalities (Mousavi-Hosseini et al., 2023).

While the ULA performs well when the computation of the gradient h(-) is straightfor-
ward, this is not the case in most interesting applications. Usually, a stochastic, unbiased
estimate of h(-) is available, either because the cost function is defined as an expectation
or as a finite sum. Using stochastic gradients in the ULA leads to another scheme called
stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011). The SGLD has
been particularly popular in the fields of (i) large-scale Bayesian inference since it allows
one to construct Markov chains Monte Carlo (MCMC) algorithms using only subsets of
the dataset (Welling and Teh, 2011), (ii) nonconvex optimization since it enables one to es-
timate global minima using only stochastic (often cheap-to-compute) gradients (Raginsky
et al., 2017). As a result, attempts for theoretical understanding of the SGLD have been
recently made in several works, both for the strongly convex potentials (i.e. log-concave
targets), see, e.g., Barkhagen et al. (2021); Brosse et al. (2018) and nonconvex potentials,
see, e.g. Raginsky et al. (2017); Majka et al. (2018); Zhang et al. (2023b). Our particular
interest is in nonasymptotic bounds for the nonconvex case, as it is relevant to our work. In
their seminal paper, Raginsky et al. (2017) obtain a nonasymptotic bound between the law
of the SGLD and the target measure in Wasserstein-2 distance with a rate 7°/4n where 7 is
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the step-size and n is the number of iterations. While this work is first of its kind, the error
rate grows with the number of iterations. In a related contribution, Xu et al. (2018) have
obtained improved rates, albeit still growing with the number of iterations n. In a more
recent work, Chau et al. (2021) have obtained a uniform rate of order '/? in Wasserstein-1
distance. Majka et al. (2018) achieved error rates of n'/2 and n'/* for Wasserstein-1 and
Wasserstein-2 distances, respectively, under the assumption of convexity outside a ball. Fi-
nally, Zhang et al. (2023b) achieved the same rates under only local conditions which can
be verified for a class of practical problems.

An alternative to methods based on the overdamped Langevin SDE (2) is the class
of algorithms based on the underdamped Langevin SDE. To be precise, the underdamped
Langevin SDE is given as

2
dV; = —yVidt — h(6;)dt + ,/%dBt, (3)
d6; = Vidt, (4)
where (6;, V;)i>0 are called position and momentum process, respectively, and h := VU.

Similar to eq. (2), this diffusion can be used as both an MCMC sampler and nonconvex
optimizer, since under appropriate conditions, the Markov process (6, V;)¢>0 has a unique
invariant measure given by

75(d6, dv) o exp (—ﬁ @v\y? + U(9)>> dodv. (5)

Consequently, the marginal distribution of (5) in @ is precisely the target measure defined
in (1). This means that sampling from (5) in the extended space and then keeping the
samples in the #-space would define a valid sampler for the sampling problem of (1).

Due to its attractive properties, methods based on the underdamped Langevin SDE have
attracted significant attention. In particular, the first order discretization of (3)—(4), which
is termed underdamped Langevin MCMC' (i.e. the underdamped counterpart of the ULA),
has been a focus of attention, see, e.g., Duncan et al. (2017); Dalalyan and Riou-Durand
(2018); Cheng et al. (2018b). Particularly, the underdamped Langevin MCMC has displayed
improved convergence rates in the setting where U is convex, see, e.g., Dalalyan and Riou-
Durand (2018); Cheng et al. (2018b). Similar results have been extended to the nonconvex
case. In particular, Cheng et al. (2018a) have shown that the underdamped Langevin
MCMC converges in Wasserstein-2 with a better dimension and step-size dependence under
the assumptions smoothness and convexity outside a ball. It has been also shown that the
underdamped Langevin MCMC can be seen as an accelerated optimization method in the
space of measures in Kullback-Leibler divergence (Ma et al., 2019).

Similar to the case in the ULA, oftentimes VU (+) is expensive or impossible to compute
exactly, but rather an unbiased estimate of it can be obtained efficiently. The underdamped
Langevin MCMC with stochastic gradients is dubbed as Stochastic Gradient Hamiltonian
Monte Carlo (SGHMC) and given as (Chen et al., 2014; Ma et al., 2015)

2
Vilia = Vil = 0Vl HOOL X)) 44/~ e, (6)

On1 =0 + 1V, (7)
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where n > 0 is a step-size, V)] = vg, 0] = 6y, and E[H (0, Xo)] = h(0) for every 0 €
R?. We note that SGHMC relies on the Euler-Maruyama discretisation which is of the
possible discretisation methods that can be used. Alternative discretisation methods can
be considered and lead to different algorithms, e.g., see Cheng et al. (2018b); Li et al. (2019);
Zhang et al. (2023a).

In this paper, we analyze recursions (6)—(7). We achieve convergence bounds and im-
prove the ones proved in Gao et al. (2022) and Chau and Rasonyi (2022) (see Section 2.1
for a direct comparison).

Notation. For an integer d > 1, the Borel sigma-algebra of R? is denoted by B(R?).
We denote the dot product with (-,-) while | - | denotes the associated norm. The set of
probability measures defined on a measurable space (R?, B(Rd)) is denoted as P(Rd). For
an R%-valued random variable, £(X) and E[X] are used to denote its law and its expectation
respectively. Note that we also write E[X] as EX. For u,v € P(R%), let C(u,v) denote the
set of probability measures I' on B(R??) so that its marginals are j, v. Finally, u, v € P(R?),
the Wasserstein distance of order p > 1 is defined as

1/p
Wy(u,v) == inf (/ / |0 — 6'|PT"(d6 d9’)> : (8)
reC(u,v Rd JRA

2. Main results and overview

Let (X,,)nen be an R™-valued stochastic process adapted to (G )nen where G, := (X, k <
n) for n € N. It is assumed henceforth that 6y, vy, G0, and (&, )nen are independent. The
main assumptions about U and other quantities follow.

Assumption 2.1 The cost function U takes nonnegative values, i.e., U(6) > 0.
Next, the local smoothness assumptions on the stochastic gradient H are given.

Assumption 2.2 There exist positive constants Ly, Ly and p such that, for all x,2’ € R™
and 6,6 € R4,

[H(0,2) — H(O', )] < Ly(1+ [2])]0 — 0],
|H(0,z) = H(0,2")| < Lo(1 + |2 + |2'))? (1 + [6]) ] — 2.

The following assumption states that the stochastic gradient is assumed to be unbiased.

Assumption 2.3 The process (X, )nen is i.i.d. with | Xo| € LD and |6o], |vo| € L*. It
satisfies
E[H (0, Xo)] = h(6).

It is important to note that Assumption 2.2 is a significant relaxation in comparison
with the corresponding assumptions provided in the literature, see, e.g., Raginsky et al.
(2017); Gao et al. (2022); Chau and Résonyi (2022). To the best of the authors’ knowledge,
all relevant works in this area have focused on uniform Lipschitz assumptions with the
exception of Zhang et al. (2023b), which provides a nonasymptotic analysis of the SGLD
under similar assumptions to ours.



NONASYMPTOTIC ANALYSIS OF SGHMC

Remark 2.1 Assumption 2.2 implies, for all 6,60 € R,
[1(0) = h(60)| < L1E[(1 + [ Xo|)?]|0 — 0], (9)
which consequently implies
[h(0)] < LiE[(1 + | Xo[)?]|0] + ho, (10)
where hg := |h(0)|. Let Hy := |H(0,0)|, then Assumption 2.2 implies
[H(0,2)] < Ly (1 + |2])?|0] + La(1 + |z[)**! + H.
We denote C), :=E [(1 + |X0|)4(p+1)]. Note that C, < oo by Assumption 2.3.

Assumption 2.4 There exist a measurable (symmetric matriz-valued) function A : R™ —
R b : R™ — R such that for any z,y € R, (y, A(z)y) > 0, and for all € R? and
r e R™,

The smallest eigenvalue of E[A(Xo)] is a positive real number a > 0 and E[b(Xo)] =b > 0.

Note that Assumption 2.4 is a local dissipativity condition. This assumption implies the
usual dissipativity property on the corresponding deterministic (full) gradient. In the next
remark, we motivate these assumptions for the case of linear regression loss.

Remark 2.2 We note that Assumptions 2.2 and 2.4 can be motivated even using the sim-
plest linear regression loss. Consider the problem

inE[|Z — (Y,0)?
minE (|2 - (V.6)P],

where (Z,Y) ~ P(dz,dy) on R x R, The stochastic gradient here is given by, for a sample
(Zruyn) ~ P(dz, dy)’

H(Q, .'Ifn) == _2ynzn - yn(ynv 0)7

where Ty, = (2n,Yn). This loss is not globally Lipschitz however we can prove that it is locally
Lipschitz. For example, it is easy to show that Assumption 2.2 is satisfied with L1 = 1,
Lo =2, and p = 2. Moreover, it is easy to see that this stochastic gradient is not dissipative
uniformly in x, as

(0. H(0,20)) = |{yn. 0)|* — =1

n:

However, our Assumption 2.4 is satisfied with A(z,) = yny, and b(x,) = 22. We would
also like to note that we do not need to assume that stochastic gradient moments are bounded

as it is a result of our assumptions.

Remark 2.3 By Assumption 2.4, we obtain (h(6),0) > a|0|> — b, for € R? and a,b > 0.
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Remark 2.4 Due to Assumption 2.1, Remark 2.1 and Remark 2.3, one observes that As-
sumption 2.1 in Eberle et al. (2019) is satisfied and thus, due to Corollary 2.6 in FEberle
et al. (2019), the underdamped Langevin SDE (3)—(4) has the unique invariant measure
given by (5).

Below, we state our main result about the convergence of the law E(HZ, Vk"), which is gener-
ated by the SGHMC recursions (6)-(7), to the extended target measure 73 in Wasserstein-2
(W3) distance. We first define

mdg L A Es 7A

= min — ==
Thmax ”)/72K1’K2’2K )

where K, Ko, K3 are constants explicitly given in the proof of Lemma 3.2 and K is a

constant explicitly given in the proof of Lemma 3.4. Then, the following result is obtained.

Theorem 2.1 Let Assumptions 2.1-2.4 hold. Then, there exist constants CT,C5,C5,C}y >
0 such that, for every 0 < n < Nmax,

Wa(L (67, V1), ) < Cin'/? + Cn'/* 4 CyeCimm, (11)
where the constants CT,C5,C3,Cy are explicitly provided in the Appendiz.

Proof See Section 4. [

Remark 2.5 We remark that CF = O(d'/?), C5 = O(e?), C5 = O(e?), and CF = O(e™9).
We note that although the dependence of CT on dimension is O(d"/?), and comes from our
main result, the dependence of C3, C3, and C} to dimension may be exponential as it is

an immediate consequence of the contraction result of the underdamped Langevin SDE in
FEberle et al. (2019).

The result in Theorem 2.1 demonstrates that the error scales like O(n'/*) and is uniformly
bounded over n which can be made arbitrarily small by choosing 7 > 0 small enough. This
result is thus a significant improvement over the findings in Gao et al. (2022), where error
bounds grow with the number of iterations, and in Chau and Résonyi (2022), where the
corresponding error bounds contain an additional term that is independent of 1 and relates
to the variance of the unbiased estimator.

Remark 2.6 Our proof techniques can be adapted easily when H(0,x) = h(6). Hence The-
orem 2.1 provides a novel convergence bound for the underdamped Langevin MCMC as well.
Our result is in Wo distance under dissipativity for the Euler-Maruyama discretisation of the
underdamped Langevin dynamics, which can be contrasted with existing work which focus on
alternative discretisations. Beyond the log-concave case, Ma et al. (2019) analyses a second-
order discretisation of underdamped Langevin diffusion under the assumption that the target
satisfies a log-Sobolev inequality with a Lipschitz Hessian condition for the log-target. More
recently, Zhang et al. (2023a) removed the Lipschitz Hessian condition and established the
convergence of underdamped Langevin MCMC under log-Sobolev and Poincaré inequalities.
To the best of our knowledge, our result for the Fuler-Maruyama discretisation of the un-
derdamped Langevin dynamics is the first nonasymptotic result under dissipativity that is
uniformly controlled by the step-size.
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Let (6))ren be generated by the SGHMC algorithm. Convergence of the £(6]) to 74 in
W also implies that one can prove a global convergence result (Raginsky et al., 2017).
More precisely, assume that we aim at solving the problem 6, € argmingcpa U(#) which is
a nonconvex optimization problem. We denote U, := infycpa U(6). Then we can bound
the error E[U(6})] — U, which would give us a guarantee on the nonconvex optimization
problem. We state it as a formal result as follows.

Theorem 2.2 Under the assumptions of Theorem 2.1, we obtain

—x —* — % * L
BIU(6})] - Us < Cin'/? + Tt/ 4 The i + - og (eal (bf . 1)) ,

where ﬁ{,@,@, C%, Ly are finite constants which are explicitly given in the proofs.

Proof See Section 5. |

This result bounds the error in terms of the function value for convergence to the global
minima. Note that C7,Cy anf C; have the same dependence to dimension as CF,C} and
C3% (see Remark 2.5).

2.1 Related work and contributions

Our work is related to two available analyses of the SGHMC, i.e., Gao et al. (2022) and
Chau and Résonyi (2022). We compare the bounds provided in Theorem 2.1 and 2.2 to
these two works. Finally, we also briefly consider the relations to Zhang et al. (2023b) at
the end of this section.

The scheme (6)—(7) is analyzed by Gao et al. (2022). In particular, Gao et al. (2022)
provided a convergence rate of the SGHMC (6)—(7) to the underdamped Langevin SDE (3)-
(4) which is of order O(6'/4 + n!/4),/mm+/log(nn). This rate grows with n, hence worsens
over the number of iterations. Moreover, it is achieved under a uniform assumption on the
stochastic gradient, i.e., H(6,x) is assumed to be Lipschitz in 6 uniformly in x (as opposed
to our Assumption 2.2). Moreover, the mean-squared error of the gradient is assumed to
be bounded whereas we do not place such an assumption in our work. Similar analyses
appeared in the literature, e.g., for variance-reduced SGHMC (Zou et al., 2019) which also
has growing rates with the number of iterations.

Another related work was provided by Chau and Résonyi (2022) who also analyzed
the SGHMC recursions essentially under the same assumptions as in Gao et al. (2022).
However, Chau and Résonyi (2022) improved the convergence rate of the SGHMC recursions
to the underdamped Langevin SDE significantly, i.e., provided a convergence rate of order
O(6Y* + n'/*) where 6§ > 0 is a constant. While this rate significantly improves the rate of
Gao et al. (2022), it cannot be made to vanish by choosing 7 > 0 small enough, as 6 > 0 is
(a priori assumed to be) independent of 7).

In contrast, we prove that the SGHMC recursions track the underdamped Langevin
SDE with a rate of order O(n'/4) which can be made arbitrarily small as with small 7 > 0.
Moreover, our assumptions are significantly relaxed compared to Gao et al. (2022) and
Chau and Résonyi (2022). In particular, we relax the assumptions on stochastic gradients
significantly by allowing growth in both variables (6, x) which makes our theory hold for
practical settings (Zhang et al., 2023b).
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Note that we analyze the SGHMC under similar assumptions to Zhang et al. (2023b)
who analyzed SGLD, since these assumptions allow for broader applicability of the results.
However, the SGHMC requires the analysis of the underdamped Langevin diffusion and
the discrete-time scheme on R?? and requires significantly different techniques compared to
the ones used in Zhang et al. (2023b). We show that the SGHMC can achieve a similar
performance with the SGLD as showed in Zhang et al. (2023b). However, due to the
nonconvexity, we do not observe any improved dimension dependence as in the convex case
and this constitutes a significant direction of future work.

3. Preliminaries

In this section, preliminary results which are essential for proving the main results are pro-
vided. A central idea behind the proof of Theorem 2.1 is the introduction of continuous-time
auxiliary processes whose marginals at chosen discrete times coincide with the marginals of
the (joint) law L£(6),V;"). Hence, these auxiliary stochastic processes can be used to ana-
lyze the recursions (6)—(7). We first introduce the necessary lemmas about the moments of
the auxiliary processes defined in Section 3 and contraction rates of the underlying under-
damped Langevin diffusion. We give the lemmas and some explanatory remarks and defer
the proofs to Appendix C. We then provide the proofs of main theorems in the following
section.

Consider the scaled process (¢, Z/') = (Ops, Vi) given (6%, Vi)ier, as in (3)—(4). We
next define

Az = —n(vZ + h(¢))dt + v/2ynB~1dBY, (12)
d¢) = nZzlde, (13)
where > 0 and B} = ﬁBnt, where (B;)ser, is a Brownian motion with natural filtration

Fi. We denote the natural filtration of (B} );er, as F;'. We note that F;' is independent of
Goo V 0 (00, v0). Next, we define the continuous-time interpolation of the SGHMC

ey =V, dt. (15)

The processes (14)-(15) mimic the recursions (6)(7) at n € N, i.e., L(07, V) = £@,vh.
Finally, we define the underdamped Langevin process (""", Z;""") for s <t

de’u’U’n = —n(’yZ\f’u’v’n + h(@s’u’v’n))dt +v/2ynB~1dBY, (16)
dZ'tsvuaU777 — T]Z\f7u7v7ndt’ (17)

with initial conditions #5%" = 4 and V"V = o,
Definition 3.1 Fizn € N and for T := [1/n], define

?77”‘ %Tvng 7V:]LT 51

_ —Zn _ AnTvgnTvvnann
= ( , and Zy =27, .
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The process (ZZ’",ZZ’”)@T is an underdamped Langevin process started at time nT with
v
(anT’ VnT )

To achieve the convergence results, we first define a Lyapunov function, common in the
literature (Mattingly et al., 2002; Eberle et al., 2019), defined as

52(

V(0,v) = BU(0) + 10+ ol + Iyl = A6, (18)

where A € (0,1/4]. This Lyapunov function plays an important role in obtaining uniform
moment estimates for some of the aforementioned processes. First we recall a result from
the literature about the second moments of the processes (0, V;)¢>0 in continuous-time.

Lemma 3.1 (Lemma 12(i) in Gao et al. (2022).) Let Assumptions 2.1-2.4 hold. Then
Jgza V(0,0)po(d6, dv) + ‘H)\AC

supE|6;> < C§ := , 19
il = (1-2x57? 1
V(, do, dv) + A
SHPE‘VtP < Cc . fRQd v ,u()( /U) A (20)
>0 11 =208
Proof See Gao et al. (2022). [ ]

Next, we obtain, uniform in time, second moment estimates for the discrete-time processes

(03)k>0 and (V!)io-
Lemma 3.2 Let Assumptions 2.1-2.4 hold. Then, for 0 < n < Nmax,

,0) (0, dv) + HAtd)

supIE\Hn|2 < Cy wa

%(1 —2))B2 ;
4(Ac+d
SupE’V’?|2 <, fR2d 0,0)1u0(de9, dz}) + % |
H(1-2)8
Proof See Appendix C.1. _

Using Lemma 3.2, we can get the second moment bounds of our auxiliary process (Z;m)tzo-

Lemma 3.3 Under the assumptions of Lemmas 3.1 and 3.2, we obtain

swp  wup  BJGR < 0 i VOl d) T (21)
neN te(nT,(n+1)T) g(l - 2/\)57
Proof See Appendix C.2. [ |

Moreover, in order to obtain the error bound distance between the laws £(¢}", Z]™) and
L(¢!, Z)), we need to obtain the contraction of EV?(#), V,"), which is established in the
following lemma.

Lemma 3.4 Let 0 < 1 < Nmax and Assumptions 2.1-2.4 hold. Then, we have
2D

supE[VQ(QZ, an)] < E[V2(90,U0)] +—
keN YA

where D = O(d?) constant independent of n and provided explicitly in the proof.
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Proof See Appendix C.3. |

Finally, we present a convergence result for the underdamped Langevin diffusion adapted
from Eberle et al. (2019). To this end, a functional for probability measures p, v on R24 ig
introduced below

Wp(p,v) = inf /P((ﬂw)v(x’,v'))F(d(%v)ad(f;v'))a (22)

reC(p,v)

where p is defined in eq. (2.10) in Eberle et al. (2019). Thus, in view of Remarks 2.1 and
2.3, one recovers the following result.

Theorem 3.1 (FEberle et al., 2019, Theorem 2.3 and Corollary 2.6) Let Assumptions 2.1—
2.4 hold and the laws of the underdamped Langevin SDEs (01, Vy) and (0}, V) started at
(00, Vo) ~ p and (0}, Vy§) ~ v respectively. Then, there exist constants ¢,C € (0,00) such

that
Wa(L(01, Vi), £(6], V) < V Ce /2 W, (1, v), (23)

where the constants ¢ = O(e™) and C = O(e?) are given in Appendiz A.

4. Proof of Theorem 2.1

In order to prove Theorem 2.1, we note first that W is a metric on P(R??). The main
strategy for this proof is to bound Wa(L(65, V;'),T3) by using appropriate estimates on the
continuous time interpolation of (0, V)/)nen. In particular, we obtain the desired bound
by decomposing first as

Wa(L(0], V), 75) < WaL(07, V), LG, Z™)) + WaL(G, 21, £(¢, Z7))

for nT <t < (n+ 1)T for every n € N and then by obtaining suitable (decaying in n)
bounds for each of the terms on the rhs of (24). This leads to the proof of our main result,
namely, Theorem 2.1. All proofs are deferred to the Appendix. First, we bound the first
term of (24).

Theorem 4.1 Let Assumptions 2.1-2.4 hold and 0 < n < Nmax. Then, for every t €
[nT,nT + 1),

Wa(L(O], V), LG, Z)™)) < Cin'? (25)
where C¥ = O(dY/?) is a finite constant.
Proof See Appendix D.1. |
Next, we prove the following result for bounding the second term of (24).
Theorem 4.2 Let Assumptions 2.1-2.4 hold and 0 < 1 < Nmax. Then,

WaL(SP", 2], £(¢F, Z1)) < Cin'l,
where C3 = O(e?).

10
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Proof See Appendix D.2. |

The constant C3 comes from the contraction result of Eberle et al. (2019, Corollary 2.6)
which might scale exponentially in d. Finally, the convergence of the last term follows from
Theorem 3.1.

Theorem 4.3 (Eberle et al., 2019) Let Assumptions 2.1-2.4 hold. Then,
Wa(L(¢, Z)),m5) < Ce” i,

where Cf = \/CW, (1o, v0) and CF = ¢/2. In particular, C5 = O(e?) while C§ = O(e™%).

Finally, considering Theorems 4.1, 4.2, and 4.3 together by putting ¢ = n leads to the full
proof of our main result, namely, Theorem 2.1.

5. Proof of Theorem 2.2

The bound provided for the convergence to the target in Wy distance can be used to obtain
guarantees for the nonconvex optimization. In order to do so, we proceed by decomposing
the error as follows

E[U(0;)] = Ux = E[U(07)] = E[U(6)] + E[U (6)] — Us,
i T

where 0, ~ mg. The following proposition presents a bound for 71 under our assumptions.
Proposition 5.1 Under the assumptions of Theorem 2.1, we have,

E[U(07)] - E[U(0)] < CTn'/? + Con'/* + Cie=Cim, (26)
where C; = C(CouLy + ho) fori=1,2,3 and C2, = max(Cg, Cp).
Proof See Appendix D.3. [ ]

Next, we bound the second term 75 as follows. This result is fairly standard in the literature
(see, e.g., Raginsky et al. (2017); Gao et al. (2022); Chau and Résonyi (2022)).

Proposition 5.2 (Raginsky et al., 2017) Under the assumptions of Theorem 2.1, we have
d el, (b8
— < — — | — .
E[U(0x)] — Uy < 25 log( " ( 7 + 1>>

Merging Props. 5.1 and 5.2 leads to the bound given in Theorem 2.2 which completes our
proof.

6. Applications

In this section, we present two applications to machine learning. First, we show that the
SGHMC can be used to sample from the posterior probability measure in the context of
scalable Bayesian inference. We also note that our assumptions hold in a practical setting
of Bayesian logistic regression. Secondly, we provide an improved generalization bound for
empirical risk minimization.

11
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6.1 Convergence rates for scalable Bayesian inference

Consider a prior distribution my(¢) and a likelihood p(y;|0) for a sequence of data points
{yl}f\il where M is the dataset size. Often, one is interested in sampling from the posterior
probability distribution p(0|yy.r)d6 o mo(0) Hf\il p(y;|0)df. This is a sampling problem of
the form (1). The SGHMC is an MCMC method to sample from the posterior measure
and, therefore, our explicit convergence rates provides a guarantee for the sampling. To see
this, note that the underdamped Langevin SDE with h(0) = —V log p(0|y1.ar) converges to
the extended target 7 whose §-marginal of 7 is p(0|y;.ar), hence the underdamped Langevin
SDE samples from the posterior distribution.

We note that, our setting specifically applies to cases where M is too large. More pre-
cisely, note that we have h(0) = —V log p(0|y1.0r) = —V log WO(G)—Zi]‘il V log p(yi|6). When
M is too large, evaluating h(6) is impractical. However, one can estimate the sum in the last

term in an unbiased way. To be precise, consider random indices i1,...,ix ~ {1,...,M}
uniformly, then one can construct a stochastic gradient by using u = {y;,,...,yi, } and
obtaining H(6,u) = —logm(f) — %Zle Vlogp(yi.|6). Then, we have the following

corollary follows from Theorem 2.1.

Corollary 6.1 Assume that the log-posterior density log p(0|y1.ar), its gradient, and stochas-
tic gradient H(0,-) satisfy the Assumptions 2.1-2.4. Then,

Wa(L(0,), p(0lyr.ar)) < Cin/? + Cint/* + Che=Cimm,
where CT,C5,C5,C} are finite constants.

This setting becomes practical under our assumptions, e.g., for the Bayesian logis-
tic regression example. Consider the Gaussian mixture prior m(6) o< exp(—fo(0)) =
e~ 10=ml*/2 4 o=10+mI*/2 3nq the likelihood p(z;|6) = (1/(1+ e~ O))¥i(1—1/(1+e~% 9))l-vi
for # € R? and z; = (2, ;). Then, it is shown by Zhang et al. (2023b) that the stochastic
gradient H (A, u) for a mini-batch in this case satisfies assumptions 2.1-2.4. In particular,
our theoretical guarantee in Theorem 2.1 and Corollary 6.1 apply to the Bayesian logistic
regression case.

6.2 A generalization bound for machine learning

Leveraging standard results in machine learning literature, e.g., Raginsky et al. (2017), we
can prove a generalization bound for the empirical risk minimization problem. Note that,
many problems in machine learning can be written as a finite-sum minimization problem
as

M
* . 1
0" € arg min U) := i ZZ; (0, z). (27)

Applying the result of Theorem 2.2, one can get a convergence guarantee on E[U(0))] — U,.
However, this does not account for the so-called gemeralization error. Note that, one can
see the cost function in (27) as an empirical risk (expectation) minimization problem where
the risk is given by U(0) := [ f(0, 2)P(dz) = E[f(0, Z)], where Z ~ P(dz) is an unknown
probability measure where the real-world data is sampled from. Therefore, in order to bound

12



NONASYMPTOTIC ANALYSIS OF SGHMC

the generalization error, one needs to bound the error E[U(6;)] — U,. The generalization
error can be decomposed as

E[U(67)] — Ux = E[U(6;)] — E[U(6o)] + E[U(0)] — E[U(6o0)] + E[U(000)] — Us -

/

B1 B2 Bs

In what follows, we present a series of results bounding the terms B1, Bs, Bs. By using the
results about Gibbs distributions presented in Raginsky et al. (2017), one can bound B; as
follows.

Proposition 6.1 Under the assumptions of Theorem 2.1, we obtain
E[U(0])] — E[U(b0)] < Cn'/? + Con'/* + Cie i,
where ak = C¥(Cm L1 + ho) fori=1,2,3 and C2 = max(Cg, Cp).

The proof of Proposition 6.1 is similar to the proof of Proposition 5.1 and indeed the rates
match.

Next, we seek a bound for the term By. In order to prove the following result, we assume
that Assumption 2.2 and Assumption 2.4 hold uniformly in z, as required by, e.g., Raginsky
et al. (2017).

Proposition 6.2 (Raginsky et al., 2017) Assume that Assumptions 2.1, 2.3 hold and As-
sumptions 2.2 and 2.4 hold uniformly in x, i.e., |H(0,z)| < L}|0|*> + By. Then,

E[U0.)] - 0] < 508 (B o+a/0)+ 1)

where crg is the constant of the logarithmic Sobolev inequality.
Finally, let ©* € arg mingeg U(6). We note that Bs is bounded trivially as
E[U(0s0)] = Ux = E[U(00) — U] + E[Ux — U(0")] < E[U () — U, (28)

which follows from the proof of Proposition 5.2. Finally, Proposition 6.1, Proposition 6.2
and (28) leads to the following generalization bound presented as a corollary.

Corollary 6.2 Under the setting of Proposition 6.2, we obtain the generalization bound for
the SGHMC,

— —x —x x 4 L
EIU6])] - U, < T2 + Tt/ 4 Ciemim 4 505 (B oy ay9) 4 3

+;ﬁlog <eaLl <lf+1>> . (29)
We note that this generalization bound improves that of Raginsky et al. (2017); Gao et al.
(2022); Chau and Résonyi (2022) due to our improved Wy bound which is reflected in
Theorem 2.2 and, consequently, Proposition 6.1. In particular, while the generalization
bounds of Raginsky et al. (2017) and Gao et al. (2022) grow with the number of iterations
and require careful tuning between the step-size and the number of iterations, our bound
decreases with the number of iterations n. We also note that our bound improves that of
Chau and Résonyi (2022), similar to the W5 bound.

13
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7. Conclusions

We have analyzed the convergence of the SGHMC recursions (6)—(7) to the extended target
measure 7g in Wasserstein-2 distance which implies the convergence of the law of the iter-
ates L(6) to the target measure 7z in W5. We have proved that the error bound scales like
O(n'/*) where 7 is the step-size. This improves the existing bounds for the SGHMC signif-
icantly which are either growing with the number of iterations or include constants cannot
be made to vanish by decreasing the step-size n. This bound on sampling from 75 enables
us to prove a stochastic global optimization result when (6),en is viewed as an output
of a nonconvex optimizer. We have shown that our results provide convergence rates for
scalable Bayesian inference and we have particularized our results to the Bayesian logistic
regression. Moreover, we have shown that our improvement of W5 bounds are reflected in
improved generalization bounds for the SGHMC.
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Appendix

Appendix A. Constants in Theorem 3.1

The constants of Theorem 3.1 are given as follows Eberle et al. (2019).

(_goan (L+7)° 2y (d+ Acpy~te!
C=2e min(1, )2 max | 1,4(1 + 2a + 2a7) min(1, R1)8

and
¢ = ﬁ min (/\flﬂ_l'y_z, Al/ze_Ath_lw_Q, AI/QS_A)

where
A=T.R%/8 = %(1 420 4207 (d+ A) T8y 2A (1 — 20) 7L,

and a € (0,00).

Appendix B. Additional lemmata
We prove the following lemma adapted from Raginsky et al. (2017).
Lemma B.1 For all € RY,

b L
2161 — 3 log 3 < U(0) < o + 1017 + hold].

where uo = U(0) and L1 = L1E[(1 + | Xo|)"].

Proof See Appendix C.4. |

Lemma B.2 Let G,% C F be sigma-algebras. Consider two R%-valued random vectors, denoted X,Y, in
LP with p > 1 such that Y is measurable w.r.t. HV G. Then,

E'7[|X — E[X[H v G]I’|g] < 2E""[|X — Y|"|G].

Proof See Lemma 6.1 in Chau et al. (2019). [ ]

Lemma B.3 Let Assumption 2.1, 2.3, 2.2 and 2.4 hold. For any k =1,..., K +1 where K +1 < T, we
obtain

sup sup E[JMG™) ~ HE" Xur )] < o
neNte[nT,(n+1)T)

where
oH = 8L§0'2(1 +CC) < 00,

where oz = E[(1+ | Xo| + |E[X0]])?| X0 — E[X0]|?] < co.

Proof See Appendix C.5. u
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Lemma B.4 Under Assumptions 2.1-2./

E [WTH —V?ﬂ <oy,

where
oy = 4777201, + 477(le9 + 51) + 47[371d.
Moreover,
an 1|2 2
E[Gm —0; :| <n°C,.
Proof See Appendix C.6. |

Next, it is shown that a key assumption appearing in Eberle et al. (2019) holds.
Lemma B.5 There exist constants Ac € (0,00) and X € (0,1/4] such that

(0,h(0)) = 2X (U (0) + 7101 /4) — 24./8 (30)
for all x € RY.

Proof See Appendix C.7. u

Appendix C. Proofs of the preliminary results
C.1 Proof of Lemma 3.2

For this proof, we use the Lyapunov function defined by Eberle et al. (2019) and follow a similar proof
presented in Gao et al. (2022). We first define the Lyapunov function as

V(0,v) = BU(0) + gvz’ (16 477 l* + Iy~ oll* = Al6*) -

Next, we will use this Lyapunov function to show that the second moments of the processes (V,])nen and
(07)nen are finite.
We start by defining

2
Mz (k) = EV(6;,V)/8 = E |U(6y) + % (107 +~7 VP + Iy VP = AP | (31)

Recall our discrete-time recursions (6)—(7)

Vil = =)V = nH(0), Xxi1) + V2078~ k1,
92+1 = 92 + 77ana 9(7)7 = bo, Vo77 = o,

where (£x)ken is a sequence of i.i.d. standard Normal random variables. Consequently, we have the equality
E [|an+1‘2} =K [|(1 - ’W?)an - 77H(927Xk+1)‘2] + 2’77757161,
= (1= 0)’E [[V1°] = 201 = mm)E (V7 h(OD)] + 1°E [|H(O], Xos1) ] +29m8 ™",
which immediately leads to
E (Vi) < (U= 1m)E [[VIP] = 2000 = ymE [V RO + 7 [LaE [07] + 1] +29m87'd, (32)
where

Ly =2L3C, and  C) =4L3C,+4H3. (33)
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Next, we note that
E ‘9 +1| = EWZ‘Q + 20E<927 V}j) + 772E |an|2 : (34)
Recall h := VU and note also that
1
U(O) = U] +0V?) = UG + [ (00 + raV2),nver,
0
which suggests
1
|U(6}1) = U(O]) — (h(67),nV,])| = ‘/ (h(8) + V") — h(8)),nVy")dT |,
0
1
< [ bz + rovi?) = mEp! vy d
0
< %Llcfﬂf |an‘2 )

where the second line follows from the Cauchy-Schwarz inequality and the final line follows from (9). Finally
we obtain

1
EU(6],1) — EU(6]) < nE{R(O]), Vi) + 5 LaCon B[V (35)
Next, we continue computing
7 -1 ] —1y,1 -1 7 2 —1,5-1
E|0k+1 + V+1| *E}ek +v V! —ny H(‘gk:Xk-!—l)‘ +2v 57 nd,

=E|0] + V" = 20y RO + 4 VL ROD)

+0*y EIH (O], Xir)* + 27 087 d,

<E[0F +47 "V * = 2y E(O] + 4 VL R(O]))

+ 0Py LRI + Ch) + 29 0B (36)
where L; and C is defined as in (33). Next, combining (32), (34), (35), (36),

Mg(k + 1) — Mg(k)

2
E [U(60,) ~ UOD] + I (Blok +7 Vi —Elo7 +27v ")
1
Z( +1‘ E\V”|)77(E‘0 +1’ *E|‘92|2)7
< nE(OD), V) + 2 E v
o = =~
+ 2 (—2mEO] + w‘lv,j, RO +0*y* (LEGIP + Cr) + 29787 na)
1 ~ ~ _
+7 ((=2m+ Y )E[V? = 2n(1 — yn)EWV, h(6])) +n° (LJEIQZ\2 + Cl) + 2ynB 1d)
2
A
X (oo Vi) + PRIV

2 L O 2 2.2 2 2)\
~Dmtog.nep) + G-Ee, v + (PG T - B T e
2

2
LlEIt‘?" 777/\ E@7, V") + i +nB~d,

2 2
by 3 B 2 27
<~ ABU(6]) — ZLIEION® + Ayt + ZEE(hED), Vi) + TR 0]
LiCyn®  0*y* P PA gy _ 22 nA 0y 4 O’
+( > 4 2 1) EIVe BV + =5

20



NONASYMPTOTIC ANALYSIS OF SGHMC

where the last line is obtained using (30). Next, using the fact that 0 < A < 1/4 and the form of the

Lyapunov function (31), we obtain

2
TR0, W) < ~Ma(k) + BU]) + LRGP + SEIV]PE.

Using this, we can obtain
777 . 2L1 1
Mo(k+1) = Ma(k) < Ay~ + LLB(R(07), Vi) + L2E (07 +4mB " d
LiCom*  n*y* 72?72/\ YA . Cm
(B T BT P e+ ST el

Next, reorganizing and using (a,b) < (|a|® + [b]*)/2

~ 27
(1= yAn) Ma(k) + Ay~ + 772 1 E67)
2

LiCon*  n*y* A\
_— - r7 _ 47 At LR, 1 mn E n
< 2 T LT P YUV RGP + ZEERE)P,

L Cin? _
! 7L§C§>E02|2+ 12’7 +nBd

My(k+1) <

Jr

< (1 =y Ma(k) + AeyB~ + 1 (2 +

C, v A . *hg
+772< R EaET e >E|Vk’| +W %,

where the last inequality follows since A < 1/4 and (10). We note that

V(6,v) > max{é(l 20)8%10)°, g(l - 2)\)|v|2} ,

which implies by the definition of M (k) that
Ma(k) > m {;(1 — ) ET), X L= 2RV }
> T6(1 —2)V’E|07 ] + < (1 —20M)E|V]?,

since max{z,y} > (z + y)/2 for any =,y > 0. Therefore, we obtain
(1= yAn + Kin*) Mz (k) + Kon® + Ksn

My(k+1) <
where
LiC 2 2 L 2 2
o { B2 03 B v st
and
~ 2
For0<n§min{§g,% 'M} we obtain

(k+1) < (1 7;’") Mo (k) + 2K3n

which implies
4

Ms(k) < M. — K.

2(k) < 2(0)+’y)\ 3

Combining this with (37) gives the result.
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C.2 Proof of Lemma 3.3

We recall that ;" is the Langevin diffusion started at 6, and run until ¢ € (nT, (n 4 1)T). First notice
that Lemma 3.1 implies

4(d+ A
ap B < V0 Viin) + Z5ES
LE(nT(n+1)T) N §(1—2X)87?
which, noting that, EV(0 ., V,.".) = BM>(nT), implies

(38)

sup RGP <
te(nT,(n+1)T)

BMs(0) + 252
s(1 2/\)57
Substituting M2(0) gives

V(0, v)po(d0, dv) + 2ldt4e)
sup E‘Ctn’n 2 <O = fRM ( 1)#0( )2 B
te(nT,(n+1)T) 5(1—2X\)By

C.3 Proof of Lemma 3.4

We need to obtain the contraction of EV?(67,V;"). Recall again the Lyapunov function defined by Eberle
et al. (2019)

/3

1

V(0,0) = BUO) + 77° (10 + " ol* + Iy~ oll* = Al6]1%) -

In this proof, we follow a similar strategy to the proof of Lemma 3.2 and approaches of Gao et al. (2022)
and Chau and Résonyi (2022). We define the notation Vi = V(6}, V,") and note

2
Vi/B:= VL VB =UO + Lo (167 +7 VI + 1y VP = N6pP?) - (39)

Recall our discrete-time recursions (6)—(7)

Vil = (L =V = nH (0, Xi41) + /20787 k41,

92+1 = 02 + ndnv 0(7)] = 905 V()n = Yo,
where (£x)ren is a sequence of ii.d. Normal random variables. We first define A} = (1 — Ve —
n H(0}, Xr+1) and write
Vil |2 = 1AL + 27/ 2B~ (AL, €er1) + 208 €ksa

= |(1 — VI = nH (0}, Xe1)|” + 20/207B- (A%, €xrr) + 2908 g %,
=@ =) VPP = 2n(1 — )V H (0}, Xk11))

+ 07 [H(0F, Xie1)|* + 202078~ 1AL, €xga) + 29mB ™ [k [*. (40)
Next, we note that
|0 +1| |‘9Z|2 + 27]@27 an> + 772 |Vk"‘2 . (41)

Recall h := VU and note also that
1
U@r,,) = U] + V) = U0 + / (h(O7 + V), Vydr
0
which suggests

U(62,) — U(E) — (h(ED), qv7))| = ] [ o+ vy = e, visar].

IN

1
/ (82 + TV} — h(OD)| [nV}"] dr,
0

IN

1
§LICP772 |an‘2 )
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where, similarly as in the previous proof, the second line follows from the Cauchy-Schwarz inequality and
the final line follows from (9). Finally we arrive at

1
U(0}41) = U67) < n(h(00), Vi7) + 5 LaCon’” V(T - (42)

Next, we note that A} = 0] +~ 'V —ny ' H(6}, Xx+1) and continue computing

107+ VL = (0] ATV — iy T H (O], X)) |+ 2020 B (AL, i) + 297 BT € [P
=167 + 7V — 2y O]+ T VL H O X))
+20/2y 1B I(AL, Erar) + 17y P [H (0], Xisr) P + 27 0B €k |, (43)
Next, combining (40), (41), (42), (43),
Vi1 — Vi . ~? _ _ 2
— g = (U.) - U(e,o) e (A N VR Al

1 2
P =) = 22 (loza P - 2
1 7 - -
n{h(67), Vi') + 5 L1Con’ IVk”I2+z(—2m HOR TV H0Y, X))
- 1 e 1
17y N H(OL, Xew) P+ 207 08 e ) + 7 ((=29m+ 970" VP = 20(1 = m) (V1 HOY, X))

_ )
0 (0, Xew) >+ 2m8 6 l”) = 5 (20000, VI + 0 V] )+zk,

L.C, *an?
<~ 0, HOOP X)) + b0, V) + (T~ TR 2 T s T, X
e e, (7 A
el (T =) (VO X)) = T V) 4 2

where

1
Iy = 29137 1n(AR, &tr) + 5 2078~ 1Ak, Erg1).

A w3,

Next, using the fact that 0 < A < 1/4 and the form of the Lyapunov function (39), we obtain

ol V 7 1
—5 (60, Vi) < —Fk +UO0) + 1077 + 5 Vi1

Using this and merging some terms, we obtain

Vi1 —
% < _%wg,g(gg,an +n(h(0}) — H(0}, Xit1), Vi)
L.C 2) ’ -
+ < : 2p7i B Tn -2+ 7) V' ? + %|H(927Xk+1)\2 + 178 ks |
" n Vi n Y >‘77 n 7)‘77 n
n 7<Vk JH(O?, Xiy1)) _7,\77? + AU (0)) + —— 10} | +—\V \ + Y. (44)

Next, by reorganizing and using (a,b) < (|a|® 4 |b|*)/2, we arrive at

Vi

%
S - L6 hOD) + T 07, h(6]) = H(OF, X)) + n(h(6]) = H(OF, Xiea), Vi)

L C 2 2)\ 2 2 2 B 3)\
(e XA T Y Y v L H (0], X)) P+ BT € [P+ AU (67) + 2 |72
2 4 2 4 2 2 4

+ Y.

(45)
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Using (30), and A < 1/4, we obtain

v v
et < (1) 5 = AU O = TIHO1 + yAB !+ O WO — H(O i)
L.C 2 ZA 2 2,2 A 2
n{h(O7) — H(6], Xis1), V) + (17‘"’ S il R ”2—’7) VP + LI H O, Xwn)?

_ . 3\
+ 1B ke P + AU (0]) + L1677 + 2,

—(1- Mn)%+mz4c5 + D00, h(0}) — H(OY, Xiewn)) + n{h(8]) — H(OL, Xiewn), Vi)

R . e /B /A 2.V

2
+ T +7> |an|2+%|H(927Xk+1)|2+7]’Yﬁ_1|$k+1|2+2k7
Vi
<(1- /\77)? +mAs T + D <9Z7 h(0)) — H(0}, Xk+1)) + n(h(8]) — H(0), Xi11), V}.)
LiCon* 2> oy 0 “Mn 2
+ ( 5 i 5t T \Ad

2

+ 3 (QLf(l + X1 1077 + AL5 (1 + | Xapa )T + 4H§) + 1078 ks | + Sk,

by Remark 2.1. Let ¢ = (1 — vAn) and let Hr = G V o (&1, ..., &). By using A < 1/4, we obtain

EViialH Vi % - LiCo® M | ¥°n?
[kgél K] 257§+2¢Fk<177146ﬂ1+< 1Cpn® P An +777>‘an|2

%(u? |9g|2+4L§cp+4H§)+mﬂ*1d)+EKWACB +

<¢

2 4 4
5 (07, h(O7) — H (0, Xi+1))
L.C 2 QA 2 2 A
00) — 10 X, V) + (LGP0 2N T T 20
2 2
+ (2230 + (X716 + 431+ | Xa)OF) +4H3 ) + 198 6 | + zk> ’Hk] .

We first note that

\%

Vk 1 ui Y
5 max{g(p») 6712, (172>\)\V |}

> (1= 2010 + (- 20,

since max{z,y} > (x + y)/2 for any =,y > 0. Then we first obtain
E[V;fﬂ\?ik] 3

B2 B2 B

+E [ (mAB8™" + THOL h(0) = H(O}, Xisr))

L.C 2 2)\ 2 2 A ,
b0 — HO Xoe), V7 + (DG - TR T T 200 e

< (62 + 20K i) Lk +2¢ " (7 A" + 207 LaCy + 20° HY + 1yB " d)

2
% (2L (14 | Xar1)*?10717 + 4L3(1 + [ Xiqa[)?0T +4Ho) + 1B €k |” + Ek) ‘Hk}

where

K1 := max T -
T(1-2) (- 2,\)
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Next using (a, b) < (|a|> + |b]?)/2, we obtain

2
W < (6 + 20K >Zz + 207 (17AB ™+ 20 LaCy+ 20°HE + 1187 d)

+E[(myacs™ + Top? + (T + 1) |n(op) — HOP, Xosn)?

LiCon® YA am 07 A 0\ g
+<2 4 2+4+2+2|V’f|

2 2
+ L (LR + [ X D107 + ALE (L + | Xiia )P0 +4HE ) + 1787 i + Zk) \Hk}

< (¢* 4 20K1n?)

Zz +2¢>6 (m7AB™" +20°LaC, + 20° Hy + nyB~d)
+E (A8 + T + (T +n) (RODP + [H O}, Xesn)])

(BaCon® _2P® om0 X Y
2 4 2 4 2 2 k

2 2
+ L (2LR(+ [ Xea D107 + ALE (L + | Xieia )P0 +4HE ) + 1787 il + Ek) \Hk}

where we have used |a + b|*> < 2|al? + 2|b|*>. Now using Remark 2.1, we obtain

EVilH -
% < (6 +26K0n) 2 5 +2¢§ (M AeB™ +20° LaCp + 20" Hy + 178" d)
+E[(macs™ + T + (— +n) (LICZI67” + 203 + 2L3(1 + | Xesa|) 6]

C 2 QA 2 2, 2 )\
HALZ(L+ | Xoea )V + 483 + (17"77 - - T ﬂ) v

2 2
+T (2L§(1 1 X1 P10 + AL5(1 + [ Xpepa [)*F 4+ 4H§) + 08 ekl + zk) ‘Hk}
= 2 Vi - -
= (¢ + 20K1n°) =L & +2¢>? (myAeB™" +20°L2C, + 20° Ho + nyB~ " d)

2
4 | (s 4 (B 4 (B ) QUCE+ 2230+ [Xin ™) + L2030+ Xia ) ) 1671

2 2 2 2 2
m 2 2 2(p+1) 2 LiCon™ A" yn '™ YA m\ a2
+( L +n) (203 +4L3(1 + | X)) +4H0)+<72 . T+ L B )
n’ (4L2 14 [ Xepa )20 4 42 -1 215,
o (AL2(1 + | Xpesa]) +4Hg ) + B |€ktal” + 2k ) | He

Now taking the expectation, regrouping and simplifying the terms above, we finally arrive at

E[Vi 1| He]

2 < (¢% 4 20K 1n? )V

52 +2¢52ncl+2¢5 n’ér +n’? 52 + & |07 + esn'lop*

+ el VI 0t VIt +nes +n'tes + @+E[Eklml.
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where
¢ = vAc + vd,
é1 = 2LyC, + 2H;
Gy = 672 A2
_ 9y 2,744 4
C3 = ? + 18(’7 + 2) (Llop + Llcp),
é3 = 18L1C,,
N2

PR €l oo Bt 7

4
P Llcp Yy 1 2
¢4 =06 ( ) + 1 + 5) >

& = (v +2)* (30h$ + 120L3 + 120H; + 30L5C, + 30H;) ,
& = 48(Lj + Hy),
és =~2d(d +2).

Next, recall

2
1
Sk = L2y BIn(AR G) + 5 VEIMBTH(AL Gr),

2
where
Ak =1 =)V —n H(O}, Xt1)
AR =607+ VI =y T H (0, Xi).
Note that
Sk < 2987 | AP €1 [ + 297 BT | AR €k |,
<2myB7 & | (V) = n(YV + H(OF, Xiw)) [ + 7107 + 47 V) =y H (0], X))
<287 &k ? (201 — )V + 21 H Ok, Xie41) + 3910717 + 3|V + 30| H (6], Xit1)[?)
< 2yB 7 €| (2(1 — )|Vl + 2 (3L%(1 + 1 X1 )1071% + BLE(1 + | Xega )Y + 3H§)
+37 10717 + B[V + 30 (BL3 (1 + | X D071 + BLE(L + [ Xisa )0 + 385 ) ).
Therefore, taking expectation and using (46) and n < 1/~, we obtain

E[Xi|He] < 20v87'd (5|V)? + (6LIC, + 37* + 9L3C,) 6] |° + 15L5C, + 15H;) .
_V é
< 7707[7; + ng

where

& — max { 10vd  (2vd)(6L3C, + 3+ + 9L%C,,)}
7T = 5

T(1—2)) =(1=2X)y2
s = 30ydL3C, + 30ydH;.

Now plugging this into the inequality (47), we arrive at

E[VZ,,|H - % I ¥ Vi o, & .
ElVis 7] k+;| d < (¢7 +20K1n°) 25 + (2061 + &1) oo + 2020 e1 + 1”5 + can’ |07 | + can* (67|
B B B B B
N X _ ) é é
+ el VIt e VI e e + nzﬂ% + nﬁs,
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Now, recall our step-size condition for the above inequality, in particular, n < 1, which leads to
EVE 1 [ He N -
% <(*+ 2¢K1n2)ﬂ—’; + (2061 + C7)ﬁ2

+ 07 @+ )V + (@ +és) + 0

0+ 20 5 0% + 2 2 4 (6 + es) 100

B 52

2*77

B 5

Next, recall that

% zmax{gu—w o7, L 2w }
which implies
Vi 1 5 4 1
k> — (1 — n _
o 2 max {1 - 20001, 50 - 2071
1 2_4ipn|4 201,14
> —(1- 7 —(1- "*.
Z 128( 20)777 101" + 32( 207V
Now inequalities (49) and (50) together imply
E[V§+1|Hk] 2 o V ~ ~
Tﬁ((ﬁ +2¢K277)ﬁ2 (2¢01+C7)ﬂ277+2¢/37701+77 ﬁQ n*(Es + &) +n° 52'*‘ 5

where f(g = Xl + C9 and

Eg:max{ C3+C3 Ca+ Ca }
s (1= 2X)2947 L (1 —2X)2
Now we take unconditional expectations, use the fact that ¢ < 1, and obtain
EVia] < (1= X+ Kn®) E)V{] 4 GoE[Veln + 26 E[Ve] Bn® + n°é + n” (65 + &)8° + 0 + nésp,
where K = 2I~(2, C10 = 2¢1 + ¢7. First note that, it follows from the proof of Lemma 3.2 that

4Ac+d) .

E[Vi] < E[Vo] + Y

Therefore, using n < 1, we obtain
E[Via] < (1= X+ Kn®) E[Vi] + Dn
where D = G10¢11 + 2611618 + &2 + (65 + 55)52 + &6 + ¢sf. Now recall that n < )\fy/Qf( which leads to

E[Vi] < (1 m) E[V}] + Dn,

which implies that

2D

21 2, , 2D
EVi] <EMg] + %

which concludes the proof. [J

C.4 Proof of Lemma B.1
We start by writing that

U6) - U(0) = /0 C0.n(o))ar,

1
< / 6] (t0)|dt,
0

1
< / 10](L1t|6] + ho)dt
0
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from Remark (10) where L1 = L1E[(1 + |Xo|)?]. This in turn leads to
U(@) < uo+ 7|9‘ + h0|0\
where ug = U(0). Next, we prove the lower bound. To this end, take ¢ € (0, 1) and write
1
U(0) =U(ch) +/ (0, h(t0))dt
14 ‘
> [ b,

>/11(a\t0|27b)dt
>/ 3

_ a(l —c?)

3 16]* + blogc.

Taking ¢ = 1/4/3 leads to the bound.

C.5 Proof of Lemma B.3
Let H{® = F2L V G|s). Following Zhang et al. (2023b), we obtain
E (&™) = H@G™, Xuran) ]
~E[E [Ih(@”’") — H@G, Xor )P 135
=B [E[|E[HE", Xuran)| M) = H@G™, Xor)|*| H7]

)]

<4E[E [\H(@*”, Xor o) = H(G™ B[ Xor o Hur))|

< 4L20,E [(1 + @"DQ] ,
where the first inequality holds due to Lemma B.2 and
oz = E[(1 + | Xo| + [E[Xo0]|)*”| X0 — E[Xo][’].
Then, by using Lemma 3.3, we obtain

E [‘h(@% (Ct nT—Hc)‘ ] < 8L§Uz + 8L§UZCC.

C.6 Proof of Lemma B.4

Note that for any ¢, we have
V=V —m/ Visds—n /t H(0|sy, Xpo)ds + v/2mB~1(B! — B],)).

We therefore obtain
UVm - Vt\ =

?7’)// VLstS* / H GszvX[ﬂ dS+ vV 2’}/7],3 Bn LtJ

< 41727201, + 417 (L109 + C1) + 4’y17ﬂ71d.

Next, we write

t
o=+ / VT dr,
[t]

d

which implies

o) — 0],

2
} < 772C’U.
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C.7 Proof of Lemma B.5

Choose A > 0 such that

. 1 a
)\:mln - - . 3 .
{4 L1+2L1b+g}

Using Assumption 2.4, we obtain

(6, h(6)) > al6] — b,

22)\(—+L b+ )I9| —b,
> 2\ (U(e) — g — L1b|0] + L1bjo® + L |0| )

2
> 2\ (U(a) —up — Lib+ 7?|9|2) _

where the third line follows from Lemma B.1 and the last line follows from the inequality |z| < 1 4 |z|?.
Consequently, we obtain

(6,h(0)) > 2X (U(@) + %er") —24A./8

where

Ac

M\Q

(b+ 2Xuo + 2AL1b),

which proves the claim.

Appendix D. Proofs of main results

D.1 Proof of Theorem 4.1

We note that

o212 —nm211/2
o ] +E[\Vt A \2] .

WAL V1).0Q" 2 <5 ||
We first bound the first term of (51). We start by employing the synchronous coupling and obtain

t
77/ ‘V?sl 772,71 ds,
nT

=n,n
S

which implies

N =mn
0u - §u7

2 f'r],n 2
<7 sup DVLSJ - ’ ] ds,
nT<u<tJnT

t
- n/ E[[V1, _7’;’"|2] ds,
nT

29
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Next, we write for any ¢ € [nT, (n + 1)T)

Vig =207 < Vi = Vil + Vi = 207

t t
<77, —v?|+]—w / V1, —Z""ds — 1 / [H (@), X1a)) — h(C"")ds
nT nT

)

)

[ @ X — b s

T

t
< |V?tj —V?| —|—’yn/ |V?SJ —7Z’n|ds+7]
nT
t
<Vl = Vil [ V0 =707 as
n

t
[
nT

p— J— t p— p— n
<[Vl =Vl +om [ [V =227 as
n

[ @ X - L s,

T

H(@]y, X1a) — HC™, XM)‘ ds+7

S

/ H@" Xr) = ("

t
+n/ Li(L+ X0)? [0y = S| ds + 1
nT

We take the squares of both sides and use (a + b)? < 2(a® + b%) twice to obtain

t 2
[Vl =20 <4 Py = Vi +art ([ [V =207 as)
nT

2

/ H@" ) = B s

t 2
+ 4’ (/ Li(1+ Xpq)* [0, —cZ’”]ds) + 4’
nT
t
<4|V], —V?|2+47217/ Vi =20 ds
nT

(€, Xa)) — h(C2™))ds

|2
o ‘ ds + 41>

t
rantd [ (4 X0 [o,
nT

Taking expectations of both sides, we obtain

t
E[[Viy-Z0""] < 4B VD, - Vi) + 47277/ E (V] - 20" as

+ 477L§Cp / |:

< 4av17+4'yQ17/ E LSJ - ZZ’"‘Q] ds

+4nLic, / {

By applying Grénwall’s lemma, we arrive at

[ et
] ds + 47°E / [HECT", X1q) — R(C™)]ds

T

/ HE™ Xr) — h(E™)ds

T

] ds + 47]2E

C”h

}d
|

t
E [’V?” _ 7;7’”|2} <dcioyn —|—47701L%Cp/ E [
nT

+ 401172IE

/ H(C Xp) — h(C)las
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where ¢; = exp(47?) since nT < 1. Next, we write

n

t
sup E { ( } < 77/ E [’VTSJ 772*”|2] ds,
nT<u<t T
< deinoy + 4an’Li C, / / UGWJ — } ds'ds
nT
t s 2
+4C1773/ E / [H((s/ ,X[S/")— ( ot )]dS/ :|d5,
nT L nT
2
§4clnov+4clanC sup / UGLSIJ C"v :|d5/
nT<s<tJnT
t I s . 2
+4cm3/ E / [H(CL", Xra1) — h(Co™)]ds’ }dS- (52)
nT nT

First, we bound the supremum term (i.e. the second term of (52)) as

2
sup / UGL«J —g . }ds —/ |:’9LS/J _C"ﬂ :|dsl
nT<s<tJnT

t

S/ sup E“HWJ C )}ds
nT nT<u<s’
t B -

§/ sup E[ w—Cr }ds'. (53)
nT nT<u<s’

Next, we bound the last term of (52) by partitioning the integral. Assume that nT+ K < s <t <nT+K+1
where K + 1 < T'. Thus we can write

/‘ [h(7:/7n) - H(Cs/ 7X]'5’—\

T

where

nT+k _ _ s _ _
L= [T @ - HEQ Xl and Rac= [ (W) = HE XA
nT+(k—1) nT+K

Taking squares of both sides

2

K
Z I + Rk
k=1

K K k— K
= I +2 ZZ Lo, I;) + 2 (Iv, Rx) + | Rk,
k=1 k Jj=1 k=1

Finally, it remains to take the expectations of both sides. We begin by defining the filtration H° = FL VG )
and note that forany k =2,... K, j=1,...,k—1,

=E [E[(Ix, ;)| Ho745]] »

nT+k _ _ nT+j _ _
=E|E / [H(CU™, Xnrsk) — R(C™)]ds, / [H(CH", Xnr45) — R(C™M]As" )| Hargs ||
nT+(k—1) nT+(j—1)
nT+k _ _ nT+j _ _
_ / E [H(EV" Xor i) — hE™)| Hy,] dS, / (HE™, Xuriy) — h(E)ds' )|
nT+H(k—1) nT+(j—1)
=0.
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By the same argument E(I, Rx) = 0 for all 1 < k < K. Therefore,
¢ 2
/ E ds
nT
(™) = H(C", Xora)]ds’

2
sl dS
nT+(k—1)
2
|: ! :|d5

nT+k _ 9
/ / yh Y = H(E™, Xz )| ]ds’ ds
nT | p—q v nT+(k-1)

/ / |h @y — ‘S,",XHT+K+1)|2] ds'ds
nT JnT+K
<T 0wy +Towu. (54)

2 /
]ds,
2 /
]ds

+ 4cinom Jr4017720'H, (55)

s

[H(ZZ;”, Xre7) — R(CH™))ds’

gzl

nT+k

M) = H(CO™, Xnrx41)]ds

nT+K

Using (52), (53), and (54), we eventually obtain

,n

=

N =n,n
eu - Cu’

t
] <dcinov + 477LfC’p sup E {

sup {
nT nT<u<s’

nT<u<t
+ 401773(T20H +Tow),

g

¢
<dcinov + 4cmL%C’p sup E { C

nT nT<u<s’

since nT" < 1. Finally, applying Gronwall’s inequality and using again n7T" < 1 provides

sup E

)2
[ - CZ ’ } < eXp(4clL§Cp)(4clav +4ciom + 4deinon)n,
nT<u<t

d
with Cf; = /exp(4c1L3C,)(dciov + 4dcion + deinow). Note that oy = O(d) and oy = O(d) hence

Cf,l = O(\/a)

Next, we upper bound the second term of (51). To prove it, we write

Vi-2Z{"| < ”W]/ Vi, —Z'"]ds

which implies that

. . 2 1/2
07 — ¢ } < Ciavm (56)

k]

+7 ‘/ H(0/s)) h@:’n)] ds

which leads to

t
E[[V)-Z)""] <297 / E[[V]y - Z0")"] +20°E [
nT

i

t
E [’V? — Zt"’n’Q] < 27217/ E UV?SJ — ZZ’"H + exp(4c1 LIC, ) (4cionn + 4ein’oun’).
nT

[ [ -] s

By similar arguments we have used for bounding the the first term, we obtain

Using the fact that the rhs is an increasing function of ¢ and we obtain

t
sup E [|VZ —szﬂ < 2727]/ sup E [|VZ —72’”‘2] ds + exp(4¢1 L3 C,) (4cromn + dan’oun?),

nT<u<t nT nT<u<s
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Applying Gronwall’s lemma and nT < 1 yields
sup E [WZ — 7Z’n|2} < exp(2y” + 41 LIC, e (oun + oun®),
nT<u<t

which leads to

_ —nn211/2 .
E[[Vi-Z0"]"] " < ciava, (57)

where Cf 5, = \/exp(272 + 41 L3C,)dciom (1 +1). Note again that o = O(d), hence Cf ., = O(d*/?).
Therefore, combining (51), (56), (57), we obtain

Wa (L@, V), £, Z0™) < g/,

where Cf = Cf 1 + Cf, = O(d"/?).

D.2 Proof of Theorem 4.2
Triangle inequality implies that

3

n,m n 7,k s k—1 k=1
Wa(L(C" Z0™), £(6, 20) < 3o WalL(& " Z00), £ 20,
k=
— — Rval ~0 9" V1
since (C?’O, Zt"’o) = (Eto’eo’vo’", Zto,eo,vo,n) = (¢, Z") by definition. Next we write out the definition of the

process (Z?k,f?k) and obtain
Wa(L(C", Z0"), L, 27))
(k—1)T,3"

I an n
/\kTG V1 .n SkT,00. V7 _nypon k=0T, Vi
<§ :”72 kT T’? Z kT T’?), C(Ct (k=1)T” (k nT 7Zt (k—1)T" (k—=1)T ))

At this point, we have two processes and in order to be able to use the contraction result, we need their
starting times to match. For notational simplicity, let us define

36 Vs,n 25,07 V1

= (G

B 55,00, Vn )

Therefore, in order to be able to use a contraction result, we note

_(k=1)T,87 v m
B(k 1)T,6(k HT (kfl)T’n),ﬁ(ékTﬂBkT (k=1)T’" (k—=1)T m
t - t
This leads to
—mn n,n
W2([’(Ct 7Zt )7[’(4.?72;7))
(k 171,67 v m (k 171,67 v m
(k—1)T"V (k—1)T (k=Y (k—1)T

T, s SkT,07.., , /\kTB , AkTB ,

< § W2 O Vier:n Z o Vier 7’) (Ct ’77Zt 17))

The reader should notice at this point that this quantity can be upper bounded by a contraction result as
both processes are defined for time ¢ and both started at time k7. By using Theorem 3.1, we obtain

Wa(L@" Z0™), £, Z0) < VS e D2 (oo Vi, £@E 0Tz,

Next, using Lemma 5.4 of Chau and Résonyi (2022) to upper bound the the last term leads
Wa(L(C", Z), £ 20)

< 3max{l +a,v" }\fz e et kT)/Z\/l + e EV2[V2(07 ., Vil )] + e EYV2 (V2 (Clp (k—1)T 7 (ko 1)T)]

k=1

(k—1T —=n,(k—1)T
X\/W2(£(92T7anT) L(Cyp Zir ))s
< C3n't,
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where the last line follows from Lemma 3.4 and Theorem 4.1. The bound for the term relating to the contin-

uous dynamics (i.e. E1/2[V2(ZZ’7(J€_1)T,72%’671”)]) follows from Remark 2.3 (dissipativity of the gradient)

and we have a constant diffusion coefficient, and uniform bound in Lemma 3.1 and, finally, the fact that the
initial data (which is the iterates of the numerical scheme) has finite fourth moments (Lemma 3.4). We note
that C3 = O(e?).

D.3 Proof of Proposition 5.1

We denote 7, ; := L(0}], V) and write

BUOD] - BU 6] = [
Recall from (10), we have

|h(0)] < La|60] + ho.

Using Raginsky et al. (2017, Lemma 6), we arrive at

UO)n! 5(d6,dv) — [ U(8)ms(d6,dv)

R2d R2d

S (flCm + hO)WQ(ﬂ-Z,B’ ﬂ-/@)?

where,

C? := max (/ H@”Qﬂ‘zﬁ(de,d’u),/ H0H27rg(d0,dv)> = max(C§, Cp).
R2d Rr2d
We therefore obtain using Theorem 2.1 that

E[U(6)] — E[U(0a0)] < (L1Cm + ho) (C1d"/*n*/? + Cin*/* + Cie™ i),
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