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Abstract

We consider nonstationary multi-armed bandit problems where the model parameters of
the arms change over time. We introduce the adaptive resetting bandit (ADR-bandit), a
bandit algorithm class that leverages adaptive windowing techniques from literature on data
streams. We first provide new guarantees on the quality of estimators resulting from adap-
tive windowing techniques, which are of independent interest. Furthermore, we conduct
a finite-time analysis of ADR-bandit in two typical environments: an abrupt environment
where changes occur instantaneously and a gradual environment where changes occur pro-
gressively. We demonstrate that ADR-bandit has nearly optimal performance when abrupt
or gradual changes occur in a coordinated manner that we call global changes. We demon-
strate that forced exploration is unnecessary when we assume such global changes. Unlike
the existing nonstationary bandit algorithms, ADR-bandit has optimal performance in
stationary environments as well as nonstationary environments with global changes. Our
experiments show that the proposed algorithms outperform the existing approaches in syn-
thetic and real-world environments.

Keywords: multi-armed bandits, adaptive windows, nonstationary bandits, changepoint
detection, sequential learning.

1. Introduction

1.1 Motivations

The multi-armed bandit (MAB; Thompson (1933); Robbins (1952)) is a fundamental model
capturing the dilemma between exploration and exploitation in sequential decision making.
This problem involves K arms (i.e., possible actions). The decision-maker selects a set of
arms at each time step and observes a corresponding reward. The goal of the decision-maker
is to maximize the cumulative reward over time. The performance of a bandit algorithm is
usually measured via the metric of “regret”: the difference between the obtained rewards
and the rewards one would have obtained by choosing the best arms. Minimizing the regret
corresponds to maximizing the expected reward.
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MAB has been used to solve numerous problems, such as experimental clinical design
(Thompson, 1933), online recommendations (Li et al., 2010), online advertising (Chapelle
and Li, 2011; Komiyama et al., 2015), and stream monitoring (Fouché et al., 2019). The
most widely studied version of this model is the stochastic MAB, which assumes that the
reward for each arm is drawn from an unknown but fixed distribution. In the stochastic
MAB, several algorithms, such as the upper confidence bound (UCB; Lai and Robbins,
1985; Auer et al., 2002) and Thompson sampling (TS; Thompson, 1933) are known to have
Θ(K log T/∆min) regret,1 which is optimal (Lai and Robbins, 1985). While it is reasonable
to assume in some cases that the reward-generating process does not change, as in these
algorithms, the distribution of rewards may change over time in many applications. To
observe this, we consider the following two examples:

Example 1 (Online advertising) A website has several advertisement slots. Based on each
user’s query, the website decides which ads to display from a set of candidates (i.e., “rel-
evant advertisements”). Some advertisements are more appealing to a user than others.
Each advertisement is associated with a click-through rate (CTR), the number of clicks
per view. Websites receive revenue from clicks on advertisements; thus, maximizing the
CTR maximizes the revenue. This problem is structured as the bandit problem, with ad-
vertisements and clicks as arms and rewards. However, it is well known that the CTR
of some advertisements may change over time for several reasons, such as seasonality or
changing user interests. In this case, naively applying a stochastic MAB algorithm leads to
suboptimal rewards.

Example 2 (Predictive maintenance) Correlation often results from physical relationships,
for example, between the temperature and pressure of a fluid. A change in these correlations
often signals a shift in the system’s state (like a fluid solidifying) or a failure or degradation
in equipment (such as a leak). In the context of large-scale factory monitoring, keeping
track of these correlations can help anticipate issues, thus reducing maintenance costs.
Nevertheless, constantly updating the full correlation matrix is computationally unfeasible
due to the data’s high-dimensionality and dynamic nature. A more efficient solution consists
of updating only a few elements of the matrix based on a notion of utility (e.g., high
correlation values). The system must minimize the monitoring cost while maximizing the
total utility in a possibly nonstationary environment. In other words, correlation monitoring
can be considered an instance of the bandit problem (Fouché et al., 2019), in which pairs
of sensors and correlation coefficients correspond to arms and rewards.

In such settings, the reward may evolve over time (i.e., it is nonstationary2). The non-
stationary MAB (NS-MAB) describes a class of MAB algorithms addressing this particular
setting. Most of the NS-MAB algorithms rely on passive forgetting methods based on a
sliding window (Garivier and Moulines, 2011) or fixed-time resetting (Gur et al., 2014). Re-
cent work has proposed more sophisticated change detection mechanisms based on adaptive
windows (Srivastava et al., 2014) or sequential likelihood ratio tests (Besson et al., 2022).
However, the existing methods have several drawbacks, as we describe later.

1. The value ∆min is a distribution-dependent constant quantifying the hardness of the problem instance.
2. The use of the term “nonstationary” in the bandit literature is different from the literature on time series

analysis. We formally define stationary and nonstationary streams in Definition 1.
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Figure 1: In the Bioliq dataset, each arm corresponds to the correlation coefficient between
a pair of sensors. As we can see, the rewards between different arms tend to
change coordinatedly. We describe this dataset in details in Section 6.

1.2 Challenges in nonstationary bandits

Although change detectors can help MAB algorithms adapt to changing rewards, they
often come with costs. Let us consider the case of an abruptly changing environment,
where the reward distributions change drastically at some time steps. Previous work by
Garivier and Moulines (2011) indicated that the regret of any K-armed bandit algorithm for
such a case is3 Ω(

√
T ). This finding implies that the performance of NS-MAB algorithms

in stationary (i.e., non-changing) environments is inferior to the performance of standard
stochastic MAB algorithms, such as the UCB and TS, because O(

√
T ) is much larger than

O(K log T/∆min) given a moderate value of ∆min. Virtually all NS-MAB algorithms conduct
O(
√
T ) forced exploration for all the arms, which is the leading factor of regret—no matter

what changepoint detection algorithm is used.

Another drawback of most existing methods is that they require several parameters that
are highly specific to the problem and require unreasonable environmental assumptions, such
as the number of changes or an estimation of the amount of “nonstationarity” in the stream.
If such parameters are not set correctly, the actual performance may deviate widely from
the given theoretical bounds.

This paper solves these issues by introducing adaptive resetting bandit (ADR-bandit)
algorithms, a new class of bandit algorithms. Several algorithms, such as UCB and TS,
have been established in the stationary case; therefore, we aim to extend them without

3. This holds even when the change is sufficiently large, regardless of the value of a distribution-dependent
constant ∆min. See details in Theorem 13, Corollary 14, and Remark 17 in Garivier and Moulines (2011).
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Table 1: The table below compares the achievable performance of the existing NS-MAB
algorithms, ADR-bandit, and stationary MAB algorithms (e.g., TS and UCB).
The value d defines the speed of gradual changes. ADR-bandit has optimal per-
formance in stationary environments as well as nonstationary environments with
global changes. Most existing NS-MAB algorithms only handle abrupt changes
and do not provide any performance guarantees under gradual changes. Perfor-
mance bounds under the gradual changes are provided in Besbes et al. (2019);
Allesiardo and Féraud (2015); Wei et al. (2016); Wei and Srivastava (2018); Trovò
et al. (2020); Krishnamurthy and Gopalan (2021). Here, Õ is a Landau notation
that ignores a polylogarithmic factor.

Stationary Abrupt Gradual

Existing NS-MAB Õ(
√
T ) Õ(

√
T ) Õ(T 1−d/3)

ADR-bandit O(log T/∆min) Õ(
√
T ) (Under GC) Õ(T 1−d/3) (Under GC)

Stationary MAB O(log T/∆min) O(T ) O(T )

introducing any forced exploration. For this purpose, we combine them with an adaptive
windowing technique. For example, ADR-TS, which is an instance of the ADR-bandit,
combines the adaptive windowing with TS. Our method deals with a subclass of changes
that we call global changes. Intuitively, if all arms change in a coordinated manner, we
can avoid forced exploration to improve performance. This type of change is natural in the
predictive maintenance of Example 2, as illustrated in Figure 1, where the nonstationarity
often results from changes in the entire system.

Our analysis shows that the proposed method has optimal performance for stationary
streams and comparable bounds with existing NS-MAB algorithms for abruptly changing
and gradually changing environments under the global change assumption. Table 1 com-
pares the bounds from the proposed method with the existing types of NS-MAB algorithms.

1.3 Contributions

We articulate our contributions as follows. First, we provide an extensive analysis of adap-
tive windowing techniques. We focus, on the adaptive windowing (ADWIN) algorithm
(Bifet and Gavaldà, 2007), which is still considered state-of-the-art in the data stream lit-
erature. The ADWIN algorithm performs well regarding various types of streams (Gama
et al., 2014). Bifet and Gavaldà (2007) provided false positive and false negative rate
bounds.4 However, existing analyses are not sufficient for our aim. For the analysis of
bandit algorithms using ADWIN, we need an estimate on the accuracy of the estimator µ̂t.
Thus, we conduct a finite-time analysis on the estimation error |µt − µ̂t| (Section 3). As a
by-product, this analysis explains why adaptive windowing methodologies perform well in
many stream learning problems by bounding the error for abrupt and gradual changes.

4. Although, rigorously speaking, their analysis is not correct, as we will discuss later.
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After formalizing the MAB problem (Section 4), we introduce the ADR (ADaptive
Resetting) bandit algorithm (Section 5). Our study builds on a recent paper by Fouché
et al. (2019) that applies the MAB to sensor streams. Although Fouché et al. (2019)
proposed a way to combine the stationary bandit algorithms (e.g., UCB and TS) with
adaptive windows, they did not provide any theoretical guarantees for the nonstationary
case. We slightly modify their framework to enable rigorous analysis. Our work bridges
the divide between these methods’ practical application and theoretical comprehension. We
believe our analysis and characterization of global changes present novel contributions to
the literature on nonstationary bandit algorithms.

Finally, we demonstrate the performance of our proposed method concerning synthetic
and real-world environments (Section 6). The proposed method outperforms the existing
nonstationary bandit methods in stationary streams and abruptly and gradually changing
environments.

2. Related Work

2.1 Change detection

Change detection is an important problem in data mining. The goal is to detect when the
statistical properties (e.g., the mean) of a stream of observations change. Such changes are
commonly attributed to the phenomenon known as concept drift (Gama et al., 2014; Lu
et al., 2019), which characterizes unforeseeable changes in the underlying data distribution.
Detecting such changes is crucial to virtually any monitoring tasks in streams, such as
controlling the performance of online machine learning algorithms (Bifet and Gavaldà, 2007)
or detecting correlation changes (Seliniotaki et al., 2014).

There are numerous methods to detect changes. The fundamental idea is to measure
whether the estimated parameters of the current data distribution (e.g., its mean) have
changed at any time. In other words, change detection is about separating the signal from
the noise (Gama and Castillo, 2006).

Changepoint detection approaches can be classified into three major categories (cf. Table
II in Gama et al. (2014)). These categories are sequential analysis approaches (e.g., CUSUM
(Page, 1954) and its variant Page-Hinkley (PH) testing (Hinkley, 1971)), statistical process
control (e.g., the Drift Detection Method (DDM) (Gama et al., 2004) and its variants), and
monitoring two distributions (e.g., ADWIN in Bifet and Gavaldà, 2007).

In this work, we primarily consider ADWIN (Bifet and Gavaldà, 2007) because it works
with any bounded distribution and has a good affinity with online learning analyses. More-
over, ADWIN monitors the mean from a sequence of observations over a sliding window
of adaptive size. When ADWIN detects a change between two subwindows, the oldest ob-
servations are discarded. Otherwise, the window grows indefinitely. The success of this
approach is due to the quasi-absence of parameters, making it highly adaptive.

Gonçalves et al. (2014) empirically compared ADWIN with other drift detectors. They
found that ADWIN is one of the fastest detectors and is one of the only methods to provide
false positive and false negative (fp/fn) rate guarantees. Many of the existing methods do
not provide any performance guarantees, which is the case for DDM (Gama et al., 2004),
EDDM (Baena-Garcıa et al., 2006), and ECDD (Ross et al., 2012) (per Blanco et al., 2015).
Although we believe that one can provide fp/fn rate guarantees for the statistical process

5



Komiyama, Fouché, and Honda

control and CUSUM (Page, 1954) approaches by choosing the appropriate parameters,
limited discussions are available on the theoretical properties of these algorithms. For a
thorough history and comparison of change-detection methods, we refer to the surveys by
Gama et al. (2014); Krawczyk et al. (2017).

2.2 Nonstationary bandits

In comparison to the change detection literature, theoretical performance guarantees (i.e.,
regret bounds) are much more emphasized in the MAB literature. Traditionally, NS-MAB
algorithms are divided into two categories. Active methods actively seek to detect changes,
and passive methods do not. Another type of algorithms, known as adversarial bandits
(Auer et al., 1995), such as Exp3, can deal with changing environments. However, the
guarantee of adversarial bandit algorithms is limited when no arm is consistently good. In
the following paragraphs, we discuss the related work on active and passive methods.

Active methods: Hartland et al. (2007) proposed Adapt-EvE, which combines the PH
test with UCB, and Mellor and Shapiro (2013) suggested changepoint TS. However, these
two studies do not provide any regret bounds. Liu et al. (2018) proposed CUSUM-UCB and
PH-UCB, which combine the UCB algorithm with a CUSUM-based (or PH-based) resetting
and forced exploration. They derived a regret bound of Õ(

√
MT ) in an abruptly chang-

ing environment with M known change points. Cao et al. (2019) suggested the M-UCB
algorithm, which combines UCB with an adaptive-window-based resetting method with a
regret bound of Õ(

√
MT ) for an abruptly changing environment. Allesiardo and Féraud

(2015) proposed Exp3.R, which combines Exp3 (Auer et al., 1995) with changepoint detec-
tion and provides a Õ(M

√
T ) regret bound. Although the assumptions are slightly different

among algorithms, many of the regret bounds are of the order of Õ(
√
MT ) concerning the

number of change points M and the number of time steps T . Auer et al. (2019) provided
an epoch-based bandit algorithm that does not require the knowledge of M . Moreover,
Seznec et al. (2020) applied the adaptive window to the rotting bandit problem where the
reward of the arms only decreases. Krishnamurthy and Gopalan (2021) proposed an
elimination-based algorithm and analyzed its performance in a two-armed gradually chang-
ing environment. They derived a similar regret bound O(T 1−d/3) as this paper, where d
is the change-speed parameter that is the same as ours. Besson et al. (2022) proposed
GLR-klUCB, a combination of KL-UCB (Garivier and Cappé, 2011) with the Bernoulli
Generalized Likelihood Ratio (GLR) test (Maillard, 2017) and forced exploration for an
abruptly changing environment. They discussed global and local resets and provided a
regret bound of Õ(

√
MT ).5 One of the closest works to ours is Mukherjee and Maillard

(2019), where they proposed algorithms UCBL-CPD and ImpCPD by combining UCB with
a change point detector. They considered the global changes in the abrupt environment
with the same spirit as ours to avoid forced exploration. Still, their main goal is to char-
acterize detailed regret bounds for this environment, while ours is to cover both the global
abrupt and global gradual environments by a single algorithm. To be more specific, they
obtain both distribution-dependent and independent bounds using a confidence interval
established through the Laplace method. This approach circumvents the need for union

5. They also discussed dependence on the distribution-dependent constants (Corollary 6 therein).
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bounds, leading to a reduced confidence level.6 In terms of distribution-independent regret,
ImpCPD has O(

√
MT ) distribution-independent regret bound, while UCBL-CPD and our

algorithm have Õ(
√
MT ) regret including the polylogarithmic factor in T . On the other

hand, most of the effort of this paper is devoted to the analysis for the gradual changes. We
think that the application of the Laplace method could potentially improve polylogarithmic
factors of our bounds, but we opted to use confidence bounds based on union bounds for
simplicity to focus on simultaneously handling two environments.

Passive methods: Kocsis and Szepesvári (2006) proposed Discounted UCB (D-UCB).
Garivier and Moulines (2011) suggested Sliding Window UCB (SW-UCB) and analyzed
D-UCB to demonstrate that the two algorithms have a Õ(

√
MT ) regret bound for abruptly

changing environments. Besbes et al. (2019) considered the case of limited variation V
and proposed the Rexp3 algorithm with the regret bound Θ(V 1/3T 2/3). Wei et al. (2016)
generalized the analysis of Besbes et al. (2019) to the case of intervals where each interval
has limited variation. Wei and Srivastava (2018) proposed the LM-DSEE and SW-UCB#
algorithms with a Õ(

√
MT ) regret bound for an abruptly changing environment. The latter

algorithm adopts an adaptive window with a limited length. They also analyzed the case
of a slowly changing environment and derived a regret bound of SW-UCB#. Chen et al.
(2019) proposed a very involved algorithm and stated that it can adapt to abrupt changes as
well as gradual changes with a Θ(min(

√
MT, V 1/3T 2/3)) regret bound. Trovò et al. (2020)

proposed the Sliding Window TS (SW-TS) algorithm and provided a Õ(
√
MT ) regret bound

for an abruptly changing environment. They also provided a distribution-dependent regret
bound for a gradually changing environment.

Our approach is an active one; however, it does strikingly differ from the existing meth-
ods. Our algorithm does not sacrifice performance in the stationary case, whereas almost all
existing NS-MAB algorithms are exclusively designed for nonstationary environments. In
real-world settings, users may not know whether a given stream of data must be considered
stationary or not. Similarly, the nature of the stream may also change over time. In such
settings, our approach is advantageous, as our experiments show.

Although the analysis that follows is quite involved, our algorithms are conceptually
simple and aimed at practical use. In comparison, our competitors tend to require more
computation and rely on parameters that are difficult to set.

3. Analysis of ADWIN

This section analyzes ADWIN (Bifet and Gavaldà, 2007). This algorithm monitors at any
time t an estimate of the mean µ̂t from a single stream of univariate observations.

3.1 Data streams

We assume that each observation xt ∈ [0, 1] at any time step t is drawn from some distribu-
tion with the mean µt. The value µt is not known to the algorithm, and ADWIN estimates
it from a sequence of (possibly noisy) observations S : (x1, x2, . . . , xT ). The goal of ADWIN

6. In particular, confidence levels required in Theorems 1 and 2 therein are 1/T to the number of rounds
T . This is superior to the T 3 level of confidence required in our paper.
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xt

T T TT

xt xtxt

Abrupt drift Recurring drift Incremental driftGradual drift

Abrupt changes Gradual changes

Figure 2: We classify the four types of concepts drifts (abrupt, recurring, gradual, incre-
mental) into two types of changes: abrupt and gradual changes. Here, dashed
lines represent µt, whereas solid lines represent xt.

is to maintain an estimator of µt at any t based on past observations. Due to concept drift
(Gama et al., 2014), the mean µt may change over time, so the task is not trivial.

The data stream literature (Gama et al., 2014) identifies the four main categories of
concept drifts: abrupt, recurring, gradual, and incremental drifts. Figure 2 indicates that
the mean µt (the dashed line in the figure) changes abruptly and stays the same for some
time with abrupt and recurring drifts, whereas µt changes gradually over time with gradual
and incremental drifts. The actual observations xt can be arbitrarily noisy. We are only
interested in the change in the mean µt; thus, we simplify our analysis to the two types of
changes.7 In addition, we also consider stationary streams where the mean µt never changes
over time. In summary, we consider three types of streams:

Definition 1 (Stationary, abruptly changing, and gradually changing streams)

1. A stream is static if µt = µ for all t ∈ [T ] and some µ ∈ [0, 1].

2. A stream is abruptly-changing if µt = µt+1 except for changepoints TC ⊂ [T ].

3. A stream is gradually-changing if |µt+1 − µt| ≤ b for all t ∈ [T ] and some constant
b ∈ (0, 1).

These definitions refer to the mean µt. The observations {x1, x2, . . . } can be noisy.

3.2 The adaptive window algorithm

Algorithm 1 is the pseudo-code for ADWIN (Bifet and Gavaldà, 2007). The law of large
numbers implies that using more observations helps estimate the parameter. However, the
nature of older observations might be different from more recent observations. To determine
a good trade-off between these two effects, ADWIN maintains a window W (t) of past time
and discards data points outside the window.

7. This categorization matches the MAB literature (Wei and Srivastava, 2018; Trovò et al., 2020).
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Algorithm 1 ADWIN

Require: A univariate stream of values S : (x1, x2, . . . ) ∈ [0, 1], confidence level δ ∈ (0, 1).
1: W (1) = {}
2: for t = 1, 2, . . . do
3: W (t+ 1) = W (t) ∪ {t}
4: while |µ̂W1 − µ̂W2 | ≥ εδcut holds for some split W (t+ 1) = W1 ∪W2 do
5: W (t+ 1) = W2.
6: end while
7: end for

µt

T

changepoint

(a) changepoint

xt

Tdetection time

W1 W2

(b) detection time

Figure 3: Terminology of changepoint and detection time. A changepoint of an abruptly
changing stream is a time step t where µt 6= µt+1. A detection time is the time
step where ADWIN shrinks the window.

We omit the index (t) of W (t) when the time step of interest is clear. At each time step t,
ADWIN receives a new observation xt and extends the windowW to include the observation.
For the current window W , we let µ̂W = 1

|W |
∑

t∈W xt be the corresponding empirical mean.
For each new observation, ADWIN tests whether the mean of the underlying distribution
has changed. If we can split W into two consecutive disjoint subwindows W1 ∪W2 = W
whose empirical means are significantly different (i.e., by some threshold εcut), then ADWIN
discards W1 (i.e., ADWIN shrinks the window):

εδcut =

√
1

2|W1|
log

(
1

δ

)
+

√
1

2|W2|
log

(
1

δ

)
, (1)

where |W | is the cardinality of a set W . The threshold εcut is based on Hoeffding’s inequal-
ity8. At each time step, ADWIN checks every possible split of W .

The following definition formalizes the notion of a window and the shrinking of the
current window. See also Figure 3 for illustration.

Definition 2 (Detection times) The time step t is a detection time of ADWIN if |W (t +
1)| ≤ |W (t)|. In addition, ADWIN “shrinks” the window at time t if time step t is a

8. Note that εcut above is slightly different from the original ADWIN where the harmonic mean of |W1|
and |W2| is used.
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detection time. We define the breakpoint as the last round of W2 from the split W = W1∪W2

(Figure 3). We let Td be the set of all detection times.

Remark 3 Unlike the set of changepoints Tc (Definition 1) that is only defined for an
abruptly changing stream and is independent of any underlying algorithm, Td is defined for
both abrupt stream and gradual stream. The detection time is a random variable that is
defined via ADWIN.

3.2.1 Bound for the estimator of the mean µt

Bifet and Gavaldà (2007) derived a bound on the false positive and false negative rates by
replacing δ with δ′ = δ/|W (t)|, to account for multiple tests9. However, the existing analysis
is incomplete because it implicitly assumes that the window size |W (t)| is deterministic.

In this paper, we use δ instead of δ′ because it clarifies the analysis. The value of δ
is in accordance with the possible multiplicity. With this aim, we introduce the notion
of the window set and split and then introduce a confidence bound that holds with high
probability.

Definition 4 (Window set) The window set W is the set of all the segments, which are the
candidates of the current window W .

W = {W ′ : W ′ = {t′, t′ + 1, . . . , t′′}, 1 ≤ t′ < t′′ < T}. (2)

Definition 5 (Split and estimator in a window) Letting W ′ = {t′, t′ + 1, . . . , t′′}, a split
W1,W2 of a window W ′ ∈ W is defined as two disjoint subsets of W ′ such that W1 =
{t′, t′ + 1, . . . ,m} and W2 = {m+ 1,m+ 2, . . . , t′′} for some m ∈W ′ \ {t′′}. For a window
W ′ ∈ W,

µW ′ =
1

|W ′|
∑
s∈W ′

µs, (3)

and its empirical estimator is

µ̂W ′ =
1

|W ′|
∑
s∈W ′

xs. (4)

Proposition 1 (Uniform Hoeffding bound for the window set) Let p > 0 be arbitrary.
With probability 1− 2/T p, we have the following:

∀ W ′ ∈ W, |µW ′ − µ̂W ′ | ≤

√
log(T 2+p)

2|W ′|
. (5)

Proposition 1 is derived using the Hoeffding inequality (Lemma 25, in Appendix C) over
all possible |W| ≤ T 2 windows. The bound above holds regardless of the randomness of the
current window W = W (t). Moreover, it holds for any W and any split W1 ∪W2 = W .
We typically set p = 1 because this ensures a uniform bound with probability 1−O(1/T ),
and an event with probability O(1/T ) is usually negligible. Our results are based on this
bound.

9. There are |W (t)| − 1 ways to split W (t) = W1 ∪W2.
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3.2.2 Bound for the total error of the mean estimator

In the following, we provide a bound on the following total error of the estimator µ̂W :

Definition 6 (Total error) The total error of estimator µ̂W is defined as follows:

Err(T ) =

T∑
t=1

|µ̂W (t) − µt|. (6)

We first derive the error bound of ADWIN for a stationary stream, which directly follows
from the false positive rate (Eq. (5)).

Theorem 7 (ADWIN in stationary environments) Let the stream be stationary. Then, for
ADWIN with δ = 1/T 3, we have the following:

E[Err(T )] ≤ Õ(
√
T ). (7)

Proof of Theoremf 7 Equation (5) with p = 1, together with Definition 2 implies that
no shrink occurs with probability 1− 2/T . Therefore,

E[Err(T )] ≤ T × 2

T︸ ︷︷ ︸
case where at least one shrink occurs

+

T∑
t=1

√
log(T 3)

2t︸ ︷︷ ︸
case where no shrink occurs

(8)

≤ 1 +
T∑
t=1

√
log(T 3)

2t
(9)

≤
√

6T (log T ) + 1,

(
by

T∑
t=1

(1/
√
t) ≤ 2

√
T

)
(10)

which completes the proof.

The Õ(
√
T ) error is the optimal rate because we can only identify the true value of µW up

to O(
√

1/|W |). The error per time step |µt − µW | is at least Ω(1/
√
|W |) = Ω(1/

√
t), and

the total error is Ω(
∑

t 1/
√
t) = Ω(

√
T ).

Theorem 7 states that ADWIN can learn from a stationary environment without any
unnecessary shrinking. This statement contrasts with such methods as periodic resetting
or fixed-size windowing algorithms which discard their entire memory after a fixed period.
Having derived the learnability of ADWIN for a stationary stream, we are now interested
in the property of ADWIN in the face of a nonstationary stream.

3.3 Analysis of ADWIN for abrupt changes

This section derives an error bound of ADWIN in the face of an abrupt change. As infor-
mally discussed in Bifet and Gavaldà (2007), ADWIN is able to detect abrupt changes if
the changes are infrequent and gaps are detectable. Our results here are even more robust.
Somewhat surprisingly, the bound in Theorem 8 does not depend on the detectability of
the change. No matter how large or small the changes are and in which interval the changes
occur, the algorithm’s performance is bounded in terms of the number of changes.

11
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Theorem 8 (Error bound of ADWIN under abrupt changes) Let the environment be abrupt
with M changepoints. The total error of ADWIN with δ = 1/T 3 is bounded as

E[Err(T )] = Õ(
√
MT ). (11)

Proof Sketch Let c(t) be the number of time steps after the last changepoint. First,
we demonstrate that |µW − µt| = Õ(1/

√
c(t)) because ADWIN otherwise would shrink

the window further (i.e., the event B in the proof). Second, the window size |W | is also
bounded below. Given a sufficiently high confidence parameter, |W | = O(c(t)) and thus
|µW − µ̂W | = Õ(1/

√
c(t)). Combining these two yields the bound of

|µ̂W − µt| ≤ |µW − µt|+ |µW − µ̂W | = Õ(1/
√
c(t)). (12)

Using the Cauchy-Schwarz inequality yields the bound of Eq. (11).

The formal proof is found in Appendix D.1.

Remark 9 Theorem 8 implies the optimality of ADWIN under abrupt drift. To observe
this, assume that a changepoint exists every T/M time steps. As discussed in Theorem 7,
the optimal rate of error for each interval between changepoints is Θ̃(

√
T/M), and the total

error should be Θ̃(M ×
√
T/M) = Θ̃(

√
MT ), which matches Theorem 8.

3.4 Analysis of ADWIN for gradual changes

In this section, we analyze ADWIN for a gradually changing stream, where the mean µt
changes slowly with constant b (Definition 1). We consider the error for b = T−d by following
the framework of Wei and Srivastava (2018).

Theorem 10 (Error bound of ADWIN under gradual changes) Assume that there exists
d ∈ (0, 3/2) such that, the stream is gradually changing with its constant satisfies b ≤ T−d.
Then, the performance of ADWIN with δ ≤ 1/T 3 is bounded as follow:

E[Err(T )] = Õ(T 1−d/3). (13)

Proof Sketch We establish two lemmas in the appendix. Lemma 26 states that the drift
|µs−µt| for any two time steps s, t in the current window W (t) is bounded by Õ(bN+

√
1/N)

for any N ≥ |W (t)|. Moreover, Lemma 27 states that the window is likely to grow until
|W | = O(b−2/3). Combining these two lemmas yields |µs − µt| = O(b1/3) = O(T−d/3).

The formal proof is found in Appendix D.4. Theorem 10 states that if the change is slow
compared with the current scale of interest T , then the error per time step Err(T )/T
approaches zero.

In this section, we have bounded the total error for streams with abrupt changes (Section
3.3) as well as for streams with gradual changes (Section 3.4). This concludes our discussion
on ADWIN. In subsequent sections, we consider the idea of combining ADWIN with the
MAB setting where multiple streams are involved, and only a selected subset of streams are
observable.

12
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Algorithm 2 Thompson sampling (TS)

Require: Set of arms [K].
1: Initialize: W (t) = ∅
2: for t = 1, . . . , T do
3: for i = 1, . . . ,K do
4: Si(t) =

∑
s∈W (t) 1[i = I(s)]xi,s, Ni(t) =

∑
s∈W (t) 1[i = I(s)].

5: θi,t ∼ Beta(Si(t) + 1, Ni(t)− Si(t) + 1).
6: end for
7: Play arm I(t) := arg maxi θi,t. . Posterior sampling
8: Receive reward x(t).
9: Update window W (t+ 1) = W (t) ∪ {t}.

10: end for

Algorithm 3 Kullback–Leibler UCB (KL-UCB).

Require: Set of arms [K].
1: Initialize: W (t) = ∅
2: for t = 1, . . . , T do
3: for i = 1, . . . ,K do
4: Si(t) =

∑
s∈W (t) 1[i = I(s)]xi,s, Ni(t) =

∑
s∈W (t) 1[i = I(s)].

5: µ̂i,W (t) = Si(t)/Ni(t) where 0/0 = 1.
6: Ui(t) = max{q ∈ [0, 1] : Ni(t)dKL(µ̂i,W (t), q) ≤ log(t/Ni(t))}. . KL-UCB index
7: end for
8: Play arm I(t) := arg maxi Ui(t). . Arm with the largest UCB index
9: Receive reward x(t).

10: Update window W (t+ 1) = W (t) ∪ {t}.
11: end for

13
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4. Multi-armed Bandits

Up to now, we have studied the single-stream learning problem, in which every values of the
stream are observed. From this section, we study the Multi-Armed Bandit (MAB) problem
(Thompson, 1933; Robbins, 1952). This problem involves K streams, and a forecaster can
only observe one of these streams at each time step. We first formalize the problem setting
we consider.

Let there be K arms. At each time step t = 1, . . . , T , the forecaster selects an arm
I(t) ∈ [K], and then receives a reward xI(t),t from the selected arm. We also use the term
“environment” to describe K streams that generates rewards xi,t. Let (µi,t)t=[T ] be the i-th
stream. The stationary (resp. abruptly-changing and gradualy-changing) environment is
defined as a set of K stationary (resp. abruptly-changing and gradualy-changing) streams,
respectively, where these streams are defined in Definition 1.

The goal of the forecaster is to maximize the sum of the rewards of the selected arms
by using a good algorithm, and the performance of a bandit algorithm is usually measured
by the regret, which is defined as the difference between the expected reward of the best
arm and the expected reward of the arms selected by the algorithm. That is,

reg(t) = max
i∈[K]

µi,t − µI(t),t (14)

and

Reg(T ) =
T∑
t=1

reg(t). (15)

In the K-armed bandit problem, Thompson sampling (Thompson, 1933, TS) and the
upper confidence bound (Lai and Robbins, 1985; Auer et al., 2002, UCB) are widely known
algorithms that balance exploration and exploitation. Among several variants of UCB,
the one that uses KL divergence, which is called KL-UCB (Garivier and Cappé, 2011), is
known to have a state-of-the-art performance in stationary environments. TS and KL-UCB
in our notation are described in Algorithms 2 and 3, respectively. Here, 1[A] = 1 if A or 0
otherwise.

Under a changing environment, the performance of these algorithms is no longer guar-
anteed. The next section extends the MAB framework for the case of abruptly-changing
and gradually-changing streams, by combining adaptive window technology with bandit
algorithms.

These algorithms are designed to deal with stationary environments: The regret of
KL-UCB and TS is bounded as follows:

Definition 11 (Stationary regret) For a stationary environment (i.e., µi,t = µi), for ease
of discussion, we assume µ1 > µ2 > · · · > µK . Let the suboptimality gap be ∆i = µ1−µi. A
bandit algorithm has a logarithmic stationary regret if a universal constant Cst exists such
that

E[Reg(T )] ≤ Cst
∑
i 6=1

log T

∆i
, (16)

where Reg(T ) denotes the regret when we run the bandit algorithm.
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In the literature of multi-armed bandit problem, this bound is often referred to as the
distribution-dependent bound in the sense that it depends on ∆i. The inverse of ∆i defines
the hardness of the instance. Note that the logarithmic bound and its first-order dependence
on ∆−1

i is optimal (Lai and Robbins, 1985; Auer et al., 2002; Kaufmann et al., 2012; Agrawal
and Goyal, 2013).

4.1 Drift-tolerant regret

While the stationary regret is the most widely studied measure of the performance of station-
ary bandits, it cannot characterize the performance of a bandit algorithm under a changing
environment. The following extends this to the environments with drifts.

Definition 12 (Drift-tolerant regret) Assume a nonstationary environment that is abruptly
or gradually changing. Let

∆i = µ1,1 − µi,1 (17)

be the gap at t = 1. Let
ε(t) = max

s≤t
max
i
|µi,s − µi,1|, (18)

which is the maximum drift of the arms by time step t. For c > 0, let

Regtr(T, c) :=
∑
t

(reg(t)− cε(t))+,

where (x)+ = max(x, 0). Namely, Regtr(T, c) is the regret where the regret proportional
to drift is tolerated. A bandit algorithm has logarithmic drift-tolerant regret if a factor
Cdt = O(1) exists such that

E[Regtr(T,C
dt)] ≤ Cdt

∑
i 6=1

log T

∆i
. (19)

Remark 13 Definition 12 is a generalization of the distribution-dependent regret in the
literature of stationary bandits that allows a drift proportional to ε(t). Letting ε(t) = 0
immediately derives the stationary regret of Definition 11.

As the following lemma characterizes, Thompson sampling (TS, Algorithm 2) is drift-
tolerant.

Lemma 14 Assume that rewards x1,t, x2,t, . . . are binary (i.e., 0 or 1). Then, TS has
logarithmic drift-tolerant regret.

The formal proof is in Appendix E.2. Note that it is not very difficult to derive the drift-
tolerant regret of KL-UCB by following similar steps as the proof of Lemma 14.

Although the drift-tolerant regret characterizes the performance of TS and KL-UCB
under nonstationary environments, these algorithms are not good enough to deal with
nonstationarity. This is because ε(t) increases over time and can lead to a meaningless
bound of Θ(T ) when ε(t) reaches Θ(1). A capable nonstationary bandit algorithm should
be able to forget past data when it identifies a substantial drift. In the following section,
we will merge these base-bandit algorithms with ADWIN.
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5. Analysis of MAB for Globally Nonstationary Environments

This section proposes the combination of adaptive windowing and bandit algorithms.

5.1 Adaptive resetting bandit algorithm

Algorithm 4 ADS-bandit

Require: Set of arms [K], confidence level δ, base-bandit algorithm
1: Initialize the base-bandit algorithm.
2: for t = 1, 2, . . . , T do
3: (I(t), X(t)) = Base-bandit(W (t)) . Do one time step of the base-bandit

algorithm
4: if there exists a split W (t+ 1) = W1 ∪W2 such that |µ̂i,W1 − µ̂i,W2 | ≥ εδcut then
5: Update the window W (t+ 1) = W2 of the base-bandit algorithm.
6: end if
7: end for

Algorithm 5 ADR-bandit

Require: Set of arms [K], confidence level δ, monitoring parameter N ∈ N, base-bandit
algorithm

1: Initialize base-bandit algorithm.
2: for l = 1, 2, . . . , dlog2(T/(KN) + 1)e do
3: for t = (2l−1 − 1)KN + 1, . . . ,min{(2l − 1)KN,T} do
4: if l ≥ 2 and t = 0 (mod K) then
5: Pull i(l−1). . Monitoring arm of the previous block.
6: else if l ≥ 2 and t = 1 (mod K) and t ≥ (2l−1 − 2)KN + 1 then
7: Pull i(l). . Monitoring arm of the current block.
8: else
9: (I(t), X(t)) = Base-bandit(W (t)) . Do one step of the base-bandit

algorithm
10: end if
11: if there exists W (t+ 1) = W1 ∪W2 such that |µ̂i,W1 − µ̂i,W2 | ≥ εδcut then
12: Reset the entire algorithm with T := T − t.
13: end if
14: if t = KN then . The end of the first block l = 1.
15: Set i(1) = arg maxi∈[K]N

(1)
i . See Eq. (20) for N

(1)
i .

16: else if l ≥ 2 and t = (2l−1 − 2)KN then . Before the beginning of the last
subblock of the block l.

17: Set i(l) = arg maxi∈[K]N
(l)
i . . See Eq. (20) for N

(l)
i

18: end if
19: end for
20: end for
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Figure 4: Illustration of the blocks in Algorithm 5. Here, “i(l)” for each block l represents
the monitoring arm, which is drawn at least N times in each subblock. In the
last subblock, two monitoring arms il−1 and il are drawn at least N times, for
the aim of monitoring consistency.

ADS-bandit (adaptive shrinking bandit; Algorithm 4) combines adaptive windows with a
base-bandit algorithm such as TS or KL-UCB. In this algorithm, each arm has an associated
adaptive window change detector. When such a detector identifies a split in the window W
into W1 and W2, it follows the ADWIN procedure (as explained in Section 3) of reducing
the window size to retain W2.

We explain the steps of Algorithm 4 with TS as a base-bandit algorithm. Before the
first time step, the base-bandit algorithm is initialized (Line 1 of Algorithm 2). At each
time step t = 1, 2, . . . , Line 3 of Algorithm 4 runs an iteration of the base-bandit (Line 2
of Algorithm 2) to obtain I(t) and corresponding reward x(t) = xI(t),t. Afterward, Line 4
of Algorithm 4 checks whether a change occurred for each arm. If at least one change is
detected, it shrinks window W (t+ 1) to W2 and drops the memory of W1.

Although we will demonstrate the superior empirical performance of Algorithm 4 in
Section 6, it is highly nontrivial to derive a regret bound of Algorithm 4. The ADR-bandit
(adaptive resetting bandit; Algorithm 5) addresses the two primary issues for the analysis
as follows: First, the updated window W2 after a shrink can include some amount of
observations before the changepoint10. To address this issue, ADR-bandit resets the entire
window for each detection of a changepoint. Second, it is hard to guarantee a consistent
estimation of a single arm. For example, in a data stream with an abrupt change, if only arm
1 is selected prior to the change and only arm 2 is selected after the change, the algorithm is
incapable of identifying this change. Although this particular scenario is unlikely to happen,
it poses a challenge to the analysis of the algorithm. To address this issue, ADR-bandit
introduces the monitoring arm that we continue to draw with some frequency.

ADR-bandit (Algorithm 5) works as follows. After each observation, if one of the change
point detectors identifies a split in the window W into W1 and W2, it resets the entire
algorithm (Line 12) to start with W (t+ 1) = ∅. Moreover, Algorithm 5 divides the rounds
into blocks l = 1, 2, 3, . . . (Line 2). Each block consists of O(2l−1) subblocks, and each
subblock consists of KN rounds. Before the beginning of the last subblock of each l, it

10. We can cope with this problem in the case of single-stream ADWIN (Section 3.3) since µW eventually
converges to µt as W grows. However, under bandit feedback, our algorithms focus on optimal arms
and draw suboptimal arms less often. Thus, bounding the error of the estimators for suboptimal arms
is hard if the current window W still includes observations before the changepoint.
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determines the monitoring arm i(l) (Line 17), and then i(l) is drawn once in each K rounds

during the next block. Here, monitoring arm is chosen to be arg maxiN
(l)
i , where

N
(l)
i ={
|{s ≤ KN : I(s) = i}| l = 1
|{(2l−1 − 1)KN + 1 ≤ s ≤ (2l − 2)KN : I(s) = i,Base-bandit algorithm is called}| l ≥ 2

,

(20)

be the number of draws of arm i in the current block l. Intuitively speaking N
(l)
i is the

number of rounds in which the arm i is chosen by the base bandit algorithm.

5.2 Properties of Algorithm 5

As shown in Figure 4, the duration of two monitoring arms i(l−1), i(l) are overlapped so that
the following properties are satisfied:

Definition 15 (Monitoring consistency) ADR-bandit with any base-bandit algorithm has
the following two properties:

• Let t ≥ KN + 1 (i.e., any round in l ≥ 2). Then, at least one of the arms {i(l−1), i(l)}
satisfies the following: This arm was drawn at least N times before round t and will
be drawn at least N times within the next KN rounds.

• For any block l = 1, 2, . . . , there exists at least one arm that is drawn at least N times
for each subblock in l.

The first property in Definition 15 is used for the abrupt case, and the second property in
Definition 15 is used for the gradual case.

Moreover, the following theorem states that ADR-bandit is designed so that it does not
compromise the performance of the base-bandit algorithm when no reset takes place.

Lemma 16 (Regret due to monitoring) Assume that we run Algorithm 5 with a base-bandit
algorithm with K ≥ 3. Assume that Algorithm 5 has not reset itself until round S. Let

T base = {t ∈ [S] : base-bandit algorithm is evoked}

be the set of rounds where the base-bandit algorithm is evoked (i.e., when Line 9 in Algorithm
5 is executed). Then, the following holds:

S∑
t=1

reg(t) ≤ 4

 ∑
t∈T base

reg(t)

+
S∑
t=1

3ε(t). (21)

The proof of Lemma 16 is found in Appendix E.3. The first term is a constant multiplication
of the base-bandit regret. As a result, it can fully utilize the logarithmic drift-tolerant regret
of the base-bandit algorithm, which we formalized in the following Lemma.
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Lemma 17 (Constant multiplication) Assume that we run ADR-bandit algorithm with a
base-bandit algorithm that has logarithmic drift-tolerant regret (Definition 12). Assume that
no reset has occurred11 until round S. Then, there exists a constant Cdt = O(1) that is
independent of S, and the regret up to S is bounded as

E[Reg(S)] ≤ Cdt

∑
i 6=1

log T

∆i
+ E

[
S∑
t=1

ε(t)

] . (22)

Proof of Lemma 17 Definition 12 and Lemma 16 imply

E

∑
t≤S

(reg(t)− Cdtε(t))+

 ≤ E

∑
t≤T

(reg(t)− Cdtε(t))+

 ≤ Cdt
∑
i 6=1

log T

∆i
,

which implies Eq. (22).

5.3 Regret bounds of ADR-bandit algorithms

Having defined the ADR-bandit algorithm and the related properties, we state the main
results regarding the performance of these algorithms in stationary, abruptly, or gradually
changing environments.

Theorem 18 (Regret bound of ADR-bandit, stationary case) Let the environment be sta-
tionary. Let the base-bandit algorithm has a logarithmic stationary regret. Then, the regret
of Algorithm 5 with δ = 1/T 3 is bounded as follows:

E[Reg(T )] ≤ Cst
∑
i

log T

∆i
+O(1). (23)

Theorem 18 states that changepoint detectors do not deteriorate the performance of the
base-bandit algorithm. The proof directly follows from the following facts. First, adaptive
windows do not make a false reset with at least a probability of 1− O(K/T ). Second, the
regret of the ADR-bandit algorithm is equal to the base-bandit algorithm when no reset
occurs (Lemma 17). For completeness, we provide the proof of Theorem 18 in Appendix E.1.
This result has a striking difference from most existing nonstationary bandit algorithms,
which have the cost of a forced exploration of Ω(

√
T ). In the following sections, we derive

the regret bound in abruptly and gradually changing environments.
We next derive a regret bound for an abruptly changing environment. We first define

the global changes that we assume on the nature of the streams (Definition 19) and then
state the regret bound.

Definition 19 (Globally abrupt changes) Let M be the number of change points and Tc =
{T1, T2, . . . , TM} = {t : ∃ i ∈ [K]µi,t 6= µi,t+1} be the set of changepoints. Moreover,
(T0, TM+1) = (0, T ). The m-th changepoint is a global change with Cab if

max
i,j∈[K],t∈Tc

|µj,t − µj,t+1|
|µi,t − µi,t+1|

≤ Cab (24)

11. Note that S is a stopping time (random variable).
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is finite.

Intuitively, Cab is the maximum ratio of changes among arms. Assuming it as a constant
indicates that any modification in one arm is proportionally mirrored in all the other arms.

Definition 20 (Detectability) For the m-th changepoint, let εm = mini |µi,m−µi,m+1|. We
let U(ε) = (log(T 3))/(2ε2). The m-th changepoint is detectable if Tm− Tm−1, Tm+1− Tm ≥
48KU(εm).

The detectability assumption is essentially the same as those in the literature of active
nonstationary bandit algorithms, such as Cao et al. (2019) and Besson et al. (2022).

Theorem 21 (Regret bound of ADR-bandit under abrupt changes) Let the base-bandit
algorithm have a logarithmic drift-tolerant regret bound (Definition 12). Let the environment
have M detectable globally abrupt changes (Definitions 19 and 20) with Cab > 0. Then, the
regret of the Algorithm 5 is bounded as follows:

E[Reg(T )] = Õ(
√
MKT ), (25)

if δ = 1/T 3, N ≥ 16U(εm),KN ≤ (Tm+1 − Tm)/3 holds for all m.

Proof Sketch The proof sketch is as follows.

• With a high probability, the algorithm resets itself within 16KU(∆m) time steps after
m-th changepoint there exists a corresponding reset.

• By the sublinear drift-tolerant regret of the algorithm the expected regret between
m-th and (m + 1)-th changepoint is Õ(

√
K(Tm+1 − Tm)), where we have used the

standard discussion of distribution-independent regret (c.f., p32 in Bubeck, 2010)
that applies the Cauchy-Schwarz inequality.

• The desired bound is yielded by summing the regret over all change points and another
application of the Cauchy-Schwarz inequality on

∑
m(Tm − Tm−1) ≤ T .

The formal proof is found in Appendix E.4.

Theorem 21 implies that the ADR-bandit learns the environment when the changes are
infrequent (i.e., M = o(T )) and the changes are detectable. This bound matches many
existing active algorithms, such as those in Cao et al. (2019); Besson et al. (2022).

We next analyze the performance of ADR-bandit with a gradually changing environ-
ment. We employ a technique similar to that in Section 3.4 for single-stream ADWIN.
We first describe the global changes in a gradually changing environment and then state a
regret bound.

Assumption 22 (Globally gradual changes) A set of K streams has globally gradual changes
if a constant Cgr ∈ (0, 1] exists such that

|µi,t − µi,s| ≥ Cgr|µj,t − µj,s| (26)

holds for any two arms i, j ∈ [K] and any two time steps t, s ∈ [T ].
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Intuitively, Assumption 22 states that all arms are drifting in a coordinated manner. The
drift on the mean of an arm is proportional to the drift on the means of other arms.

Theorem 23 (Regret bound of the ADR-bandit under gradual changes) Let the base-bandit
algorithm have a logarithmic drift-tolerant regret (Definition 12) and have monitoring con-
sistency (Definition 15). Let the environment be gradual with change speed b and d be such
that b = T−d. Let the changes be global (Assumption 22). Then the regret of Algorithm 5
with δ = 1/T 3, N = Θ̃((bK)−2/3) is bounded as:

E[Reg(T )] = Õ
(√

KT 1−d/3
)
. (27)

Proof Sketch The proof sketch is as follows.

• Using Lemma 34, the current window grows until |W | = O(b−2/3) with a high prob-
ability, which implies that the number of resets (= detection times) Md is at most
Õ(Tb2/3) = Õ(T 1−2d/3).

• With a high probability, |µt−µW | = Õ(bKN)+Õ
(√

log T/N
)

always holds (Lemma

33). This term is minimized when N = Θ̃((bK)−2/3) and |µt − µW | = Õ((bK)1/3).

• Similarly to abrupt case, the regret between the m-th and (m+1)-th resets is bounded
in expectation as Õ(

√
K(Td,m+1 − Td,m)) plus the drift term of

∑
t Õ((bK)1/3).

• By using the Cauchy-Schwarz inequality on
∑Md

m=1 Td,m+1 − Td,m = T and Md =

Õ(T 1−2d/3), we have
∑Md

m=1 Õ(
√
K(Td,m+1 − Td,m)) = Õ(

√
MdKT ) = Õ(

√
KT 1−d/3).

Moreover,
∑

t Õ((bK)1/3) = TÕ((bK)1/3) = Õ(K1/3T 1−d/3).

The formal proof is in Appendix E.5.

Theorem 23 states that ADR-bandit learns the environment when the change is sufficiently
slow (i.e., b = o(1)). Unlike most nonstationary bandit algorithms, our algorithm design
does not require prior knowledge of b.

Remark 24 (Optimality of the regret bound) The rate matches the Θ̃(V 1/3T 2/3) lower
bound of Besbes et al. (2019) up to a logarithmic order. Under a gradually changing envi-
ronment, the total variation is V :=

∑
t |µi,t − µi,t+1| = bT = O(T 1−d); thus, V 1/3T 2/3 =

O(T 1−d/3). A recent work by Krishnamurthy and Gopalan (2021) shows the optimality of
this rate for gradually changing streams.12 Note that, unlike Besbes et al. (2019); Krish-
namurthy and Gopalan (2021), our guarantee in the nonstationary setting is limited to the
case of global changes.

In summary, ADR-bandit adapts to both the abruptly and gradually changing envi-
ronments under mild knowledge on the speed of changes if the base-bandit satisfies has
a logarithmic drift-tolerant regret bound. We demonstrate that TS has this bound and
consider that it is not very difficult to derive the same bound for KL-UCB.

12. The result from Trovò et al. (2020) has a better rate of Õ(T 1−d). However, they require an addi-
tional assumption (Assumption 2, therein) that essentially states that the two arms are not too close to
distinguish for a long time.
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6. Experiments

This section reports the empirical performance of our proposed algorithms in simulations.
We release the source code to reproduce our experiments on GitHub13.

6.1 Environments

The rewards from arm i are drawn from a Bernoulli distribution with parameter µi that we
determine for each arm. We define the following synthetic environments:

• Stationary: We define a stationary environment (i.e., with no change) with 100 arms
where the mean µi = (101− i)/100 never changes over time, i.e., the rewards of arms
are evenly distributed between 0 and 1.

• Gradual: We define a gradually changing environment with 100 arms with µi,t =
(T−t+1)

T µi,1 + t−1
T (1−µi,1), where µi,1 = (101− i)/100. In this environment, the mean

of each arm is the same as the stationary environment at time t = 1, but evolves
gradually toward 1− µi,1 as t increases up to T .

• Abrupt: We define an abruptly changing environment with 100 arms and µi,1 =
(101 − i)/100 at t = 1. Unlike the stationary environment, µi,t = 1 − µi,1 between
round t′ = T/3 and round t′′ = 2T/3. In other words, the rewards of every arm
change abruptly two times at t = T/3, 2T/3.

• Abrupt local: We define an environment with 100 arms in which only a portion of
the arms change abruptly, i.e., the global change assumption does not hold. As in the
other environment, µi,1 = (101− i)/100 at t = 1, but for i ∈ [1, 10], µi,t = 0.5 between
round t′ = T/3 and round t′′ = 2T/3. In other words, only the top-10 arms change
abruptly two times, and the other arms are stationary.

The stationary, abrupt, and gradual settings are in line with the assumptions from our
algorithms (ADS-TS, ADR-TS, ADR-KL-UCB) as the changes are global. The abrupt local
setting violates these assumptions because only a subset of the arms change.

In addition, we consider the following real-world scenarios:

• Bioliq: This dataset was released by Fouché et al. (2019). The rewards are generated
from a stream of measurements between 20 sensors in a power plant for a duration of
1 week. The authors considered the task of monitoring the high correlation between
those sensors and wanted to use bandit algorithms for efficient monitoring. Each pair
of sensors is seen as an arm (i.e., there are 20∗19/2 = 190 arms) and the reward is 1 in
case the correlation is greater than some threshold over the last 1000 measurements,
otherwise 0. Figure 1 is the reward distribution for this environment; as we can see,
arms tend to change periodically together.

• Zozo (Saito et al., 2021) is a real-world environment where the rewards are generated
from an ad recommender on an e-commerce website. We use the data generated by

13. https://github.com/edouardfouche/G-NS-MAB
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Figure 5: Rewards in the Zozo dataset. We chose ten ads (= arms, y-axis) among 80
ads. Dark blue and light blue indicate the reward 1 and 0, respectively. White
indicates that the corresponding ad is not shown at that time step (no feedback).
The ratio of reward 1 to reward 0 is between 0.5% to 3%. We only show the first
two days, but the dataset consists of one week of data.

the uniform recommender from the duration of a week and adopted an unbiased offline
evaluator (Li et al., 2011) for our experiment14. There are 80 different ads. Due to
the sparseness of the rewards, we picked 10 arms. Since only a few of such ads are
presented at each round to each user, we concatenated together all the ads presented
within a second and assigned a reward of 1 to ads on which at least one user clicked.
We assigned a reward of 0 to ads that were presented, but no user clicked on them.
We skipped the round whenever the selected was not presented at all. Figure 5 shows
the reward distribution of the dataset.

All the results are averaged over 100 runs. Note that these datasets match with our moti-
vational examples (Examples 1 and 2).

6.2 Bandit algorithms

We compared the following bandit algorithms:

• ADS-TS is the ADS-bandit algorithm (Algorithm 4) with TS (Algorithm 2) as a
base-bandit algorithm.

• ADR-TS and ADR-KL-UCB are the ADR-bandit algorithm (Algorithm 5) with
TS (Algorithm 2) and KL-UCB (Algorithm 3) as a base-bandit algorithm, respectively.

14. See also https://github.com/st-tech/zr-obp
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• Passive algorithms: RExp3 (Besbes et al., 2019) is an adversarial bandit algorithm.
Discounted UCB (D-UCB) (Garivier and Moulines, 2011) and Sliding Window TS
(SW-TS) (Trovò et al., 2020), SW-UCB# (Wei and Srivastava, 2018) (comes in
two variants: for Abrupt (A) and Gradual (G) changes) are bandit algorithms with
finite memory.

• Active algorithms: GLR-klUCB (Besson et al., 2022) is an likelihood-ratio based
change detector. It comes in two variants: for local and global changes, and we show
the results of the latter. M-UCB (Cao et al., 2019) is a bandit algorithm using
another change detector as ours. These algorithms involve forced exploration (uni-
form exploration of size O(

√
T )) unlike our algorithms. UCBL-CPD and ImpCPD

(Mukherjee and Maillard, 2019) are algorithms for global abrupt changes that are also
free from forced exploration.

The original implementation of ADWIN requires O(|W |K) times at each round, which can
be large in the case of stationary environments. Bifet and Gavaldà (2007) introduced a
more computationally efficient version of ADWIN, named ADWIN2, which only checks a
logarithmic number of such splits. We adopt ADWIN2 in our simulations. Algorithmic
hyperparameters are described in Section A.

6.3 Experimental results

First, Figure 6 compares ADR-bandit and existing algorithms in the stationary, abrupt,
and gradual environments. In the stationary environment, ADR-TS has very low regret,
which is consistent with the fact that its regret is logarithmic. In the two nonstationary
environments with global changes, ADR-TS outperforms the other algorithms. Second,
Figure 7 compares these algorithms in the abrupt local environment. Although the ADR-TS
has linear regret as it sometimes do not detect these two local changes, it still outperforms
the other algorithms. Finally, Figure 8 compares these algorithms against the Bioliq and
Zozo datasets. The proposed algorithm consistently outperforms existing nonstationary
bandits algorithms.

We provide in Section B additional simulations on the effect of resetting (compared with
the shrinking of the original ADWIN), the sensitivity ADR-TS to the value of parameter
δ, and results with L > 1. We find that ADR-TS is not very sensitive to the choice of
parameter δ, as long as it is moderately small.
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Figure 6: Regret of algorithms in stationary, abrupt, and gradual environments. Smaller
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7. Conclusions

We have expanded stationary bandit algorithms to nonstationary settings without requir-
ing forced exploration. To this aim, we first analyzed the theoretical property of adaptive
windows in a single-stream setting (Section 3). After that, we combined bandit algorithms
(Section 4) with adaptive windowing by introducing ADR-bandit. Unlike existing algo-
rithms, ADR-bandit does not act on the base-bandit algorithm unless change points are
detected, and thus, it does not compromise the performance in a stationary environment.
We have demonstrated its ability to detect global changes in Section 5 and tested it in
simulated and real-world settings through experiments in Section 6.
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Table 2: List of tested hyperparameters of the algorithms. Bold letters indicate the ones
reported in this paper. We set the confidence level of UCBL-CPD and ImpCPD
to be the same as ADR-TS.

Algorithm(s) Hyperparameters

ADS-TS and ADR-TS, ADR-KL-UCB δ = 10−1, 10−2,10−3, 10−4, 10−5, 10−6, 10−8, 10−12, 10−15

RExp3 ∆T = 100, 500,1000, 5000

SW-TS W = 100, 500,1000, 5000

D-UCB γ = 0.7, 0.8,0.9, 0.99, 0.999

SW-UCB#-A ν = 0.1, 0.2 and λ = 12.3

SW-UCB#-G κ = 0.1, 0.2 and λ = 4.3

GLR-klUCB α =
√
kA log(T )/T and δ = 1/

√
T

M-UCB w = 1000, 5000 and M = 10, 100

UCBL-CPD δ = 10−3

ImpCPD γ = 0.05, ψε2m = 103

Appendix A. Hyperparameters in Experiments

The hyperparameters of the algorithms are shown in Table 2.

Appendix B. Additional Experiments

This section reports the results of additional experiments.
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Figure 9: Comparison of ADR-TS and ADS-TS in synthetic environments. Left: Smaller
regret (RT : y-axis) indicates better performance. Right: Size of the window over
time. The performance gap between ADR-TS and ADS-TS is very small. The
effect of hyperparamater δ in change point detection is not very large, except for
a very large or very small value of δ.
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Appendix C. Lemmas

This section describes the lemmas that are used in the proofs of this paper.

The Hoeffding inequality, which is one of the most well-known concentration inequalities,
provides a high-probability bound of the sum of bounded independent random variables.

Lemma 25 (Azuma-Hoeffding inequality) Let x1, x2, . . . , xn be martingale random vari-
ables in [0, 1] with their conditional mean µm = E[xm|x1, x2, . . . , xm−1]. Let x̄ = (1/n)

∑n
t=1 xt

and µ̄ = (1/n)
∑n

t=1 µt. Then,

Pr

[
x̄− µ̄ ≥

√
log(1/δ)

2n

]
≤ δ, (28)

Pr

[
x̄− µ̄ ≤ −

√
log(1/δ)

2n

]
≤ δ. (29)

Moreover, taking a union bound over the two inequalities yields

Pr

[
|x̄− µ̄| ≥

√
log(1/δ)

2n

]
≤ 2δ. (30)

Appendix D. Proofs of ADWIN

We denote A,B = A ∩ B for two events A,B.

D.1 Proof of Theorem 8

The overall idea here is as follows. With sufficiently long time after a changepoint, we can
expect that ADWIN shrinks the window. However, there might be some time steps left in
the current window W (t) even if a shrink occurs. Still, we can show that

|µ̂W (t) − µt| ≤ |µW (t) − µt|+ |µ̂W (t) − µW (t)| (31)

≤ Õ

(√
1

c(t)

)
+ Õ

(√
1

c(t)

)
(32)

where c(t) is the number of time steps after the changepoint.15 Events C and D in the
following corresponds to the bounds of |µW (t) − µt| and |µ̂W (t) − µW (t)|, respectively.

Proof of Theorem 8

By Eq. (5), event

B =
⋂

W ′∈W

{
|µW ′ − µ̂W ′ | ≤

√
log(T 3)

2|W ′|

}
(33)

holds with probability at least 1− 2/T .

15. A formal definition of c(t) is given in Eq. (34).
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For each time step t ∈ [T ], let

c(t) = t− max
s<t,s∈Tc

s. (34)

Namely, c(t) is the number of the time steps since the latest changepoint. Moreover, for
c(t) > 2, let

∆(c) = 4

√
log(T 3)

c− 2
(35)

and ∆(c) = 1 for c ≤ 2. Let

C =
⋂
t

{|µW (t) − µt| < ∆(c(t))}. (36)

In the following we show C holds under B. If |W (t)| + 1 ≤ c(t), then all the time steps in
W (t) are after the last change point, which implies µW (t) = µt and thus C. Otherwise, let

W2 = {t− c(t)/2 + 2, t− c(t)/2 + 3, . . . , t} (i.e. the last c(t)/2− 1 time steps) (37)

W1 = W (t− 1) \W2 (38)

Clearly |W1|, |W2| ≥ c(t)/2−1 and µW2 = µt. ADWIN at time step t−1 shrinks the window
until

|µ̂W1 | − |µ̂W2 | ≤

√
log(T 3)

2|W1|
+

√
log(T 3)

2|W2|
(39)

holds. Let n1, n2 = |W1|, |W2|.√
log(T 3)

2|W1|
+

√
log(T 3)

2|W2|
≥ |µ̂W1 | − |µ̂W2 | (by Eq. (39)) (40)

≥ |µW1 | − |µW2 | −

√
log(T 3)

2|W1|
−

√
log(T 3)

2|W2|
(by B) (41)

= |µW1 | − |µt| −

√
log(T 3)

2|W1|
−

√
log(T 3)

2|W2|
(by |W2|+ 1 ≤ c(t))

(42)

and thus

|µW (t) − µt| ≤ |µW1 − µt| (43)

≤ 2

√
log(T 3)

2|W1|
+ 2

√
log(T 3)

2|W2|
(by Eq. (42)) (44)

≤ 4

√
log(T 3)

c− 2
. (by |W1|, |W2| ≥ (c− 2)/2) (45)

In summary, B implies C.
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Note that under event B, ADWIN never makes a false shrink (i.e., a shrink when µW1 =
µW2). This implies that between two changepoints, a shrink that makes |W (t)| + 1 < c(t)
occurs at most once, which leads to the event

D =
⋂
n∈N

{∑
t

1{|W (t)| = n ∩ |W (t)|+ 1 < c(t))} ≤ 2M

}
. (46)

By using this, the total error is bounded as

E[Err(T )] (47)

≤ T Pr[Bc] + E[Err(T )1[B, C,D]] (B implies C and D) (48)

≤ 2 + E[Err(T )1[B, C,D]] (49)

= 2 + E

[∑
t

|µt − µ̂W |1[B, C,D]

]
(50)

≤ 2 + E

[∑
t

(|µt − µW |+ |µ̂W − µW |) 1[B, C,D]

]
(51)

≤ 2 +
∑
t

∆(c(t)) + E

[∑
t

|µ̂W − µW |1[B, C,D]

]
(by C) (52)

≤ 2 +
∑
t

∆(c(t)) +O(M) +
∑
t

√
log(T 3)

2c(t)
(53)

+ E

[∑
n

∑
t

1[|W (t)| = n, |W (t)|+ 1 < c(t)]

√
log(T 3)

2n
1[D]

]
(by B) (54)

≤ O(M) +
∑
t

O

(√
log(T )

c(t)

)
+ E

[∑
n

∑
t

1[|W (t)| = n, |W (t)|+ 1 < c(t)]

√
log(T 3)

2n
1[D]

]
.

(55)

Here √
log(T )

c(t)
≤
√
T ×

√√√√∑
t

(
log(T )

c(t)

)2

(by Cauchy-Schwarz inequality) (56)

= Õ
(√

MT
)
. (c(t) = n holds at most M + 1 times for each n) (57)

Another application of the Cauchy-Schwarz inequality, combined with D, yields∑
n

∑
t

1[|W (t)| = n, |W (t)| ≤ c(t)]
√

log(T 3)

2n
1[D] = Õ

(√
MT

)
, (58)

which completes the proof.

We next discuss the error bound under gradual drift. The following Lemmas 26 and 27
characterize the accuracy of estimator µ̂W under gradual drift. These lemmas are used in
the proof of Lemma Theorem 10.
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D.2 Lemma 26

Lemma 26 Let the stream be gradual with the speed of the change b. Let the parameter of
ADWIN be δ = 1/T 3. Then, with a probability of at least 1− 2/T ,

|µs − µs′ | ≤ 3bN + Õ

(√
1

N

)
(59)

for any two time steps s, s′ in the current window W = W (t), from which it easily follows
that

|µt − µW | ≤ 3bN + Õ

(√
1

N

)
. (60)

Lemma 26 is a strong characterization because µs−µs′ does not depend on the window
size |W |: No matter how long the current window is, µs−µs′ and thus µt−µW is bounded
in terms of change speed b: In other words, if µt−µW is larger, ADWIN shrinks the window.
Note that the argument here is more general than the (informal) discussion in Bifet and
Gavaldà (2007) for gradual drift. The discussion in Bifet and Gavaldà (2007) is limited to
the case of linear drift, whereas our result holds for arbitrary drift as long as it moves at
most b per time step.
Proof of Lemma 26 We first consider the case |W | = CN for some integer C ∈ N+.
We decompose W into C subwindows of equal size N and let Wc be the c-th subwindow
for c ∈ [C]. For c ∈ [C] \ {1}, let W:c be the joint subwindow of W before Wc. Namely,
W:c = W1∪W2∪· · ·∪Wc−1. The fact that the window grows to size W without a detection
implies that each split W:c ∪Wc satisfies

|µ̂W:c − µ̂Wc | ≤ 2

√
log(T 3)

N
. (61)

Let c ∈ [C] be arbitrary. By recursively applying Eq.(61) we have

|µ̂W − µ̂Wc | =
∣∣∣∣ 1

C
µ̂WC

+
C − 1

C
µ̂W:C

− µ̂Wc

∣∣∣∣ (62)

≤ |µ̂W:C
− µ̂Wc |+

2

C

√
log(T 3)

N
(by Eq.(61)) (63)

≤
∣∣µ̂W:C−1

− µ̂Wc

∣∣+

(
2

C − 1
+

2

C

)√
log(T 3)

N
(64)

. . . (65)

≤ |µ̂W:c − µ̂Wc |+
C∑

c′=c+1

2

c′

√
log(T 3)

N
(66)

≤

(
1 +

C∑
c′=c+1

2

c′

)√
log(T 3)

N
(by Eq.(61)) (67)

≤ (log T )

√
log(T 3)

N
, (68)
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which implies for any c, c′ ∈ [C] we have

|µ̂Wc − µ̂Wc′ | ≤ 2(log T )

√
log(T 3)

N
. (69)

By Eq. (5) we have

|µWc − µ̂Wc | ≤
√

log(T 3)

N

|µWc′ − µ̂Wc′ | ≤
√

log(T 3)

N
. (70)

By the fact that µt moves bN within a subwindow of size w, for any s ∈ Wc, s
′ ∈ Wc′ , we

have

|µWc − µs| ≤ bN
|µWc′ − µs′ | ≤ bN. (71)

By using these, we have

|µs − µs′ | ≤ |µWc − µs|+ |µWc′ − µs′ |+ |µWc − µ̂Wc |+ |µWc′ − µ̂Wc′ |+ |µ̂Wc − µ̂Wc′ | (72)

≤ 2bN + 2(1 + log T )

√
log(T 3)

N
. (by Eq.(69),(70),(71)) (73)

The general case of |W | = CN + n for n ∈ {0, 1, . . . , N − 1} is easily proven by replacing
2bN with 3bN since µt drift at most bN in n time steps.

D.3 Lemma 27

Lemma 26 characterizes the accuracy of the estimator. However, Lemma 26 only holds
when window size |W | ≥ N . When ADWIN shrinks the window very frequently, we cannot
guarantee the quality of the estimator µ̂W . The following Lemma 27 states that this is not
the case: With high probability, the current window grows until |W | = O(b−2/3).

Lemma 27 (Bound on erroneous shrinking) Let C1 = Õ(1) be a sufficiently large value
that is later defined in Eq. (86). Let the parameter of ADWIN be δ = 1/T 3. Let the drift
speed b be such that C1b

−2/3 ≤ T . Let

P(t) =
⋃

W1,W2:W (t)=W1∪W2

{
|W1| ≤ C1b

−2/3, |W2| ≤ C1b
−2/3, |µ̂W1 − µ̂W2 | ≥ εδcut

}
. (74)

Let
P =

⋃
t∈[T ]

P(t). (75)

Then,
Pr[P] ≤ 2C1T

−1. (76)
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Proof of Lemma 27 Let C1 = Õ(1) that we define later in Eq. (86). Let

WC1 = {W ′ ∈ W : |W ′| ≤ C1b
−2/3}| (77)

be the subset of the window set W with their sizes at most C1b
−2/3. It is easy to show that

|WC1 | ≤ TC1b
−2/3. Let d be such that T−d = b. Similarly to Eq. (5), by the union bound

of the Hoeffding bound over all windows of WC1 , with probability at least

1− 2

T 2+d
× TC1b

−2/3 = 1− 2C1T
−1b1/3 ≥ 1− 2C1T

−1, (78)

we have

|µW1 − µ̂W1 | ≤

√
log(T 2+d)

2|W1|

|µW2 − µ̂W2 | ≤

√
log(T 2+d)

2|W2|
(79)

holds for all t and any split W1 ∪W2 = W (t) : |W1|, |W2| ≤ C1b
−2/3. Let N = C1b

−2/3. By
definition of gradually changing stream,

|µW1 − µW2 | ≤ 2bN. (80)

In the following, we show that |W1| ≤ C1b
−2/3, |W2| ≤ C1b

−2/3, |µ̂W1− µ̂W2 | ≥ εδcut never
occur under Eq. (79) by using a proof-by-contradiction argument. Namely,√

log(T 3)

2|W1|
+

√
log(T 3)

2|W2|
≤ |µ̂W1 − µ̂W2 | (when |µ̂W1 − µ̂W2 | ≥ εδcut) (81)

≤ |µW1 − µW2 |+ |µ̂W1 − µW1 |+ |µ̂W2 − µW2 | (by triangular inequality)
(82)

≤ 2bN + |µ̂W1 − µW1 |+ |µ̂W2 − µW2 | (by (80)) (83)

≤ 2bN +

√
log(T 2+d)

2|W1|
+

√
log(T 2+d)

2|W2|
(by (79)) (84)

which implies √
3−
√

2 + d√
2

(√
log T

|W1|
+

√
log T

|W2|

)
≤ 2bN, (85)

which does not hold for

N = b−2/3

(√
3−
√

2 + d

2
√

2

√
log T

)2/3

︸ ︷︷ ︸
=:C1

, |W1|, |W2| ≤ N. (86)

In summary, with probability 1− 2C1T
−1, we have Pc.
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D.4 Proof of Theorem 10

Let d be such that b = T−d. Let C1 be the value defined in Eq. (86) and N1 = C1b
−2/3.

By using Lemma 27, we bound the number of shrinks.

Lemma 28 (Number of shrinks) Let

T sml
d := {t ∈ Td, |W2(t)| < N1}. (87)

Then, under Pc, |T sml
d | ≤ T/N1 holds.

Proof of Lemma 28 Pc implies that for any shrink |W1| ≥ N1 or |W2| ≥ N1 holds. A
shrink of the latter case is not included in T sml

d . A shrink of the former case reduces the
size of the window at least N1 and cannot occur more than T/N1 times.

Proof of Theorem 10 Let cbr(t) = t −maxs<t,s∈Td s be the number of time steps after
the last detection time. We have

Err(T ) ≤ T1[P] +

N1∑
n=1

T∑
t=1

|µt − µ̂W |1[cbr(t) = n,Pc] +
T∑
t=1

|µt − µ̂W |1[cbr(t) ≥ N1,Pc].

(88)

By Lemma 27, the expectation of the first term of Eq. (88) is bounded as

P[T1[P]] = T × 2C1T
−1 = Õ(1). (89)

We next bound the second term of Eq. (88). By Eq. (5),

∀t∈[T ]

{
|µt − µ̂W | ≤

√
log(T 3)

2(cbr(t)− 1)
+ bcbr(t)

}
(90)

holds with probability 1− 2/T . The expectation of the second term is bounded as:

N1∑
n=1

T∑
t=1

Pr[|µt − µ̂W |1[c(t) = n,X c]] (91)

≤ (|T sml
d |+ 1)

N1∑
n=1

(√
log(T 3)

2n
+ bn

)
+ T × 2

T
(92)

(by Eq. (90) and the fact that cbr(t) = n for each n occurs at most once between two
detection times)

≤
(
T

N1
+ 1

) N1∑
n=1

(√
log(T 3)

2n
+ bn

)
+ 2 (93)

(by Lemma 28) (94)

≤ Õ
(
T

N1
× (
√
N1 + bN2

1 )

)
= O(T 1−d/3) (95)
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where we used b,N1 = T−d, Õ(T (2d)/3) in the last transformation. Moreover, by using
Lemma 26, the expectation of the third term is bounded as

T∑
t=1

E[|µt − µ̂W |1[c(t) ≥ N1]] ≤ T ×
(

3bN1 + Õ

(√
1

N1

))
= Õ(T 1−d/3), (96)

which completes the proof.

Appendix E. Proofs of MAB

We first clarify the notation: In bandit streams, let

W i = {s ∈W : i = I(s)}. (97)

Let

µi,W =
∑
s∈W i

µi,s (98)

and its empirical estimate be

µ̂i,W =
∑
s∈W i

xi,s. (99)

In the bandit setting, only one arm I(t) ∈ [K] is observable at round t, and thus W i ⊂W .
Still, the following inequality holds with probability 1− 2/T p:

∀ W ′ ∈ W |µi,W ′ − µ̂i,W ′ | ≤

√
log(T 2+p)

2|(W ′)i|
. (100)

Eq. (100), which is the same form as Eq. (5), holds because it corrects T 2 multiplications.
The union bound of Eq. (100) over all arms holds with 1−K/T p.

E.1 Proof of Theorem 18

Proof of Theorem 18 Under stationary environment, Eq. (100) with p = 1 implies that
ADR-bandit never reset itself with high probability. The regret is bounded by

Reg(T ) ≤ T × 2K

T︸ ︷︷ ︸
regret of false reset

+
∑
i

Cst log T

∆i︸ ︷︷ ︸
regret of ADR-bandit, Lemma 17

(101)

≤ Cst
∑
i

log T

∆i
+O(1). (102)
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E.2 Analysis of Thompson sampling under drift

This section derives a proof of Lemma 14. Without loss of generality, we define µ1,1 ≥
µ2,1 ≥ · · · ≥ µK,1 at round 1. For ease of notation, let µi := µi,1 and ε = ε(T ).

In the following, we derive the drift-tolerant regret of TS.

Lemma 29 (Number of suboptimal draws) Let c > 0 be arbitrary. Assume that we run
TS. The following inequality holds∑

t∈[T ]

Pr[θI(t),t ≤ µ1,1 − ε(t)− c] = O

(
1

c2

)
. (103)

Proof of Lemma 29
We have,

∑
t

1[θI(t),t ≤ µ1,1 − ε(t)− c] =

T∑
n=0

T∑
t=1

1[θI(t),t ≤ µ1,1 − ε(t)− c,N1(t) = n] (104)

=

T∑
n=0

T∑
m=1

1

[∑
t

1
[
θI(t),t ≤ µ1,1 − ε(t)− c,N1(t) = n

]
≥ m

]
.

(105)

Here, if {
θ1(t) > µ1,1 − ε(t)− c, max

i 6=1
θi,t ≤ µ1,1 − ε(t)− c, N1(t) = n

}
(106)

then arm 1 is drawn. This fact implies that event {
∑T

t=1 1
[
θI(t),t ≤ µ1,1 − ε(t)− c,N1(t) = n

]
≥

m} requires that
θ1(t) ≤ µ1,1 − ε(t)− c

holds in the first m rounds of the subsequence τ1, τ2, τ3, . . . , τm = {t : maxi 6=1 θi,t ≤ µ1,1 −
ε(t)− c, N1(t) = n}. Letting Sβ(x;µ, n) be the survival function16 of Beta(1 + µn, 1 + (1−
µ)n), we have

T∑
n=0

E

[
T∑

m=1

T∑
t=1

1
[
θI(t),t ≤ µ1,1 − ε(t)− c,N1(t) = n

]
≥ m

]
(107)

≤
T∑
n=0

E

[
T∑

m=1

m∏
k=1

Pr
[
θ1,τk ≤ µ1,1 − ε(τk)− c|µ̂

(n)
1

]]
(108)

=

T∑
n=0

E

[
T∑

m=1

(
Sβ(µ1,1 − ε(τ1)− c; µ̂(n)

1 , n)
)m]

(ε(τk) is nondecreasing in k) (109)

≤
T∑
n=0

E

[
1− Sβ(µ1,1 − ε(τ1)− c; µ̂(n)

1 , n)

Sβ(µ1,1 − ε(τ1)− c; µ̂(n)
1 , n)

]
(110)

= O(1/c2). (by Lemma 31) (111)

16. The probability θ ∼ Beta(1 + µn, 1 + (1− µ)n) exceeds x.
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where, to apply Lemma 31, we used the fact that µ̂
(n)
1 is the mean of n independent samples

from Bernoulli distributions with means µ1,1 − ε(τ1) or more.

E.2.1 Proof of Lemma 14

Let (x)+ = max(x, 0). We have,

Regtr(T, 3) (112)

=
∑
t

(reg(t)− 3ε(t))+ (113)

=
∑
t

∑
i∈[K]

(∆i − 3ε(t))+ 1 [I(t) = i] (114)

≤
∑
t

∑
i∈[K]

(∆i − 3ε(t))+

(
1

[
I(t) = i, θI(t),t <

µ1 + µi
2

]
+ 1

[
I(t) = i, θI(t),t ≥

µ1 + µi
2

])
(115)

=
∑
t

∑
i∈[K]

(∆i − 3ε(t))+

(
1

[
I(t) = i, θI(t),t < µ1 −

∆i

2

]
+ 1

[
I(t) = i, θI(t),t ≥ µi +

∆i

2

])
(116)

≤
∑
t

∑
i∈[K]

(∆i − 3ε(t))+

(
1

[
I(t) = i, θI(t),t < µ1 − ε(t)−

∆i

6

]
+ 1

[
I(t) = i, θI(t),t ≥ µi + ε(t) +

∆i

6

])
.

(by ∆i ≥ 3ε(t) or (∆i − 3ε(t))+ = 0) (117)

The first term is bounded in expectation as∑
t

∑
i∈[K]

∆iE
[
I(t) = i, θI(t),t ≤ µ1 − ε(t)−

∆i

6

]
=
∑
i∈[K]

∆i ×O
(

1

∆2
i

)
=
∑
i∈[K]

O

(
1

∆i

)
,

where we used Lemma 29 in the first transformation with c = ∆i/3.
We next bound the second term.∑

t

∑
i∈[K]

∆i1

[
I(t) = i, θI(t),t > µ1 + ε(t) +

∆i

6

]
(118)

≤
∑
i∈[K]

(
144 log T

∆i
+
∑
t

∆i1

[
θi,t ≥ µi + ε(t) +

∆i

6
, Ni(t) ≥

144 log T

∆2
i

])
. (119)

Here,∑
t

∆i1

[
θi,t ≥ µi + ε(t) +

∆i

6
, Ni(t) ≥

144 log T

∆2
i

]
(120)

≤
∑
t

∆i1

[
µ̂i,t ≥ µi + ε(t) +

∆i

12
, Ni(t) ≥

144 log T

∆2
i

]
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+
∑
t

∆i1

[
θi,t ≥ µi + ε(t) +

∆i

6
, µ̂i,t ≤ µi + ε(t) +

∆i

12
, Ni(t) ≥

144 log T

∆2
i

]
. (121)

By using the Hoeffding inequality, the first term of Eq. (121) is bounded as∑
t

∆i1

[
µ̂i,t ≥ µi + ε(t) +

∆i

12
, Ni(t) ≥

144 log T

∆2
i

]
(122)

≤
∑
N

T exp

(
−2× 144 log T

∆2
i

×
(

∆i

12

)2
)

(123)

≤ T 2 exp (−2 log T ) = 1, (124)

where we have used the Hoeffding inequality and the fact that µ̂i,t is the mean of Ni(t)
samples with each mean no more than µi + ε(t). By using Lemma 32, the second term of
Eq. (121) is bounded as

∑
t

∆iE
[
θi,t ≥ µi + ε(t) +

∆i

6
, µ̂i,t ≤ µi + ε(t) +

∆i

12
, Ni(t) ≥

144 log T

∆2
i

]

≤
∑
n,t

exp

(
−2× 144 log T

∆2
i

×
(

∆i

12

)2
)
≤ 1. (125)

E.2.2 Lemmas for Thompson sampling

The following lemma is a version of Lemma 4 in Agrawal and Goyal (2013).

Lemma 30 Let µ̂
(n)
1 is the mean of n independent samples that are drawn from Bernoulli

distributions with their means no less than µ1 − ε(t). Then,

E

[
1

Sβ(µ1 − ε(t)− c; µ̂(n)
1 , n)

]
≤

{
1 + 3

c n < 8
c

1 + Θ
(
e−c

2n/2 + 1
(n+1)c2

e−Din + 1

ec
2n/4−1

)
n ≥ 8

c

,

(126)
where Di = 2c2.

Lemma 31 Let µ̂
(n)
1 is the mean of n independent samples that are drawn from Bernoulli

distributions with their means no less than µ1 − ε(t). Then, the following inequality holds:

T∑
n=0

E

[
1− Sβ(µ1 − ε(t)− c; µ̂(n)

1 , n)

Sβ(µ1 − ε(t)− c; µ̂(n)
1 , n)

]
(127)

≤ 24

c2
+

T∑
n=0

Θ

(
e−c

2n/2 +
1

(n+ 1)c2
e−Din +

1

ec2n/4 − 1

)
(128)

= O

(
1

c2

)
. (129)

Proof of Lemma 31 The proof of Lemma 31 is straightforward from Lemma 30 by fol-
lowing similar steps to the problem-independent bound of Theorem 2 in Agrawal and Goyal
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(2013).

The following lemma is well-known in the Beta posterior.

Lemma 32

Pr[θi,t > µ̂i,t + c | µ̂i,t, Ni(t) = N ] ≤ exp
(
−2Nc2

)
(130)

for any c > 0.

Proof of Lemma 32

Pr[θi,t > µ̂i,t + c | µ̂i,t, Ni(t) = N ]

≤ e−NdKL(µ̂i,t,µ̂i,t+c) (Lemma 3 in Agrawal and Goyal (2013))

≤ e−Nc2 . (by Pinsker’s inequality) (131)

E.3 Regret due to Monitoring

Proof of Lemma 16 We call each consecutive KN rounds a “subblock”. For each block
l = 1, 2, . . . , the number of subblocks is at most 2l−1. The l-th monitoring arm i(l) is drawn
during 2l + 1 subblocks, and at each subblock it is drawn for N rounds (Figure 4).

The goal of this theorem is bound the ratio between the regret during monitoring rounds
divided by the regret during base-bandit rounds. Let

T monitor
l = {t : arm i(l) is drawn as the l-th monitoring arm}}, (132)

as illustrated in Figure 4. By definition,

∑
t

reg(t) =
∑

t∈T base

reg(t) +
∑
l

∑
t∈T monitor

l

reg(t) =
∑
l

 ∑
t∈T base∩Tl

reg(t) +
∑

t∈T monitor
l

reg(t)

 ,

(133)
where Tl is the set of rounds in block l. First, for each monitoring arm i(l), we bound the
ratio between the number of draws of the monitoring arms divided by the number of draws
of base-bandit arms. Namely, ∑

t 1[t ∈ T monitor
l ]∑

t 1[t ∈ T base ∩ Tl]1[I(t) = i(l)]
, (134)

for each l. First, we consider the ratio of the regret due to the first monitoring arm i(1). The
arm i(1) is the most drawn arm in the first subblock, which is drawn at least KN/K = N
rounds at l = 1 by the base-bandit algorithm. We draw i(1) for 2N times during block l = 2
as a monitoring arm. Therefore, Eq. (134) for l = 1 is at most two.

In the following, we consider the Eq. (134) for l ≥ 2. Since the arm most frequently
pulled in the first (2l− 2)N subblocks is chosen as i(l), it has been drawn at least (2l− 2)N
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times by the base-bandit algorithm before the block l. We draw this arm for (2l + 1)N
times as a monitoring arm. Therefore, the ratio is at most

(2l + 1)N

(2l − 2)N
≤ 3. (135)

In summary, Eq. (134) is at most 3. In the following, we bound the total regret due to the
regret during rounds T base. Namely,

∑
t≤S

reg(t) =
∑
l

 ∑
t∈T base∩Tl

reg(t) +
∑

t∈T monitor
l

reg(t)

 (by Eq. (133)) (136)

=
∑
l

 ∑
t∈T base∩Tl

∆I(t) +
∑

t∈T monitor
l

∆i(l)

+
∑
t

ε(t) (137)

≤
∑
l

 ∑
t∈T base∩Tl

∆I(t) + 3
∑

t∈T base∩Tl

1[I(t) = i(l)]∆i(l)

+
∑
t

ε(t) (by Eq. (134))

(138)

≤ 4
∑
l

∑
t∈T base∩Tl

∆I(t) +
∑
t

ε(t) (139)

= 4
∑

t∈T base

∆I(t) +
∑
t

ε(t) (140)

≤ 4
∑

t∈T base

reg(t) + 5
∑
t

ε(t). (141)

Let Nbase
l be the number of draws of arm i(l) at block l. By the fact that the regret due

to draws of arm i(l) at round t is at most ∆i(l) + ε(t) and one arm is drawn for each round,
the regret due to monitoring rounds is at most

3
∑
l≥1

Nbase
l ∆i(l) +

∑
t

ε(t) ≤ 3
∑

t∈T base

reg(t) +
∑
t

2ε(t), (142)

by using the fact that the regret during the base-bandit rounds is at leastNbase
l ∆i(l)−

∑
t ε(t).

The total regret, which is the sum of that of base-bandit rounds and monitoring rounds, is
bounded as

S∑
t=1

reg(t) ≤ 4

 ∑
t∈T base

reg(t)

+

S∑
t=1

3ε(t) (143)

which concludes the proof.

E.4 Regret in abrupt environment: proof of Theorem 21

Proof of Theorem 21 Similar to the case of single stream, we define detection times,
which is the subset of rounds where the reset occurs. Let Td = {t ∈ [T ] : |W (t + 1)| = 0}
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be the set of detection times, and Md = |Td| be the number of detection times17. Let
Td,m be the m-th element of Td. For convenience, let (Td,0, Td,Md+1) = (0, T ). We denote
Sm = {Td,m + 1, Td,m + 2, . . . , Td,m+1} for m ∈ {0, . . . ,Md}, which is the interval between
m-th and (m+ 1)-th detection times. We write Sm = |Sm|.

We define an event

V = {∀m ∈ [M ] ∃s ∈ Td 0 ≤ s− Tm ≤ 16KU(εm)} ∩ {Md = M}. (144)

Event V states that for each changepoint Tm ∈ Tc (indexed by m = 1, 2, . . . ,M = |Tc|), there
exists a corresponding detection time Td,m within 16KU(εm) time steps. We first show that
V holds with high probability by induction. Assume that for every changepoint m′ up to
1, 2, . . . ,m−1, there exists unique detection time sm′ such that 0 ≤ sm′−Tm′ ≤ 16KU(εm).
We show that 0 ≤ sm − Tm ≤ 16KU(εm). During t ≤ Tm (these time steps are between
m-th and (m − 1)-th changepoint), µi,t stays the same. We denote µi = µi,t during these
time steps. Eq. (100) implies that, with probability 1−2K/T , for any split W (t) = W1∪W2,

∀i |µi − µ̂i,W1 | ≤

√
log(T 3)

2|Wi,1|
(145)

∀i |µi − µ̂i,W2 | ≤

√
log(T 3)

2|Wi,2|
(146)

where Wi,1 = {t ∈ W1 : i ∈ I(t)} and Wi,2 = {t ∈ W2 : i ∈ I(t)}. This implies ADR-bandit
with δ = T 3 never makes a split before the m-th changepoint (i.e., 0 ≤ sm − Tm). Let
s = Tm+16KU(εm). Assume that there is no detection between time step Tm−1+16KU(εm)
and Tm + 16KU(εm). Then for a split W (s) = W1 ∪W2, W1 = W ∩ [Tm], W2 = W \W1,
we have

|W1| ≥ (Tm − Tm−1 − 16KU(εm)), |W2| ≥ 16KU(εm), (147)

where we have used sm−1 − Tm−1 ≤ 16KU(εm) in the first inequality. By assumption of
Theorem 21, the first inequality implies

|W1| ≥ (Tm − Tm−1 − 16KU(εm)) ≥ 3KN − 16KU(εm) ≥ 2KN. (148)

By the first property the monitoring consistency (Definition 15), there exists an arm i ∈ [K]
(i.e., monitoring arm i(l)) such that

|Wi,1|, |Wi,2| ≥ 16U(εm). (149)

Again by Eq. (100) we have

∀i |µi,Tm − µ̂i,W1 | ≤

√
log(T 3)

2|Wi,1|
(150)

17. Remember the difference between changepoints T and detection times Td. The former is defined on an
abrupt environment, whereas the latter is defined for the ADR-bandit algorithm (and thus the latter is
a random variable).
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∀i |µi,Tm+1 − µ̂i,W2 | ≤

√
log(T 3)

2|Wi,2|
. (151)

By definition of the global changepoint,

|µi,Tm − µi,Tm+1| ≥ εm =

√
log(T 3)

2U(εm)
. (152)

Combining these yields

|µ̂i,W1 − µ̂i,W2 | ≥ |µi,Tm − µi,Tm+1| − |µi,Tm − µ̂i,W1 | − |µi,Tm+1 − µ̂i,W2 |
(by triangular inequality) (153)

≥

√
log(T 3)

2U(εm)
− |µi,Tm − µ̂i,W1 | − |µi,Tm+1 − µ̂i,W2 | (154)

≥ 4 max

(√
log(T 3)

2|Wi,1|
,

√
log(T 3)

2|Wi,2|

)
− |µi,Tm − µ̂i,W1 | − |µi,Tm+1 − µ̂i,W2 |

(by Eq. (149)) (155)

≥

√
log(T 3)

2|Wi,1|
+

√
log(T 3)

2|Wi,2|
. (by Eq. (150), (151)) (156)

which implies that ADR-bandit resets the window at round s. In summary, under Eq. (100)
with p = 1, V holds. Therefore,

Pr[V] ≥ 1− 2K/T. (157)

In the following, we bound the regret. Let

Regm =

Td,m+1∑
t=Td,m

reg(t). (158)

Namely, Regm corresponding to the regret between m-th and (m + 1)-th detection times.
The regret is decomposed as

Reg(T ) ≤ T1[Vc] + 1[V]Reg(T )

≤ T1[Vc] + 1[V]Reg(T )

= T1[Vc] + 1[V]
M∑
m=0

Regm. (V implies |Td| = M) (159)

The regret in the case of Vc is bounded as

T Pr[Vc] ≤ 2K. (160)

Under V,
Td,m+1 − Td,m ≤ Tm+1 − Tm + 16KU(εm). (161)
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Let µi,m be the mean of i-th arm between m-th changepoint and (m + 1)-th changepoint.
Let ∆i,m = maxj µj,m − µi ≥ 0 be the corresponding gap.

By the definition of abrupt changes, ε(t) ≤ Cabεm after the m-th changepoint and 0
before the changepoint. By Lemma 17 and Eq. (161), we have

E

[
1[V]

M∑
m=0

Regm

]
≤

M∑
m=0

∑
i:∆i,m>0

(
Cdt log T

∆i,m
+ 2Cabεm × 16KU(εm)

)
. (162)

Moreover, letting Ni,m =
∑Td,m+1

t=Td,m+1 1[I(t) = i], we also have

1[V]Regm ≤ ∆i,mNi,m + 2Cabεm × 16KU(εm),

and thus

E

[
1[V]

M∑
m=0

Regm

]
≤

M∑
m=0

∑
i:∆i,m>0

(
∆i,mE[Ni,m] + 2Cabεm × 16KU(εm)

)
(163)

Taking the minimum of Eq. (162) and Eq. (163), it holds that

E

[
1[V]

M∑
m=0

Regm

]
≤ E

 M∑
m=0

∑
i:∆i,m>0

(
max(1, Cdt)Ri,m + 2Cabεm × 16KU(εm)

) , (164)

where Ri,m = min(∆i,mE[Ni,m], log T
∆i,m

).

In the following, we bound the two terms of Eq. (164) separately.
The first term of Eq. (164) is bounded by using standard discussion of distribution-

independent regret as follows. We have

M∑
m=0

∑
i

Ri,m =

M∑
m=0

∑
i:∆i,m>0

√
∆i,mRi,m

√
(∆i,m)−1Ri,m (165)

≤
√

log T
M∑
m=0

∑
i:∆i,m>0

√
(∆i,m)−1Ri,m (166)

≤
√

log T

M∑
m=0

∑
i:∆i,m>0

√
Ni,m (167)

≤
√

log T
M∑
m=0

√
K(Tm+1 − Tm)

(by the Cauchy-Schwarz inequality and
∑
i

Ni,m = (Td,m+1 − Td,m)) (168)

≤
√

log T
√
KMT.

(by the Cauchy-Schwarz inequality and
∑
m

(Tm+1 − Tm) = T ) (169)

50



Globally Nonstationary Bandits

The second term of Eq. (164) is bounded by a similar technique as follows.

M∑
m=0

Cabεm16KU(εm) (170)

=

M∑
m=0

Cabεm min

(
16KU(εm),

Tm+1 − Tm
3

)
(by (Tm+1 − Tm) ≥ 48KU(εm) and min(a, b) = a if a ≤ b) (171)

=
M∑
m=0

Cab min

(
16K log(T 3)

εm
, εm

Tm+1 − Tm
3

)
(by definition of U(εm) in Definition 20) (172)

≤
M∑
m=0

Cab
√

16K(log(T 3))(Tm+1 − Tm) (by min(a, b) ≤
√
ab) (173)

= Cab
√

16K(log(T 3))(M + 1)T

(by the Cauchy-Schwarz inequality and
∑
m

(Tm+1 − Tm) = T ) (174)

= Õ(
√
MKT ). (175)

E.5 Regret in gradual environment: proof of Theorem 23

We first state Lemmas 33 and 34, then go to the proof of Theorem 23. The high-level
implications of these lemmas are as follows. Lemma 33 limits the possible amount of
drift such that no reset occurs. Lemma 34 bounds the number of resets as Md := |Td| =
Õ(T 1−2d/3).

Lemma 33 With probability at least 1 − 2K/T , for any N < |W (t)|, t ∈ [T ], i ∈ [K] and
s, s′ ∈W (t)

|µi,s − µi,s′ | ≤
1

Cgr

(
3bKN + Õ

(√
1/N

))
(176)

holds.

Lemma 33 is a version of Lemma 26 for the bandit setting. This case is much more chal-
lenging mainly because the monitoring arm may can change among blocks.
Proof of Lemma 33 We use a tuple (l, c) to represent the c-th subblock of the l-th
block for l = 1, 2, . . . , and c = 1, 2, . . . , 2l−1, that is, the window consisting of (KN(2l−1 +
c − 2) + 1, . . . ,KN(2l−1 + c − 1))-th rounds after the last reset. We write tl (resp. tl)
for the first (resp. last) round of the l-th block, that is, tl = KN(2l−1 − 1) + 1 and
tl = KN(2l − 1). The window W:(l,c) consists of all subblocks before W(l,c) (not includ-
ing W(l,c)). Similarly, subwindow W(l,c):(l,c′) for c < c′ denotes the joint window consisting
of W(l,c),W(l,c+1), . . . ,W(l,c′−1).
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Fix an arbitrary l ∈ N. The second property of the monitoring consistency (Definition
15) implies the following: Assume that no reset occurred up to the l-th block. There exists
an arm that is drawn at least N times for each subblock c = 1, 2, . . . , 2l−1 in the l-th block.
Moreover, this arm is drawn at least N times in the final subblock of the (l − 1)-th block.

By the property above and the fact that no reset occurs up to subblock (l, c), there
exists il such that for any l ∈ N and c ∈ [2l−1]

|µ̂il,W(l,c)
− µ̂il,W:(l,c)

| ≤ 2

√
log(T 3)

2N
, (177)

|µ̂il,W(l,1):(l,c)
− µ̂il,W:(l,1)

| ≤ 2

√
log(T 3)

2N
(178)

because otherwise a reset should occur. Then, for any l ≥ 2 and 2 ≤ c ≤ 2l−1 we have

|µ̂il,W(l,c)
− µ̂il,W(l,1)

|

≤ |µ̂il,W:(l,c)
− µ̂il,W(l,1)

|+ 2

√
log(T 3)

2N
(by (177))

=

∣∣∣∣∣Nil,W(l,1):(l,c)
µ̂il,W(l,1):(l,c)

+ (Nil,W:(l,c)
−Nil,W(l,1):(l,c)

)µ̂il,W:(l,1)

Nil,W:(l,c)

− µ̂il,W(l,1)

∣∣∣∣∣+ 2

√
log(T 3)

2N

≤

∣∣∣∣∣Nil,W(l,1):(l,c)
µ̂il,W:(l,1)

+ (Nil,W:(l,c)
−Nil,W(l,1):(l,c)

)µ̂il,W:(l,1)

Nil,W:(l,c)

− µ̂il,W(l,1)

∣∣∣∣∣+ 4

√
log(T 3)

2N
(by (178))

=
∣∣∣µ̂il,W:(l,1)

− µ̂il,W(l,1)

∣∣∣+ 4

√
log(T 3)

2N

≤ 6

√
log(T 3)

2N
(by (177)) . (179)

Also, for c = 1, (179) is trivial. For l = 1, it is also trivial since c = 1 must hold from
c ≤ 2l−1. By following the same discussion, we also have

|µ̂il,W(l,c)
− µ̂il,W(l,2l−1)

| ≤ 6

√
log(T 3)

2N
. (180)

By Eq. (100) with p = 1 we have

|µi,Wl,c
− µ̂i,Wl,c

| ≤
√

log(T 3)

2N
(181)

for all l ∈ N, c ∈ 2n−1 with probability at least 1 − 2K/T . By the fact that µt moves at
most bKN within a subblock of size KN ,

|µi,W(l,c)
− µi,t| ≤ bKN for round t in subblock Wl,c

|µi,W
(l−1,2l−2)

− µi,W(l,1)
| ≤ bKN. (182)

Now, let Wl,c (resp. Wl′,c′) be the subwindow that s-th (resp., s′-th) round belongs to.
Here, we assume without loss of generality that s < s′. Then we have

|µi,s − µi,s′ |
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≤ |µi,s − µi,t̄l |+ |µi,tl − µi,tl+1
|+ |µi,tl+1

− µi,s′ |
≤ |µi,s − µi,t̄l |+ b+ |µi,tl+1

− µi,s′ | (183)

≤ 1

Cgr
|µil,s − µil,t̄l |+ b+ |µi,tl+1

− µi,s′ |

≤ 1

Cgr
(|µil,W(l,c)

− µil,W(l,2l−1)
|+ 2bKN) + b+ |µi,tl+1

− µi,s′ | (by (182))

≤ 1

Cgr

(
8

√
log(T 3)

2N
+ 2bKN

)
+ b+ |µi,tl+1

− µi,s′ |, (by (180) and (181)) (184)

and recursively applying this transformation for l, l + 1, l + 2, . . . , l′ − 1, we have

|µi,s − µi,s′ |

≤ l′ − l
Cgr

(
8

√
log(T 3)

2N
+ 2bKN

)
+ b(l′ − l) + |µi,tl′ − µi,s′ |

≤ l′ − l + 1

Cgr

(
8

√
log(T 3)

2N
+ 2bKN

)
+ b(l′ − l),

where we obtain the last inequality by applying the same transformation as that from (183)
to (184). We obtain the desired result since l′ ≤ log2 T = O(log T ) = Õ(1).

Lemma 34 There exists an event X that holds with probability at least

Pr[X ] ≤ Õ(KT−1) (185)

such that, under X c,
Md ≤ T/(C1b

−2/3) = Õ(T 1−2d/3) (186)

holds.

Lemma 34 is a version of Lemma 27 for the bandit setting. In the following, we derive
Lemma 34 for completeness. The steps are very similar to the proof of Lemma 27.
Proof of Lemma 34 Let

Xj(t) =
⋃

W1,W2:W (t)=W1∪W2,j∈[K]

{
|W1| ≤ C1b

−2/3, |W2| ≤ C1b
−2/3, |µ̂j,W1 − µ̂j,W2 | ≥ εδcut

}
(187)

where C1 = Õ(1) is a factor that is specified in Eq. (200). Let X =
⋃
t∈[T ],j∈[K]Xj(t). Let

WC1 = {W0 ∈ W : |W0| ≤ C1b
−2/3} (188)

be the set of windows of size at most C1b
−2/3. It is easy to show that |WC1 | ≤ TC1b

−2/3.
For a fixed window W and i ∈ [K], Hoeffding inequality states that

|µi,W − µ̂i,W | >

√
log(η−1)

2|Wi|
, (189)
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occurs with probability at most 2η. By the union bound of Eq. (189) with η−1 = T 2+d over
all i and all windows of WC1 and all K arms, with probability at least

1− 2K

T 2+d
× TC1b

−2/3 = 1− 2C1KT
−1b1/3 ≥ 1− 2C1KT

−1, (by T−d = b) (190)

In summary, ⋂
i,W∈WC1

|µi,W − µ̂i,W | ≤

√
log(T 2+d)

2|Wi|
(191)

holds with probability at least 1−2C1KT
−1. In the following, we show that X never occurs

under the event of Eq. (191). In particular we use the proof-by-contradiction argument on
the split event |µ̂j,W1 − µ̂j,W2 | ≥ εδcut. Eq. (191) implies

|µj,W1 − µ̂j,W1 | ≤

√
log(T 2+d)

2|Wj,1|

|µj,W2 − µ̂j,W2 | ≤

√
log(T 2+d)

2|Wj,2|
(192)

for all j, t and any split W1 ∪W2 = W (t) : |W1|, |W2| ≤ C1b
−2/3. Let N = C1b

−2/3. By the
definition of the gradually changing stream,

|µj,W1 − µj,W2 | ≤ 2bN. (193)

Assuming that |µ̂j,W1 − µ̂j,W2 | ≥ εδcut, it holds that

εδcut =

√
log(T 3)

2|Wj,1|
+

√
log(T 3)

2|Wj,2|
(by the definition of εδcut in (1)) (194)

≤ |µ̂j,W1 − µ̂j,W2 | (195)

≤ |µj,W1 − µj,W2 |+ |µ̂j,W1 − µj,W1 |+ |µ̂j,W2 − µj,W2 | (196)

(by triangular inequality)

≤ 2bN + |µ̂j,W1 − µj,W1 |+ |µ̂j,W2 − µj,W2 | (by (193)) (197)

≤ 2bN +

√
log(T 2+d)

2|Wj,1|
+

√
log(T 2+d)

2|Wj,2|
. (by (192)) (198)

Eq. (194) ≤ Eq. (198) is equivalent to

√
3−
√

2 + d√
2

(√
log T

|Wj,1|
+

√
log T

|Wj,2|

)
≤ 2bN, (199)

which cannot hold for

N = b−2/3

(√
3−
√

2 + d

2
√

2

√
log T

)2/3

︸ ︷︷ ︸
=:C1

, |Wj,1|, |Wj,2| ≤ N. (200)
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Therefore, Xj(t) never occurs under the event of Eq. (191).

Proof of Theorem 23 Let R(t) be the most recent reset before t, or R(t) = 0 if no reset
has occurred yet. Let

εR(t) := max
s:R(t)<s<t

max
i
|µi,s − µi,R(t)+1|, (201)

which is the amount of drift in view of the current ADR-bandit. By Eq. (18) and Lemma
33, the event

Y =
⋂
t∈[T ]

{
εR(t) ≤ (Cgr)−1

(
3bKN + Õ

(√
1/N

))}
(202)

holds with probability at least 1− 2K/T .
We assume X c ∩ Y, because it holds with probability 1 − O(K/T ) and thus the regret

under X ∪ Yc is negligible. Eq. (186) states that event X c implies that Md = O(T 1−2d/3).
Event Y with N = Θ̃((bK)−2/3) implies that

εR(t) = Õ
(

(bK)1/3
)

(203)

for t ∈ [T ].
By Eq. (186) we see that Md ≤ T/(C1b

−2/3) under X c. Letting Td,0 = 1 and Td,m = T
for m > Md, we first have

E [Reg(T )] ≤
T/(C1b−2/3)∑

m=1

E

 Td,m+1∑
t=Td,m+1

reg(t)

+ E [1[X c]Reg(T )] (204)

≤
T/(C1b−2/3)∑

m=1

E

 Td,m+1∑
t=Td,m+1

reg(t)

+O(1). (205)

Let Ni,m =
∑Td,m+1

t=Td,m+1 1[I(t) = i] be the number of draw on arm i between the m-th and

(m+ 1)-th reset, and ∆i,m = maxj µj,Td,m+1 − µi,Td,m+1 be the gap at the first round after
the m-th reset. Let Hm be the history until the m-th reset. Then the regret between the
m-th and (m+ 1)-th reset is bounded by Lemma 17 and we have

E

 Td,m+1∑
t=Td,m+1

reg(t)


= E

E
 Td,m+1∑
t=Td,m+1

reg(t)

∣∣∣∣∣∣Hm
 (206)

≤ E

[∑
i

(
min

{
∆i,mE[Ni,m|Hm], O

(
log T

∆i,m

)}
+ E

[
Ni,m max

t
εR(t)

∣∣∣Hm])] . (207)

Here, the summation over m for the first term is transformed as follows.
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T/(C1b−2/3)∑
m=1

E

[∑
i

min

{
∆i,mE[Ni,m|Hm], O

(
log T

∆i,m

)}]

≤
T/(C1b−2/3)∑

m=1

E

[∑
i

O

(√
E[Ni,m|Hm] log T

)]
(by min(a, b) ≤

√
ab) (208)

≤
T/(C1b−2/3)∑

m=1

∑
i

O

(√
E [E[Ni,m|Hm]] log T

)
(209)

=

T/(C1b−2/3)∑
m=1

∑
i

O

(√
E [Ni,m] log T

)
(210)

≤ O
(√

T
(
T/(C1b−2/3)

)
K log T

)
= Õ(Tb1/3

√
K), (211)

where, in the second and third inequalities, we have applied Jensen’s inequality on T/(C1b
−2/3)×

K elements such that
∑T/(C1b−2/3)

m=1

∑
i E [Ni,m] = T holds. For the summation over the sec-

ond term we have

T/(C1b−2/3)∑
m=1

E

[∑
i

E
[
Ni,m max

t
εR(t)

∣∣∣Hm]]

≤
T/(C1b−2/3)∑

m=1

E

[
1[Y]

∑
i

E
[
Ni,m max

t
εR(t)

∣∣∣Hm]]+

T/(C1b−2/3)∑
m=1

E

[
1[Yc]

∑
i

E
[
Ni,m max

t
εR(t)

∣∣∣Hm]]
(212)

≤
T/(C1b−2/3)∑

m=1

E

[∑
i

E
[
Ni,m max

t
Õ((bK)1/3)

∣∣∣Hm]]+

T/(C1b−2/3)∑
m=1

E

[
1[Yc]

∑
i

E [Ni,m|Hm]

]
(by Eq. (203)) (213)

= Õ((bK)1/3)

T/(C1b−2/3)∑
m=1

∑
i

E [Ni,m] +

T/(C1b−2/3)∑
m=1

E

[
1[Yc]

∑
i

E [Ni,m|Hm]

]
(214)

= Õ(T (bK)1/3) +O(1). (215)

In summary,

E [Reg(T )] ≤ Õ(Tb1/3
√
K) + Õ(T (bK)1/3) +O(1) = Õ(Tb1/3

√
K). (216)
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