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Abstract

We study the Extended Kalman Filter in constant dynamics, offering a bayesian perspective
of stochastic optimization. For generalized linear models, we obtain high probability bounds
on the cumulative excess risk in an unconstrained setting, under the assumption that the
algorithm reaches a local phase. In order to avoid any projection step we propose a two-
phase analysis. First, for linear and logistic regressions, we prove that the algorithm enters
a local phase where the estimate stays in a small region around the optimum. We provide
explicit bounds with high probability on this convergence time, slightly modifying the
Extended Kalman Filter in the logistic setting. Second, for generalized linear regressions,
we provide a martingale analysis of the excess risk in the local phase, improving existing
ones in bounded stochastic optimization. The algorithm appears as a parameter-free online
procedure that optimally solves some unconstrained optimization problems.

Keywords: extended kalman filter, online learning, stochastic optimization

1. Introduction

The optimization of convex functions is a long-standing problem with many applications. In
supervised machine learning it frequently arises in the form of the prediction of an observa-
tion yt ∈ R given explanatory variables Xt ∈ Rd. The aim is to minimize a cost depending
on the prediction and the observation. We focus in this article on linear predictors, hence
the loss function is of the form `(yt, θ

>Xt).

Two important settings have emerged in order to analyse learning algorithms. In the
online setting (Xt, yt) may be set by an adversary. The assumption required is bound-
edness and the goal is to upper estimate the regret (cumulative excess loss compared to
the optimum). In the stochastic setting with independent identically distributed (i.i.d.)
(Xt, yt), we define the risk L(θ) = E[`(y, θ>X)]. We focus on the cumulative excess risk∑n

t=1 L(θ̂t)−L(θ?) where θ? minimizes the risk. We obtain bounds holding with high prob-
ability simultaneously for any horizon, that is, we control the whole trajectory of the risk.
Furthermore, our bounds on the cumulative risk all lead to similar ones on the excess risk
at any step for the averaged version of the algorithm.

Due to its low computational cost the Stochastic Gradient Descent (SGD) of Robbins
and Monro (1951) has been widely used, along with its equivalent in the online setting,
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the online gradient descent (Zinkevich, 2003) and a simple variant where the iterates are
averaged (Ruppert, 1988; Polyak and Juditsky, 1992). More recently Bach and Moulines
(2013) provided a sharp bound in expectation on the excess risk for a two-step procedure
that has been extended to the average of SGD with a constant step size (Bach, 2014).
Second-order methods based on stochastic versions of Newton-Raphson algorithm have been
developed in order to converge faster in iterations, although with a bigger computational
cost per iteration (Hazan et al., 2007).

In order to obtain a parameter-free second-order algorithm we apply a bayesian perspec-
tive, seeing the loss as a negative log-likelihood and approximating the maximum-likelihood
estimator at each step. We get a state-space model interpretation of the optimization prob-
lem: in a well-specified setting the space equation is yt ∼ pθt(· | Xt) ∝ exp(−`(·, θ>t Xt))
with θt ∈ Rd and the state equation defines the dynamics of the state θt. The stochastic con-
vex optimization setting corresponds to a degenerate constant state-space model θt = θt−1

called static. As usual in State-Space models, the optimization is realized with the Kalman
recursion (Kalman and Bucy, 1961) for the quadratic loss and the Extended Kalman Filter
(EKF) (Fahrmeir, 1992) in a more general case. A correspondence has recently been made
by Ollivier (2018) between the static EKF and the online natural gradient (Amari, 1998).
This motivates a risk analysis in order to enrich the link between Kalman filtering and
the optimization community. We may see the static EKF as the online approximation of
bayesian model averaging, and similarly to its analysis derived by Kakade and Ng (2005)
our analysis is robust to misspecification, that is we don’t assume the data to be generated
by the probabilistic model.

The static EKF is very close to the Online Newton Step (ONS) introduced by Hazan
et al. (2007) as both are second-order online algorithms and our results are of the same
flavor as those obtained on the ONS (Mahdavi et al., 2015). However the ONS requires the
knowledge of the region in which the optimization is realized. It is involved in the choice of
the gradient step size and a projection step is done to ensure that the search stays in the
chosen region. On the other hand the static EKF yields two advantages at the cost of being
less generic.

First, there is no costly projection step and each recursive update runs in O(d2) op-
erations, where d is the dimension of the features Xt. Therefore, our comparison of the
static EKF with the ONS provides a lead to the open question of Koren (2013). Indeed, the
problem of the ONS pointed out by Koren (2013) is to control the cost of the projection step
and the question is whether it is possible to perform better than the ONS in the stochastic
exp-concave setting. We don’t answer the open question in the general setting. However,
we suggest a general way to get rid of the projection by dividing the analysis between a
convergence proof of the algorithm to the optimum and a second phase where the estimate
stays in a small region around the optimum where no projection is required.

Second, the algorithm is (nearly) parameter-free. We believe that bayesian statistics is
the reasonable approach in order to obtain parameter-free online algorithms in the uncon-
strained setting. Parameter-free is not exactly correct as there are initialization parameters,
which we see as a smoothed version of the hard constraint imposed by bounded algorithm,
but they have no impact on the leading terms of our bounds. Static Kalman filter co-
incides with the ridge forecaster and similarly the static EKF may be seen as the online
approximation of a regularized empirical risk minimizer.
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1.1 Related Work

Theoretical guarantees for online and stochastic algorithms are multi-criteria and of various
natures. The comparison of upper-bounds or computational complexity highly depends on
the values of d the dimension of the explanatory vectors and n the time horizon, leading to
different views on whether the dependence to d or n is the most important. The nature of
the guarantee obviously depends on the objective pursued.

In the advesarial setting, the learner suffers a loss `t(θ̂t) depending on its estimate θ̂t at
each time step t. It is natural to minimize the cumulative loss, or equivalently the regret

n∑
t=1

`t(θ̂t)−
n∑
t=1

`t(θ
?) ,

where θ? reaches the minimum value of the cumulative loss and thus highly depends on
(`t)1≤t≤n. Under an assumption of bounded gradients, Zinkevich (2003) proved that a first-
order online gradient descent yields a regret bound in O(

√
n). The Online Newton Step

(ONS) is a second-order online gradient descent that has been designed to obtain a regret
bound in O(lnn) (Hazan et al., 2007) under the assumption that the losses are exp-concave.
The improved guarantee comes at a cost of O(d2) operations per step instead of O(d), along
with a projection at each step whose cost depends on the data.

In the stochastic setting where the losses (`t) are assumed i.i.d., the aim is to minimize
the risk L(θ) = E[`(θ)]. A natural candidate is the Empirical Risk Minimizer (ERM), whose
asymptotics are well understood (see for example Murata and Amari (1999)). Assuming the

existence of θ? minimizing the risk and that the Hessian matrix H? = ∂2

∂θ2
L(θ?) is positive

definite, the ERM θ̂n satisfies

E[L(θ̂n)]− L(θ?) =
tr(G?H?−1)

2n
+ o(1/n) , G? = E

[ ∂
∂θ
`(y, θ?>X)

∂

∂θ
`(y, θ?>X)>

]
.

Although in the well-specified setting the identity tr(G?H?−1) = d holds, in the misspec-
ified case there is no general estimate for tr(G?H?−1). Recently a non-asymptotic bound
L(θ̂n)− L(θ?) = O(tr(G?H?−1) ln δ−1/n) holding with probability 1 − δ has been shown
by Ostrovskii and Bach (2021) on the ERM. However the ERM is defined only implicitly
and may have important computational cost, hence recursive algorithms based on gradient
descent have been studied under different sets of assumptions to bound tr(G?H?−1).

The most simple is Stochastic Gradient Descent (SGD), where each step is in the op-
posite direction of the gradient. This algorithm has been widely used with various step
sizes. Sharp results have been obtained by Bach (2014) for a constant gradient step size
C/
√
n with fixed horizon n. Under the assumption that gradients are bounded by R

we have tr(G?H?−1) ≤ R2/µ where µ is the minimal eigenvalue of H?. The fast rate
E[L(θn)]−L(θ?) = O(R2/(µn)) is obtained by Bach (2014) for the averaged estimate θn of
SGD. In the same article the author also derives a bound with high probability but with a
slower rate: it degrades into L(θn)−L(θ?) = O(log δ−1/

√
n) with probability 1−δ. Finally,

in the quadratic setting a fast rate L(θn)−L(θ?) = O(1/(nδα)) is achieved with probability
1− δ for a defined α > 0 (Bach and Moulines, 2013).

To obtain fast rates with high probability beyond the quadratic setting, it seems nec-
essary to use second-order information as in the ONS (Mahdavi et al., 2015). Under the

3



de Vilmarest and Wintenberger

ERM Averaged SGD ONS This article

Regret O(lnn)
Excess risk in expectation O( 1

n) O( 1
n)

Excess risk w.h.p. O( ln δ−1

n ) O( ln δ−1
√
n

)

Cumulative excess risk w.h.p. O(lnn+ ln δ−1) O(lnn+ ln δ−1 + S(δ))

Cost per iteration Implicit O(d) O(d2) + Tproj O(d2)

Table 1: Summary of existing results along with the static EKF for which we prove the
bound for the cumulative excess risk. We focus on the dependence on n, and δ for
the bounds holding with probability 1− δ (w.h.p.). S(δ) is the cumulative excess
risk of the convergence phase.

assumption that the loss is α-exp-concave, tr(G?H?−1) ≤ d/α and for the averaged version
of the ONS the rate L(θn) − L(θ?) = O(d(lnn + ln δ−1)/(αn)) with probability 1 − δ is
obtained. From our perspective, the result is stronger than what is claimed by Mahdavi
et al. (2015): the bound obtained is

n∑
t=1

L(θ̂n)− L(θ?) = O(lnn+ ln δ−1) , (1)

holding simultaneously for any n with probability 1− δ. Note that although averaging this
bound with Jensen’s inequality leads to a sub-optimal bound on the excess risk of the last
averaged estimate, it is conversely not possible to obtain Equation (1) from

L(θ̂n)− L(θ?) = O(ln δ−1/n) ,

holding with probability 1− δ.

1.2 Contributions

Our first contribution is a local analysis of the static EKF under assumptions defined in
Section 2, and provided that consecutive steps stay in a small ball around the optimum
θ?. We derive local bounds on the cumulative risk with high probability from a martingale
analysis. Our analysis of Section 3 is similar to the one of Mahdavi et al. (2015) and we
slightly refine their constants as a by-product.

We then show that the convergence property crucial in our analysis is reachable. To that
end we focus on linear regression and logistic regression as these two well-known problems
are challenging in the unconstrained setting. In linear regression, the gradient of the loss is
not bounded globally. In logistic regression, the loss is strictly convex, but neither strongly
convex nor exp-concave in the unconstrained setting. In Section 4, we develop a global
bound in the logistic setting on a slight modification of the algorithm introduced by Bercu
et al. (2020). We prove that this modified algorithm converges and stays into a local region
around θ? after a finite number of steps. Moreover we show that it coincides with the static
EKF and thus our local analysis applies. In Section 5, we apply our local analysis to the
quadratic setting. We rely on Hsu et al. (2012) to obtain the convergence of the algorithm
after exhibiting the correspondence between Kalman filter in constant dynamics and the
ridge forecaster, and we therefore obtain similarly a global bound.
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Finally, we demonstrate numerically the competitiveness of the static EKF for logistic
regression in Section 6.

2. Definitions and Assumptions

We consider loss functions that may be written as the negative log-likelihood of a generalized
linear model (McCullagh and Nelder, 1989). Formally, the loss is defined as `(y, θ>X) =
− log pθ(y | X) where θ ∈ Rd, (X, y) ∈ X × Y for some X ⊂ Rd and Y ⊂ R and pθ is of the
form

pθ(y | X) = h(y) exp

(
y θ>X − b(θ>X)

a

)
, (2)

where a is a constant and h and b are one-dimensional functions on which a few assumptions
are required (Assumption 3). This includes logistic and quadratic regressions, see Sections
4 and 5. We display the static EKF in Algorithm 1 in this setting (see Appendix A for a
derivation relying on Durbin and Koopman, 2012). In the quadratic setting, noting that the
EKF estimate θ̂t does not depend on the (unknown) variance σ2, we consider the quadratic
loss `(y, ŷ) = (y − ŷ)2/2 by convention.

Algorithm 1: Static Extended Kalman Filter for Generalized Linear Model

1. Initialization: P1 is any positive definite matrix, θ̂1 is any initial parameter in Rd.

2. Iteration: at each time step t = 1, 2, . . .

(a) Update Pt+1 = Pt − PtXtX>t Pt
1+X>t PtXtαt

αt with αt =
b′′(θ̂>t Xt)

a .

(b) Update θ̂t+1 = θ̂t + Pt+1
(yt−b′(θ̂>t Xt))Xt

a .

Due to matrix-vector and vector-vector multiplications, Algorithm 1 has a running-time
complexity of O(d2) at each iteration and thus O(nd2) for n iterations.

Note that although we need the loss function to be derived from a likelihood of the form
(2), we do not need the data to be generated under this process. We need two standard
hypotheses on the data. The first one is the i.i.d. assumption and bounded random design
(all along the paper ‖.‖ is the Euclidean norm):

Assumption 1 The observations (Xt, yt)t are i.i.d. copies of the pair (X, y) ∈ X ×Y and
there exists DX such that ‖Xt‖ ≤ DX almost surely (a.s.).

Working under Assumption 1, we define the risk function L(θ) = E
[
`(y, θ>X)

]
. Note that

in Section 3 we don’t need E[XX>] invertible, but we will make such an assumption in
Sections 4 and 5 to prove the convergence of the algorithm in the logistic and quadratic
settings, respectively. In order to work on a well-defined optimization problem we assume
there exists a minimum:

Assumption 2 There exists θ? ∈ Rd such that L(θ?) = inf
θ∈Rd

L(θ).
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We treat two different settings requiring different assumptions, summarized in Assump-
tion 3 and 4 respectively. First, motivated by logistic regression we define:

Assumption 3 There exists (κε)ε>0, (hε)ε>0 and ρε −−−→
ε→0

1 such that for any ε > 0 and

any θ, θ0 ∈ Rd satisfying max(‖θ − θ?‖, ‖θ0 − θ?‖) ≤ ε, we have

• `′(y, θ>X)2 ≤ κε`′′(y, θ>X) a.s.

• `′′(y, θ>X) ≤ hε a.s.

• `′′(y, θ>X) ≥ ρε`′′(y, θ>0 X) a.s.

Here `′ and `′′ are the first and second derivatives of ` with respect to the second variable.
Assumption 3 requires local exp-concavity (around θ?) along with some regularity on `′′

(`′′ continuous and `′′(y, θ?>X) ≥ γ > 0 a.s. is sufficient). That setting implies Y bounded,
because `′ depends on y whereas `′′ doesn’t. In logistic regression, Y = {−1,+1} and
Assumption 3 is satisfied for κε = eDX(‖θ?‖+ε), hε = 1

4 , ρε = e−εDX .
Second, we consider the quadratic loss, corresponding to a gaussian model. In order to

include the well-specified setting and to bound G? = E[(y − θ?>X)2XX>], we assume y
sub-gaussian conditionally to X and not too far away from the model:

Assumption 4 The distribution of (X, y) ∈ X × Y satisfies

• There exists σ2 > 0 such that for any s ∈ R, E
[
es(y−E[y|X]) | X

]
≤ e

σ2s2

2 a.s.,

• There exists Dapp ≥ 0 such that |E[y | X]− θ?>X| ≤ Dapp a.s.

Both conditions of Assumption 4 hold with Y = R and Dapp = 0 for the well-specified
gaussian linear model with random bounded design. The second condition of Assumption
4 is satisfied for Dapp > 0 in misspecified sub-gaussian linear model with a.s. bounded
approximation error.

3. The Algorithm Around the Optimum

In this section, we analyse the cumulative risk under a strong convergence assumption.
Precisely we define

τ(ε) = min{k ∈ N | ∀t > k, ‖θ̂t − θ?‖ ≤ ε} ,

where (θ̂t)t are the estimates of the static EKF, and with the convention min ∅ = +∞. We
assume a bound on τ(ε) holding with high probability:

Assumption 5 For any δ, ε > 0, there exists T (ε, δ) ∈ N such that

P
(
τ(ε) ≤ T (ε, δ)

)
≥ 1− δ .

Assumption 5 states that with high probability there exists a convergence time after which
the algorithm stays trapped in a local region around the optimum. Sections 4 and 5 are
devoted to define explicitly such a convergence time for a modified EKF in the logistic
setting and for the true EKF in the quadratic setting.
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We present our result in the bounded and sub-gaussian settings. The results and their
proofs are very similar, but two crucial steps are different. First, Assumption 3 yields a
bound on the gradient holding almost surely. We relax the boundedness condition for the
quadratic loss with a sub-gaussian hypothesis, requiring a specific analysis. Second, our
analysis is based on a second-order expansion. The quadratic loss is equal to its second-
order Taylor expansion but we need Assumption 5 along with the third point of Assumption
3 otherwise.

The following theorem is our result in the bounded setting.

Theorem 1 Starting the static EKF from any θ̂1 ∈ Rd, P1 � 0, if Assumptions 1, 2, 3, 5
are satisfied and if ρε > 0.95, for any δ > 0, it holds for any n ≥ 1 simultaneously

T (ε,δ)+n∑
t=T (ε,δ)+1

L(θ̂t)− L(θ?) ≤ 5

2
dκε ln

(
1 + n

hελmax(P1)D2
X

d

)
+ 5λmax

(
P−1
T (ε,δ)+1

)
ε2

+ 30
(
2κε + hεε

2D2
X

)
ln δ−1 ,

with probability at least 1− 3δ.

The constant 0.95 may be chosen arbitrarily close to 0.5 with growing constants in the bound
on the cumulative risk. There is a hidden trade-off in ε: on the one hand, the smaller ε
the better our upper-bound, but on the other hand T (ε, δ) increases when ε decreases, and
thus our bound applies after a bigger convergence time.

For the quadratic loss, we obtain the following result under the sub-gaussian hypothesis.

Theorem 2 In the quadratic setting, starting the static EKF from any θ̂1 ∈ Rd, P1 � 0, if
Assumptions 1, 2, 4 and 5 are satisfied, for any δ > 0 and any ε > 0, it holds for any n ≥ 1
simultaneously

T (ε,δ)+n∑
t=T (ε,δ)+1

L(θ̂t)− L(θ?) ≤ 15

2
d
(
8σ2 +D2

app + ε2D2
X

)
ln

(
1 + n

λmax(P1)D2
X

d

)

+ 5λmax

(
P−1
T (ε,δ)+1

)
ε2 + 115

(
σ2
(

4 +
λmax(P1)D2

X

4

)
+D2

app + 2ε2D2
X

)
ln δ−1 ,

with probability at least 1− 5δ.

We observe a similar trade-off in ε as in Theorem 1. Up to numerical constants, the tight
constant d(σ2 +D2

app) (see for instance Hsu et al., 2012) is achieved by choosing ε arbitrarily
small, at the cost of a loose control of the T (ε, δ) first steps.

Both results follow from a regret analysis close to the one on the ONS (see Section 3.1),
and on a control on the martingales stated below:

Lemma 3 Let k ≥ 0 and (∆Nt)t>k be any martingale difference adapted to the filtration
(Ft)t≥k such that for any t > k, E[∆N2

t | Ft−1] < ∞. For any δ, λ > 0, we have the
simultaneous property

k+n∑
t=k+1

(
∆Nt −

λ

2
((∆Nt)

2 + E[(∆Nt)
2 | Ft−1])

)
≤ ln δ−1

λ
, n ≥ 1 ,

with probability at least 1− δ.
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Algorithm 2: Recursive updates of the ONS and the static EKF

Online Newton Step Static Extended Kalman Filter

P−1
t+1 = P−1

t + `′(yt, w
>
t Xt)

2XtX
>
t , P−1

t+1 = P−1
t + `′′(yt, θ̂

>
t Xt)XtX

>
t ,

∇t = `′(yt, w
>
t Xt)Xt , ∇t = `′(yt, θ̂

>
t Xt)Xt ,

wt+1 =

P−1
t+1∏
K

(
wt −

1

γ
Pt+1∇t

)
, θ̂t+1 = θ̂t − Pt+1∇t ,

where
P−1
t+1∏
K

is the projection on K for the norm ‖.‖P−1
t+1

.

This result proved in Appendix B.1 is a corollary of a martingale inequality from Bercu and
Touati (2008) and a stopping time construction (Freedman, 1975).

We detail the key ideas of the proofs in the rest of the Section, and we defer to Appendix
B the proof of the intermediate results along with the detailed proof of Theorems 1 and 2.
Specifically, we display in Section 3.1 the parallel with the ONS, where we compare with
the existing result on the cumulative risk, and a similar analysis yields an adversarial bound
on a second-order expansion of the loss. In Section 3.2 we compare the excess risk with
its second-order expansion thanks to Assumption 5, and we use a martingale analysis to
obtain a bound on the cumulative excess risk.

3.1 Comparison with Online Newton Step and Adversarial Analysis

We display the parallel between the ONS and the static EKF in Algorithm 2 through their
recursive updates. We observe that the square of the first derivative of ` is replaced with
the second derivative. Thus tP−1

t in the static EKF is an estimate of the Hessian H? which
is the optimal preconditioning matrix as shown in Corollary 3 of Murata and Amari (1999).
Then the recursion on the parameter (wt and θ̂t) has two differences: there is a gradient
step size 1/γ in the ONS absent in the static EKF, and after the gradient step the ONS
applies a projection. Lemma 3 yields the following refinement on the bound of Mahdavi
et al. (2015) obtained on the cumulative excess risk of the ONS:

Corollary 4 Assume the search region K has diameter D and the gradients are bounded
by R. Let (wt)t be the ONS estimates starting from w1 ∈ K, P1 = λI and using a step-size
γ = 1

2 min( 1
4RD , α) with α the exp-concavity constant of ` on K. Then for any δ > 0, it

holds for any n ≥ 1 simultaneously

n∑
t=1

L(wt)− L(θ?) ≤ 3

2γ
d ln

(
1 +

nR2

λd

)
+
λγ

6
D2 +

(
12

γ
+

4γR2D2

3

)
ln δ−1 ,

with probability at least 1− 2δ.

For the sake of consistency, we display Corollary 4 as a bound on the cumulative excess risk,
whereas Theorem 3 of Mahdavi et al. (2015) is a bound on the excess risk of the averaged
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ONS. The latter follows directly from an application of Jensen’s inequality. The proof of
Corollary 4 consists in replacing Theorem 4 of Mahdavi et al. (2015) with Lemma 3. We
obtain similar constants in Theorem 1 and in Corollary 4, as κε is the inverse of the exp-
concavity constant α. The use of second-order methods with well-tuned preconditioning is
crucial in order to replace the leading constant R2/µ obtained for first-order methods by
d/α (µ is the minimum eigenvalue of the hessian H?).

Our results on the static EKF are less general than the ones obtained on the ONS as
a control of the convergence time τ(ε) ≤ T (ε, δ) is required with high probability. On the
other hand the results obtained on the ONS require the knowledge of the exp-concavity
constant α whereas the static EKF is parameter-free. That is why we argue that the static
EKF provides an optimal way to tune the step size and the preconditioning matrix. Indeed,
as ε is a parameter of the EKF analysis but not of the algorithm, we can improve the
leading constant κε on a local region arbitrarily small around θ?, at a cost of a loose control
of the T (ε, δ) first steps. In the ONS the choice of a diameter D > ‖θ?‖ makes the gradient
step-size sub-optimal and impacts the leading constant.

Once the parallel between the ONS and the static EKF has been displayed (Algorithm 2),
it is natural to adopt an approach similar to the one in Hazan et al. (2007). The cornerstone
of our local analysis is the derivation of an adversarial bound on the second-order Taylor
expansion of `, from the recursive update formulae.

Lemma 5 For any sequence (Xt, yt)t, starting from any θ̂1 ∈ Rd, P1 � 0, it holds for any
θ? ∈ Rd and n ∈ N that

n∑
t=1

((
`′(yt, θ̂

>
t Xt)Xt

)>
(θ̂t − θ?)−

1

2
(θ̂t − θ?)>

(
`′′(yt, θ̂

>
t Xt)XtX

>
t

)
(θ̂t − θ?)

)

≤ 1

2

n∑
t=1

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2 +
‖θ̂1 − θ?‖2

λmin(P1)
.

We cannot compare the excess loss with the second-order Taylor expansion in general,
and it is natural to use a step size parameter. In Hazan et al. (2007), the regret analysis of
the ONS is based on a very similar bound on(

`′(yt, w
>
t Xt)Xt

)>
(wt − θ?)−

γ

2
(wt − θ?)>

(
`′(yt, w

>
t Xt)

2XtX
>
t

)
(wt − θ?) ,

where γ is a step size parameter. Then the regret bound follows from the exp-concavity
property, bounding the excess loss `(yt, w

>
t Xt) − `(yt, θ?>Xt) with the previous quantity

for a specific γ. The dependence of γ on the exp-concavity constant and the bound on the
gradients require that the algorithm stays in a bounded region around the optimum θ?, and
a projection on this region is used, potentially at each step.

We follow a very different approach, to stay parameter-free, unconstrained and to avoid
any additional cost in the leading constant. In the stochastic setting, we observe that we can
upper-bound the excess risk with a second-order expansion, up to a multiplicative factor.

3.2 From Adversarial to Stochastic: the Cumulative Risk

In order to compare the excess risk with a second-order expansion, we compare the first-
order term with the second-order one.

9
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Proposition 6 If Assumptions 1, 2 and 3 are satisfied, for any θ ∈ Rd, it holds

∂L

∂θ

∣∣∣>
θ

(θ − θ?) ≥ ρ‖θ−θ?‖(θ − θ?)>
∂2L

∂θ2

∣∣∣
θ
(θ − θ?) .

This result leads immediately to the following proposition, using the first-order convexity
property of L.

Proposition 7 If Assumptions 1, 2 and 3 are satisfied, for any θ ∈ Rd, 0 < c < ρ‖θ−θ?‖,
it holds

L(θ)− L(θ?) ≤
ρ‖θ−θ?‖

ρ‖θ−θ?‖ − c

(
∂L

∂θ

∣∣∣>
θ

(θ − θ?)− c(θ − θ?)>∂
2L

∂θ2

∣∣∣
θ
(θ − θ?)

)
.

Lemma 5 motivates the use of c > 1
2 , thus we need at least ρ‖θ−θ?‖ >

1
2 . In the quadratic

setting, it holds as an equality with ρ = 1 because the second derivative of the quadratic
loss is constant. In the bounded setting we need to control the second derivative in a small
range, and we can achieve that only locally, therefore we separate the condition ρ‖θ−θ?‖ >

1
2

between the third point of Assumption 3 and Assumption 5.
Then we are left to obtain a bound on the cumulative risk from Lemma 5. In order

to compare the derivatives of the risk and the losses, we need to control the martingale
difference adapted to the natural filtration (Ft) and defined as

∆Mt =

(
∂L

∂θ

∣∣∣
θ̂t
−∇t

)>
(θ̂t − θ?), where ∇t = `′(yt, θ̂

>
t Xt)Xt .

We thus apply Lemma 3 to this martingale difference.

Lemma 8 Starting the static EKF from any θ̂1 ∈ Rd, P1 � 0, if Assumptions 1 and 2 are
satisfied, for any k ≥ 0 and δ, λ > 0, it holds simultaneously

k+n∑
t=k+1

(
∆Mt − λ(θ̂t − θ?)>

(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

)
≤ ln δ−1

λ
, n ≥ 1 ,

with probability at least 1− δ.

The proof of Theorems 1 and 2 deferred to Appendix B builds on the above results.
Summing Lemma 5 and 8, we obtain for any δ, λ > 0 the simultaneous bound

T (ε,δ)+n∑
t=T (ε,δ)+1

(
∂L

∂θ

∣∣∣>
θ̂t

(θ̂t − θ?)− (θ̂t − θ?)>
(1

2
∇(2)
t + λ∇t∇>t +

3

2
λE
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

)

≤ 1

2

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2 +
‖θ̂1 − θ?‖2

λmin(PT (ε,δ)+1)
+

ln δ−1

λ
, n ≥ 1 ,

with probability at least 1− δ, where we define ∇(2)
t = `′′(yt, θ̂

>
t Xt)XtX

>
t for any t. In the

last equation, we control (see Appendix B.4 and B.5) the quadratic term in θ̂t − θ? on the

left hand-side in terms of (θ̂t−θ?)> ∂
2L
∂θ2
|θ̂t(θ̂t−θ

?) in order to lower-bound the left expression
proportionally to the cumulative excess risk using Proposition 7 for well chosen λ.

10
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Algorithm 3: Truncated Extended Kalman Filter for Logistic Regression

1. Initialization: P1 is any positive definite matrix, θ̂1 is any initial parameter in Rd.

2. Iteration: at each time step t = 1, 2, . . .

(a) Update Pt+1 = Pt − PtXtX>t Pt
1+X>t PtXtαt

αt, with αt = max

(
1
tβ
, 1

(1+eθ̂
>
t Xt )(1+e−θ̂

>
t Xt )

)
.

(b) Update θ̂t+1 = θ̂t + Pt+1
ytXt

1+eytθ̂
>
t Xt

.

4. Logistic Setting

Logistic regression is a widely used statistical model in classification. The prediction of a
binary random variable y ∈ Y = {−1, 1} consists in modelling L(y | X) with

pθ(y | X) =
1

1 + e−yθ>X
= exp

(
yθ>X − (2 ln(1 + eθ

>X)− θ>X)

2

)
.

In the GLM notations, it yields a = 2 and b(θ>X) = 2 ln(1 + eθ
>X)− θ>X.

4.1 Results for the Truncated Algorithm

In order to prove the convergence of the algorithm needed in the local phase, we follow a trick
introduced by Bercu et al. (2020) consisting in changing slightly the update on Pt. Indeed,
when the authors tried to prove the asymptotic convergence of the static EKF (which
they named stochastic Newton step) using Robbins-Siegmund Theorem, they needed the
convergence of

∑
t λmax(Pt)

2. This seems very likely to hold as we have intuitively Pt ∝ 1/t.
However, in order to obtain λmax(Pt) = O(1/t), one needs to lower-bound αt, that is, to
upper-bound |θ̂>t Xt|, and that is impossible in the global logistic setting. Therefore, the
idea is to force a lower-bound on αt in its definition. We thus define, for some 0 < β < 1/2,

αt = max

(
1

tβ
,

1

(1 + eθ̂
>
t Xt)(1 + e−θ̂

>
t Xt)

)
, t ≥ 1 .

This modification yields Algorithm 3, where we keep the notations θ̂t, Pt, τ(ε) with some
abuse in the rest of this section. We impose a decreasing threshold on αt (β > 0) and we
prove that the recursion coincides with Algorithm 1 after some steps. The sensitivity of
the algorithm to β is discussed at the end of Section 4.2. Also, note that the threshold
could be c/tβ, c > 0, as in Bercu et al. (2020). We consider 1/tβ for clarity. We control the
convergence time τ(ε) of this version of the EKF:

Proposition 9 Starting Algorithm 3 from θ̂1 = 0 and any P1 � 0, if Assumptions 1 and 2
are satisfied and E[XX>] is invertible, for any ε, δ > 0, it holds τ(ε) ≤ T (ε, δ) along with

∀t > T (ε, δ), αt =
1

(1 + eθ̂
>
t Xt)(1 + e−θ̂

>
t Xt)

,

11
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with probability at least 1− δ, where T (ε, δ) ∈ N is defined in Corollary 13.

Besides the convergence of the truncated EKF, the proposition states that the truncated
recursions coincide with the static EKF ones after the first T (ε, δ) steps. Thus we can apply
our analysis of Section 3. We state the global result for ε = 1/(20DX):

Theorem 10 Under the assumptions of Proposition 9, for any δ > 0, it holds for any
n ≥ 1 simultaneously

n∑
t=1

L(θ̂t)− L(θ?) ≤ 3deDX‖θ
?‖ ln

(
1 + n

λmax(P1)D2
X

4d

)
+
λmax(P−1

1 )

75D2
X

+ 64eDX‖θ
?‖ ln δ−1

+ T
( 1

20DX
, δ
)( 1

300
+DX‖θ̂1 − θ?‖

)
+ T

( 1

20DX
, δ
)2λmax(P1)D2

X

2
,

with probability at least 1− 4δ, where T (1/(20DX), δ) is defined in Corollary 13.

4.2 Explicit Definition of T (ε, δ) in Proposition 9

It is proved that ‖θ̂n − θ?‖2 = O (lnn/n) almost surely (Bercu et al., 2020, Theorem 4.2).
We don’t obtain a non-asymptotic version of this rate of convergence, but the aim of this
paragraph is to prove Proposition 9 for an explicit value of T (ε, δ) for any δ, ε > 0.

The objective of the truncation introduced in the algorithm is to improve the control
on Pt. We state that fact formally with a concentration result relying on Tropp (2012). We
define Λmin the smallest eigenvalue of E[XX>].

Proposition 11 Under the assumptions of Proposition 9, for any δ > 0, it holds simulta-
neously

∀t >
(

20D4
X

Λ2
min

ln

(
625dD8

X

Λ4
minδ

))1/(1−β)

, λmax(Pt) ≤
4

Λmint1−β
,

with probability at least 1− δ.

This proposition justifies the choice β < 1/2 in the introduction of the truncated algo-
rithm to satisfy the condition

∑
t λmax(Pt)

2 < +∞ with high probability. Motivated by
Proposition 11, we define, for C > 0, the event

AC :=
∞⋂
t=1

(
λmax(Pt) ≤

C

t1−β

)
.

To obtain a control on Pt holding for any t, we use the relation λmax(Pt) ≤ λmax(P1) holding
almost surely. We thus define

Cδ = max

(
4

Λmin
, λmax(P1)

(
20D4

X

Λ2
min

ln
(625dD8

X

Λ4
minδ

)))
,

and we obtain P (ACδ) ≥ 1− δ. We obtain the following theorem under that condition.

12
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Theorem 12 Under the assumptions of Proposition 9, we have for any δ, ε > 0 and t ≥

exp

(
28D8

XC
2
δ (1+eDX (‖θ?‖+ε))3

Λ3
min(1−2β)3/2ε2

)
,

P(‖θ̂t − θ?‖ > ε | ACδ) ≤ (
√
t+ 1) exp

(
− Λ6

min(1− 2β)ε4

216D12
XC

2
δ (1 + eDX(‖θ?‖+ε))6

ln(t)2

)
+ t exp

(
− Λ2

min(1− 2β)ε4

211D4
XC

2
δ (1 + eDX(‖θ?‖+ε))2

(
√
t− 1)1−2β

)
.

The beginning of our convergence proof starts similarly as the analysis of Bercu et al.
(2020): we obtain a recursive inequality ensuring that (L(θ̂t))t is decreasing in expectation.
However, in order to obtain a non-asymptotic result we cannot apply Robbins-Siegmund
Theorem. Instead we use the fact that the variations of the algorithm θ̂t are slow thanks
to the control on Pt. Thus, if the algorithm was far from the optimum, the last estimates
were far too which contradicts the decrease in expectation of the risk. Consequently, we
look at the last k ≤ t such that ‖θ̂k − θ?‖ < ε/2, if it exists. We decompose the probability
of being outside the local region in two scenarii, yielding the two terms in Theorem 12. If
k <
√
t, the recursive decrease in expectation makes it unlikely that the estimate stays far

from the optimum for a long period. If k >
√
t, the control on Pt allows a control on the

probability that the algorithm moves fast, in t− k steps, away from the optimum.

The following corollary explicitly defines a guarantee for the convergence time.

Corollary 13 Proposition 9 holds with for any ε, δ > 0

T (ε, δ) = max

((
2(1 + eDX(‖θ?‖+ε))

)1/β
, exp

(3 · 215D12
XC

2
δ/2(1 + eDX(‖θ?‖+ε))6

Λ6
min(1− 2β)3/2ε4

)
, 6δ−1

)
.

This definition of T (ε, δ) allows a discussion on the dependence of the bound Theorem 10
to the different parameters. Note that the choice ε = 1/(20DX) in Theorem 10 is artificially
made for simplifying constants since the bound actually holds for any ε > 0 simultaneously.
The truncation has introduced an extra parameter 0 < β < 1/2 that does not impact the
leading term in Theorem 10. However, it impacts the first step control in an intricate way.
On the one hand, when β is close to 0, the algorithm is slow to coincide with the true EKF
as T (ε, δ) = eO(1)/β. On the other hand, the larger β, the larger our control on λmax(Pt)

and thus we get T (ε, δ) = eO(1)/(1−2β)3/2 . Practical considerations show that the truncation
is artificial and can even deteriorate the performence of the EKF, see Section 6. Thus Bercu
et al. (2020) suggest to choose β = 0.49.

The dependence on δ is even more complex. The third constraint on T (ε, δ) is O(δ−1)
which should not be sharp. To improve this lousy dependence in the bound, one needs a
better control of Pt. It would follow from a specific analysis of the O(ln δ−1) first recursions
in order to ”initialize” the control on Pt. However the objective of Corollary 13 was to prove
Proposition 9 and not to get an optimal value of T (ε, δ). A refinement of our convergence
analysis following from a tighter control on Pt of the EKF than the one provided by Tropp
(2012) is a very important and challenging open question.
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5. Quadratic Setting

We obtain a global result for the quadratic loss where Algorithm 1 becomes the standard
Kalman filter (recall that we take σ2 = 1, that is `(y, ŷ) = (y− ŷ)2/2 and a = 1, b′(θ̂>t Xt) =
θ̂>t Xt, αt = 1).

The parallel with the ridge forecaster was evoked by Diderrich (1985), and it is crucial
that the static Kalman filter is the ridge regression estimator for a decaying regularization
parameter. It highlights that the static EKF may be seen as an approximation of the
regularized ERM:

Proposition 14 In the quadratic setting, for any sequence (Xt, yt), starting from any θ̂1 ∈
Rd and P1 � 0, the static EKF satisfies the optimisation problem

θ̂t = arg min
θ∈Rd

(
1

2

t−1∑
s=1

(ys − θ>Xs)
2 +

1

2
(θ − θ̂1)>P−1

1 (θ − θ̂1)

)
, t ≥ 1 .

Note that the static Kalman filter provides automatically a right choice of the ridge
regularization parameter. This equivalence yields a logarithmic regret bound for the Kalman
filter (Theorem 11.7 of Cesa-Bianchi and Lugosi, 2006). It follows from Lemma 5 as the
quadratic loss coincides with its second-order Taylor expansion. The leading term of the
bound is d lnnmaxt(yt − θ̂>t Xt)

2, thus yt − θ̂>t Xt needs to be bounded.

As the static Kalman filter estimator is exactly the ridge forecaster, we can also use
the regularized empirical risk minimization properties to control T (ε, δ). In particular, we
apply the ridge analysis of Hsu et al. (2012), and we check Assumption 5:

Proposition 15 Starting from any θ̂1 ∈ Rd and P1 � 0, if Assumptions 1, 2 and 4 hold and
if E[XX>] is invertible then Assumption 5 holds for T (ε, δ) defined explicitly in Appendix
D, Corollary 26.

Up to universal constants, defining Λmin as the smallest eigenvalue of E[XX>], we get

T (ε, δ) . h

(
ε−1

Λmin

(
‖θ̂1 − θ?‖2

p1
+

D2
X

Λmin
(1 +D2

app)
√

ln δ−1 + σ2d

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

p1
+ σ2

)
ln δ−1

))
,

with h(x) = x lnx. We obtain a much less dramatic dependence in ε than in the logistic
setting. However we could not avoid a Λ−1

min factor in the definition of T (ε, δ). It is not
surprising since the convergence phase relies deeply on the behavior of Pt.

As for the logistic setting, we split the cumulative risk into two sums. The sum of the
first terms is roughly bounded by a worst case analysis, and the sum of the last terms is
estimated thanks to our local analysis (Theorem 2). However, as the loss and its gradient
are not bounded we cannot obtain a similar almost sure upper-bound on the convergence
phase. The sub-gaussian assumption provides a high probability bound instead.
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Theorem 16 Under the assumptions of Proposition 15, for any ε, δ > 0, it holds simulta-
neously

n∑
t=1

L(θ̂t)− L(θ?) ≤ 15

2
d
(
8σ2 +D2

app + ε2D2
X

)
ln

(
1 + n

λmax(P1)D2
X

d

)
+ 5λmax(P−1

1 )ε2

+ 115

(
σ2(4 +

λmax(P1)D2
X

4
) +D2

app + 2ε2D2
X

)
ln δ−1

+D2
X

(
5ε2 + 2(‖θ̂1 − θ?‖2 + 3λmax(P1)DXσ ln δ−1)2

)
T (ε, δ)

+
2λmax(P1)2D4

X(3σ +Dapp)2

3
T (ε, δ)3, n ≥ 1 ,

with probability at least 1− 6δ.

Note that the dependence of the cumulative excess risk of the convergence phase in
terms of δ is O(log(δ−1)3).

6. Experiments

We experiment the static EKF for logistic regression. Precisely, we compare the following
sequential algorithms that we all initialize at 0:

• The static EKF and the truncated version (Algorithm 3). We take the default value
P1 = Id along with the value β = 0.49 suggested by Bercu et al. (2020). Note that a
threshold 10−10/t0.49 as recommended by Bercu et al. (2020) would coincide with the
static EKF.

• The ONS and the averaged version. The convex region of search is a ball centered
in 0 and of radius Dθ = 1.1‖θ?‖, a setting where we have good knowledge of θ?.
We consider two choices of the exp-concavity constant on which the ONS crucially
relies to define the gradient step size. First, we use the only available bound e−DθDX .
Second, in the settings where the step size is so small that the ONS doesn’t move, we
use the exp-concavity constant κ0 at θ?. This yields a bigger step size, though the
exp-concavity is not satisfied on the region of search.

• Two Averaged Stochastic Gradient Descent as described by Bach (2014). First we
test the choice of the gradient step size γ = 1/(2D2

X

√
N) denoted by ASGD and a

second version with γ = ‖θ?‖/(DX

√
N) denoted by ASGD oracle. Note that these

algorithms are with fixed horizon, thus at each step t, we have to re-run the whole
procedure.

6.1 Synthetic Data

We first consider well-specified data generated by the process of Bercu et al. (2020). The
explanatory variables X = (1, Z>)> are of dimension d = 11 where Z is a random vector
composed of 10 independent components uniformly generated in [0, 1], thus DX =

√
d.

With this distribution for X we define three synthetic settings that we evaluate:
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Figure 1: Density of the Bernoulli parameter on 107 samples: on the left and on the middle
density of (1 + e−θ

?>X)−1 for the two well-specified settings (left, the ordinate is

in log scale), and on the right density of (1 + e−θ
>
j Xt)−1 with j ∈ {1, 2} uniformly

at random for the misspecified setting. On the right we observe the two modes
E[(1 + e−θ

>
1 Xt)−1] ≈ 0.28 and E[(1 + e−θ

>
2 Xt)−1] ≈ 0.79.

• Well-specified 1: we define θ? = (−9, 0, 3,−9, 4,−9, 15, 0,−7, 1, 0)>, and at each it-

eration t, the variable yt ∈ {−1, 1} is a Bernoulli variable of parameter (1+e−θ
?>Xt)−1.

• Well-specified 2: in the first well-specified setting the Bernoulli parameter is mostly
distributed around 0 and 1 (see Figure 1), thus we try a less discriminated setting
with θ? = 1

10(−9, 0, 3,−9, 4,−9, 15, 0,−7, 1, 0)>.

• Misspecified: In order to demonstrate the robustness of the EKF we test the algo-
rithms in a misspecified setting switching randomly between two well-specified logistic
processes. We define θ1 = 1

10(−9, 0, 3,−9, 4,−9, 15, 0,−7, 1, 0)> and θ2 where we have
only changed the first coefficient from −9/10 to 15/10. Then yt is a Bernoulli random

variable whose parameter is either (1 + e−θ
>
1 Xt)−1 or (1 + e−θ

>
2 Xt)−1 uniformly at

random. We checked that Assumption 2 is still satisfied.

We evaluate the different algorithms with the mean squared error E[‖θ̂t − θ?‖2] that we
approximate by its empirical version on 100 samples. We display the results in Figure 2.

6.2 Real Data Sets

To illustrate better the robustness to misspecification, we run the same procedures on real
data sets:

• Forest cover-type (Blackard and Dean, 1999): the feature vector is of dimension
d = 54, and as it is a multi-class task (7 classes) we focus on classifying 2 versus
all others. There are n = 581012 instances and we randomly split in two halves for
training and testing.

• Adult income (Kohavi, 1996): the objective is to predict whether a person’s annual
income is smaller or bigger than 50K. There are 14 explanatory variables, and we

16



Stochastic Online Optimization using Kalman Recursion

Figure 2: Mean squared error in log-log scale for the three synthetic settings. For the first
well-specified setting (left) the ONS is applied using the exp-concavity constant

κ0 ≈ 1.7 ·10−15 instead of e−Dθ
√
d to accelerate the algorithm, and both the ONS

and its averaged version still don’t move. In the other two (middle and right)

we use e−Dθ
√
d for the ONS. We observe that the EKF and the truncated version

coincide in the two last settings.

obtain d = 98 once categorical variables are transformed into binary variables. We use
the canonical split between training (32561 instances) and testing (16281 instances).

For each data set, we standardize X such that each feature ranges from 0 to 1. At each step
we sample within the training set (with replacement). We evaluate through an empirical
version of E[L(θ̂n)]−L(θ?) estimated on 100 samples and where L is estimated on the test
set, see Figure 3.

6.3 Summary

Our experiments show the superiority of the EKF for logistic regression compared to the
ONS or to averaged SGD in all the settings we tested. We display in Table 2 a few indicators
of the data sets. In particular, it is interesting that the static EKF works well even in a
setting where the Hessian matrix H? is singular.

It appears clear that low exp-concavity constants are responsible of the poor perfor-
mances of the ONS. One may tune the gradient step size at the cost of losing the exp-
concavity property and thus the regret guarantee of (Hazan et al., 2007) or its analogous
for the cumulative risk (Mahdavi et al., 2015). Averaging is crucial for the ONS, whereas it
is useless for the static EKF. Indeed we chose not to plot the averaged version of the EKF
for clarity, but the EKF performs better than its averaged version.

It is important to note that in the first synthetic setting the truncation deteriorates
the performance of the EKF, as well as in the adult income data set to a lesser extent,
whereas the results are the same in the other settings. Bercu et al. (2020) argue that the
truncation is artificially introduced for the convergence property, thus they use the threshold
10−10/t0.49 instead of 1/t0.49 and the truncated version almost coincides with the true EKF.
We confirm here that the truncation may be damaging if the threshold is set too high and
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Figure 3: Excess test risk for forest cover type (left) and adult income (right). As the
ONS doesn’t move when applied with the exp-concavity constant e−DθDX we use
instead the exp-concavity constant at θ?: κ0 ≈ 1.4 · 10−3 for forest cover type
and κ0 ≈ 5.5 · 10−6 for adult income. The EKF and the truncated version almost
coincide for both data sets.

Setting d λmax(H?)/µ tr(G?H?−1) R2/µ deDθDX dκ0

Synthetic well-specified 1 11 6.9 · 102 1.7 · 102 1.0 · 105 9.2 · 1037 6.4 · 1015

Synthetic well-specified 2 11 1.5 · 102 7.1 · 101 2.5 · 103 5.4 · 104 3.3 · 102

Synthetic misspecified 3 11 1.5 · 102 7.1 · 101 2.0 · 103 3.6 · 103 7.4 · 101

Forest cover type 54 ∞ ∞ ∞ 9.2 · 1032 3.8 · 104

Adult income 98 2.5 · 107 7.2 · 105 5.3 · 108 1.8 · 1062 1.8 · 107

Table 2: For the different experimental settings we display the dimension d and the condi-
tion number of the Hessian at θ? (λmax(H?) and µ are the maximal and minimal
eigenvalues of H?). We present the value of tr(G?H?−1) which is bounded either
by R2/µ, or by deDθDX because e−DθDX bounds the exp-concavity constant on
the centered ball of radius Dθ. We add to the table dκ0 ≤ deDθDX where κ0 is the
inverse of the exp-concavity constant of the loss at θ?.
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we recommend to use the EKF in practice, or equivalently the truncated version with the
low threshold suggested by Bercu et al. (2020).

7. Conclusion

We studied an efficient way to tackle some unconstrained optimization problems, in which we
get rid of the projection step of bounded algorithm such as the ONS. We presented a bayesian
approach where we transformed the loss into a negative log-likelihood. We used the Kalman
recursion to provide a parameter free approximation of the maximum-likelihood estimator.
We demonstrated the optimality of the local phase for locally exp-concave losses which can
be expressed as GLM log-likelihoods. We proved the finiteness of the convergence phase
in logistic and quadratic regressions. We illustrated our theoretical results with numerical
experiments for logistic regression. It would be interesting to generalize our results to a
larger class of optimization problems.

Finally, this article aimed at strengthening the bridge between Kalman recursion and
the optimization community. Therefore we made the i.i.d. assumption, standard in the
stochastic optimization literature and we focus on the static EKF. It may lead the way to
a risk analysis of the general EKF in non i.i.d. state-space models.
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The Appendix follows the structure of the article:

• Appendix A presents the EKF for generalized linear models.

• Appendix B contains the proofs of Section 3. Precisely, Lemma 3 is proved in Section
B.1, the intermediate results of Sections 3.1 and 3.2 are proved in Sections B.2 and
B.3, then Theorem 1 is proved in Section B.4 and Theorem 2 in Section B.5.

• Appendix C contains the proofs of Section 4. We derive the global bound (Theorem
10) in Section C.1, then we obtain the concentration result on Pt in Section C.2, and
finally we prove the convergence of the truncated algorithm in Section C.3.

• Appendix D contains the proofs of Section 5. We prove Theorem 16 in Section D.1
and then in Section D.2 we prove the convergence of the algorithm, and we define an
explicit value of T (ε, δ) satisfying Assumption 5.

Appendix A. Derivation of the Static EKF for Generalized Linear Models

As in Section 10.2 of Durbin and Koopman (2012) we consider the following state-space
model:

yt = Zt(θt) + εt ,

θt+1 = Tt(θt) + ηt .

where εt and ηt are independent with mean zero and variances ht(θt), Qt(θt). The state-
space version of equation (2) is

p(yt | Xt) = h(yt) exp

(
ytθ
>
t Xt − b(θ>t Xt)

a

)
.

The preceding equation matches the space equation form with Zt(θt) = b′(θ>t Xt) and
ht(θt) = ab′′(θ>t Xt). Thus we can write the EKF as follows (see Equation 10.4 of Durbin
and Koopman, 2012): denoting by Ṫt the derivative of Tt,

vt = yt − b′(θ̂>t Xt) , Ft = X>t PtXtb
′′(θ̂>t Xt)

2 + ab′′(θ̂>t Xt) ,

θ̂t|t = θ̂t + PtXtb
′′(θ̂>t Xt)F

−1
t vt , Pt|t = Pt − PtXtF

−1
t X>t Ptb

′′(θ̂>t Xt)
2 ,

θ̂t+1 = Tt(θ̂t|t) , Pt+1 = ṪtPt|tṪt
>

+Qt(θ̂t|t) .

We focus on the static setting where the state equation becomes θt+1 = θt, thus we have
θ̂t+1 = θ̂t|t and Pt+1 = Pt|t. We rewrite the update on Pt as follows:

Pt+1 = Pt −
PtXtX

>
t Ptb

′′(θ̂>t Xt)/a

X>t PtXtb′′(θ̂>t Xt)/a+ 1
.

Moreover we have Pt+1Xt = PtXtF
−1
t ab′′(θ̂>t Xt) thus we can rewrite the update on θ̂t as

follows:

θ̂t+1 = θ̂t +
Pt+1Xt(yt − b′(θ̂>t Xt)

a
.

This yields Algorithm 1.
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Appendix B. Proofs of Section 3

B.1 Proof of Lemma 3

We prove the following Lemma inspired by the stopping time technique of Freedman (1975)
from which we derive Lemma 3. We give a general form useful in several proofs.

Lemma 17 Let (Fn) be a filtration, and we consider a sequence of events (An) that is
adapted to (Fn). Let (Vn) be a sequence of random variables adapted to (Fn) satisfying
V0 = 1, Vn ≥ 0 almost surely for any n, and

E[Vn | Fn−1, An−1] ≤ Vn−1, n ≥ 1.

Then for any δ > 0, it holds

P

(( ∞⋃
n=1

Vn > δ−1

)
∪
( ∞⋃
n=0

An

))
≤ δ + P

( ∞⋃
n=0

An

)
.

An important particular case is when (Vn) is a super-martingale adapted to the filtration
(Fn) satisfying V0 = 1 and Vn ≥ 0 almost surely: then we have simultaneously Vn ≤ δ−1

for n ≥ 1 with probability larger than 1− δ.
Proof We define

Ek =

k⋃
n=1

(
Vn > δ−1 ∪An−1

)
.

As (Ek) is increasing, we have, for any k ≥ 1,

P(Ek) =

k∑
n=1

P
(
En ∩ En−1

)
=

k∑
n=1

P
(
An−1 ∩ En−1

)
+

k∑
n=1

P
(
Vn > δ−1 ∩ En−1 ∩An−1

)
.

First, we have

k∑
n=1

P
(
An−1 ∩ En−1

)
≤ P

(
k−1⋃
n=0

An

)
.

Second, we apply Markov’s inequality:

k∑
n=1

P
(
Vn > δ−1 ∩ En−1 ∩An−1

)
≤

k∑
n=1

E
[
Vn
δ−1

1En∩En−1∩An−1

]

= δ

k∑
n=1

E
[
Vn(1En−1∩An−1

− 1En)
]

= δ

k∑
n=1

(
E
[
Vn1En−1∩An−1

]
− E

[
Vn1En

])
.
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The second line is obtained since En ⊂
(
En−1 ∩An−1

)
. According to the tower property

and the super-martingale assumption,

E
[
Vn1En−1∩An−1

]
= E

[
E[Vn | Fn−1, An−1]1En−1∩An−1

]
≤ E

[
E[Vn | Fn−1, An−1]1En−1

]
≤ E

[
Vn−11En−1

]
.

Therefore, a telescopic argument along with V0 = 1 and Vk1Ek ≥ 0 yields

k∑
n=1

P
(
Vn > δ−1 ∩ En−1 ∩An−1

)
≤ δ .

Finally, for any k ≥ 1, we obtain

P (Ek) ≤ P

(
k−1⋃
n=0

An

)
+ δ

and the desired result follows by letting k →∞.

Proof of Lemma 3. Let λ > 0. For any n ≥ 1, we define

Vn = exp

(
k+n∑
t=k+1

(
λ∆Nt −

λ2

2
((∆Nt)

2 + E[(∆Nt)
2 | Ft−1])

))
.

Lemma B.1 of Bercu and Touati (2008) states that (Vn) is a super-martingale adapted to
the filtration (Fk+n). Moreover V0 = 1 and for any n, it holds Vn ≥ 0 almost surely. There-
fore we can apply Lemma 17.

B.2 Proof of Lemma 5

Proof of Lemma 5. We start from the update formula θ̂t+1 = θ̂t + Pt+1
(yt−b′(θ̂>t Xt))Xt

a
yielding

(θ̂t+1 − θ?)>P−1
t+1(θ̂t+1 − θ?) = (θ̂t − θ?)>P−1

t+1(θ̂t − θ?) + 2
(yt − b′(θ̂>t Xt))X

>
t

a
(θ̂t − θ?)

+X>t Pt+1Xt

(
yt − b′(θ̂>t Xt)

a

)2

.
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With a summation argument, re-arranging terms, we obtain:

n∑
t=1

(
(b′(θ̂>t Xt)− yt)X>t

a
(θ̂t − θ?)−

1

2
(θ̂t − θ?)>(P−1

t+1 − P
−1
t )(θ̂t − θ?)

)

=
1

2

n∑
t=1

X>t Pt+1Xt

(
yt − b′(θ̂>t Xt)

a

)2

+
1

2

n∑
t=1

(
(θ̂t − θ?)>P−1

t (θ̂t − θ?)− (θ̂t+1 − θ?)>P−1
t+1(θ̂t+1 − θ?)

)
.

We bound the telescopic sum: as P−1
n+1 < 0, we have

n∑
t=1

(
(θ̂t − θ?)>P−1

t (θ̂t − θ?)− (θ̂t+1 − θ?)>P−1
t+1(θ̂t+1 − θ?)

)
≤ (θ̂1 − θ?)>P−1

1 (θ̂1 − θ?) ≤
‖θ̂1 − θ?‖2

λmin(P1)
.

The result follows from the identities

(b′(θ̂>t Xt)− yt)Xt

a
= `′(yt, θ̂

>
t Xt)Xt , P−1

t+1 − P
−1
t = `′′(yt, θ̂

>
t Xt)XtX

>
t .

B.3 Proofs of Section 3.2

Proof of Proposition 6. The first-order condition satisfied by θ? is

E
[
−(y − b′(θ?>X))X

a

]
= 0 ,

yielding E [yX] = E[b′(θ?>X)X]. Therefore

E
[

(b′(θ>X)− y)X

a

]>
(θ − θ?) =

1

a
(θ − θ?)>E

[
X(b′(θ>X)− b′(θ?>X))

]
.

Considering the function f : λ → (θ − θ?)>E
[
Xb′(θ>X + λ(θ − θ?)>X))

]
, we know there

exists λ ∈ [0, 1] such that f ′(λ) = f(1)− f(0). This translates into

∂L

∂θ

∣∣∣>
θ

(θ − θ?) =
1

a
(θ − θ?)>E

[
Xb′′

(
θ>X + λ(θ? − θ)>X

)
(θ − θ?)>X

]
.

Then we use Assumption 3:

b′′
(
θ>X + λ(θ? − θ)>X

)
b′′ (θ>X)

=
`′′
(
yt, θ

>X + λ(θ? − θ)>X
)

`′′ (yt, θ>X)
≥ ρ‖θ−θ?‖ ,
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yielding

∂L

∂θ

∣∣∣>
θ

(θ − θ?) ≥ ρ‖θ−θ?‖(θ − θ?)>E
[
`′′(y, θ>X)XX>

]
(θ − θ?)

= ρ‖θ−θ?‖(θ − θ?)>
∂2L

∂θ2

∣∣∣
θ
(θ − θ?) .

Proof of Proposition 7. We first recall that L(θ)−L(θ?) ≤ ∂L
∂θ

∣∣∣>
θ

(θ−θ?), then Proposition

6 yields

∂L

∂θ

∣∣∣>
θ

(θ − θ?)− c(θ − θ?)>∂
2L

∂θ2

∣∣∣
θ
(θ − θ?) ≥ (1− c

ρ‖θ−θ?‖
)
∂L

∂θ

∣∣∣>
θ

(θ − θ?) ,

and the result follows.

Proof of Lemma 8. We first develop (∆Mt)
2:

(∆Mt)
2 =

(
(E [∇t | Ft−1]−∇t)> (θ̂t − θ?)

)2

= (θ̂t − θ?)>
(
E[∇t | Ft−1]E[∇t | Ft−1]> +∇t∇>t

−∇tE[∇t | Ft−1]> − E[∇t | Ft−1]∇>t
)

(θ̂t − θ?)

≤ 2(θ̂t − θ?)>
(
E[∇t | Ft−1]E[∇t | Ft−1]> +∇t∇>t

)
(θ̂t − θ?)

≤ 2(θ̂t − θ?)>
(
E[∇t∇>t | Ft−1] +∇t∇>t

)
(θ̂t − θ?) .

The third line holds because if U, V ∈ Rd, it holds −UV >−V U> 4 UU>+V V >. The last

one comes from E
[
(∇t − E[∇t | Ft−1])(∇t − E[∇t | Ft−1])> | Ft−1

]
< 0.

Also, we have the relation

E[(∆Mt)
2 | Ft−1] ≤ (θ̂t − θ?)>E[∇t∇>t | Ft−1](θ̂t − θ?) .

It yields

(∆Mt)
2 + E[(∆Mt)

2 | Ft−1] ≤ (θ̂t − θ?)>
(

3E[∇t∇>t | Ft−1] + 2∇t∇>t
)

(θ̂t − θ?) ,

and the result follows from Lemma 3.

We derive the following Lemma in order to control the right-hand side of Lemma 5, in
both settings.

Lemma 18 Assume the second point of Assumption 3 holds. For any k, n ≥ 1, if ‖θ̂t −
θ?‖2 ≤ ε for any k < t ≤ k + n then we have

k+n∑
t=k+1

Tr
(
Pt+1(P−1

t+1 − P
−1
t )
)
≤ d ln

(
1 + n

hελmax(Pk+1)D2
X

d

)
.
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Proof We apply Lemma 11.11 of Cesa-Bianchi and Lugosi (2006):

k+n∑
t=k+1

Tr
(
Pt+1(P−1

t+1 − P
−1
t )
)

=
k+n∑
t=k+1

(
1− det(P−1

t )

det(P−1
t+1)

)

≤
k+n∑
t=k+1

ln

(
det(P−1

t+1)

det(P−1
t )

)

= ln

(
det(P−1

k+n+1)

det(P−1
k+1)

)

≤ ln det

(
I +

k+n∑
t=k+1

`′′(yt, θ̂
>
t Xt)(P

1/2
k+1Xt)(P

1/2
k+1Xt)

>

)

=

d∑
i=1

ln(1 + λi) ,

where λ1, ..., λd are the eigenvalues of
k+n∑
t=k+1

`′′(yt, θ̂
>
t Xt)(P

1/2
k+1Xt)(P

1/2
k+1Xt)

>. Therefore we

have

k+n∑
t=k+1

Tr
(
Pt+1(P−1

t+1 − P
−1
t )
)
≤ d ln

(
1 +

1

d

d∑
i=1

λi

)

≤ d ln

(
1 +

1

d
nhελmax(Pk+1)D2

X

)
.

B.4 Bounded Setting (Assumption 3)

Proof of Theorem 1. Let δ > 0. On the one hand, we sum Lemma 5 and 8. We obtain,
for any λ > 0,

T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t − θ?)−

1

2
Qt

− λ(θ̂t − θ?)>
(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

)
≤ 1

2

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2 +
‖θ̂1 − θ?‖2

λmin(PT (ε,δ)+1)
+

ln δ−1

λ
, n ≥ 1 , (3)

with probability at least 1−δ, where we define Qt = (θ̂t−θ?)>
(
`′′(yt, θ̂

>
t Xt)XtX

>
t

)
(θ̂t−θ?)

for any t.
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On the other hand, thanks to Assumption 3, we can apply Proposition 7 with c = 0.75
to obtain, for any t ≥ 1,

‖θ̂t − θ?‖ ≤ ε

=⇒ L(θ̂t)− L(θ?) ≤ ρε
ρε − 0.75

(∂L
∂θ

∣∣∣>
θ̂t

(θ̂t − θ?)− 0.75(θ̂t − θ?)>
∂2L

∂θ2

∣∣∣
θ̂t

(θ̂t − θ?)
)
,

=⇒ L(θ̂t)− L(θ?) ≤ 5
(
E[∇t | Ft−1]>(θ̂t − θ?)− 0.75E[Qt | Ft−1]

)
, (4)

because ρε > 0.95.
In order to bridge the gap between Equations (3) and (4), we need to control the

quadratic terms of Equation (3) with E[Qt | Ft−1]. First, for any t, if ‖θ̂t − θ?‖ ≤ ε, we
have Qt ∈ [0, hεε

2D2
X ], and we apply Lemma A.3 of Cesa-Bianchi and Lugosi (2006) to the

random variable 1
hεε2D2

X
Qt ∈ [0, 1]: for any s > 0,

E
[
exp

(
s

hεε2D2
X

Qt −
es − 1

hεε2D2
X

E [Qt | Ft−1]

)
| Ft−1, ‖θ̂t − θ?‖ ≤ ε

]
≤ 1 .

We fix s = 0.1 and we define

Vn = exp

 T (ε,δ)+n∑
t=T (ε,δ)+1

(
0.1

hεε2D2
X

Qt − (e0.1 − 1)E
[

1

hεε2D2
X

Qt | Ft−1

]) .

The sequence (Vn) is adapted to (FT (ε,δ)+n), almost surely we have V0 = 1 and Vn ≥ 0.
Finally,

E
[
Vn | FT (ε,δ)+n−1, ‖θ̂T (ε,δ)+n − θ?‖ ≤ ε

]
≤ Vn−1 ,

and (‖θ̂T (ε,δ)+n − θ?‖ ≤ ε) belongs to FT (ε,δ)+n−1. We apply Lemma 17:

P

(( ∞⋃
n=1

Vn > δ−1

)
∪
( ∞⋃
n=1

(‖θ̂T (ε,δ)+n − θ?‖ > ε)

))
≤ δ+P

( ∞⋃
n=1

(‖θ̂T (ε,δ)+n − θ?‖ > ε)

)
.

We define Aεk =
∞⋂

n=k+1

(‖θ̂n − θ?‖ ≤ ε) for any k. The last inequality is equivalent to

P
( ∞⋃
n=1

( T (ε,δ)+n∑
t=T (ε,δ)+1

Qt > 10(e0.1 − 1)

T (ε,δ)+n∑
t=T (ε,δ)+1

E [Qt | Ft−1] + 10hεε
2D2

X ln δ−1
)
∩AεT (ε,δ)

)
≤ δ . (5)

We then bound the two quadratic terms coming from Lemma 8: using Assumption 3
we have the implications

‖θ̂t − θ?‖ ≤ ε =⇒ (θ̂t − θ?)>∇t∇>t (θ̂t − θ?) ≤ κεQt ,
‖θ̂t − θ?‖ ≤ ε =⇒ (θ̂t − θ?)>E

[
∇t∇>t | Ft−1

]
(θ̂t − θ?) ≤ κεE [Qt | Ft−1] .
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Therefore, we get from (5)

P

( ∞⋃
n=1

( T (ε,δ)+n∑
t=T (ε,δ)+1

(1

2
Qt + λ(θ̂t − θ?)>∇t∇>t (θ̂t − θ?)

+
3

2
λ(θ̂t − θ?)>E

[
∇t∇>t | Ft−1

]
(θ̂t − θ?)

)
>

(
10(e0.1 − 1)(

1

2
+ λκε) +

3

2
λκε

) T (ε,δ)+n∑
t=T (ε,δ)+1

E [Qt | Ft−1]

+ 10(
1

2
+ λκε)hεε

2D2
X ln δ−1

)
∩AεT (ε,δ)

)
≤ δ .

We set λ = 0.75−5(e0.1−1)

(10(e0.1−1)+ 3
2

)κε
, so that

10(e0.1 − 1)(
1

2
+ λκε) +

3

2
λκε = 0.75 ,

1

2
+ λκε =

1

2
+

0.75− 5(e0.1 − 1)

10(e0.1 − 1) + 3
2

≈ 0.59 ≤ 0.6 ,

and consequently

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t − θ?)− 0.75E[Qt | Ft−1]

)
> 6hεε

2D2
X ln δ−1

+

T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t − θ?)−

1

2
Qt

− λ(θ̂t − θ?)>
(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

))
∩AεT (ε,δ)

)
≤ δ .

We plug Equation (4) in the last inequality:

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(L(θ̂t)− L(θ?)) > 30hεε
2D2

X ln δ−1

+ 5

T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t − θ?)−

1

2
Qt

− λ(θ̂t − θ?)>
(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

))
∩AεT (ε,δ)

)
≤ δ .
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We then use Equation (3) with 1
λ =

(10(e0.1−1)+ 3
2

)κε
0.75−5(e0.1−1)

≈ 11.4κε ≤ 12κε. It yields

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(L(θ̂t)− L(θ?)) >
5

2

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2

+
5‖θ̂1 − θ?‖2

λmin(PT (ε,δ)+1)
+ 30(2κε + hεε

2D2
X) ln δ−1

)
∩AεT (ε,δ)

)
≤ 2δ .

Thanks to Assumption 3, we have

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2 ≤ κε Tr
(
Pt+1(P−1

t+1 − P
−1
t )
)
, t > T (ε, δ) ,

therefore we apply Lemma 18: for any n, it holds

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt`
′(yt, θ̂

>
t Xt)

2 ≤ dκε ln

(
1 + n

hελmax(PT (ε,δ)+1)D2
X

d

)
.

As PT (ε,δ)+1 4 P1, we obtain

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(L(θ̂t)− L(θ?)) >
5

2
dκε ln

(
1 + n

hελmax(P1)D2
X

d

)

+
5‖θ̂1 − θ?‖2

λmin(PT (ε,δ)+1)
+ 30(2κε + hεε

2D2
X) ln δ−1

)
∩AεT (ε,δ)

)
≤ 2δ .

To conclude, we use Assumption 5.

B.5 Quadratic Setting (Assumption 4)

We recall two definitions introduced in the previous subsection:

Aεk =

∞⋂
n=k+1

(‖θ̂n − θ?‖ ≤ ε), k ≥ 1 ,

Qt = (θ̂t − θ?)>XtX
>
t (θ̂t − θ?), t ≥ 1 .

The sub-gaussian hypothesis requires a different treatment of several steps in the proof. In
the following proofs, we use a consequence of the first points of Assumption 4. We apply
Lemma 1.4 of Rigollet and Hütter (2015): for any X ∈ Rd,

E[(y − E[y | X])2i | X] ≤ 2i(2σ2)iΓ(i) = 2(2σ2)ii!, i ∈ N? . (6)

First, we control the quadratic terms in ∇t = −(yt − θ̂>t Xt)Xt in the following lemma.
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Lemma 19 1. For any k ∈ N and δ > 0, we have

P

( ∞⋃
n=1

(
k+n∑
t=k+1

(θ̂t − θ?)>∇t∇>t (θ̂t − θ?)

> 3
(
8σ2 +D2

app + ε2D2
X

) k+n∑
t=k+1

Qt + 12ε2D2
Xσ

2 ln δ−1

)
∩Aεk

)
≤ δ .

2. For any t, it holds almost surely

(θ̂t − θ?)>E[∇t∇>t | Ft−1](θ̂t − θ?) ≤ 3
(
σ2 +D2

app + ‖θ̂t − θ?‖2D2
X

)
E[Qt | Ft−1] .

Proof

1. We recall that for any a, b, c, we have (a+ b+ c)2 ≤ 3(a2 + b2 + c2). Thus

(θ̂t − θ?)>∇t∇>t (θ̂t − θ?) = Qt(yt − θ̂>t Xt)
2

≤ 3Qt

(
(yt − E[yt | Xt])

2 + (E[yt | Xt]− θ?>Xt)
2 + ((θ? − θ̂t)>Xt)

2
)

≤ 3Qt

(
(yt − E[yt | Xt])

2 +D2
app + ‖θ̂t − θ?‖2D2

X

)
. (7)

To obtain the last inequality, we use the second point of Assumption 4 to bound the
middle term. Then we use Taylor series for the exponential, and we apply Equation
(6). For any t and any µ satisfying 0 < µ ≤ 1

4Qtσ2 , we have

E
[
exp

(
µQt(yt − E[yt | Xt])

2
)
| Ft−1, Xt

]
= 1 +

∑
i≥1

µiQitE[(yt − E
[
yt | Xt])

2i | Xt

]
i!

≤ 1 + 2
∑
i≥1

µiQiti!(2σ
2)i

i!

≤ 1 + 2
∑
i≥1

(
2µQtσ

2
)i

≤ 1 + 8µQtσ
2, 2µQtσ

2 ≤ 1

2
≤ exp

(
8µQtσ

2
)
.

Therefore, for any t,

E
[
exp

(
1

4ε2D2
Xσ

2
Qt
(
(yt − E[yt | Xt])

2 − 8σ2
))
| Ft−1, Xt, ‖θ̂t − θ?‖ ≤ ε

]
≤ 1 .

We define the random variable

Vn = exp

(
1

4ε2D2
Xσ

2

k+n∑
t=k+1

Qt
(
(yt − E[yt | Xt])

2 − 8σ2
))

, n ∈ N .
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(Vn)n is adapted to the filtration (σ(X1, y1, ..., Xk+n, yk+n, Xk+n+1)n, moreover V0 = 1
and Vn ≥ 0 almost surely, and

E
[
Vn | X1, y1, ..., Xk+n−1, yk+n−1, Xk+n, ‖θ̂k+n − θ?‖ ≤ ε

]
≤ Vn−1 .

Therefore we apply Lemma 17: for any δ > 0,

P

( ∞⋃
n=1

(Vn > δ−1) ∩Aεk

)
≤ δ ,

which is equivalent to

P

( ∞⋃
n=1

(
k+n∑
t=k+1

Qt(yt − E[yt | Xt])
2 > 8σ2

k+n∑
t=k+1

Qt + 4ε2D2
Xσ

2 ln δ−1

)
∩Aεk

)
≤ δ .

Substituting in Equation (7), we obtain the desired result.

2. We apply the same decomposition as for Equation (7): for any t,

(θ̂t − θ?)>E[∇t∇>t | Ft−1](θ̂t − θ?)

≤ 3(θ̂t − θ?)>E
[
XtX

>
t

(
(yt − E[yt | Xt])

2 +D2
app + ‖θ? − θ̂t‖2D2

X

)
| Ft−1

]
(θ̂t − θ?) .

Assumption 4 implies that for any Xt, E[(yt−E[yt | Xt])
2 | Xt] ≤ σ2. Thus, the tower

property yields

(θ̂t − θ?)>E[∇t∇>t | Ft−1](θ̂t − θ?)

≤ 3
(
σ2 +D2

app + ‖θ̂t − θ?‖2D2
X

)
(θ̂t − θ?)>E[XtX

>
t | Ft−1](θ̂t − θ?) .

Second, we bound the right-hand side of Lemma 5, that is the objective of the following
lemma.

Lemma 20 Let k ∈ N. For any δ > 0, we have

P

( ∞⋃
n=1

(
k+n∑
t=k+1

X>t Pt+1Xt(yt − θ̂>t Xt)
2 > 12λmax(P1)D2

Xσ
2 ln δ−1

+ 3
(
8σ2 +D2

app + ε2D2
X

)
d ln

(
1 + n

λmax(Pk+1)D2
X

d

))
∩Aεk

)
≤ δ .

Proof We apply a similar analysis as in the proof of Lemma 19 in order to use the sub-
gaussian assumption, and then we apply the telescopic argument as in the bounded setting.
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We decompose yt − θ̂>t Xt:

X>t Pt+1Xt(yt − θ̂>t Xt)
2

≤ 3X>t Pt+1Xt

(
(yt − E[yt | Xt])

2 + (E[yt | Xt]− b′(θ?>Xt))
2 + ((θ? − θ̂t)>Xt)

2
)

≤ 3X>t Pt+1Xt

(
(yt − E[yt | Xt])

2 +D2
app + ‖θ̂t − θ?‖2D2

X

)
. (8)

To control (yt − E[yt | Xt])
2X>t Pt+1Xt, we use its positivity along with Equation (6).

Precisely, for any t and any µ > 0 satisfying 0 < µ ≤ 1
4X>t Pt+1Xtσ2 , we have

E
[
exp

(
µ(yt − E[yt | Xt])

2X>t Pt+1Xt

)
| Ft−1, Xt

]
= 1 +

∑
i≥1

µi(X>t Pt+1Xt)
iE
[
(yt − E[yt | Xt])

2i | Xt

]
i!

≤ 1 + 2
∑
i≥1

µi(X>t Pt+1Xt)
ii!(2σ2)i

i!

= 1 + 2
∑
i≥1

(
2µX>t Pt+1Xtσ

2
)i

≤ 1 + 8µX>t Pt+1Xtσ
2, 0 < 2µX>t Pt+1Xtσ

2 ≤ 1

2

≤ exp
(

8µX>t Pt+1Xtσ
2
)
.

We apply the previous bound with a uniform µ = 1
4λmax(P1)D2

Xσ
2 . As λmax(Pt+1) ≤ λmax(P1)

for any t, we get µ ≤ 1
4X>t Pt+1Xtσ2 . Thus, we define

Vn = exp

(
1

4λmax(P1)D2
Xσ

2

k+n∑
t=k+1

(
(yt − E[yt | Xt])

2 − 8σ2
)
X>t Pt+1Xt

)
, n ∈ N .

(Vn) is a super-martingale adapted to the filtration (σ(X1, y1, ..., Xk+n−1, yk+n−1, Xk+n))n
satisfying almost surely V0 = 1, Vn ≥ 0, thus we apply Lemma 17:

P

( ∞⋃
n=1

(Vn > δ−1)

)
≤ δ ,

or equivalently

P

( ∞⋃
n=1

(
k+n∑
t=k+1

X>t Pt+1Xt(yt − E[yt | Xt])
2

> 8σ2
k+n∑
t=k+1

X>t Pt+1Xt + 4λmax(P1)D2
Xσ

2 ln δ−1

))
≤ δ .
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Combining it with Equation (8), we get

P

( ∞⋃
n=1

(
k+n∑
t=k+1

X>t Pt+1Xt(yt − θ̂>t Xt)
2 > 3

(
8σ2 +D2

app + ε2D2
X

) k+n∑
t=k+1

X>t Pt+1Xt

+ 12λmax(P1)D2
Xσ

2 ln δ−1

)
∩Aεk

)
≤ δ .

Then we apply Lemma 18: the second point of Assumption 3 holds with hε = 1, thus

k+n∑
t=k+1

Tr
(
Pt+1(P−1

t+1 − P
−1
t )
)
≤ d ln

(
1 + n

λmax(Pk+1)D2
X

d

)
, n ≥ 1.

We conclude with X>t Pt+1Xt = Tr(Pt+1(P−1
t+1 − P

−1
t )).

We sum up our findings and we prove the result for the quadratic loss. The structure
of the proof is the same as the one of Theorem 1.
Proof of Theorem 2. On the one hand, we sum Lemma 5 and Lemma 8: for any λ, δ > 0

T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t−θ?)−

1

2
Qt−λ(θ̂t−θ?)>

(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t−θ?)

)

≤ 1

2

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt(yt − θ̂>t Xt)
2 +
‖θ̂T (ε,δ)+1 − θ?‖2

λmin(PT (ε,δ)+1)
+

ln δ−1

λ
, n ≥ 1 , (9)

with probability at least 1− δ. On the other hand, we have

T (ε,δ)+n∑
t=T (ε,δ)+1

(L(θ̂t)− L(θ?)) ≤ 1

1− 0.8

T (ε,δ)+n∑
t=T (ε,δ)+1

(
E[∇t | Ft−1]>(θ̂t − θ?)− 0.8E[Qt | Ft−1]

)
.

(10)

We aim to relate Equations (9) and (10) as in the proof of Theorem 1. To that end, we
apply Lemma 19:

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(
1

2
Qt + λ(θ̂t − θ?)>

(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

)

>
(1

2
+ 3λ(8σ2 +D2

app + ε2D2
X)
) T (ε,δ)+n∑
t=T (ε,δ)+1

Qt

+
9

2
λ
(
σ2 +D2

app + ε2D2
X

) T (ε,δ)+n∑
t=T (ε,δ)+1

E [Qt | Ft−1] + 12λε2D2
Xσ

2 ln δ−1

)

∩AεT (ε,δ)

)
≤ δ .
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As in the proof of Theorem 1 we apply Lemma A.3 of (Cesa-Bianchi and Lugosi, 2006)
and Lemma 17: for any δ > 0,

P

( ∞⋃
n=1

( T (ε,δ)+n∑
t=T (ε,δ)+1

Qt > 10(e0.1 − 1)

T (ε,δ)+n∑
t=T (ε,δ)+1

E[Qt | Ft−1] + 10ε2D2
X ln δ−1

)

∩AεT (ε,δ)

)
≤ δ .

We combine the last two inequalities:

P

( ∞⋃
n=1

(
T (ε,δ)+n∑
t=T (ε,δ)+1

(
1

2
Qt + λ(θ̂t − θ?)>

(
∇t∇>t +

3

2
E
[
∇t∇>t | Ft−1

])
(θ̂t − θ?)

)

>

(
10(e0.1 − 1)

(1

2
+ 3λ(8σ2 +D2

app + ε2D2
X)
)

+
9

2
λ(σ2 +D2

app + ε2D2
X)

)
T (ε,δ)+n∑
t=T (ε,δ)+1

E [Qt | Ft−1]

+

(
10ε2D2

X

(1

2
+ 3λ(8σ2 +D2

app + ε2D2
X)
)

+ 12λε2D2
Xσ

2

)
ln δ−1

)

∩AεT (ε,δ)

)
≤ 2δ . (11)

We set

λ =
(
0.8− 5(e0.1 − 1)

)(
30(e0.1 − 1)(8σ2 +D2

app + ε2D2
X) +

9

2
(σ2 +D2

app + ε2D2
X)

)−1

in order to obtain

10(e0.1 − 1)
(1

2
+ 3λ(8σ2 +D2

app + ε2D2
X)
)

+
9

2
λ(σ2 +D2

app + ε2D2
X) = 0.8 ,

1

109σ2 + 28D2
app + 28ε2D2

X

< λ <
1

108σ2 + 27D2
app + 27ε2D2

X

,

10ε2D2
X

(1

2
+ 3λ(8σ2 +D2

app + ε2D2
X)
)

+ 12λD2
Xε

2σ2 ≤ 8ε2D2
X

1

λ
≤ 28(4σ2 +D2

app + ε2D2
X) .
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Combining Equations (9), (10) and (11), we obtain

P

( ∞⋃
n=1

(
0.2

T (ε,δ)+n∑
t=T (ε,δ)+1

(L(θ̂t)− L(θ?))

>
1

2

T (ε,δ)+n∑
t=T (ε,δ)+1

X>t Pt+1Xt(yt − θ̂>t Xt)
2 +

ε2

λmin(PT (ε,δ)+1)

+ 28(4σ2 +D2
approx + ε2D2

X) ln δ−1 + 8ε2D2
X ln δ−1

)
∩AεT (ε,δ)

)
≤ 3δ .

Finally, we apply Lemma 20 with PT (ε,δ)+1 4 P1 and we use Assumption 5: it holds
simultaneously

T (ε,δ)+n∑
t=T (ε,δ)+1

L(θ̂t)− L(θ?) ≤ 5

(
3

2

(
8σ2 +D2

app + ε2D2
X

)
d ln

(
1 + n

λmax(P1)D2
X

d

)
+ λmax

(
P−1
T (ε,δ)+1

)
ε2 + 28(4σ2 +D2

approx + ε2D2
X) ln δ−1

+ 8ε2D2
X ln δ−1 + 6λmax(P1)D2

Xσ
2 ln δ−1

)
, n ≥ 1 ,

with probability at least 1− 5δ. To conclude, we write

28(4σ2 +D2
approx + ε2D2

X) + 8ε2D2
X + 6λmax(P1)D2

Xσ
2

≤ 28

(
σ2(4 +

λmax(P1)D2
X

4
) +D2

app + 2ε2D2
X

)
.

Appendix C. Proofs of Section 4

C.1 Proof of Theorem 10

Proof of Theorem 10. We check Assumption 3 with κε = eDX(‖θ?‖+ε), hε = 1
4 and

ρε = e−εDX > 0.95. We can thus apply Theorem 1 with

λmax(P−1
T (ε,δ)+1) ≤ λmax(P−1

1 ) +
1

4

T (ε,δ)∑
t=1

‖Xt‖2 ,

5κε
2

< 3eDX‖θ
?‖, 30

(
2κε +

ε2D2
X

4

)
< 64eDX‖θ

?‖, 5ε2D2
X ≤ 1/75 .

We then control the first terms. To that end, we use a rough bound at any time t ≥ 1:

L(θ̂t)− L(θ?) ≤ E
[

yX

1 + eyθ̂
>
t X
| θ̂t
]>

(θ̂t − θ?)

≤ DX‖θ̂t − θ?‖
≤ DX(‖θ̂1 − θ?‖+ (t− 1)λmax(P1)DX) ,
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because for any s ≥ 1, we have Ps 4 P1 and therefore ‖θ̂s+1− θ̂s‖ ≤ λmax(P1)DX . Summing
from 1 to T ( 1

20DX
, δ) yields the result.

C.2 Concentration of Pt

We prove a concentration result based on Tropp (2012), which will be used on the inverse
of Pt.

Lemma 21 If Assumption 1 is satisfied, then for any 0 ≤ β < 1 and t ≥ 41/(1−β), it holds

P

(
λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
<

Λmint
1−β

4(1− β)

)
≤ d exp

(
−t1−β Λ2

min

10D4
X

)
.

Proof We wish to center the matrices XsX
>
s by subtracting their (common) expected

value. We use that if A and B are symmetric, λmin(A− B) ≤ λmin(A)− λmin(B). Indeed,
denoting by v any eigenvector of A associated with its smallest eigenvalue,

λmin(A−B) = min
x

x>(A−B)x

‖x‖2

≤ v>(A−B)v

‖v‖2

= λmin(A)− v>Bv

‖v‖2

≤ λmin(A)−min
x

x>Bx

‖x‖2

= λmin(A)− λmin(B) .

We obtain:

λmin

(
t−1∑
s=1

XsX
>
s

sβ
−

t−1∑
s=1

E
[
XsX

>
s

sβ

])
≤ λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
− λmin

(
t−1∑
s=1

E
[
XsX

>
s

sβ

])

= λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
− Λmin

t−1∑
s=1

1

sβ

≤ λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
− Λmin

t1−β − 1

1− β
.

35



de Vilmarest and Wintenberger

Therefore, we obtain

P

(
λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
<

Λmin(t1−β − 2)

2(1− β)

)

≤ P

(
λmin

(
t−1∑
s=1

(
XsX

>
s

sβ
− E

[
XsX

>
s

sβ

]))
<

Λmin(t1−β − 2)

2(1− β)
− Λmin

t1−β − 1

1− β

)

= P

(
λmax

(
t−1∑
s=1

(
E
[
XsX

>
s

sβ

]
− XsX

>
s

sβ

))
>

Λmint
1−β

2(1− β)

)
.

We check the assumptions of Theorem 1.4 of Tropp (2012):

• Obviously E
[
XsX>s
sβ

]
− XsX>s

sβ
is centered,

• λmax

(
E
[
XsX>s
sβ

]
− XsX>s

sβ

)
≤ λmax

(
E
[
XsX>s
sβ

])
≤ D2

X almost surely.

As 0 4 E
[(

E
[
XsX>s
sβ

]
− XsX>s

sβ

)2
]
4 E

[(
XsX>s
sβ

)2
]
4

D4
X

s2β
I 4

D4
X

sβ
I, we get

0 4
t−1∑
s=1

E

[(
E
[
XsX

>
s

sβ

]
− XsX

>
s

sβ

)2
]
4

(
t−1∑
s=1

D4
X

sβ

)
I 4

(
D4
X

t1−β

1− β

)
I .

Therefore we can apply Theorem 1.4 of Tropp (2012):

P

(
λmax

(
t−1∑
s=1

(
E
[
XsX

>
s

sβ

]
− XsX

>
s

sβ

))
>

Λmint
1−β

2(1− β)

)

≤ d exp

(
− Λ2

mint
2(1−β)/(8(1− β)2)

D4
Xt

1−β/(1− β) +D2
XΛmint1−β/(6(1− β))

)

= d exp

(
−t1−β Λ2

min

8D4
X

1/(1− β)2

1/(1− β) + Λmin/(6D2
X(1− β))

)
= d exp

(
−t1−β Λ2

min

8D4
X

(
1− β +

Λmin(1− β)

6D2
X

)−1
)
.

Using Λmin/D
2
X ≤ 1 and β ≥ 0, we obtain 8(1− β + Λmin(1−β)

6D2
X

) ≤ 8(1 + 1/6) = 28/3 ≤ 10,

therefore

P

(
λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
<

Λmin(t1−β − 2)

2(1− β)

)
≤ d exp

(
−t1−β Λ2

min

10D4
X

)
.

The result follows from 1
2 t

1−β − 2 > 0 for t ≥ 41/(1−β).

We can now do a union bound to obtain Proposition 11.
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Proof of Proposition 11. We first move our problem to the setting of Lemma 21:

λmax(Pt) = λmin

(
P−1

1 +

t−1∑
s=1

XsX
>
s αs

)−1

≤ λmin

(
P−1

1 +
t−1∑
s=1

XsX
>
s

sβ

)−1

,

because αs ≥ 1/sβ. Therefore, for t ≥ 8 ≥ 41/(1−β),

P
(
λmax(Pt) >

4

Λmint1−β

)
≤ P

λmin

(
P−1

1 +
t−1∑
s=1

XsX
>
s

sβ

)−1

>
4

Λmint1−β


= P

(
λmin

(
P−1

1 +
t−1∑
s=1

XsX
>
s

sβ

)
<

Λmint
1−β

4

)

≤ P

(
λmin

(
t−1∑
s=1

XsX
>
s

sβ

)
<

Λmint
1−β

4

)

≤ d exp

(
−t1−β Λ2

min

10D4
X

)
,

where we applied Lemma 21 to obtain the last line. We take a union bound to obtain, for
any k ≥ 7,

P
(
∃t > k, λmax(Pt) >

4

Λmint1−β

)
≤
∑
t>k

d exp

(
−t1−β Λ2

min

10D4
X

)
≤ d

∑
t>k

exp

(
−bt1−βc Λ2

min

10D4
X

)
= d

∑
m≥1

exp

(
−m Λ2

min

10D4
X

)∑
t>k

1bt1−βc=m

We bound
∑
t>k

1btc=m: for any m

bt1−βc = m =⇒ m1/(1−β) ≤ t < (m+ 1)1/(1−β) ,

then using ex ≤ 1 + 2x for any 0 ≤ x ≤ 1, we have

(m+ 1)1/(1−β) = m1/(1−β)(1 + 1/m)1/(1−β)

= m1/(1−β) exp(ln(1 + 1/m)/(1− β))

≤ m1/(1−β) exp(1/(m(1− β)))

≤ m1/(1−β)(1 + 2/(m(1− β))) ,

as long as m ≥ 2 ≥ 1/(1− β). Therefore

(m+ 1)1/(1−β) −m1/(1−β) + 1 ≤ 2m1/(1−β)−1/(1− β) + 1 ≤ 4m+ 1 ≤ 4(m+ 1) ,

37



de Vilmarest and Wintenberger

and that is true for m = 1 too. Hence

P
(
∃t > k, λmax(Pt) >

4

Λmint1−β

)
≤ 4d

∑
m≥bk1−βc

(m+ 1) exp

(
−m Λ2

min

10D4
X

)

= 4d
exp

(
− Λ2

min

10D4
X

)bk1−βc
1− exp

(
− Λ2

min

10D4
X

) (bk1−βc+ 1 +
exp

(
− Λ2

min

10D4
X

)
1− exp

(
− Λ2

min

10D4
X

))

≤ 4d
exp

(
Λ2
min

10D4
X

)
1− exp

(
− Λ2

min

10D4
X

)(k1−β +
1

1− exp
(
− Λ2

min

10D4
X

)) exp

(
− Λ2

min

10D4
X

)k1−β
,

where the second line is obtained deriving both sides of
∑

m≥bk1−βc
rm+1 = rbk

1−βc+1

1−r with

respect to r. Also, as 1− e−x ≥ xe−x for any x ∈ R, we get

P
(
∃t > k, λmax(Pt) >

4

Λmint1−β

)
≤ 4d

10D4
X

Λ2
min

exp

(
2

Λ2
min

10D4
X

)
(k1−β +

10D4
X

Λ2
min

exp

(
Λ2

min

10D4
X

)
) exp

(
− Λ2

min

10D4
X

)k1−β
.

Furthermore, as xe−x ≤ e−1 for any x ≥ 0, we get for any k ≥ 7:(
k1−β +

10D4
X

Λ2
min

exp

(
Λ2

min

10D4
X

))
exp

(
−k1−β Λ2

min

20D4
X

)
≤

20D4
Xe
−1

Λ2
min

exp

(
10D4

X

Λ2
min

exp

(
Λ2

min

10D4
X

)
Λ2

min

20D4
X

)
=

20D4
Xe
−1

Λ2
min

exp

(
1

2
exp

(
Λ2

min

10D4
X

))
.

Combining the last two inequalities, we obtain

P
(
∃t > k, λmax(Pt) >

4

Λmint1−β

)
≤ d

800D8
Xe
−1

Λ4
min

exp

(
2

Λ2
min

10D4
X

+
1

2
exp

(
Λ2

min

10D4
X

))
exp

(
−k1−β Λ2

min

20D4
X

)
≤ d

625D8
X

Λ4
min

exp

(
−k1−β Λ2

min

20D4
X

)
,

and the result follows. The last line comes from Λmin ≤ D2
X and consequently

800e−1 exp

(
2

Λ2
min

10D4
X

+
1

2
exp

(
Λ2

min

10D4
X

))
≤ 800e−1+0.2+0.5e0.1 ≈ 624.7 ≤ 625 .

The condition k ≥ 7 is not necessary because(
20D4

X

Λ2
min

ln

(
625dD8

X

Λ4
minδ

))1/(1−β)

≥ 20 ln(625δ−1) ,
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and either δ ≥ 1 and the result is trivial, either δ < 1 and 20 ln(625δ−1) ≥ 128.

C.3 Convergence of the Truncated Algorithm

In order to prove Theorem 12, we state and prove an intermediate lemma.

Lemma 22 Let θ ∈ Rd.

1. For any η > 0, we have

L(θ)− L(θ?) > η =⇒
∥∥∥∥∂L∂θ ∣∣∣θ

∥∥∥∥ ≥ Dη

where Dη =
Λmin

√
η

√
2DX(1+e

DX (‖θ?‖+
√

8η/D2
X

)
)

.

2. For any ε > 0, we have

‖θ − θ?‖ > ε =⇒ L(θ)− L(θ?) >
Λmin

4(1 + eDX(‖θ?‖+ε))
ε2 .

Proof Both points derive from a second-order identity, turned in an upper-bound in the
one case and in a lower-bound in the other. Using ∂L

∂θ (θ?) = 0, there exists 0 ≤ λ ≤ 1 such
that

L(θ) = L(θ?) +
1

2
(θ − θ?)>E

[
1

(1 + e(λθ+(1−λ)θ?)>X)(1 + e−(λθ+(1−λ)θ?)>X)
XX>

]
(θ − θ?) .

1. We first have

L(θ)− L(θ?) ≤
D2
X

8
‖θ − θ?‖2 .

Assume L(θ) − L(θ?) > η. Then ‖θ − θ?‖ ≥
√

8η/D2
X . Also, using the Taylor

expansion of θ? around some θ0 ∈ Rd, we get

L(θ?) ≥ L(θ0)+
∂L

∂θ

∣∣∣>
θ0

(θ?−θ0)+
1

4(1 + eDX(‖θ?‖+‖θ0−θ?‖))
(θ0−θ?)>E

[
XX>

]
(θ0−θ?) ,

and that yields

∂L

∂θ

∣∣∣>
θ0

(θ0 − θ?) ≥ L(θ0)− L(θ?) +
Λmin

4(1 + eDX(‖θ?‖+‖θ0−θ?‖))
‖θ0 − θ?‖2 .

Therefore, as L(θ0)− L(θ?) ≥ 0,∥∥∥∥∂L∂θ ∣∣∣θ0
∥∥∥∥ ≥ Λmin

4(1 + eDX(‖θ?‖+‖θ0−θ?‖))
‖θ0 − θtrue‖ .
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Finally, as L is convex of minimum θ?,∥∥∥∥∂L∂θ ∣∣∣θ
∥∥∥∥ ≥ min

‖θ0−θ?‖=
√

8η/D2
X

∥∥∥∥∂L∂θ ∣∣∣θ0
∥∥∥∥

≥ Λmin

4(1 + eDX(‖θ?‖+
√

8η/D2
X))

√
8η/D2

X

≥ Λmin
√

2DX(1 + eDX(‖θ?‖+
√

8η/D2
X))

√
η .

2. On the other hand we have

L(θ) ≥ L(θ?) +
Λmin

4(1 + eDX(‖θ?‖+‖θ−θ?‖))
‖θ − θ?‖2 .

Thus, as L is convex of minimum θ?, if ‖θ − θ?‖ > ε it holds

L(θ)− L(θ?) > min
‖θ0−θ?‖=ε

L(θ0)− L(θ?) ≥ Λmin

4(1 + eDX(‖θ?‖+ε))
ε2 .

Proof of Theorem 12. We prove the convergence of (L(θ̂t))t to L(θ?) and then the
convergence of (θ̂t)t to θ? follows. The convergence of (L(θ̂t))t comes from the first point of
Lemma 22. The link between the two convergences is stated in the second point.

To study the evolution of L(θ̂t) we first apply a second-order Taylor expansion: for any
t ≥ 1 there exists 0 ≤ αt ≤ 1 such that

L(θ̂t+1) = L(θ̂t) +
∂L

∂θ

∣∣∣>
θ̂t

(θ̂t+1 − θ̂t) +
1

2
(θ̂t+1 − θ̂t)>

∂2L

∂θ2

∣∣∣
θ̂t+αt(θ̂t+1−θ̂t)

(θ̂t+1 − θ̂t) . (12)

We have ∂2L
∂θ2

4 1
4E[XX>], therefore, using the update formula on θ̂, the second-order

term is bounded with

(θ̂t+1 − θ̂t)>
∂2L

∂θ2

∣∣∣
θ̂t+αt(θ̂t+1−θ̂t)

(θ̂t+1 − θ̂t) ≤
1

(1 + eytθ̂
>
t Xt)2

X>t P
>
t+1

E[XX>]

4
Pt+1Xt

≤ 1

4
D4
Xλmax(Pt+1)2 ≤ 1

4
D4
Xλmax(Pt)

2 .

The first-order term is controlled using the definition of the algorithm:

θ̂t+1 − θ̂t =

(
Pt −

PtXtX
>
t Pt

1 +X>t PtXtαt
αt

)
ytXt

1 + eytθ̂
>
t Xt

,

and as αt ≤ 1, ∥∥∥∥−αt PtXtX
>
t Pt

1 +X>t PtXtαt

ytXt

1 + eytθ̂
>
t Xt

∥∥∥∥ ≤ D3
Xλmax(Pt)

2 .
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Also,
∥∥∂L
∂θ

∥∥ ≤ DX . Substituting our findings in Equation (12), we obtain

L(θ̂t+1) ≤ L(θ̂t) +
∂L

∂θ

∣∣∣>
θ̂t
Pt

ytXt

1 + eytθ̂
>
t Xt

+ 2D4
Xλmax(Pt)

2 . (13)

We define

Mt =
∂L

∂θ

∣∣∣>
θ̂t
Pt

ytXt

1 + eytθ̂
>
t Xt
− E

[
∂L

∂θ

∣∣∣>
θ̂t
Pt

ytXt

1 + eytθ̂
>
t Xt
| X1, y1, ..., Xt−1, yt−1

]
=
∂L

∂θ

∣∣∣>
θ̂t
Pt

ytXt

1 + eytθ̂
>
t Xt

+
∂L

∂θ

∣∣∣>
θ̂t
Pt
∂L

∂θ

∣∣∣
θ̂t
.

Hence we have

∂L

∂θ

∣∣∣>
θ̂t
Pt

ytXt

1 + eytθ̂
>
t Xt
≤Mt − λmin(Pt)

∥∥∥∥∂L∂θ ∣∣∣θ̂t
∥∥∥∥2

≤Mt −
1

tD2
X

∥∥∥∥∂L∂θ ∣∣∣θ̂t
∥∥∥∥2

,

because Ps < I
sD2

X
. Combining it with Equation (13) and summing consecutive terms, we

obtain, for any k < t,

L(θ̂t)− L(θ̂k) ≤
t−1∑
s=k

(
Ms −

1

sD2
X

∥∥∥∥∂L∂θ ∣∣∣θ̂s
∥∥∥∥2

+ 2D4
Xλmax(Ps)

2

)
. (14)

We recall that there exists Cδ such that P(ACδ) ≥ 1− δ where

ACδ :=
∞⋂
t=1

(
λmax(Pt) ≤

Cδ
t1−β

)
.

On the previous inequality, we see that the right-hand side is the sum of a martingale and
a term which is negative for s large enough, under the event ACδ .

We are then interested in P((L(θ̂t) − L(θ?) > η) | ACδ) for some η > 0. For 0 ≤ k ≤ t,
we define Bk,t the event (∀k < s < t, L(θ̂s) − L(θ?) > η/2). Then we use the law of total
probability:

P(L(θ̂t)− L(θ?) > η | ACδ) (15)

≤ P
(

(L(θ̂t)− L(θ?) > η) ∩B0,t | ACδ
)

+

t−1∑
k=1

P
(

(L(θ̂t)− L(θ?) > η) ∩
(
L(θ̂k)− L(θ?) ≤ η

2

)
∩Bk,t | ACδ

)
(16)

≤ P
(

(L(θ̂t)− L(θ?) > η) ∩B0,t | ACδ
)

+

t−1∑
k=1

P
((
L(θ̂t)− L(θ̂k) >

η

2

)
∩Bk,t | ACδ

)
.

Lemma 22 yields

L(θ̂s)− L(θ?) >
η

2
=⇒

∥∥∥∥∂L∂θ ∣∣∣θ̂s
∥∥∥∥ ≥ Dη .
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We combine the last equation, along with Equation (14) and the definition of ACδ to
get, for any 1 ≤ k < t,

P
(

(L(θ̂t)− L(θ̂k) > η/2) ∩Bk,t | ACδ
)
≤ P

(( t−1∑
s=k

Ms > f(k, t)
)
∩Bk,t | ACδ

)

≤ P

(
t−1∑
s=k

Ms > f(k, t) | ACδ

)
,

where f(k, t) = η
2 +

D2
η

D2
X

t−1∑
s=k

1
s − 2D4

XC
2
δ

t−1∑
s=k

1
s2(1−β)

for any 1 ≤ k < t.

Similarly, we get

P
(

(L(θ̂t)− L(θ?) > η) ∩B0,t | AC
)
≤ P

(
t−1∑
s=1

Ms > f0(t) | AC

)
,

with f0(t) = η − (L(θ̂1)− L(θ?)) +
D2
η

D2
X

t−1∑
s=1

1
s − 2D4

XC
2
δ

t−1∑
s=1

1
s2(1−β)

for any t ≥ 1.

We have E[Ms | X1, y1, ..., Xs−1, ys−1] = 0, and almost surely |Ms| ≤ 2D2
Xλmax(Ps). We

can therefore apply Azuma-Hoeffding inequality: for t, k such that f(k, t) > 0,

P

(
t−1∑
s=k

Ms > f(k, t) | ACδ

)
≤ exp

(
−f(k, t)2 (1− 2β) max

(
1/2, (k − 1)1−2β

)
8D4

XC
2
δ

)
,

because
+∞∑
s=k

1
s2(1−β)

≤ 1
(1−2β) max(1/2,(k−1)1−2β)

. Similarly, for t such that f0(t) > 0,

P

(
t−1∑
s=1

Ms > f0(t) | ACδ

)
≤ exp

(
−f0(t)2 1− 2β

16D4
XC

2
δ

)
.

We need to control f(k, t), f0(t). We see that for t large enough, when k is small

compared to t, f(k, t) is driven by
D2
η

D2
X

ln(t) and when k ≈ t, f(k, t) is driven by η/2. The

following Lemma formally states these approximations as lower-bounds. We prove it right
after the end of this proof.

Lemma 23 For t ≥ max

(
e

16D6
XC

2
δ

D2
η(1−2β) ,

(
1 +

(
8D4

XC
2
δ

η(1−2β)

) 1
1−2β

)2
)

, it holds

f(k, t) ≥
D2
η

4D2
X

ln(t), 1 ≤ k <
√
t,

f(k, t) ≥ η

4
,

√
t ≤ k < t .

Similarly, for t ≥ e
2D2
X

D2
η

(
L(θ̂1)−L(θ?)+

4D4
XC

2
δ

1−2β

)
, we have

f0(t) ≥
D2
η

2D2
X

ln(t) .
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Then, defining C1 =
D4
η(1−2β)

256D8
XC

2
δ

and C2 = η2(1−2β)
128D4

XC
2
δ
, we finally get for t large enough:

P
(

(L(θ̂t)− L(θ?) > η) ∩B0,t | ACδ
)
≤ exp

(
−4C1 ln(t)2

)
,

P
(

(L(θ̂t)− L(θ?) > η) ∩ (L(θ̂k)− L(θ?) ≤ η

2
) ∩Bk,t | ACδ

)
≤

{
exp

(
− C1 ln(t)2

)
if 1 ≤ k <

√
t ,

exp
(
− C2(k − 1)1−2β

)
if
√
t ≤ k < t .

Substituting in Equation (16) yields:

P(L(θ̂t)− L(θ?) > η | AC)

≤ exp
(
−4C1 ln(t)2

)
+

d
√
te−1∑
k=1

exp
(
−C1 ln(t)2

)
+

t−1∑
k=d
√
te

exp
(
−C2(k − 1)1−2β

)
≤ (
√
t+ 1) exp

(
−C1 ln(t)2

)
+ t exp

(
−C2(

√
t− 1)1−2β

)
.

Finally, Point 2 of Lemma 22 allows to obtain the result: defining η = Λminε
2

4(1+eDX (‖θ?‖+ε))
,

we obtain

P(‖θ̂t − θ?‖ > ε | ACδ) ≤ P(L(θ̂t)− L(θ?) > η | ACδ)

≤ (
√
t+ 1) exp

(
−C1 ln(t)2

)
+ t exp

(
−C2(

√
t− 1)1−2β

)
.

In order to obtain the constants involved in the Theorem, we write

Dη =
Λmin

√
Λminε2

4(1+eDX (‖θ?‖+ε))

2DX(1 + exp

(
DX(‖θ?‖+

√
Λminε2

D2
X(1+eDX (‖θ?‖+ε))

)

)
)

≥
(

Λmin

1 + eDX(‖θ?‖+ε)

)3/2 ε

4DX
,

C1 ≥
Λ6

min(1− 2β)ε4

216D12
XC

2
δ (1 + eDX(‖θ?‖+ε))6

,

C2 ≥
Λ2

min(1− 2β)ε4

211D4
XC

2
δ (1 + eDX(‖θ?‖+ε))2

,

and the conditions of Lemma 23 become

t ≥ exp

(
28D8

XC
2
δ (1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)ε2

)
,

t ≥

1 +

(
32D4

XC
2
δ (1 + eDX(‖θ?‖+ε))

(1− 2β)Λminε2

) 1
1−2β

2

,

t ≥ exp

(
32D4

X(1 + eDX(‖θ?‖+ε))3

Λ3
minε

2

(
L(θ̂1)− L(θ?) +

4D4
XC

2
δ

1− 2β

))
.
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We would like to obtain a single condition on t, thus we write1 +

(
32D4

XC
2
δ (1 + eDX(‖θ?‖+ε))

(1− 2β)Λminε2

) 1
1−2β

2

= exp

2 ln

1 +

(
32D4

XC
2
δ (1 + eDX(‖θ?‖+ε))

(1− 2β)Λminε2

) 1
1−2β


≤ exp

(
2

1− 2β
ln

(
1 +

32D4
XC

2
δ (1 + eDX(‖θ?‖+ε))

(1− 2β)Λminε2

))

≤ exp

 2

1− 2β

√
32D4

XC
2
δ (1 + eDX(‖θ?‖+ε))

(1− 2β)Λminε2


≤ exp

(
28D8

XC
2
δ (1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)3/2ε2

)
,

The third line is obtained with the inequality ln(1 + x) ≤
√
x for any x > 0. Obviously, as

0 < 1− 2β < 1, the first threshold on t is bounded by:

exp

(
28D8

XC
2
δ (1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)ε2

)
≤ exp

(
28D8

XC
2
δ (1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)3/2ε2

)
.

To handle the third one, we use D2
XCδ ≥

4D2
X

Λmin
≥ 4 and as θ̂1 = 0 we obtain L(θ̂1)−L(θ?) ≤

ln 2 ≤ 4D4
XC

2
δ

1−2β , hence

exp

(
32D4

X(1 + eDX(‖θ?‖+ε))3

Λ3
minε

2

(
L(θ̂1)− L(θ?) +

4D4
XC

2
δ

1− 2β

))

≤ exp

(
28D8

XC
2
δ (1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)3/2ε2

)
.

Proof of Lemma 23. We recall that for any k ≥ 1,

t−1∑
s=k

1

s
≥ ln t− ln k ,

t−1∑
s=k

1

s2(1−β)
≤ 1

1− 2β

1

max(1/2, (k − 1)1−2β)
.

Therefore:

f(k, t) ≥ η

2
+
D2
η

D2
X

(ln t− ln k)−
2D4

XC
2
δ

1− 2β

1

max(1/2, (k − 1)1−2β)
,

f0(t) ≥ η − (L(θ̂1)− L(θ?) +
D2
η

D2
X

ln t−
4D4

XC
2
δ

1− 2β
.
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• For any 1 ≤ k <
√
t, it holds ln k ≤ 1

2 ln t, and we have

f(k, t) ≥
D2
η

2D2
X

ln(t)−
4D4

XC
2
δ

1− 2β
.

Taking t ≥ e
16D6

XC
2
δ

D2
η(1−2β) yields f(k, t) ≥ D2

η

4D2
X

ln(t).

• For t ≥ 2 and any k ≥
√
t, we have

f(k, t) ≥ η

2
−

2D4
XC

2
δ

(1− 2β)(k − 1)1−2β
≥ η

2
−

2D4
XC

2
δ

(1− 2β)(
√
t− 1)1−2β

.

Then if t ≥
(

1 +
(

8D4
XC

2
δ

η(1−2β)

) 1
1−2β

)2

, we get f(k, t) ≥ η
4 .

• Last point comes from f0(t) ≥ D2
η

D2
X

ln t− (L(θ̂1)− L(θ?)− 4D4
XC

2
δ

1−2β .

Proof of Corollary 13. We apply Theorem 12: for any t ≥ exp

(
28D8

XC
2
δ/2

(1+eDX (‖θ?‖+ε))3

Λ3
min(1−2β)3/2ε2

)
,

P(‖θ̂t − θ?‖ > ε | ACδ/2) ≤ (
√
t+ 1) exp

(
−C1 ln(t)2

)
+ t exp

(
−C2(

√
t− 1)1−2β

)
,

where

C1 =
Λ6

min(1− 2β)ε4

216D12
XC

2
δ/2(1 + eDX(‖θ?‖+ε))6

, C2 =
Λ2

min(1− 2β)ε4

211D4
XC

2
δ/2(1 + eDX(‖θ?‖+ε))2

.

We use a union bound: for any T ≥ exp

(
28D8

XC
2
δ/2

(1+eDX (‖θ?‖+ε))3

Λ3
min(1−2β)3/2ε2

)
,

P

( ∞⋃
t=T+1

(‖θ̂t − θ?‖ > ε) | ACδ/2

)
≤
∑
t>T

(
√
t+ 1) exp

(
−C1 ln(t)2

)
+
∑
t>T

t exp
(
−C2(

√
t− 1)1−2β

)
.

• If T ≥ e
3

2C1 , we have

∑
t>T

(
√
t+ 1) exp

(
−C1 ln(t)2

)
≤
∑
t>T

(
√
t+ 1)

1

t5/2
≤ 2/T .
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• For t ≥ 4, 1− 1/
√
t ≥ 1/2, then for t ≥

(
12

C2(1−2β)

)4/(1−2β)
,

t3 exp
(
−C2(

√
t− 1)1−2β

)
≤ exp

(
3 ln(t)− C2

2
t(1−2β)/2

)
≤ exp

(
12

1− 2β
ln

(
12

C2(1− 2β)

)
− 6

1− 2β

(
12

C2(1− 2β)

))
≤ 1 ,

because for any x > 0, we have lnx ≤ x/2.

Thus for T ≥
(

12
C2(1−2β)

)4/(1−2β)

∑
t>T

t exp
(
−C2(

√
t− 1)1−2β

)
≤ 1/T .

Finally, for T satisfying the previous conditions as well as T ≥ 6δ−1, we obtain

P

( ∞⋃
t=T+1

(‖θ̂t − θ?‖ > ε) | ACδ/2

)
≤ 3/T ≤ δ/2 .

We now compare the constants involved. As long as εDX ≤ 1, we have

exp

(
28D8

XC
2
δ/2(1 + eDX(‖θ?‖+ε))3

Λ3
min(1− 2β)3/2ε2

)
≤ exp

(
3 · 215D12

XC
2
δ/2(1 + eDX(‖θ?‖+ε))6

Λ6
min(1− 2β)3/2ε4

)
.

Furthermore, as 1− 2β ≤ 1, we have

exp

(
3

2C1

)
= exp

(
3 · 215D12

XC
2
δ/2(1 + eDX(‖θ?‖+ε))6

Λ6
min(1− 2β)ε4

)

≤ exp

(
3 · 215D12

XC
2
δ/2(1 + eDX(‖θ?‖+ε))6

Λ6
min(1− 2β)3/2ε4

)
.
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Finally,(
12

C2(1− 2β)

)4/(1−2β)

= exp

(
4

1− 2β
ln

12

C2(1− 2β)

)
= exp

(
4

1− 2β
ln

12 · 211D4
XC

2
δ/2(1 + eDX(‖θ?‖+ε))2

Λ2
min(1− 2β)2ε4

)

= exp

(
8

1− 2β
ln

12 · 211D4
XC

2
δ/2(1 + eDX(‖θ?‖+ε))2

Λ2
min(1− 2β)ε4

)

≤ exp

 8

1− 2β

√
3 · 213D4

XC
2
δ/2(1 + eDX(‖θ?‖+ε))2

Λ2
min(1− 2β)ε4


= exp

(√
629D2

XCδ/2(1 + eDX(‖θ?‖+ε))

Λmin(1− 2β)3/2ε2

)

≤ exp

(
3 · 215D12

XC
2
δ/2(1 + eDX(‖θ?‖+ε))6

Λ6
min(1− 2β)3/2ε4

)
.

Appendix D. Proofs of Section 5

Proof of Proposition 14. The first order condition of the optimum yields

arg min
θ∈Rd

t−1∑
s=1

(ys − θ>Xs)
2 +

1

2
(θ − θ̂1)>P−1

1 (θ − θ̂1) = θ̂1 + Pt

t−1∑
s=1

(ys − θ̂>1 Xs)Xs .

Therefore we prove recursively that θ̂t − θ̂1 = Pt
∑t−1

s=1(ys − θ̂>1 Xs)Xs. It is clearly true at
t = 1. Assuming it is true for some t ≥ 1, we use the update formula

θ̂t+1 − θ̂1 = (I − Pt+1XtX
>
t )(θ̂t − θ̂1) + Pt+1ytXt − Pt+1XtX

>
t θ̂1

= (I − Pt+1XtX
>
t )Pt

t−1∑
s=1

(ys − θ̂>1 Xs)Xs + Pt+1(yt − θ̂>1 Xt)Xt .

We conclude with the following identity:

(I − Pt+1XtX
>
t )Pt = Pt − PtXtX

>
t Pt +

PtXtX
>
t PtXtX

>
t Pt

X>t PtXt + 1
= Pt −

PtXtX
>
t Pt

X>t PtXt + 1
= Pt+1 .
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D.1 Proof of Theorem 16

We first prove a result controlling the first estimates of the algorithm.

Lemma 24 Provided that Assumptions 1, 2 and 4 are satisfied, starting from any θ̂1 ∈ Rd
and P1 � 0, for any δ > 0, it holds simultaneously

‖θ̂t − θ?‖ ≤ ‖θ̂1 − θ?‖+ λmax(P1)DX

(
(3σ +Dapprox)(t− 1) + 3σ ln δ−1

)
, t ≥ 1,

with probability at least 1− δ.

Proof From Proposition 14, we obtain, for any t ≥ 1, θ̂t − θ̂1 = Pt
∑t−1

s=1(ys − θ̂>1 Xs)Xs.
Consequently,

θ̂t − θ? = Pt

t−1∑
s=1

(ys − θ̂>1 Xs)Xs − Pt

(
P−1

1 +
t−1∑
s=1

XsX
>
s

)
(θ? − θ̂1)

= Pt

t−1∑
s=1

(ys − θ?>Xs)Xs + PtP
−1
1 (θ̂1 − θ?) ,

and using PtP
−1
1 4 I, we obtain

‖θ̂t − θ?‖ ≤ ‖θ̂1 − θ?‖+ λmax(Pt)DX

t−1∑
s=1

|ys − θ?>Xs|

≤ ‖θ̂1 − θ?‖+ λmax(P1)DX

t−1∑
s=1

(|ys − E[ys | Xs]|+Dapp) . (17)

We apply Lemma 1.4 of Rigollet and Hütter (2015) in the second line of the following:
for any µ such that 0 < µ < 1

2
√

2σ
,

E [exp(µ|yt − E[yt | Xt]|)] = 1 +
∑
i≥1

µiE[|yt − E[yt | Xt]|i]
i!

≤ 1 +
∑
k≥1

µi(2σ2)i/2iΓ(i/2)

i!

≤ 1 +
∑
i≥1

(√
2µσ

)i
, because Γ(i/2) ≤ Γ(i) = (i− 1)!

≤ 1 + 2
√

2µσ, because 0 <
√

2µσ ≤ 1

2

≤ exp
(

2
√

2µσ
)
.

Therefore

(
exp

(
1

2
√

2σ

t∑
s=1

(|ys − E[ys | Xs]| − 2
√

2σ)

))
t

is a super-martingale to which we

can apply Lemma 17. We obtain, for any δ > 0,

t−1∑
s=1

|yt − E[yt | Xt]| ≤ 2
√

2(t− 1)σ + 2
√

2σ ln δ−1, t ≥ 1,
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with probability at least 1− δ. The result follows from Equation (17) and 2
√

2 ≤ 3.

Proof of Theorem 16. We first apply Theorem 2: with probability at least 1 − 5δ, it
holds simultaneously for all n ≥ T (ε, δ)

n∑
t=T (ε,δ)+1

L(θ̂t)− L(θ?) ≤ 15

2
d
(
8σ2 +D2

app + ε2D2
X

)
ln

(
1 + (n− T (ε, δ))

λmax(P1)D2
X

d

)
+ 5λmax

(
P−1
T (ε,δ)+1

)
ε2

+ 115

(
σ2(4 +

λmax(P1)D2
X

4
) +D2

app + 2ε2D2
X

)
ln δ−1 .

Moreover, λmax

(
P−1
T (ε,δ)+1

)
≤ λmax(P−1

1 ) + T (ε, δ)D2
X .

Then we derive a bound on the first T (ε, δ) terms. For any t ≥ 1, we have L(θ̂t)−L(θ?) ≤
D2
X‖θ̂t − θ?‖2, thus, using (a + b)2 ≤ 2(a2 + b2) and applying Lemma 24 we obtain the

simultaneous property

L(θ̂t)− L(θ?) ≤ 2D2
X(‖θ̂1 − θ?‖+ 3λmax(P1)DXσ ln δ−1)2

+ 2λmax(P1)2D4
X(3σ +Dapp)2(t− 1)2, t ≥ 1,

with probability at least 1− δ. A summation argument yields, for any δ > 0,

T (ε,δ)∑
t=1

L(θ̂t)− L(θ?) ≤ 2D2
X(‖θ̂1 − θ?‖+ 3λmax(P1)DXσ ln δ−1)2T (ε, δ)

+ λmax(P1)2D4
X(3σ +Dapp)2 (T (ε, δ)− 1)T (ε, δ)(2T (ε, δ)− 1)

3
,

with probability at least 1− δ.

D.2 Definition of T (ε, δ)

We now focus on the definition of T (ε, δ). We first transcript the result of Hsu et al. (2012)
to our notations in the following lemma.

Lemma 25 Provided that Assumptions 1, 2 and 4 are satisfied, starting from any θ̂1 ∈ Rd

and P1 = p1I, p1 > 0, we have, for any 0 < δ < e−2.6 and t ≥ 6
D2
X

Λmin
(ln d+ ln δ−1),

‖θ̂t+1 − θ?‖2Σ ≤
3

t

(
‖θ̂1 − θ?‖2

2p1
+

D2
X

Λmin
D2

app

4(1 +
√

8 ln δ−1)

0.072
+

3σ2(d/0.035 + ln δ−1)

0.07

)

+
12

0.072t2

(
‖θ̂1 − θ?‖2

p1

D2
X

Λmin
(1 +

√
8 ln δ−1)

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

2p1

)2

(ln δ−1)2

)
,

with probability at least 1− 4δ.
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Proof We first observe that

arg min
w∈Rd

1

t

t∑
s=1

(ys −w>Xs)
2 + λ‖w − β̂1‖2 = arg min

w∈Rd
1

t

t∑
s=1

(ys − β̂>1 Xs −w>Xs)
2 + λ‖w‖2 ,

therefore we apply the ridge analysis of Hsu et al. (2012) to (Xs, ys− β̂>1 Xs). We note that
(ys − β̂>1 Xs) has the same variance proxy and the same approximation error, therefore it
only amounts to translate the optimal w, that is denoted by β.

For any λ > 0, we observe that

d2,λ ≤ d1,λ ≤ d , ρλ ≤
DX√
d1,λΛmin

, bλ ≤ ρλ(Dapp +DX‖β − β̂1‖) .

Therefore we can apply Theorem 16 of Hsu et al. (2012): for 0 < δ < e−2.6 and t ≥
6 DX√

Λmin
(ln(d)+ln δ−1), it holds that ‖β̂t+1,λ−β‖2Σ = 3(‖βλ−β‖2Σ+εbs+εvr) with probability

1− 4δ, with

εbs ≤
4

0.072

( D2
X

Λmin
E[(E[y | X]− β>X)2] + (1 +

D2
X

Λmin
)‖βλ − β‖2Σ

t
(1 +

√
8 ln δ−1)

+
( DX√

Λmin
(Dapp +DX‖β − β̂1‖) + ‖βλ − β‖Σ)2

t2
(ln δ−1)2

)
,

δf ≤
1√
t

DX√
Λmin

(1 +
√

8 ln δ−1) +
1

t

4

√
D4
X

Λ2
mind

+ 1

3
ln δ−1 ,

εvr ≤
σ2d(1 + δf )

0.072t
+

2σ2
√
d(1 + δf ) ln δ−1

0.073/2t
+

2σ2 ln δ−1

0.07t
.

Moreover E[(E[y | X]−β>X)2] ≤ D2
app and Λmin ≤ D2

X , hence, using ‖βλ−β‖Σ ≤ λ‖β−
β̂1‖ we transfer the result in our KF notations, that is, θ̂t = β̂t,p−1

1 /2(t−1), β̂1 = θ̂1, β = θ?.

We obtain, for any 0 < δ < e−2.6 and t ≥ 6 DX√
Λmin

(ln(d) + ln δ−1),

εbs ≤
4

0.072

( D2
X

Λmin
D2

app +
D2
X

Λmin

‖θ̂1−θ?‖2
p1t

t
(1 +

√
8 ln δ−1)

+
( DX√

Λmin
(Dapp +DX‖θ?‖) + ‖θ̂1−θ?‖√

2p1t
)2

t2
(ln δ−1)2

)
,

δf ≤
1√
t

DX√
Λmin

(1 +
√

8 ln δ−1) +
1

t

4

√
D4
X

Λ2
mind

+ 1

3
ln δ−1 ,

εvr ≤
σ2d(1 + δf )

0.072t
+

2σ2
√
d(1 + δf ) ln δ−1

0.073/2t
+

2σ2 ln δ−1

0.07t
,

‖θ̂t+1 − θ?‖2Σ ≤ 3

(
‖θ̂1 − θ?‖2

2p1t
+ εbs + εvr

)
,
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with probability at least 1− 4δ. For t ≥ D2
X

Λmin
ln δ−1, as ln δ−1 ≥ 1, we get

δf ≤
1√

6 ln δ−1
(1 +

√
8 ln δ−1) +

1

6

4

3

√
1

d
+ 1 ≤ 1 +

√
8√

6
+

2
√

2

9
≈ 1.9 ≤ 2 .

Thus, as
√
ab ≤ a+b

2 for any a, b > 0, we have

εvr ≤
σ2

0.07t

(
3d

0.07
+ 2

√
3d ln δ−1

0.07
+ 2 ln δ−1

)

≤ σ2

0.07t

(
6d

0.07
+ 3 ln δ−1

)
≤ 3σ2(d/0.035 + ln δ−1)

0.07t
.

It yields the result.

Lemma 25 allows the definition of an explicit value for T (ε, δ), as displayed in the
following Corollary.

Corollary 26 Assumption 5 is satisfied for T (ε, δ) = max(T1(δ), T2(ε, δ), T3(ε, δ)) where
we define

T1(δ) = max

(
12

D2
X

Λmin
(ln d+ ln δ−1),

48D2
X

Λmin
ln

24D2
X

Λmin

)
,

T2(ε, δ) =
24ε−1

Λmin

(
‖θ̂1 − θ?‖2

2p1
+

D2
X

Λmin
D2

app

4(1 +
√

8 ln δ−1)

0.072
+

3σ2(d/0.035 + ln δ−1)

0.07

)

ln
12ε−1

Λmin

(
‖θ̂1 − θ?‖2

2p1
+

D2
X

Λmin
D2

app

4(1 +
√

8 ln δ−1)

0.072
+

3σ2(d/0.035 + ln δ−1)

0.07

)
,

T3(ε, δ) =

√
96ε−1

0.072Λmin

(
‖θ̂1 − θ?‖2

p1

D2
X

Λmin
(1 +

√
8 ln δ−1)

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

2p1

)2

(ln δ−1)2

)1/2

ln
96ε−1

0.072Λmin

(
‖θ̂1 − θ?‖2

2p1
(1 +

D2
X

Λmin
)(1 +

√
8 ln δ−1)

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

2p1

)2

(ln δ−1)2

)
.

We recall that for any η ≤ 1, we have ln t
t ≤ η for t ≥ 2η−1 ln(η−1), and we use it in the

following proof.
Proof of Corollary 26. We define δt = δ/t2 for any t ≥ 1. In order to apply Lemma

25 with a union bound, we need t ≥ 6
D2
X

Λmin
(ln d + ln δ−1

t ). If t ≥ 12
D2
X

Λmin
(ln d + ln δ−1) and
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t ≥ 48D2
X

Λmin
ln

24D2
X

Λmin
, we obtain

t ≥ t

2
+

√
t

2

√
t

≥ 6
D2
X

Λmin
(ln d+ ln δ−1) +

12D2
X

Λmin
ln t, as ln t ≤

√
t

= 6
D2
X

Λmin
(ln d+ ln δ−1

t ) .

Therefore, we define T1(δ) = max
(

12
D2
X

Λmin
(ln d+ ln δ−1),

48D2
X

Λmin
ln

24D2
X

Λmin

)
, and we apply

Lemma 25. We get the simultaneous property

‖θ̂t+1 − θ?‖2Σ ≤
3

t

‖θ̂1 − θ?‖2

2p1
+

D2
X

Λmin
D2

app

4(1 +
√

8 ln δ−1
t )

0.072
+

3σ2(d/0.035 + ln δ−1
t )

0.07


+

12

0.072t2

(
‖θ̂1 − θ?‖2

p1

D2
X

Λmin
(1 +

√
8 ln δ−1

t )

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

2p1

)2

(ln δ−1
t )2

)

for all t ≥ T1(δ), with probability at least 1− 4δ
∑

t≥T1(δ)

t−2 ≥ 1− δ because T1(δ) > 4.

Thus, as ln t ≥ 1 for t ≥ T1(δ) and ‖θ̂t+1 − θ?‖2Σ ≥ Λmin‖θ̂t+1 − θ?‖2, we obtain

‖θ̂t+1 − θ?‖ ≤
6 ln t

Λmint

(
‖θ̂1 − θ?‖2

2p1
+

D2
X

Λmin
D2

app

4(1 +
√

8 ln δ−1)

0.072
+

3σ2(d/0.035 + ln δ−1)

0.07

)

+
48(ln t)2

0.072Λmint2

(
‖θ̂1 − θ?‖2

p1

D2
X

Λmin
(1 +

√
8 ln δ−1)

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

2p1

)2

(ln δ−1)2

)

for all t ≥ T1(δ, with probability at least 1 − δ. Finally, both terms of the last inequality
are bounded by ε/2.

From Corollary 26, we obtain the asymptotic rate by comparing T2(δ) and T3(δ). We
write T2(δ) = 2A2(δ) lnA2(δ), T3(δ) = 2A3(δ) lnA3(δ) with

A2(δ) .
ε−1

Λmin

(
‖θ̂1 − θ?‖2

p1
+

D2
X

Λmin
D2

app

√
ln δ−1 + σ2(d+ ln δ−1)

)

A3(δ) .

√√√√ ε−1

Λmin

(
‖θ̂1 − θ?‖2

p1

D2
X

Λmin

√
ln δ−1 +

(DX(Dapp +DX‖θ?‖)√
Λmin

+
‖θ̂1 − θ?‖√

p1

)2
(ln δ−1)2

)
.
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where the symbol . means less than up to universal constants. As
√
a+ b .

√
a+
√
b and√

ab . a+ b, we obtain

A3(δ) .

√
ε−1

Λmin

(√
‖θ̂1 − θ?‖2

p1

D2
X

Λmin

√
ln δ−1

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

p1

)
ln δ−1

)

.

√
ε−1

Λmin

(
‖θ̂1 − θ?‖2

p1
+

D2
X

Λmin

√
ln δ−1

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

p1

)
ln δ−1

)
.

Thus, as long as ε−1

Λmin
≤ 1, we get

A2(δ), A3(δ) .
ε−1

Λmin

(
‖θ̂1 − θ?‖2

p1
+

D2
X

Λmin
(1 +D2

app)
√

ln δ−1 + σ2d

+

(
DX√
Λmin

(Dapp +DX‖θ?‖) +
‖θ̂1 − θ?‖√

p1
+ σ2

)
ln δ−1

)
.
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