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Abstract

Computing Wasserstein barycenters is a fundamental geometric problem with widespread
applications in machine learning, statistics, and computer graphics. However, it is unknown
whether Wasserstein barycenters can be computed in polynomial time, either exactly or to
high precision (i.e., with polylog(1/ε) runtime dependence). This paper answers these ques-
tions in the affirmative for any fixed dimension. Our approach is to solve an exponential-size
linear programming formulation by efficiently implementing the corresponding separation
oracle using techniques from computational geometry.

Keywords: Wasserstein barycenters, free support, polynomial-time algorithm, exponential-
size linear program, power diagrams

1. Introduction

Given discrete probability distributions µ1, . . . , µk supported on Rd and a vector λ ∈ Rk
of non-negative weights summing to 1, the corresponding Wasserstein barycenters are the
probability distributions ν minimizing

argmin
ν

k

∑
i=1

λiW(µi, ν), (1)

where above W(⋅, ⋅) denotes the squared 2-Wasserstein distance (Agueh and Carlier, 2011).
Wasserstein barycenters provide a natural extension of the notion of averaging points to the
notion of averaging point clouds. Importantly, they naturally inherit the ability of optimal
transportation to capture geometric properties of the data.

This desirable property has led to the widespread use of Wasserstein barycenters in
many applications. Applications in statistics and machine learning include for instance the
n-coupling problem (Rüschendorf and Uckelmann, 2002), constrained clustering (Cuturi
and Doucet, 2014; Ho et al., 2017), fusing measurements from partial sensors (Elvander
et al., 2020), and fusing measurements for scalable Bayesian learning (Srivastava et al.,
2018). Applications in image processing and computer graphics include for instance texture
mixing (Rabin et al., 2011) and shape interpolation (Solomon et al., 2015). For further
applications, see the surveys (Peyré and Cuturi, 2017; Panaretos and Zemel, 2019).

Open problem: computing barycenters in polynomial time. Despite considerable algorithmic
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work, it is an open problem (e.g., (Borgwardt, 2017)) whether Wasserstein barycenters be-
tween discrete distributions can be exactly computed in polynomial time in the input size.
A highly related open problem is whether Wasserstein barycenters can be computed to high
accuracy, i.e., whether an ε-additively approximate solution for (1) can be computed in
time that is polynomial in the input size and log(1/ε). This paper answers these questions
in the affirmative for any fixed dimension d.

Previous methods require time that depends polynomially on 1/ε in order to compute ε-
approximate barycenters. This means that in practice they can only solve to a few digits of
precision. See the prior work section for details. In many applications, including nearly all of
those mentioned above, Wasserstein barycenters are used as a subroutine in a larger pipeline
to solve downstream data science tasks. Thus, high-precision algorithms are important for
downstream performance and to avoid error propagation, especially in applications which
require multiple barycenter computations.

The well-documented key obstacle is that a priori, there are nk candidate atoms for
the barycenter’s support, where n is (an upper bound on) the number of atoms in each µi.
While there always exists a barycenter with poly(n, k) atoms, finding which atoms those
are requires pruning the nk exponentially many candidates.

1.1 Prior Work

The literature on computing Wasserstein barycenters is extensive and rapidly growing.1

Existing algorithms can be partitioned into two categories, depending on how they handle
optimizing over the nk exponentially many candidate atoms for the barycenter support.

Fixed-support. Most existing algorithms work around this exponential complexity by mak-
ing a “fixed-support approximation”: they assume that the barycenter is supported on a
small guessed set of points, and then only optimize over the corresponding masses. This
reduces the barycenter problem to a polynomial-size LP, which can then be solved efficiently
using out-of-the-box LP solvers, or alternatively using specialized methods such as entropic
regularization; see, e.g., (Cuturi and Doucet, 2014; Benamou et al., 2015; Solomon et al.,
2015; Carlier et al., 2015; Staib et al., 2017; Kroshnin et al., 2019; Janati et al., 2020; Lin
et al., 2020) among many others. However, the key issue with fixed-support algorithms
is that guessing a reasonable support set for the barycenter requires ε-covering the space.
Specifically, these algorithms require fixing the support to roughly (R/ε)d points in order
to get an ε-additive approximation to the barycenter2, where R is a bound on the squared
diameter of the supports of the input distributions. This results in poly(n, k,R/ε) final
runtimes in constant dimension d.

1. We mention in passing that an orthogonal line of work aims to compute barycenters of continuous distri-
butions (typically restricted to Gaussian distributions so that both µi and ν have compact representations
for computational purposes). See, e.g., (Chewi et al., 2020; Álvarez-Esteban et al., 2016).

2. An alternative is to restrict to the union of the supports of µ1, . . . , µk, which has only nk points. However,
this cannot get arbitrarily close approximations (Borgwardt, 2017).
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In contrast, our proposed algorithm has poly(n, k, log(R/ε)) runtime which, critically,
has polylogarithmic dependence on R/ε.3 In practice, this means that our algorithm can
often solve up to machine precision, whereas fixed-support algorithms can only solve up to
a few digits of precision—see §4 for experiments.

Free-support. Achieving our poly(n, k, log(R/ε)) runtime precludes making a fixed-support
approximation. Such algorithms are called “free-support algorithms”. The key obstacle is
that, as mentioned before, this requires optimizing over the support set of the barycenters,
which a priori can only be restricted to nk candidate points. All previous free-support
algorithms either run in exponential time, or are heuristics without provable guarantees;
see, e.g., (Cuturi and Doucet, 2014; Luise et al., 2019).

In contrast, we show how to optimize over these nk candidate points in polynomial time
by exploiting the geometric structure of their configuration.

1.2 Contribution

We give the first algorithm that, in any fixed dimension d, solves the Wasserstein barycen-
ter problem exactly or to high precision in polynomial time. For simplicity of notation,
throughout d is a constant; the running time for fixed d is (nk)d times a polynomial in the
input size.

Theorem 1 (Computing high-precision barycenters) There is an algorithm that, given
k distributions each supported on n atoms in the ball of squared radius R in Rd, a weight vec-
tor λ, and an accuracy ε > 0, computes an ε-additively approximate Wasserstein barycenter
in poly(n, k, log(R/ε)) time. Moreover, this barycenter has support size at most nk − k + 1.

Theorem 2 (Computing exact barycenters) If the weight vector and distributions are
represented with logU bits of precision, then an exact barycenter can be found in poly(n, k, logU)

time. Moreover, this barycenter has support size at most nk − k + 1.

Our algorithm is described in §3. Briefly, the high-level idea is as follows. Our starting
point is a well-known LP reformulation of the Wasserstein barycenter problem as a Multi-
marginal Optimal Transport (MOT) problem, recalled in the preliminaries section. This is
an exponential-size LP with nk variables, one for each candidate atom. Nevertheless, we
show that a sparse solution can be computed in polynomial time. Our approach consists
of two steps. First, by leveraging tools from combinatorial optimization and exploiting the
special structure of the MOT LP, we show that this problem can be solved efficiently if
one can efficiently implement the separation oracle for the LP dual of MOT. Second, by
leveraging tools from computational geometry such as power diagrams and the complexity
of hyperplane arrangements, we show how to efficiently implement this separation oracle.

In addition to its polynomial runtime, our algorithm has two additional properties that
may be useful in downstream applications. First, the outputted barycenter ν has small
support of O(nk) size, which is much smaller than the a priori nk bound on the support

3. This means that our algorithm solves the barycenter problem exactly in polynomial time, whereas
previous algorithms require pseudo-polynomial time. This is because solving the barycenter problem
exactly requires ε to be exponentially small in the bit-complexity of the input.
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size. In particular, the support size of ν is at most the maximal sparsity of any vertex of
the transportation polytope between µ1, . . . , µk—which is at most nk − k + 1. Note that
Theorem 2 is not at odds with the NP-hardness of finding the sparsest barycenter (Borg-
wardt and Patterson, 2019): indeed, our algorithm outputs a solution that albeit sparse is
not necessarily the sparsest. Second, as a by-product, our algorithm also produces sparse
solutions to the optimal transport problemsW(µi, ν) that are non-mass-splitting maps from
ν to µi. Among other benefits, this enables easy visualization and interpretability of the
results—in comparison to entropic-regularization based approaches which produce “blurry”
dense maps.

Although the focus of this work is theoretical, we also provide preliminary numerical
experiments in §4 demonstrating that a slight variant of our algorithm can provide high-
precision solutions at previously intractable problem sizes.

Finally, in §5, we briefly mention that the techniques we develop in this paper extend
to solving several related problems. In particular, this gives the first polynomial-time algo-
rithms for computing geometric medians with respect to the 1-Wasserstein distance (a.k.a.
Earth Mover’s distance) over any of the popular ground metrics `1, `2, or `∞.

2. Preliminaries

This section is organized as follows. First, in §2.1, we establish our notation, which is mostly
standard. Then in §2.2, §2.3, §2.4, respectively, we recall relevant background from the
machine learning, combinatorial optimization, and computational geometry literatures—
namely, background about LP formulations of Wasserstein barycenters, algorithms for solv-
ing exponential-size LP, and algorithms for manipulating power diagrams.

2.1 Notation

The set {1, . . . , n} is denoted by [n]. The k-fold tensor product space Rn ⊗ ⋅ ⋅ ⋅ ⊗ Rn is
denoted by (Rn)⊗k, and similarly for (Rn⩾0)

⊗k. For shorthand, we often denote a tuple
(j1, . . . , jk) ∈ [n]k by j⃗. The i-th marginal, i ∈ [k], of a tensor P ∈ (Rn)⊗k is denoted
by the vector mi(P ) ∈ Rn, and has entries [mi(P )]` ∶= ∑j⃗∈[n]k ∶ji=` Pj⃗ . The transportation
polytope between µ1, . . . , µk is the set of joint distributions with one-dimensional marginal
distributions µ1, . . . , µk, and is identified with the set M(µ1, . . . , µk) ∶= {P ∈ (Rn⩾0)

⊗k ∶

mi(P ) = µi, ∀i ∈ [k]}, where we abuse notation slightly by identifying µi with its vector
of probabilities (in any order). The closure of a set E ⊂ Rd (with respect to the standard
topology) is denoted by E. Throughout, we assume without loss of generality that each λi
is strictly positive, since otherwise µi does not affect the barycenter (see equation (1)).

2.2 LP Formulation of Wasserstein Barycenters

Our starting point is the known fact (see, e.g., (Agueh and Carlier, 2011; Benamou et al.,
2015; Anderes et al., 2016)) that a barycenter ν can be found by solving the Multimarginal
Optimal Transport problem

min
P ∈M(µ1,...,µk)

⟨P,C⟩, (MOT)
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for the cost tensor C ∈ (Rn)⊗k with entries

Cj⃗ = min
y∈Rd

k

∑
i=1

λi∥xi,ji − y∥
2, (2)

or equivalently, Cj⃗ = ∑
k
i=1 λi∥xi,ji − ∑

k
`=1 λ`x`,j`∥

2 by optimality of y = ∑k`=1 λ`x`,j` . Specifi-
cally, the reduction from the Wasserstein barycenter problem to the LP (MOT) is as follows.

Lemma 3 If P ∈ M(µ1, . . . , µk) is an optimal solution to (MOT), then the pushforward of
P under the map (X1, . . . ,Xk) ↦ ∑

k
i=1 λiXi is an optimal barycenter ν. Furthermore, the

support size of ν is at most the support size of P , and also the coupling (∑
k
i=1 λiXi,Xj) is

a non-mass-splitting map that solves the Optimal Transport problem from ν to µj.

Notice that applying this pushforward map (X1, . . . ,Xk) ↦ ∑
k
i=1 λiXi in order to com-

pute ν from P requires only O(skd) arithmetic operations, where s denotes the support
size of P . In particular, this takes polynomial time if s is of polynomial size. Therefore it
suffices to compute a sparse solution P of the LP (MOT).

Note that the solution P is guaranteed to be sparse if it is a vertex solution. Indeed,
since (MOT) is a standard-form LP whose constraints have rank at most nk − k + 1, each
vertex solution has at most nk − k + 1 non-zero entries.

Lemma 4 If P is a vertex of the transportation polytope M(µ1, . . . , µk), then P has at
most nk − k + 1 non-zero entries.

An obvious obstacle for computing any solution—let alone a sparse solution—of the LP
formulation (MOT) is that it has nk exponentially many variables. An LP that will be
useful to us in the sequel is its dual

max
p1,...,pk∈Rn

k

∑
i=1

⟨pi, µi⟩ subject to Cj⃗ −
k

∑
i=1

[pi]ji ⩾ 0, ∀j⃗ ∈ [n]k. (MOT-D)

An attractive property of (MOT-D) is that it has only nk polynomially many variables.
However, of course this alone is not enough to make solving (MOT-D) tractable because it
has nk exponentially many constraints. That is, dualizing has transferred the exponential
complexity in the number of variables in (MOT) to the number of constraints in (MOT-D).

2.3 Algorithms for Exponential-Size LP

It is a classical fact (see, e.g., (Khachiyan, 1980; Bertsimas and Tsitsiklis, 1997; Grötschel
et al., 2012)) that regardless of the number of constraints, an LP with polynomially many
variables can be solved in polynomial time so long as there is a polynomial-time implemen-
tation of the separation oracle for its feasibility set. Here we recall the technical details of
this fact.

First, we recall the definition of a separation oracle. This definition is simply an al-
gorithmic reformulation of the Separating Hyperplane Theorem, which states that for any
convex set K ⊆ RN and any point p ∈ RN , exactly one of two alternatives must hold: either
p ∈ K, or there exists a hyperplane that separates p from K (i.e., there exists a vector h ∈ RN
and a scalar g ∈ R such that ⟨h, p⟩ ⩾ g and ⟨h,x⟩ < g for all x ∈ K).
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Definition 5 A separation oracle for a convex set K is an algorithm that given a point p,
either outputs that p ∈ K or outputs a hyperplane that separates p from K.

Given a polynomial-time implementation of a separation oracle for a polytope, the
Ellipsoid algorithm can solve an LP over that polytope in polynomial time. This result can
be found in (Grötschel et al., 1981).

Theorem 6 Let logU be an upper bound on the number of bits needed to represent any
entry in A ∈ RM×N , b ∈ RM , or c ∈ RN . Then the Ellipsoid algorithm finds a vertex solution
to argmin{cTx ∶ x ∈ P} in poly(N, logU) time and poly(N, logU) calls to a separation
oracle for the polytope P = {x ∈ RN ∶ Ax ⩽ b}.

2.4 Computational Geometry Algorithms

A key ingredient in our barycenter algorithm is power diagrams. Here we introduce these
objects and some basic facts about their complexity. Although d is a fixed constant in our
final results, we state the explicit dependence on the dimension d in these power diagram
complexity bounds to highlight how and where our algorithm incurs exponential runtime
dependence in d.

Definition 7 The power diagram on the spheres S(z1, r1), . . . , S(zn, rn) with centers zj ∈
Rd and radii rj ⩾ 0 is the cell complex whose cells E1, . . . ,En are given by

Ej = {y ∈ Rd ∶ ∥zj − y∥2
− r2

j < ∥zj′ − y∥
2
− r2

j′ , ∀j
′
≠ j}.

A power diagram “essentially” partitions Rd in the sense that its cells are disjoint and
their closures cover Rd. See Figure 1 for an illustration. Following are two relevant classical
facts. The first essentially shows that a power diagram is defined by a small hyperplane
arrangement which can moreover be computed efficiently.

Lemma 8 (Theorems 1 and 7 of (Aurenhammer, 1987), using convex hull algo-
rithm of (Chazelle, 1993)) A power diagram on n spheres in Rd has O(n) affine facets
of dimension d−1. Moreover these facets can be computed in O((n logn+n⌈d/2⌉)⋅polylog U)

time, where logU is the number of bits of precision.

The second is about hyperplane arrangements. In the sequel this lets us bound the
complexity of the “intersection” of multiple power diagrams (defined in §3.2).

Lemma 9 (Theorem 3.3 of (Edelsbrunner et al., 1986)) The cell complex formed by
an arrangement of N hyperplanes in Rd, represented up to logU bits of precision, can be
computed in Nd ⋅ polylog(N,U) time.
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Figure 1: Two power diagrams on the same n = 9 points with varying weights w. Left: all weights
are zero (so this is a Voronoi diagram). Right: the weight of a point is indicated by the size of the
ball around it. Increasing the weight of a point increases the size of its cell.

3. Algorithm

In this section we describe our algorithm and prove our main results (Theorems 1 and 2).
We begin by overviewing the high-level approach. Let us consider the exact solver in
Theorem 2, as the approximate solver in Theorem 1 is implemented by exactly solving a
rounded problem (see §3.3 for details).

Recall from §2.2 that it suffices to solve the LP formulation (MOT) of the Wasserstein
barycenter problem. However, solving this LP presents a computational obstacle since it
has nk decision variables. Moreover, we desire a sparse solution P—rather than a generic
solution which has exponentially many non-zero entries—since a polynomial sparsity for P
ensures a polynomial support size for the final barycenter ν.

The starting point of our approach is recalling the classical fact from §2.3 that regardless
of the number of constraints, an LP with polynomially many variables can be solved in
polynomial time so long as the corresponding separation oracle can be implemented in
polynomial time. While (MOT) is not such an LP since it has exponentially many variables,
this result applies to its dual (MOT-D). That is, we can efficiently solve (MOT-D) so long
as we can efficiently implement the corresponding separation oracle.

However, two key obstacles remain. First, recovering a primal solution is non-trivial in
that in general a dual solution does not necessarily “help” to find a primal solution (Bert-
simas and Tsitsiklis, 1997, Exercise 4.17), let alone a sparse primal solution. Second, and
most importantly, this approach requires an efficient implementation of the separation oracle
for (MOT-D), which does not exist for general Multimarginal Optimal Transport problems
(for concrete NP-hard examples see (Altschuler and Boix-Adserà, 2020a)).

We solve these issues in two steps:

1. Reduction to separation oracle. We reduce solving (MOT) in polynomial time to
solving the separation oracle for the dual LP (MOT-D) in polynomial time. (Further,
we show how to ensure the solution is polynomially sparse.)

2. Efficient algorithm for separation oracle. We use tools from computational geometry
to solve the separation oracle for (MOT-D) in polynomial time.

At this point, it is worth remarking what special “structure” of the exponential-size
LP (MOT) we exploit in order to solve it in polynomial time. Step 1 does not extend to
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general LP, i.e., one cannot efficiently solve an LP given only an efficient separation oracle
for its dual (Grötschel et al., 2012). Instead, step 1 crucially exploits the particular “struc-
ture” of the feasibility constraints defining (MOT), details in §3.1. This extends to arbitrary
Multimarginal Optimal Transport problems (i.e., arbitrary costs C), and therefore may be
of independent interest. However, step 1 is of course useless unless one can efficiently solve
the separation oracle in step 2. Indeed, as mentioned above, step 2 does not extend to
general Multimarginal Optimal Transport problems, i.e., there does not exist an efficient
implementation of the the separation oracle for (MOT-D) for arbitrary costs C ∈ (Rn)⊗k.
It is here—in step 2, not step 1—that we crucially exploit the remaining “structure” in
the LP reformulation (MOT) of the barycenter problem, namely the cost C defined in (2).
Intuitively, this “structure” of C is geometric: the nk entries in C correspond to nk candi-
date points for the barycenter’s support, and these points must lie in certain constrained
geometric configurations, details in §3.2.

Let us now elaborate on steps 1 and 2. To do this, we first recast the separation oracle
for (MOT-D) in a convenient way for our algorithmic development.

Definition 10 Given p = (p1, . . . , pk) ∈ Rn×k, the oracle SEP returns a tuple SEP(p) ∈

argminj⃗∈[n]k Cj⃗ −∑
k
i=1[pi]ji .

The intuition behind SEP is that it implements4 the separation oracle for (MOT-D)
because given the tuple j⃗ = SEP(p), exactly one of the following two alternatives must hold:

• Cj⃗ −∑
k
i=1[pi]ji ⩾ 0, in which case this certifies that p is feasible for (MOT-D).

• Cj⃗ −∑
k
i=1[pi]ji < 0, in which case this provides a hyperplane that separates p from the

feasible set of (MOT-D).

Now, in terms of this oracle SEP, steps 1 and 2 are formally summarized as follows.

Proposition 11 (Step 1) Let C ∈ (Rn)⊗k be an arbitrary cost, and let logU be the maxi-
mum number of bits of precision in an entry of C. A vertex solution P ∗ for (MOT) can be
found in poly(n, k, logU) time and poly(n, k, logU) calls to SEP.

Proposition 12 (Step 2) If the cost C is given by (2), the oracle SEP(p) can be imple-
mented in poly(n, k, logU) time, where logU is the number of bits of precision needed to
represent the points xi,j ∈ Rd, weights λi ∈ Rk>0 and potentials p ∈ Rn×k.

The remainder of the section is organized as follows. In §3.1 and §3.2, we detail the
algorithms in steps 1 and 2, respectively, and prove Propositions 11 and 12. Combining
Propositions 11 and 12 then proves Theorem 1 aside from checking bit-complexity details,
which is done formally in §3.3.

4. In fact, it can be shown that SEP is polynomial-time equivalent to the separation oracle for (MOT-D),
i.e., each oracle can be implemented using polynomial many calls to the other oracle and polynomial
additional computation time. However, this is not needed in the sequel.
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3.1 Step 1: Reduction to Separation Oracle

Here we prove Proposition 11 and describe the algorithm in it. This algorithm has two
steps. First, it identifies a small set S ⊆ [n]k on which an optimal MOT solution is sup-
ported. Second, it optimizes over distributions supported on S.

Proof of Proposition 11 First, we construct a set S ⊂ [n]k as follows. Since SEP(p)
implements a separation oracle for (MOT-D), and since (MOT-D) has N = nk variables,
Theorem 6 implies that an optimal solution for (MOT-D) can be found by the Ellipsoid
algorithm in poly(N, logU) = poly(n, k, logU) time. Let L denote the number of SEP
queries made by the Ellipsoid algorithm. For l ∈ [L], let p(l) ∈ Rn×k be the argument of the
l-th query to SEP, and let j⃗(l) ∈ [n]k be the returned tuple. Let S ∶= {j⃗(`)}L`=1 denote the
set of all returned tuples.

Next, we show how to compute an optimal vertex solution for (MOT) using S. Let
MS(µ1, . . . , µk) = {P ∈ M(µ1, . . . , µk) ∶ Pj⃗ = 0 ∀j⃗ ∉ S} be the set of distributions in the
transportation polytope supported on S, and let (MOTS) be (MOT) with the decision set
M(µ1, . . . , µk) replaced by MS(µ1, . . . , µk). The key lemma is that it suffices to compute
an optimal vertex solution for (MOTS). This is proved below in Lemma 13; let us presently
show how to use it complete the proof of the main proposition. Note that since the number
of Ellipsoid iterations is poly(n, k, logU) by Theorem 6, the set S has cardinality of size
poly(n, k, logU). Thus (MOTS) is a polynomial size LP, so we can compute a vertex solu-
tion for it in polynomial time with standard LP solvers (e.g., Theorem 6).

We now state the key lemma used in the above proof.

Lemma 13 Any vertex solution P for (MOTS) is also a vertex solution for (MOT).

Lemma 13 follows directly from the following three observations. Below, let C ′ denote the
tensor that agrees with C on S, and equals 2U elsewhere. Also let (MOT′) denote the
problem (MOT) where the cost C is replaced by C ′.

Observation 14 The optimal values of (MOT) and (MOT′) are equal.

Proof Since the Ellipsoid algorithm is deterministic and accesses the cost only through
the SEP oracle, an inductive argument shows that all for all l ∈ [L],

min
j⃗∈[n]k

C ′
j⃗
−

k

∑
i=1

[p
(l)
i ]ji = min

j⃗∈[n]k
Cj⃗ −

k

∑
i=1

[p
(l)
i ]ji .

That is, C ′ is consistent with C on the SEP queries made by the Ellipsoid algorithm. There-
fore (MOT-D) has the same value with cost C ′ or C. We conclude by strong duality.

Observation 15 The optimal values of (MOT′) and (MOTS) are equal.

Proof Since C and C ′ agree on S, it suffices to show that every optimal solution for
(MOT′) is supported on S. Suppose for contradiction that there exists an optimal solution
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P for (MOT′) that is not supported on S. Then we must have ⟨P,C⟩ < ⟨P,C ′⟩, since C ′ is
strictly larger than C on [n]k ∖S. However, since P is feasible for (MOT), this implies that
the value of (MOT) is strictly less than that of (MOT′), contradicting Observation 14.

Observation 16 Every vertex of MS(µ1, . . . , µk) is a vertex of M(µ1, . . . , µk).

Proof Let P be a vertex of MS(µ1, . . . , µk), and let P = λQ + (1 − λ)R for λ ∈ [0,1] and
Q,R ∈ M(µ1, . . . , µk). It suffices to show that Q = R = P . Since P is supported on tuples in
S, and since Q and R are entrywise non-negative, we have that Q and R are also supported
on S. Therefore Q,R ∈ MS(µ1, . . . , µk). But since P is a vertex of MS(µ1, . . . , µk), this
implies that Q = R = P .

3.2 Step 2: Efficient Algorithm for the Separation Oracle

Here we prove Proposition 12 and describe the algorithm in it for efficiently implementing
the SEP oracle for the cost C in (2). Recall that this SEP oracle requires computing an
optimal tuple for

argmin
j⃗∈[n]k

min
y∈Rd

g(j⃗, y) (3)

where

g(j⃗, y) ∶=
k

∑
i=1

λi(∥xi,ji − y∥
2
− [wi]ji),

and wi denotes pi/λi. At a high level, our approach is to swap the order of minimization,
optimize over y ∈ Rd, and then (easily) recover an optimal tuple from this optimal y.
The difficulty is in the optimization over y ∈ Rd. The key to performing this efficiently is
partitioning the space Rd into a “cell complex” such that (i) the optimization over y in
each cell is easy, and (ii) there are only polynomially many cells. Operationally, this allows
us to reduce the separation oracle optimization (3) to optimizing over only a polynomially
sized set of candidate tuples in [n]k—one for each cell—which we moreover show can be
efficiently identified and enumerated.

To formalize this, we make the following key definitions. Define for each i ∈ [k] and
j ∈ [n] the set

Ei,j = {y ∈ Rd ∶ ∥xi,j − y∥2
− [wi]j < ∥xi,j′ − y∥

2
− [wi]j′ , ∀j

′
≠ j}, (4)

and define for each tuple j⃗ ∈ [n]k the set

Fj⃗ =
k

⋂
i=1

Ei,ji . (5)

Geometrically, for each i ∈ [k], the cells {Ei,j}j∈[n] form a power diagram (see §2.4) on the
spheres S(xi,1, ri,1), . . . , S(xi,n, ri,n), where the j-th sphere is centered at point xi,j and has

radius ri,j ∶=
√

[wi]j −minj′[wi]j′ ⩾ 0. Each power diagram “essentially” partitions Rd in

10
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intersect
ÐÐÐÐÐ→

Figure 2: Illustrates k = 3 power diagrams {{Ei,j}j∈[n]}i∈[k] each with n = 3 cells, and their
intersection {Fj⃗}j⃗∈[n]k . For instance, the red cell in the intersected diagram is F1,2,1 = E1,1 ∩E2,2 ∩

E3,1, and the purple cell is F2,3,2 = E1,2 ∩E2,3 ∩E3,2. Note that the intersected diagram has only 13
non-empty cells, which is less than nk = 27 (c.f., Lemma 18).

the sense that its constituent cells are disjoint and their closures cover Rd; see Figure 1 for
an illustration. The cell complex {Fj⃗}j⃗∈[n]k is the intersection of these k power diagrams

and “essentially” partitions Rd in the analogous way; see Figure 2 for an illustration.
The heart of our algorithm lies in the following two lemmas. The first lemma shows

that the optimization (3) over the exponentially many tuples j ∈ [n]k may be restricted to
just those whose corresponding cell Fj⃗ is non-empty, i.e., we may restrict to the tuples in

T ∶= {j⃗ ∈ [n]k ∶ Fj⃗ ≠ ∅}. (6)

The second lemma shows that this candidate set T contains only polynomially many tuples
and moreover can be efficiently enumerated. Briefly, the first lemma exploits the fact that
the optimization over y ∈ Rd is equivalent to optimizing over the cells in Fj⃗ , and the second
lemma exploits complexity bounds for the intersections of power diagrams. Together, these
lemmas are sufficient to efficiently solve the separation oracle because for any fixed j⃗, the
value miny∈Rd g(j⃗, y) can be efficiently computed in closed-form (as shown below in (7)).

Lemma 17 The optimization over j⃗ ∈ [n]k in the separation oracle problem (3) can be
equivalently restricted to j⃗ ∈ T . That is,

min
j⃗∈[n]k

min
y∈Rd

g(j⃗, y) = min
j⃗∈T

min
y∈Rd

g(j⃗, y).

Proof The inequality “⩽” is obvious; we show the other inequality “⩾”. By swapping the
order of minimization and using the fact that {Fj⃗}j⃗∈T cover Rd modulo closure, we have

min
⃗̀∈[n]k

min
y∈Rd

g(⃗̀, y) = min
y∈Rd

min
⃗̀∈[n]k

g(⃗̀, y) = min
j⃗∈T

min
y∈Fj⃗

min
⃗̀∈[n]k

g(⃗̀, y).

We claim that the inner minimization over ⃗̀ is explicit: ⃗̀= j⃗. Indeed, by separability of g
in the coordinates of ⃗̀ and non-negativity of λi, for each i ∈ [n] the optimal `i is a solution
of argmin`i∈[n] ∥xi,`i − y∥

2 − [wi]`i ; and ji is a solution of this by definition of Ei,ji (see (4))

and the fact that Ei,ji contains y (by definition of Fj⃗ , see (5)). Therefore

min
j⃗∈T

min
y∈Fj⃗

min
⃗̀∈[n]k

g(⃗̀, y) = min
j⃗∈T

min
y∈Fj⃗

g(j⃗, y).

11
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Now by enlarging the optimization region, we have the simple bound

min
j⃗∈T

min
y∈Fj⃗

g(j⃗, y) ⩾ min
j⃗∈T

min
y∈Rd

g(j⃗, y).

Combining the above three displays completes the proof.

Lemma 18 For any fixed dimension d, the set T can be enumerated in poly(n, k, logU)

time.

Proof By Lemma 8, the O(nk) total facets for the k power diagrams {{Ei,j}i∈[n]}j∈[k]
can be computed in poly(n, k, logU) time. For each facet, compute the (d− 1)-dimensional
hyperplane it lies in. The cell complex H formed by these hyperplanes is a subcomplex of
the cell complex formed by intersecting the power diagrams. By Lemma 9, we can enu-
merate the cells in H in poly(n, k, logU) time. For each cell in H, the corresponding tuple
j⃗ ∈ [n]k is computable in O(nk ⋅ polylog U) time by computing the k coordinates of the
tuple separately. Since each non-empty cell Fj⃗ contains at least one cell in H, this process
enumerates all tuples in T .

We now conclude the desired efficient algorithm for the separation oracle.
Proof of Proposition 12 By Lemma 17, it suffices to output a tuple j⃗ minimizing
minj⃗∈T miny∈Rd g(j⃗, y). Since ∑ki=1 λixi,ji ∈ argminy∈Rd g(j⃗, y), it therefore suffices to solve

argmin
j⃗∈T

k

∑
i=1

λi∥xi,ji∥
2
− ∥

k

∑
i=1

λixi,ji∥
2
−

k

∑
i=1

λi[wi]ji . (7)

Peform this by enumerating the set T using the algorithm in Lemma 18.

3.3 Putting the Pieces Together

Proof of Theorem 2 Assume each xi,ji and λi is written to logU bits of precision. Since
each entry of the cost tensor (2) requires only O(log k + logU) bits of precision, and since
the parameter w ∈ Rn×k in each SEP query made by the algorithm in Proposition 11 re-
quires only poly(n, k, logU) bits of precision, it follows that the algorithm in Proposition 11
combined with the SEP oracle implementation in Proposition 12 computes a vertex solution
P ∗ for (MOT) in poly(n, k, logU) time. By Lemma 4, P ∗ has at most nk − k + 1 non-zero
entries. Thus we can recover from P ∗ an optimal barycenter ν with support size at most
nk − k + 1 in time poly(n, k, logU) by the reduction in Lemma 3.

Proof of Theorem 1 By rounding both the weights λi and the coordinates of the atoms
xi,j ∈ Rd to poly(ε/(Rkd)) additive accuracy, it can be ensured that each of these num-
bers requires only O(log(Rkd/ε)) bits of precision and also that the objective function
ν ↦ ∑ki=1 λiW(µi, ν) for the barycenter optimization (1) is preserved pointwise to ε additive
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accuracy. This follows from a straightforward calculation and the fact (immediate from
the definition of optimal transportation (Villani, 2003, §1) and an application of Hölder’s
inequality) that if the squared Euclidean distance between each atom of µi and each atom of
ν is preserved up to ε′ additive accuracy, then the squared 2-Wasserstein distance W(µi, ν)
is preserved up to ε′ additive accuracy. Now solve the barycenter problem for the rounded
weights and atoms exactly using Theorem 2.

4. Numerical Implementation

While the focus of this paper is theoretical, here we briefly mention that a slight variant of
our algorithm can provide high-precision solutions at previously intractable problem sizes.
To demonstrate this, we implement our algorithm for dimension d = 2 in Python. The only
difference between our numerical implementation and the theoretical algorithm described
above is that we use a standard cutting-plane method (see, e.g., (Bertsimas and Tsitsiklis,
1997, §6.3)) for the “outer loop” in step 1 rather than the Ellipsoid algorithm due to its good
practical performance. Code and further implementation details are provided on Github.5

4.1 Computing Exact Solutions at Previously Intractable Scales

Figure 3 demonstrates that our algorithm solves the barycenter problem (1) to machine
precision on an instance with k = 10 uniform distributions each on n = 20 points randomly
drawn from [−1,1]2 ⊂ R2. In contrast, existing popular barycenter algorithms which use the
fixed-support assumption can converge faster but only to lower-precision approximations.
This is because the Θ(1/εd) gridsize that they require for ε-additive approximation results
in a large-scale LP which is prohibitive even for relatively low precision ε; see §1.1 for details.
Note also that a standard LP solver requires optimizing over nk = 2010 ≈ 1013 variables for
the LP formulation (MOT) and thus is clearly infeasible at this scale.

4.2 Sharper Visualizations

Here we demonstrate that the high-precision solutions computed by our algorithm yield
significantly sharper visualizations than the low-precision solutions that were previously
computable. Specifically, here we compare our barycenter algorithm against state-of-the-art
methods on a standard benchmark dataset of images of nested ellipses (Cuturi and Doucet,
2014; Janati et al., 2020). This dataset consists of k = 10 images, each of size 60 × 60.
Five of these images are shown in Figure 4. Figure 5 contains a visual comparison of the
exact barycenter computed by our algorithm and the approximate barycenters produced by
the most competitive algorithms tested in the recent paper (Janati et al., 2020). All are
fixed-support algorithms except for the algorithm of (Luise et al., 2019).

Of the compared algorithms, MAAIPM gives the most accurate barycenter approxi-
mation. It uses a 60 × 60 grid fixed-support assumption. Although MAAIPM solves this
fixed-support problem exactly, the support of an optimal barycenter does not lie on a 60×60
grid, and thus MAAIPM only computes an approximate barycenter. A natural approach is

5. https://github.com/eboix/high_precision_barycenters
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(a) Comparison with the Iterated Bregman
Projection (IBP) algorithm of (Solomon
et al., 2015) using their implemen-
tation https://github.com/gpeyre/

2015-SIGGRAPH-convolutional-ot.
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(b) Comparison with the Matrix-based
Adaptive Alternating Interior-Point Method
(MAAIPM) of (Ge et al., 2019) using their
implementation https://gitlab.com/ZXiong/

wasserstein-barycenter.

Figure 3: Comparison with state-of-the-art algorithms. The y-axis is the suboptimality for the
barycenter optimization (1); note that while standard LP solvers cannot be run at this scale, our
algorithm yields an exact solution (certified by our separation oracle) which enables plotting this
suboptimality. Both compared algorithms require a fixed-support assumption and are run on uniform
grids of increasing sizes. IBP has an additional parameter: the entropic regularization γ, which
significantly impacts the algorithm’s accuracy and numerical stability, see (Solomon et al., 2015;
Peyré and Cuturi, 2017). We provide a generous comparison here for IBP by (i) fine-tuning γ for
it (we binary search for the most accurate γ; note that their code does not always converge for γ
small due to numerical instability); and (ii) exactly computing the Wasserstein distances W(µi, ν)
to IBP’s current barycenter ν in the barycenter objective (1) using (Dezső et al., 2011), which is
more accurate than IBP’s approximation (this is slow for large grids but is not counted in IBP’s
timing). Our algorithm finds an exact barycenter after ∼50 seconds. All experiments are run on a
standard 2014 Lenovo Yoga 720-13IKB laptop.

Figure 4: Five sample images from the nested ellipses dataset in (Janati et al., 2020).
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Ours MAAIPM Debiased IBP Frank-Wolfe
Ge et al. (2019) Janati et al. (2020) Solomon et al. (2015) Luise et al. (2019)

Cost: 0.2666 (exact) Cost: 0.2671 Cost: 0.2675 Cost: 0.2723 Cost: 0.2790

Figure 5: Comparison of barycenter algorithms on a standard benchmark dataset of ellipse images.
Each barycenter atom is plotted as a disk with area proportional to its probability mass. All
compared methods are run with the code, parameter choices, and dataset of (Janati et al., 2020).

to run MAAIPM on a finer grid discretization, i.e., finer than 60 × 60. However, this does
not work, since MAAIPM does not scale to much larger grid sizes (see also Figure 3b).

The other two fixed-support algorithms are based on entropic regularization: debiased
Sinkhorn barycenters (Janati et al., 2020) and IBP (Solomon et al., 2015). These use en-
tropic regularization parameter γ = 0.002 and the same 60×60 fixed-support approximation
as MAAIPM. Again, these methods produce suboptimal barycenters. While these methods
scale to larger grid sizes than MAAIPM, this results in qualitatively similar and blurry
visualizations as in this 60 × 60 case due to the entropic regularization.

The final compared algorithm is the free-support algorithm of (Luise et al., 2019), which
is based on the Frank-Wolfe algorithm. Although this method does not make a fixed-support
assumption, it still returns an approximate solution due to the approximate nature of the
Frank-Wolfe algorithm.

5. Discussion

Wasserstein barycenters are used in many applications despite the fact that fundamental
questions about their computational complexity are open—in particular, it was previously
unknown whether barycenters can be computed in polynomial time. This paper addresses
this issue by giving the first algorithm that, in any fixed dimension d, solves the barycenter
problem exactly or to high precision in polynomial time.

Now, while our result answers the polynomial-time computability of barycenters from a
theoretical perspective, from a practical perspective it is still a hard and interesting problem
to compute high-precision barycenters for large-scale inputs. Indeed, our current implemen-
tation is not efficient beyond moderate-scale inputs; and while existing algorithms such as
IBP scale to larger inputs, they have limited accuracy. Moreover, all existing algorithms
pay for the curse of dimensionality in one way or another. We emphasize that our imple-
mentation does not contain further optimizations or heuristics; it is an interesting direction
for future work to investigate potential such options including pruning cutting planes, warm
starts, and specially tailored algorithms for the power diagram intersections in §3.2 (e.g.,
in R2 or R3, settings which commonly arise in image processing and computer graphics
applications).

We remark that another research direction suggested by the results of this paper is the
possibility of solving “structured” Multimarginal Optimal Transport problems in poly(n, k)
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time despite the fact that they have nk exponentially many variables. Such problems arise
in a variety of applications throughout data science and applied mathematics. However, the
context of the application results in the cost tensor C having different types of “structure”,
which in turn necessitates developing different techniques for efficiently solving the corre-
sponding separation oracle (see the discussion in §3). We pursue this direction and develop
such techniques in upcoming work (Altschuler and Boix-Adserà, 2020b).

5.1 Extension to Wasserstein Geometric Median

We conclude the paper by briefly mentioning that the techniques we develop in this paper
extend to solving several related problems. In particular, this gives the first polynomial-time
algorithms for computing the Wasserstein geometric median

inf
ν

k

∑
i=1

λiρ(µi, ν) (8)

of probability measures µ1, . . . , µk, where ρ is the 1-Wasserstein distance ρ (a.k.a., Earth
Mover’s Distance) over any of the popular ground metrics `1, `2, or `∞. See, e.g., (Bacák,
2014) and the references within for background on this problem and its applications.

For brevity, we just state this result for exact computation (i.e., the analog of Theo-
rem 2). The high-precision analog of Theorem 1 also holds analogously.

Theorem 19 Consider the space Rd endowed with any of the ground metrics `1, `2, or `∞.
There is an algorithm that, given k distributions each supported on n atoms in Rd and a
weight vector λ, computes an exact Wasserstein geometric median in poly(n, k, logU) time,
where logU is the bits of precision in the input. Moreover, this solution has support size at
most nk − k + 1.

Since the proof of this extension is nearly identical, we sketch only the differences. First,
observe that this geometric median problem (8) is identical to the Wasserstein barycen-
ter problem (1), except that it depends on the 1-Wasserstein distance ρ rather than the
squared 2-Wasserstein distance W. It can be shown that the geometric median problem
admits an analogous LP formulation as a Multimarginal Optimal Transport problem, just
as in (MOT), except that here the cost tensor C ∈ (Rn)⊗k has entries

Cj⃗ = min
y∈Rd

k

∑
i=1

λic(xi,ji , y) (9)

where c(⋅, ⋅) denotes the relevant ground metric. This identical to the cost (2) for barycen-
ters, except that the squared Euclidean distance is replaced by the ground metric c(⋅, ⋅).

Now, since step 1 of our algorithm—i.e., reducing finding a vertex solution of (MOT) to
solving the separation oracle for (MOT-D)—holds for any Multimarginal Optimal Transport
problem (see the discussion in §3), it remains only to adapt step 2 of our algorithm. That
is, it suffices to show that SEP can be efficiently implemented for the cost C in (9).

This extension requires only one small change: replace power diagrams with the analo-
gous partitions of space that are defined with ∥x − y∥2 replaced by c(x, y). These diagrams
are sometimes called “additively-weighted Voronoi diagrams with metric c”; for shorthand,
we just call them “c-diagrams” here.
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Definition 20 (c-diagram) The c-diagram for points z1, . . . , zn ∈ Rd and radii r1, . . . , rn ⩾
0 is the cell complex whose cells E1, . . . ,En are given by

Ej = {y ∈ Rd ∶ c(zj , y) − r2
j < c(zj′ , y) − r

2
j′ , ∀j

′
≠ j}.

Specifically, adapt the definition (4) of the sets Ei,j in this way to {y ∈ Rd ∶ c(xi,j , y)−[wi]j <
c(xi,j′ , y) − [wi]j′ , ∀j

′ ≠ j}. It is straightforward to check that our algorithm for the SEP
oracle in §3.2 and its proof then extend unchanged so long as the ground metric c(⋅, ⋅)
satisfies the following basic properties, the first three of which are somewhat trivial but
needed for rigor:

(i) There is a polynomial-time algorithm for evaluating c(x, y) given points x and y.

(ii) There is a polynomial-time algorithm for evaluating the geometric median miny∈Rd∑
k
i=1 λic(xi, y)

given points x1, . . . , xk and weights λ1, . . . , λk.

(iii) The closure of the cells in any c-diagram covers Rd.

(iv) The intersection of any k c-diagrams on n points has poly(n, k) many non-empty
subsets that can be enumerated in polynomial time.

The first three properties are trivially satisfied by all of the ground metrics c(x, y) =

∥x − y∥1, ∥x − y∥2, and ∥x − y∥∞. Therefore in order to prove Theorem 19, it remains only
to verify property (iv). For `1 and `∞, c-diagrams are cell complexes with polynomially
many affine facets which can moreover be computed in polynomial time (Klein, 1989), and
thus the claim follows by Lemma 9. For `2, the corresponding c-diagram is an additively-
weighted Voronoi diagram, for which the desired complexity bounds are also known (see
section 6.4 of (Aurenhammer, 1987)).
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