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Abstract

Semi-supervised Laplacian regularization, a standard graph-based approach for learning
from both labelled and unlabelled data, was recently demonstrated to have an insignificant
high dimensional learning efficiency with respect to unlabelled data (Mai and Couillet,
2018), causing it to be outperformed by its unsupervised counterpart, spectral clustering,
given sufficient unlabelled data. Following a detailed discussion on the origin of this incon-
sistency problem, a novel regularization approach involving centering operation is proposed
as solution, supported by both theoretical analysis and empirical results.

Keywords: semi-supervised learning, graph-based methods, centered similarities, dis-
tance concentration, random matrix theory

1. Introduction

Machine learning methods aim to form a mapping from an input data space to an output
characterization space (classification labels, regression vectors) by optimally exploiting the
information contained in the collected data. Depending on whether the data fed into the
learning model are labelled or unlabelled, the machine learning algorithms are respectively
broadly categorized as supervised or unsupervised. Although the supervised approach has by
now occupied a dominant place in real world applications thanks to its high-level accuracy,
the cost of labelling process, overly high in comparison to the collection of data, continually
compels researchers to develop techniques using unlabelled data with growing interest, as
many popular learning tasks of these days, such as image classification, speech recognition
and language translation, require enormous training data sets to achieve satisfying results.

The idea of semi-supervised learning (SSL) comes from the expectation of maximiz-
ing the learning performance by combining labelled and unlabelled data (Chapelle et al.,
2010). It is of significant practical value when the cost of supervised learning is too high
and the performances of unsupervised approaches is too weak. Despite its natural idea,
semi-supervised learning has not reached broad recognition. As a matter of fact, many
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standard semi-supervised learning techniques were found to be unable to learn effectively
from unlabelled data (Shahshahani and Landgrebe, 1994; Cozman et al., 2002; Ben-David
et al., 2008), thereby hindering the interest for these methods.

A first key reason for the underperformance of semi-supervised learning methods lies
in the lack of understanding of such approaches, caused by the technical difficulty of a
theoretical analysis. Indeed, even the simplest problem formulations, the solutions of which
assume an explicit form, involve complicated-to-analyze mathematical objects (such as the
resolvent of kernel matrices).

A second important aspect has to do with dimensionality. As most semi-supervised
learning techniques are built upon low-dimensional reasonings, they suffer the transition to
large dimensional data sets. Indeed, it has been long noticed that learning from data of
intrinsically high dimensionality presents some unique problems, for which the term curse
of dimensionality was coined. One important phenomenon of the curse of dimensionality is
known as distance concentration, which is the tendency for distances between high dimen-
sional data vectors to become indistinguishable. This problem has been studied in many
works (Beyer et al., 1999; Aggarwal et al., 2001; Hinneburg et al., 2000; Francois et al.,
2007; Angiulli, 2018), providing mathematical characterization of distance concentration
under the conditions of intrinsically high dimensional data.

Since the strong agreement between geometric proximity and data affinity in low dimen-
sional spaces is the foundation of similarity-based learning techniques, it is then questionable
whether these traditional techniques will perform effectively on high dimensional data sets,
and many counterintuitive phenomena may occur.

The aforementioned tractability and dimensionality difficulties can be tackled at once
by exploiting recent advances in random matrix theory to analyze the performance of semi-
supervised algorithms. With their weakness understood, it is then possible to propose fun-
damental corrections for these algorithms. The present article focuses on semi-supervised
graph regularization approaches (Belkin and Niyogi, 2003; Zhu et al., 2003; Zhou et al.,
2004), a major subset of semi-supervised learning methods (Chapelle et al., 2010), often
referred to as Laplacian regularizations with their loss functions involving differently nor-
malized Laplacian matrices (Avrachenkov et al., 2012). These semi-supervised learning
algorithms of Laplacian regularization are presented in Section 2.1. It was made clear in a
recent work of Mai and Couillet (2018) that among existing Laplacian regularization algo-
rithms, only one (related to the PageRank algorithm) yields reasonable classification results,
yet with asymptotically negligible contribution from the unlabelled data set. This last obser-
vation of the inefficiency of Laplacian regularization methods to learn from unlabelled data
may cause them to be outperformed by a mere (unsupervised) spectral clustering approach
(Von Luxburg, 2007) in the same high dimensional settings (Couillet and Benaych-Georges,
2016). We refer to Section 2.2 for a summary of the key mathematical results in the previous
analysis of Mai and Couillet (2018), which motivate the present work.

The contributions of the present work start from Section 3: with the cause for the
unlabelled data learning inefficiency of Laplacian regularization identified in Section 3.1,
a new regularization approach with centered similarities is proposed in Section 3.2 as a
cure, followed by arguments of high-level justification. This new regularization method
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is simple to implement and its effectiveness supported by a rigorous analysis, in addition
to heuristic arguments and empirical results which justify its usage in more general data
settings. Specifically, the statistical analysis of Section 4, placed under a high dimensional
Gaussian mixture model (as employed in the previous analysis of Mai and Couillet 2018,
as well as that of Couillet and Benaych-Georges 2016 in the context of spectral clustering),
proves the consistency of our proposed high dimensional semi-supervised learning method,
with guaranteed performance gains over Laplacian regularization. The theoretical results
of Section 4 are validated by simulations in Section 5.1. Broadening the perspective, the
discussion in Section 3.1 suggests that the unlabelled data learning inefficiency of Laplacian
regularization is due to the universal distance concentration phenomenon of high dimen-
sional data. The advantage of our centered regularization, proposed as a countermeasure to
the problem of distance concentration, should extend beyond the analyzed Gaussian mix-
ture model. This claim is verified in Section 5.2 through experimentation on real-world data
sets, where we observe that the proposed method tends to produce larger performance gains
over the Laplacian approach under higher levels of distance concentration. The discussion
is extended in Section 6 to related graph-based SSL methods. Although not suffering from
the unlabelled data learning inefficiency problem like Laplacian regularization, these meth-
ods may still have a suboptimal semi-supervised learning performance on high dimensional
data as they do not possess the same performance guarantees as our proposed method.
This claim is verified in Section 6.2 thanks to a recent work of Lelarge and Miolane (2019)
characterizing the optimal performance on isotropic Gaussian data. A higher-order version
of centered regularization is proposed in Section 6.3.1, with a remarkable competitiveness
demonstrated in Section 6.3.2 through experiments on several benchmark data sets. The
subject of computational efficiency on sparse graphs is approached in Section 6.4.

Notations: 1n is the column vector of ones of size n, In the n× n identity matrix. The
norm ‖ · ‖ is the Euclidean norm for vectors and the operator norm for matrices. We follow
the convention to use oP (1) for a sequence of random variables that convergences to zero
in probability. For a random variable x ≡ xn and un ≥ 0, we write x = O(un) if for any
η > 0 and D > 0, we have nDP(x ≥ nηun)→ 0.

2. Background

We will begin this section by recalling the basics of graph learning methods, before briefly
reviewing the main results of Mai and Couillet (2018), which motivate the proposition of
our centered regularization method in Section 3.

2.1 Laplacian Regularization Method

Consider a set {x1, . . . , xn} ∈ Rp of p-dimensional data vectors belonging to either one of
two affinity classes C1, C2. In graph-based methods, data points x1, . . . , xn are represented
by vertices in a graph, upon which a weight matrix W is computed by

W = {wij}ni,j=1 =

{
h

(
1

p
‖xi − xj‖2

)}n
i,j=1

(1)

for some decreasing non-negative function h, so that nearby data vectors xi, xj are connected
with a large weight wij , also seen as a similarity measure between data vectors. A typical
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kernel function for defining wij is the radial basis function kernel wij = e−‖xi−xj‖
2/t. The

connectivity of data point xi is measured by its degree di =
∑n

j=1wij , the diagonal matrix

D ∈ Rn×n having di as its diagonal elements is called the degree matrix.

Graph learning approach assumes that data points belonging to the same affinity group
are “close” in a graph-proximity sense. In other words, if f ∈ Rn is a class signal of data
points x1, . . . , xn, it varies little from xi to xj when wij has a large value. The graph
smoothness assumption translates into the minimization of a smoothness penalty term

1

2

n∑
i,j=1

wij(fi − fj)2 = fTLf

where L = D−W is referred to as the Laplacian matrix. Notice that the above smoothness
penalty is minimized to zero for f = 1n, a trivial solution containing no information about
the data class. According to this remark, the popular unsupervised graph learning method
of spectral clustering simply consists in finding a unit vector orthogonal to 1n that minimizes
the smoothness penalty term, as formalized below

min
f∈Rn

fTLf

s.t. ‖f‖ = 1 fT1n = 0.

It is easily shown by the spectral properties of Hermitian matrices that the solution to
the above optimization is the eigenvector of L associated to the second smallest eigen-
value. There exist also other formulations of smoothness penalty involving differently nor-
malized Laplacian matrices, such as the symmetric normalized Laplacian matrix Ls =
In − D−

1
2WD−

1
2 , and the random walk normalized Laplacian matrix Lr = In −WD−1,

which is related to the PageRank algorithm.

In the semi-supervised setting, we dispose of n[l] pairs of data vectors and their labels
{(x1, y1), . . . , (xn[l]

, yn[l]
)} with yi ∈ {−1, 1} the class label of xi, and n[u] unlabelled data

{xn[l]+1, . . . , xn}. To incorporate the prior knowledge on the class of labelled data into
the class signal f , the semi-supervised graph regularization approach imposes deterministic
scores at the labelled points of f , e.g., by letting fi = yi for all xi labelled. The mathematical
formulation of the problem then becomes

min
f∈Rn

fTLf

s.t. fi = yi, 1 ≤ i ≤ n[l].

Denoting

f =

[
f[l]
f[u]

]
, L =

[
L[ll] L[lu]

L[ul] L[uu]

]
,

the above convex optimization problem with equality constrains on f[l] is realized by letting
the derivative of the loss function with respect to f[u] equal zero, leading to the following
explicit solution

f[u] = −L−1[uu]L[ul]f[l]. (2)
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The typical decision step consists in classifying unlabelled sample xi by the sign of classifi-
cation score fi.

The aforementioned method is frequently referred to as Laplacian regularization, for it
finds the class scores of unlabelled data f[u] by regularizing them over the Laplacian matrix
along with predefined class scores of labelled data f[l]. It is often observed in practice

that using other normalized Laplacian regularizers such as fTLsf or fTLrf lead to better
classification results. Similarly to the work of Avrachenkov et al. (2012), we define

L(a) = I −D−1−aWDa

as the a-normalized Laplacian matrix in order to integrate different Laplacian regularization
algorithms into a common framework. Replacing L with L(a) in (2) to get

f[u] = −
(
L
(a)
[uu]

)−1
L
(a)
[ul]f[l], (3)

we retrieve the solutions of standard Laplacian L, symmetric Laplacian Ls and random
walk Laplacian Lr respectively at a = 0, a = −1/2 and a = −1.

Note additionally that the matrix L
(a)
[uu] is invertible under the trivial condition that the

graph represented by W is fully connected (i.e., with no isolated subgraph). To show this,
note first that, under this condition, we have

uT[u]D
1+2a
[u] L

(a)
[uu]u[u] =

n∑
i,j=n[l]+1

wij(d
a
i ui − dajuj)2 +

n∑
i=n[l]+1

d2ai u
2
i

n[l]∑
m=1

wim > 0

for any u[u] 6= 0n[u]
∈ Rn[u] , as the first term on the right-hand side is strictly positive unless

all dai ui have the same positive value, in which case the second term is strictly positive for

there is at least one wim > 0. The matrix L
(a)
[uu] is therefore positive definite. As will be

shown in the following though, the fully connected condition is not required for the new
algorithm proposed in this article to be well defined and to perform as expected.

Despite being a popular semi-supervised learning approach, Laplacian regularization
algorithms are shown by Mai and Couillet (2018) to learn inefficiently from high dimensional
unlabelled data, as a direct consequence of the distance concentration phenomenon briefly
discussed in the introduction. A deeper examination of the analysis by Mai and Couillet
(2018) allows us to discover that the unlabelled data learning inefficiency problem can in
fact be settled through the usage of centered similarities, a new approach defying the current
convention of non-negative similarities wij . We will present now the main findings by Mai
and Couillet (2018), before the proposition of the novel corrective algorithm in Section 3,
along with some general remarks explaining the effectiveness of the proposed algorithm,
leaving the thorough performance analysis to Section 4.

2.2 High Dimensional Behaviour of Laplacian Regularization

Conforming to the settings employed by Mai and Couillet (2018), we adopt the following
high dimensional data model for the theoretical discussions in this paper.
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Assumption 1 Data samples x1, . . . , xn are i.i.d. observations from a generative model
such that, for k ∈ {1, 2}, P(xi ∈ Ck) = ρk, and

xi ∈ Ck ⇔ xi ∼ N (µk, Ck)

with ‖Ck‖ = O(1), ‖C−1k ‖ = O(1), ‖µ2 − µ1‖ = O(1), trC1 − trC2 = O(
√
p) and tr(C1 −

C2)
2 = O(

√
p).

The ratios c0 = n
p , c[l] =

n[l]

p and c[u] =
n[u]

p are bounded away from zero for arbitrarily
large p.

Here are some remarks to interpret the conditions imposed on the data means µk and
covariance matrices Ck in Assumption 1. Firstly, as the discussion is placed under a large
dimensional context, we need to ensure that the data vectors do not lie in a low dimensional
manifold; the fact that ‖Ck‖ = O(1) along with ‖C−1k ‖ = O(1) guarantees non-negligible
variations in p linearly independent directions. Other conditions controlling the differences
between the class statistics ‖µ2 − µ1‖ = O(1), trC1 − trC2 = O(

√
p), and tr(C1 − C2)

2 =
O(
√
p) are made for the consideration of establishing non-trivial classification scenarios

where the classification of unlabelled data does not become impossible or overly easy at
extremely large values of p.

The first result concerns the distance concentration of high dimension data. This result
is fundamentally responsible for the failure of semi-supervised Laplacian regularization on
large dimensional data.

Proposition 1 Define τ = tr(C1 + C2)/p. Under Assumption 1, we have that, for all
i, j ∈ {1, . . . , n},

1

p
‖xi − xj‖2 = τ +O(p−

1
2 ).

The above proposition indicates that in large dimensional spaces, all pairwise distances
of data vectors converge to the same value, thereby implying that the presumed relation
between proximity and data affinity is completely disrupted. In such situations, the per-
formance of Laplacian regularization (and also most distance-based classification methods)
may be severely affected. Indeed, under some mild smooth conditions on the weight func-
tion h, the analysis of Mai and Couillet (2018) reveals several surprising and critical aspects
of the high dimensional behavior of Laplacian regularization. The first conclusion is that
all unlabelled data scores fi for n[l] + 1 ≤ i ≤ n tend to have the same signs in the case of
unequal class priors (i.e., ρ1 6= ρ2), causing a meaningless classification of unlabelled data
by the sign of their score, unless one normalizes the deterministic scores at labelled points
so that they are balanced for each class. In accordance with this message, we shall use in
the remainder of the article a class-balanced f[l] defined as below

f[l] =

(
In[l]
− 1

n[l]
1n[l]

1Tn[l]

)
y[l] (4)

where y[l] ∈ Rn[l] is the label vector composed of yi for 1 ≤ i ≤ n[l].
Nevertheless, even with balanced f[l] as per (4), the work of Mai and Couillet (2018)

shows that the aforementioned “all data affected to the same class” problem still persists
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for all Laplacian regularization algorithms under the framework of a-normalized Laplacian
(i.e., for L(a) = I−D−1−aWDa) except for a ' −1. This indicates that among the existing
Laplacian regularization algorithms in the literature, only the random walk normalized
Laplacian regularization yields non-trivial classification results for large dimensional data.
We recall now the exact statistical characterization of f[u] produced by the random walk
normalized Laplacian regularization, firstly presented by Mai and Couillet (2018).

Theorem 2 Let Assumption 1 hold, the function h of (1) be three-times continuously dif-
ferentiable in a neighborhood of τ , and the solution f[u] be given by (3) for a = −1. Then,
for n[l] + 1 ≤ i ≤ n (i.e., xi unlabelled) and xi ∈ Ck,

p(c0/2ρ1ρ2c[l])fi = f̃i + oP (1), where f̃i ∼ N (mk, σ
2
k)

with

mk = (−1)k(1− ρk)

[
−2h′(τ)

h(τ)
‖µ1 − µ2‖2 +

(
h′′(τ)

h(τ)
− h′(τ)2

h(τ)2

)
(trC1 − trC2)

2

p

]
(5)

σ2k =
4h′(τ)2

h(τ)2

[
(µ1 − µ2)TCk(µ1 − µ2) +

1

c[l]

∑2
a=1(ρa)

−1trCaCk
p

]

+

(
h′′(τ)

h(τ)
− h′(τ)2

h(τ2)

)2
2trC2

k (trC1 − trC2)
2

p2
. (6)

Theorem 2 states that the classification score fi for an unlabelled xi follows approx-
imately a Gaussian distribution at large values of p, with the mean and variance being
explicitly dependent of the data statistics µk, Ck, the class proportions ρk, and the ratio of
labelled data over dimensionality c[l]. The asymptotic probability of correct classification
for unlabelled data is then a direct result of Theorem 2, and reads

P(xi → Ck|xi ∈ Ck, i > n[l]) = Φ

(√
m2
k/σ

2
k

)
+ op(1)

where Φ(u) = 1
2π

∫ u
−∞ e

− t2

2 dt is the cumulative distribution function of the standard Gaus-
sian distribution.

Of utmost importance here is the observation that, while m2
k/σ

2
k is an increasing func-

tion of c[l], suggesting an effective learning from the labelled set, it is independent of the
unlabelled data ratio c[u], meaning that in the case of high dimensional data, the addition of
unlabelled data, even in significant numbers with respect to the dimensionality p, produces
negligible performance gains. Motivated by this crucial remark, we propose in this paper a
simple and fundamental update to the classical Laplacian regularization approach, for the
purpose of boosting high dimensional learning performance through an enhanced utilization
of unlabelled data. The proposed algorithm will be presented and intuitively justified in
the next section.

3. Proposed Regularization with Centered Similarities

As will be put forward in Section 3.1, we find that the unlabelled data learning inefficiency
problem of Laplacian regularization, revealed by Mai and Couillet (2018), is rooted in the
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concentration of pairwise distances between data vectors of high dimensionality. To counter
the disastrous effect of the distance concentration problem, a new regularization method
with centered similarities is proposed in Section 3.2. Some high-level interpretations of
the proposed method from the perspective of label propagation and spectral information
are given in Section 3.3, justifying its usage in general scenarios beyond the analyzed high
dimensional regime.

3.1 Problem Identification

To gain perspective on the cause of inefficient learning from unlabelled data, we will start
with a discussion linking the issue to the data high dimensionality.

Developing (3), we get

f[u] = L
(a)−1
[uu] D−1−a[u] W[ul]D

a
[l]f[l]

where

W =

[
W[ll] W[lu]

W[ul] W[uu]

]
and D =

[
D[l] 0

0 D[u]

]
.

From a graph-signal processing perspective (Shuman et al., 2013), since L
(a)
[uu] is the

Laplacian matrix on the subgraph of unlabelled data, and a smooth signal s[u] on the
unlabelled data subgraph typically induces large values for the inverse smoothness penalty

sT[u]L
(a)−1
[uu] s[u], we may consider the operator Pu(s[u]) = L

(a)−1
[uu] s[u] as a “smoothness filter”

strengthening smooth signals on the unlabelled data subgraph. The unlabelled scores f[u]
can be therefore seen as obtained by a two-step procedure:

1. propagating the predetermined labelled scores f[l] through the graph with the a-

normalized weight matrix D−1−a[u] W[ul]D
a
[l] through the label propagation operator

Pl(f[l]) = D−1−a[u] W[ul]D
a
[l]f[l];

2. passing the received scores at unlabelled points through the smoothness filter Pu(s[u]) =

L
(a)−1
[uu] s[u] to finally get f[u] = Pu

(
Pl(f[l])

)
.

It is easy to see that the first step is essentially a supervised learning process, whereas the
second one capitalizes on the unlabelled data information. However, as a consequence of
the distance concentration “curse” stated in Proposition 1, the similarities (weights) wij
between high dimensional data vectors have essentially a constant value h(τ) plus some
small fluctuations, which results in the collapse of the smoothness filter:

Pu(s[u]) = L
(a)−1
[uu] s[u] '

(
In[u]

− 1

n
1n[u]

1Tn[u]

)−1
s[u] = s[u] +

1

n[l]
(1Tn[u]

s[u])1n[u]
,

meaning that, at large values of p, only the constant signal direction 1n[u]
is amplified by

the smoothness filter Pu.
To understand such behavior of the smoothness filter Pu, we recall that, as mentioned

in Section 2.1, constant signals with the same value at all points are always considered to
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be the most smooth on the graph. This comes from the fact that all weights wij have non-
negative value, so the smoothness penalty term Q(s) =

∑
i,j w[ij](si − sj)2 is minimized at

the value of zero when all elements of the signal s have the same value. Notice also that in
perfect situations where all data points in different classes are connected with zero weights
wij = 0, class indicators (with non-zero equal values at all data points of a certain class)
are just as smooth as constant signals for they also minimize the smoothness penalty term
to zero. Even though such scenarios almost never happen in real life, it is hoped that the
inter-class similarities are sufficiently weak so that the smoothness filter Pu is still effective.
What is problematic in high dimensional learning is that as the similarities wij tend to be
indistinguishable due to the distance concentration issue of high dimensional data vectors,
constant signals have overwhelming advantages to the point that they become the only
direction privileged by the smoothness filter Pu, with almost no discrimination between
all other directions. In consequence, there is nearly no utilization of the unlabelled data
information through Laplacian regularization.

In view of the above discussion, we shall try to eliminate the dominant advantage of con-
stant signals, in an attempt to render detectable the discrimination between class-structured
signals and other noisy directions. As constant signals always have a smoothness penalty
of zero, a straightforward way to break their optimal smoothness is to introduce nega-
tive weights in the graph so that the values of smoothness regularizers can go below zero.
More specifically, in the cases where the intra-class similarities are averagely positive and
the inter-class similarities averagely negative, class-structured signals are bound to have
a lower smoothness penalty than constant signals. However, implementing such idea is
hindered by the fact that the positivity of the data points degrees di =

∑n
j=1wij is no

longer ensured, and having negative degrees can lead to severely unstable results. Take for
instance the label propagation step Pl(f[l]) = D−1−a[u] W[ul]D

a
[l]f[l], at an unlabelled point xi,

the sum of the received scores after that step equals to d−1−ai

∑n[l]

j=1(wijd
a
j )fj , the sign of

which obviously alters with the sign of the degree at that point, leading thus to extremely
unstable classification results.

3.2 Approach of Centered Similarities

To cope with the problem identified above, we propose here to use centered similarities ŵij ,
for which the positive and negative weights are balanced out at any data point, i.e., for all
i ∈ {1, . . . , n}, di =

∑n
j=1 ŵij = 0. Given any similarity matrix W , its centered version Ŵ

is easily obtained by applying a projection matrix P =
(
In − 1

n1n1Tn
)

on both sides:

Ŵ = PWP. (7)

As a first advantage, the centering approach allows one to remove the degree matrix alto-
gether (for the degrees are exactly zero now) from the updated smoothness penalty

Q̂(s) =

n∑
i,j=1

ŵij(si − sj)2 = −sTŴs,

securing thus a stable behavior of graph regularization with both positive and negative
weights.
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Another problematic consequence of regularization procedures employing positive and
negative weights is that the optimization problem is no longer convex and may have an
infinite solution. To deal with this issue, we add a constraint on the norm of the solution.
Letting f[l] be given by (4), the new optimization problem is now posed as follows:

min
f[u]∈R

n[u]
−fTŴf

s.t. ‖f[u]‖2 = n[u]e
2 (8)

for some e > 0.
The optimization can be solved by introducing a Lagrange multiplier λ = λ(e) to the

norm constraint ‖f[u]‖2 = n[u]e
2 and the solution reads

f[u] =
(
λIn[u]

− Ŵ[uu]

)−1
Ŵ[ul]f[l] (9)

with λ > ‖Ŵ[uu]‖ uniquely given by∥∥∥∥(λIn[u]
− Ŵ[uu]

)−1
Ŵ[ul]f[l]

∥∥∥∥2 = n[u]e
2. (10)

To see that (9) is the unique solution to the optimization problem (8), it is useful to
remark that, by the properties of convex optimization, (9) is the unique solution to the
unconstrained convex optimization problem minf[u] λ‖f[u]‖

2− fTŴf for some λ > ‖Ŵ[uu]‖.
When Equation (10) is satisfied, we get (through a proof by contradiction) that (9) is the
only solution that minimizes −fTŴf in the subspace defined by ‖f[l]‖2 = n[u]e

2.
In practice, λ can be used directly as a hyperparameter for a more convenient imple-

mentation. We summarize the method in Algorithm 1 where, for the sake of normalization,
we consider a change of variable α = λ/‖Ŵ[uu]‖ − 1, which is allowed to take any positive
value.

Algorithm 1 Graph-Based Centered Regularization

1: Input: n[l] pairs of labelled points and labels {(xi, yi)}
n[l]

i=1, n[u] unlabelled data
{xi}ni=n[l]+1

, parameter α ∈ R+.

2: Output: Classification score vector of unlabelled data f[u] ∈ Rn[u]

3: Define the similarity matrix W = {wi,j}ni,j=1 with wij reflecting the closeness between
xi and xj .

4: Compute the centered similarity matrix Ŵ by (7) and the balanced labels f[l] by (4).
5: Set λ = (α+ 1)‖W[uu]‖ and compute f[u] by (9).

The proposed algorithm induces almost no extra cost to the classical Laplacian approach,
except the addition of the hyperparameter α controlling the norm of f[u]. The performance
analysis in Section 4 will help demonstrate that the existence of this hyperparameter, aside
from making the regularization with centered similarities a well-posed problem, allows one
to adjust the combination of labelled and unlabelled information in search for an optimal
semi-supervised learning performance. Roughly speaking, with small α, the algorithm puts
a greater weight on the unlabelled data information; conversely, large values of α correspond
to a stressed impact of the labelled data.

10
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3.3 Interpretation

Before the performance analysis of Section 4, which establishes the effectiveness of the pro-
posed method for a consistent high dimensional semi-supervised learning, we provide here
some high-level arguments that help understand the proposed method and its applicability
in a more general context.

3.3.1 Viewpoint of Label Propagation

Similarly to Laplacian regularization, the centered regularization method can also be in-
terpreted from the perspective of label propagation (Zhu and Ghahramani, 2002). Setting

f
(0)
[u] ← λ−1Ŵ[ul]f[l], we retrieve the solution (9) of centered regularization at the stationary

point f
(∞)
[u] of the following iterative procedure:

f
(t+1)
[u] ← λ−1

[
0n[u]×n[l]

In[u]

]
PWP

[
f[l]

f
(t)
[u]

]
.

Denoting f (t) = [f[l], f
(t)
[u] ]

T, the above process can be seen as propagating the centered score

vector f̂ (t) = Pf (t) through the weight matrix W , then recentering the received scores

η(t) = Wf̂ (t) before outputting f
(t+1)
[u] as the subset of η̂(t) = Pη(t) corresponding to the

unlabelled points.
Recall from the discussion in Section 3.1 that the extremely amplified constant signal

1n[u]
in the outcome f[u] of Laplacian regularization is closely related to the ineffective

unlabelled data learning problem. In the proposed approach, the constant signal is cancelled
thanks to the recentering operations before and after the label propagation over W . The
existence of the multiplier λ−1 allows us to magnify the score vector, after its norm was
significantly reduced due to the recentering operations.

3.3.2 Spectral Information of Regularizers

As explained in Section 3.1, the motivation behind centered regularization is to propose a
smoothness regularizer that penalizes the constant score vector 1n. With centered similar-
ities, we exchange the Laplacian regularizer fTLf with −fTŴf , so that the smoothness
penalty is no longer minimized at 1n. It is easy to see that under the setting of constant
degrees di =

∑n
j=1wij = d, such as in the case of directed KNN graphs where d equals the

number of neighbors of each node, the Laplacian matrix L = D−W has the same ordering
of eigenvalue-eigenvector pairs as −Ŵ except for the constant direction 1n.

One may argue that the spectral information of L is kept intact in centered regulariza-
tion, while the potentially counterproductive tendency to favor constant vectors is removed.
However, in practice, we often deal with heterogeneous degrees. The observed performance
gains by using differently normalized Laplacian matrices suggests the importance of taking
into account the effect of heterogeneous degrees on the spectral information. It is thus hard
to predict how the centered regularization method may behave in comparison, without a
deep understanding on the impact of heterogeneous degrees. As the analysis in Section 4
establishes the superiority of centered regularization in the limit of very high dimensional
data learning, the benefit of our proposed method is expected to manifest itself when the
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advantage of effective high dimensional data learning outweighs the impact of heterogeneous
degrees (which may work against the algorithm of centered regularization). Future studies
are envisioned to propose normalized versions of centered regularization better adapted to
heterogeneous degrees.

4. Theoretical Guarantees

The main purpose of this section is to provide mathematical support for an effective high
dimensional learning of the centered regularization algorithm from not only labelled data
but also from unlabelled data, allowing for a theoretically guaranteed performance gain
over the classical Laplacian approach (through an enhanced utilization of unlabelled data).
The theoretical results also point out that the proposed method has an unlabelled data
learning efficiency that is at least as good as spectral clustering, as opposed to Laplacian
regularization.

4.1 Precise Performance Analysis

We provide here the statistical characterization of unlabelled data scores f[u] obtained by
the proposed algorithm. As the new algorithm will be shown to draw on both labelled
and unlabelled data, the complex interactions between these two types of data generate
more intricate outcomes than in the analysis of Mai and Couillet (2018). To facilitate
the interpretation of the theoretical results without cumbersome notations, we present the
theorem here under the data homoscedasticity, i.e., C1 = C2 = C, without affecting the
generality of the conclusions given subsequently. We refer interested readers to the appendix
for the generalized theorem along with its proof.

We introduce first two positive functions m(ξ) and σ2(ξ) which are crucial for describing
the statistical distribution of unlabelled scores:

m(ξ) =
2c[l]θ(ξ)

c[u]
(
1− θ(ξ)

) (11)

σ2(ξ) =
ρ1ρ2(2c[l] +m(ξ)c[u])

2s(ξ) + ρ1ρ2(4cl +m(ξ)2c[u])ω(ξ)

c[u]
(
c[u] − ω(ξ)

) (12)

where

θ(ξ) = ρ1ρ2ξ(µ1 − µ2)T (Ip − ξC)−1 (µ1 − µ2)

ω(ξ) = ξ2p−1 tr
[
(Ip − ξC)−1C

]2
s(ξ) = ρ1ρ2ξ

2(µ1 − µ2)T (Ip − ξC)−1C (Ip − ξC)−1 (µ1 − µ2).

Here the positive functions m(ξ) and σ2(ξ) are defined respectively on the domains (0, ξm)
and (0, ξσ2) with ξm, ξσ2 > 0 uniquely given by θ(ξm) = 1 and ω(ξσ2) = c[u]. Additionally,
we define

ξsup = min{ξm, ξσ2}. (13)

12
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These definitions may at first glance seem complicated, but it suffices to keep in mind
a few key messages to understand the theoretical results and their implications:

• θ(ξ), ω(ξ) and s(ξ) are all positive and strictly increasing functions for ξ ∈ (0, ξsup);
consequently so are m(ξ) and σ2(ξ).

• ξm does not depend on c[l] or c[u]; as for ξσ2 , it is constant with c[l] but increases as
c[u] increases.

• ρ1ρ2m2(ξ) + σ2(ξ) monotonously increases from zero to infinity as ξ increases from
zero to ξsup.

The above remarks are derived directly from the definitions of the involved mathematical
objects.

Theorem 3 Let Assumption 1 hold with C1 = C2 = C, the function h of (1) be three-
times continuously differentiable in a neighborhood of τ , f[u] be the solution of (8) with
fixed norm n[u]e

2 and with the notations of m(ξ), σ2(ξ), ξsup given in (11), (12), (13).
Then, for n[l] + 1 ≤ i ≤ n (i.e., xi unlabelled) and xi ∈ Ck,

fi = f̃i + oP (1), where f̃i ∼ N ((−1)k(1− ρk)m̂, σ̂2)

with

m̂ = m(ξe), σ̂2 = σ2(ξe)

for ξe ∈ (0, ξsup) uniquely given by ρ1ρ2m(ξe)
2 + σ2(ξe) = e2.

4.2 Consistent Learning from Labelled and Unlabelled Data

Theorem 3 implies that the performance of the proposed method is controlled by both c[l]
and c[u] (the number of labelled and unlabelled samples per dimension), as m(ξ), σ2(ξ)
(given by (11), (12)) are dependent of c[l] and c[u]. It is however hard to see directly a
consistently increasing performance with both c[l] and c[u] from these results. As a first
objective of this section, we translate the theorem into more interpretable results.

First, it should be pointed out that, with the approach of centered similarities, the norm
of the unlabelled data score vector f[u] is adjustable via the hyperparameter e, as opposed
to the Laplacian regularization methods. As will be demonstrated later in this section, the
norm of f[u], or more precisely the norm of its deterministic part E{f[u]}, directly affects
how much the learning process relies on the unlabelled (versus labelled) data. With E{f[u]}
given by Theorem 3 for high dimensional data, we indeed note that

‖E{f[u]}‖
‖f[l]‖+ ‖E{f[u]}‖

=
c[u]m̂

2c[l] + c[u]m̂
+ oP (1) = θ(ξe) + oP (1)

as it can be obtained from (11) that

θ(ξ) =
c[u]m(ξ)

2c[l] + c[u]m(ξ)
.
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In the following discussion, we shall use the variance over square mean ratio

rctr ≡ σ̂2/m̂2 (14)

as the inverse performance measure for the method of centered regularization (i.e., smaller
values of rctr imply better classification results for high dimensional data). A reorganization
of the results in Theorem 3 leads to the corollary below.

Corollary 4 Under the conditions and notations of Theorem 3, and with rctr defined in
(14), we have

rctr
ρ1ρ2

=
s(ξe)

θ2(ξe)
+
ω(ξe)

θ2(ξe)

[
θ2(ξe)

c[u]

(
1 +

rctr
ρ1ρ2

)
+

(1− θ(ξe))2

c[l]

]
(15)

where we recall θ(ξ) =
c[u]m(ξ)

2c[l]+c[u]m(ξ) ∈ (0, 1).

Equation (15) suggests a growing performance with more labelled or unlabelled data, as
the last two terms on the right-hand side have respectively c[u] and c[l] in their denominators.

These two terms are actually quite similar, except for the pair of θ2(ξe) and [1− θ(ξe)]2
each associated to one of them, and a factor of 1 + rctr/ρ1ρ2 ≥ 1 in the term with c[u].
As said earlier, the quantity θ(ξe) = c[u]m̂/(2c[l] + c[u]m̂) ∈ (0, 1) reflects how much the
learning relies on unlabelled data. Indeed, it can be observed from (15) that rctr tends to
be only dependent of c[l] (resp., c[u]) in the limit θ(ξe) → 0 (resp., θ(ξe) → 1). The factor
1 + rctr/ρ1ρ2 ≥ 1 translates into the fact that unlabelled data are less informative than
the labelled ones. According to the definition of rctr, this factor goes to 1 when the scores
of unlabelled data tend to deterministic values, indicating an equivalence between labelled
and unlabelled data in this extreme scenario. In a way, the factor of 1 + rctr/ρ1ρ2 quantifies
how much labelled samples are more helpful than unlabelled data to the learning process.

To demonstrate an effective learning from labelled and unlabelled data, we now show
that, for a well-chosen e, rctr decreases with c[u] and c[l]. Recall that the expressions of θ(ξ),
ω(ξ) and s(ξ) do not involve c[u] or c[l]. It is then easy to see that, at some fixed ξe, rctr > 0
is a strictly decreasing function of both c[u] and c[l]. Adding to this argument the fact
that the attainable range (0, ξsup) of ξe over e > 0 is independent of c[l] and only enlarges
with greater c[u] (as can be derived from the definition (13) of ξsup), we conclude that
the performance of the proposed method consistently benefits from the addition of input
data, whether labelled or unlabelled, as formally stated in Proposition 5. These remarks are
illustrated in Figure 1, where we plot the probability of correct classification as θ(ξe) varies
from 0 to 1.

Proposition 5 Under the conditions and notations of Corollary 4, we have that, for any
e > 0, there exists an e′ > 0 such that rctr(c[l], c[u], e) > r′ctr(c

′
[l], c

′
[u], e

′) if c′[l] ≥ c[l], c
′
[u] ≥ c[u]

and c′[l] + c′[u] > c[l] + c[u].

Not only is the proposed method of centered regularization able to achieve an effective
semi-supervised learning on high dimensional data, it does so with a labelled data learning
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Figure 1: Asymptotic probability of correct classification as θ(ξe) varies, for ρ1 = ρ2, p =
100, µ1 = −µ2 = [−1, 0, . . . , 0]T, {C}i,j = .1|i−j|. Left: various c[u] with c[l] = 1.
Right: various c[l] with c[u] = 8. Optimal values marked in circle.

efficiency lower bounded by that of Laplacian regularization (which is reduced to supervised
learning in high dimensions), and an unlabelled data learning efficiency lower bounded by
that of spectral clustering, a standard unsupervised learning algorithm on graphs. The focus
of the following discussion is to establish this second remark, which implies the superiority of
centered regularization over the methods of Laplacian regularization and spectral clustering.

Observe from Theorem 2 that under the homoscedasticity assumption, the random
walk normalized Laplacian algorithm (the only one ensuring non-trivial high dimensional
classification among existing Laplacian algorithms) gives (similarly to the centered regu-
larization method) f̃i ∼ N

(
(−1)k(1− ρk)m′, σ′2

)
for m′ = (2ρ1ρ2c[l]/pc0)(m2 −m1), σ

′ =
(2ρ1ρ2c[l]/pc0)σ1 = (2ρ1ρ2c[l]/pc0)σ2 with mk, σk, k ∈ {1, 2} given in Theorem 2. Similarly
to the definition of rctr, we denote

rLap ≡ σ′2/m′2. (16)

Since θ(ξe) → 0 as ξe → 0 and ξe → 0 as e → 0, we obtain the following proposition
from the results of Theorem 2 and Corollary 4.

Proposition 6 Under the conditions and notations of Theorem 2 and Corollary 4, letting
rLap be defined by (16), we have that

lim
e→0

rctr = rLap =
(µ1 − µ2)TC(µ1 − µ2)

‖µ1 − µ2‖4
+

trC2

p‖µ1 − µ2‖4ρ1ρ2c[l]
.

We thus remark that the performance of Laplacian regularization is retrieved by the proposed
method in the limit e→ 0.

After ensuring the superiority of the new regularization method over the original Lapla-
cian approach, we now proceed to provide further guarantee on its unlabelled data learning
efficiency by comparing it to the unsupervised method of spectral clustering.
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Recall that the regular graph smoothness penalty term Q(s) of a signal s can be written
as Q(s) = sTLs. In an unsupervised learning setting, we shall seek the unit-norm vector
that minimizes the smoothness penalty, which is the eigenvector of L associated with the
smallest eigenvalue. However, as Q(s) reaches its minimum at the clearly non-informative
flat vector s = 1n, the sought-for solution is provided instead by the eigenvector associated
with the second smallest eigenvalue. In contrast, the updated smoothness penalty term
Q̂(s) = −sTŴs with centered similarities does not achieves its minimum for “flat” signals,
and thus the eigenvector associated with the smallest eigenvalue is here a valid solution.
Another important aspect is that spectral clustering based on the unnormalized Laplacian
matrix L = D−W has long been known to behave unstably (Von Luxburg et al., 2008), as

opposed to the symmetric normalized Laplacian Ls = In−D−
1
2WD−

1
2 , so here we compare

against Ls rather than L.
Let us define dinter(v) as the inter-cluster distance operator that takes as input a real-

valued vector v of dimension n, then returns the distance between the centroids of the
clusters formed by the set of points in the same class {vi|1 ≤ i ≤ n, xi ∈ Ck}, for k ∈ {1, 2};
and dintra(v) be the intra-cluster distance operator that returns the standard deviation
within clusters. Namely,

dinter(v) = |jT1 v/n1 − jT2 v/n2|
dintra(v) = ‖v − (jT1 v/n1)j1 − (jT2 v/n2)j2‖/

√
n

where jk ∈ Rn with k ∈ {1, 2} is the indicator vector of class k with [jk]i = 1 if xi ∈ Ck,
otherwise [jk]i = 0; and nk the number of ones in the vector jk. As the purpose of clustering
analysis is to produce clusters conforming to the intrinsic classes of data points, with low
variance within each cluster and large distance between clusters, the following proposition
(see the proof in Appendix B) shows that the spectral clustering algorithm based on the
normalized Laplacian matrix Ls, which has been studied by Couillet and Benaych-Georges
(2016) under the high dimensional setting, has practically the same performance as the one
with the centered similarity matrix Ŵ .

Proposition 7 Under the conditions of Theorem 3, let vLap be the eigenvector of Ls as-

sociated with the second smallest eigenvalue, and vctr the eigenvector of Ŵ associated with
the largest eigenvalue. Then,

dinter(vLap)

dintra(vLap)
=
dinter(vctr)

dintra(vctr)
+ oP (1)

for non-trivial clustering with dinter(vLap)/dintra(vLap), dinter(vctr)/dintra(vctr) = O(1) .

As explained before, the solution f[u] of the centered similarities regularization can be

expressed as f[u] =
(
λIn[u]

− Ŵ[uu]

)−1
Ŵ[ul]f[l] for some λ > ‖Ŵ[uu]‖ (dependent of e as

indicated in (10)). Clearly, as λ ↓ ‖Ŵ[uu]‖, f[u] tends to align with the eigenvector of Ŵ[uu]

associated with the largest eigenvalue. Therefore, the performance of spectral clustering on
the unlabelled data subgraph is retrieved at e→ +∞.

In view of the above discussion, we conclude that the proposed regularization method
with centered similarities
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• recovers the high dimensional performance of Laplacian regularization at e→ 0;

• recovers the high dimensional performance of spectral clustering at e→ +∞;

• accomplishes a consistent high dimensional semi-supervised learning for e appropri-
ately set between the two extremes, thus leading to an increasing performance gain
over Laplacian regularization with greater amounts of unlabelled data.

5. Numerical Evidence

The main objective of this section is to provide empirical evidence for the superiority of the
proposed regularization method on high dimensional data, in addition to the theoretical
guarantees provided in Section 4. Firstly, we check the validity of our asymptotic results on
moderately large data sets. The figures of Section 5.1 show that our performance prediction
matches the empirical value with great precision on data sets of n, p ∼ 100. Beyond our
theoretical model, we provide an empirical study in Section 5.2 of how Laplacian and
centered regularizations behave under different levels of distance concentration through
simulations on real-world data. The numerical results confirm a positive correlation between
the severity of distance concentration and the advantage of centered regularization over
Laplacian regularization, as we observe a consistently effective unlabelled data learning of
the former while the latter fails under strong influence of distance concentration.

5.1 Validation of Precise Performance Analysis on Finite-Size Systems

We first validate the asymptotic results of Section 4 on finite data sets of only moder-
ately large sizes (n, p ∼ 100). Recall from Section 4 that the asymptotic performance of
Laplacian regularization and spectral clustering are recovered by centered regularization at
extreme values of the parameter θ, respectively in the limit θ = 0 and θ = 1 (when spectral
clustering yields non-trivial solutions); this is how the theoretical values of both methods
are computed in Figure 2. The finite-sample results are given for the best (oracle) choice
of the hyperparameter a in the generalized Laplacian matrix L(a) = I − D−1−aWDa for
Laplacian regularization and spectral clustering, and for the optimal (oracle) choice of the
hyperparameter α for centered regularization.

Under a non-trivial Gaussian mixture model setting (see caption) with p = 100, Figure 2
demonstrates a sharp prediction of the average empirical performance by the asymptotic
analysis. As revealed by the theoretical results, the Laplacian regularization method fails
to learn effectively from unlabelled data, causing it to be outperformed by the purely unsu-
pervised spectral clustering approach (for which the labelled data are treated as unlabelled
ones) for sufficiently numerous unlabelled data. The performance curve of the proposed
centered regularization algorithm, on the other hand, is consistently above that of spec-
tral clustering, with a growing advantage over Laplacian regularization as the number of
unlabelled data increases.

Figure 2 also interestingly shows that the unsupervised performance of spectral clus-
tering is noticeably reduced when the covariance matrix of the data distribution changes
from the identity matrix to a slightly disrupted model (here for {C}i,j = .1|i−j|). On the
contrary, the Laplacian regularization, the high dimensional performance of which relies
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Figure 2: Empirical and theoretical accuracy as a function of c[u] with c[l] = 2, ρ1 = ρ2,

p = 100, −µ1 = µ2 = [−1, 0, . . . , 0]T, C = Ip (left) or {C}i,j = .1|i−j| (right).

Graph constructed with wij = e−‖xi−xj‖
2/p. Averaged over 50000/n[u] iterations.

essentially on labelled data, is barely affected. This is explained by the different impacts
labelled and unlabelled data have on the learning process, which can be understood from
the theoretical results in Section 4.

5.2 Effect of Distance Concentration Beyond Model Assumptions

While our technical derivation relies on the Gaussianity of data vectors, we expect the ad-
vantage of an effective semi-supervised learning by the proposed method to hold in a broader
context of high dimensional learning, as the distance concentration phenomenon (which, as
we recall from Section 3.1, is responsible for the unlabelled data learning inefficiency of
Laplacian regularization) is essentially irrespective of the data Gaussianity. Proposition 1
can indeed be generalized to a wider statistical model by a mere law of large numbers; this

is the case for instance of all high dimensional data vectors xi of the form xi = µk + C
1
2
k zi,

for k ∈ {1, 2}, where µk ∈ Rp, Ck ∈ Rp×p are means and covariance matrices as specified
in Assumption 1 and zi ∈ Rp any random vector of independent elements with zero mean,
unit variance and bounded fourth order moment. Beyond this model of zi with independent
entries, the recent work by Louart and Couillet (2018) strongly suggests that Proposition 1
remains valid for the wider class of concentrated vectors xi (Ledoux, 2005), including in
particular generative models of the type xi = F (zi) for zi ∼ N (0, Ip) and F : Rp → Rp
any 1-Lipschitz mapping (for instance, artificial images produced by generative adversarial
networks, Goodfellow et al., 2014).

The main objective of this section is to provide an actual sense of how the Laplacian
regularization approach and the proposed method behave under different levels of distance
concentration. We focus here, as a real-life example, on the MNIST data of handwritten
digits (LeCun, 1998).

For a fair comparison of Laplacian and centered regularizations, the results displayed
here are obtained on their respective best performing graphs, selected among the k−nearest
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Figure 3: Top: distribution of normalized pairwise distances ‖xi−xj‖2/δ̄ (i 6= j) with δ̄ the
average of ‖xi − xj‖2 for MNIST data. Bottom: average accuracy as a function
of n[u] with n[l] = 15 (left) or n[l] = 10 (right), computed over 1000 random
realizations with 99% confidence intervals represented by shaded regions.

neighbors graphs (which were observed to yield very competitive performance on MNIST
data) with various numbers of neighbors k = {21, . . . , 2q}, for q the largest integer such
that 2q < n. The hyperparameters of Laplacian and centered regularizations are set opti-
mally within the admissible range.1 It worth pointing out that the popular KNN graphs,
constructed by letting wij = 1 if data points xi or xj is among the k nearest (k being
the parameter to be set beforehand) to the other data point, and wij = 0 if not, are not
covered by the present analytic framework. Our study only deals with graphs where wij
is exclusively determined by the distance between xi and xj , while in the KNN graphs,
wij is dependent of all pairwise distances in the whole data set. Nonetheless, KNN graphs
evidently suffer the same problem of distance concentration, for they are still based on the
distances between data points. It is thus natural to expect the proposed centering procedure
to be also advantageous on KNN graphs.

1. Specifically, the hyperparameter a of Laplacian regularization is searched from −2 to 0 with a step of
0.02, and the hyperparameter α of centered regularization within the grid α = 10{−3,−2.9,...,2.9,3}. The
results outside these ranges are observed to be non-competitive.
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Figure 4: Top: distribution of normalized pairwise distances ‖xi−xj‖2/δ̄ (i 6= j) with δ̄ the
average of ‖xi − xj‖2 for noisy MNIST data (7,8,9). Bottom: average accuracy
as a function of n[u] with n[l] = 15, computed over 1000 random realizations with
99% confidence intervals represented by shaded regions.

Figure 3 shows that high classification accuracy is easily obtained on MNIST data, even
with the classical Laplacian approach. However, it exhibits an lower learning efficiency
compared to the proposed method. We also find that the benefit of the proposed algorithm
is more perceptible on the binary classification task displayed on the left side of Figure 3
than the multiclassification task on the right side, for which the difference between inter-
class and intra-class distances is more apparent. This suggests that the advantage of the
proposed method is more related to a subtle distinction between inter-class and intra-class
distances than to the number of classes.

Figure 4 presents situations where the learning problem becomes more challenging in
the presence of additive noise. Understandably, the distance concentration phenomenon is
more acute in this noise-corrupted setting, causing more subtle distinction between inter-
class and intra-class distances. As a result, the performance gain generated by the proposed
method should be more significant for being robust to the negative influence of distance
concentration. This is corroborated by Figure 4, where larger performance gains are ob-
served on noised data from the same task on the right side of Figure 3. Moreover, on the
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right display of Figure 4, where the similarity information is seriously disrupted by the ad-
ditive noise, we observe the anticipated saturation effect when increasing n[u] for Laplacian
regularization, in contrast to the growing performance of the proposed approach. This sug-
gests, in conclusion, that regularization with centered similarities has a competitive, if not
superior, performance in various situations, and yields particularly significant performance
gains when the distinction between intra-class and inter-class similarities is quite subtle.

6. Further Discussion and Support

We start this section by presenting other graph-based semi-supervised learning methods and
discussing them in relation to the regularization approaches investigated in this article. To
evaluate the ability of these SSL methods to optimally exploit the information in partially
labelled data sets, we use the recent results of Lelarge and Miolane (2019) as a reference
point, where the best achievable semi-supervised learning performance on high dimensional
Gaussian mixture data with identity covariance matrices was characterized. For a broader
discussion on the applicability of the centering approach, we propose in Section 6.3.1 a
higher-order version of centered regularization adapted from the iterated Laplacian method
(Zhou and Belkin, 2011), which serves as an example for applying centered similarities be-
yond the standard Laplacian regularization. Our experiments in Section 6.3.2 demonstrate
the practical interest of centered similarities on various benchmark data sets, and show in
particular that the algorithm combining centered simliarities with the iterated technique
of higher-order regularization helps substantially increase the competitiveness of graph reg-
ularization as an SSL approach on challenging data sets. We conclude by remarking in
Section 6.4 that the sparsity of the weight matrix can also be exploited for improving the
computational efficiency of centered regularization with the help of Woodbury’s inversion
formula.

6.1 Related Methods

We review first some competitive variants of Laplacian regularization before presenting
another major approach of graph-based semi-supervised learning which relies explicitly on
the spectral decomposition of Laplacian matrices.

6.1.1 Variants of Laplacian Regularization

The method of Laplacian regularization has been found by Nadler et al. (2009) to suffer
from the “score flatness” problem where unlabelled data scores fi concentrate around the
same value (i.e., fi = c+ o(1) for some constant c) when the number of unlabelled samples
is exceedingly large compared to that of labelled ones (i.e., n[u]/n[l] → ∞). Following this
discovery, several regularization techniques have been proposed to adapt the original method
to ensure well-behaved scores, which will be presented in this section. On a related note,
the analysis of Mai and Couillet (2018) (which motivated the present study) pointed out
that, in high dimensions, the phenomenon of flat unlabelled data scores occurs even when
the number of unlabelled samples is comparable to that of labelled ones. As can be easily
deduced from our study, the problem of flat unlabelled scores is addressed by the centered
regularization method in the more challenging setting of high dimensional learning.
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Higher Order Regularization. A well-studied approach to address the problem of flat
unlabelled scores revealed by Nadler et al. (2009) is higher-order regularization. There exist
mainly two types of higher-order regularization: iterated Laplacian and `p-based Laplacian.
The method of iterated Laplacian regularization consists in using the powers of Laplacian
matrices for constructing high-order regularizers fTLqf of graph smoothness. It was shown
by Zhou and Belkin (2011) to yield non-flat unlabelled scores. The `p-based Laplacian regu-
larization achieves this by forcing a stronger constrain

∑n
i,j=1wij |fi−fj |q on the smoothness

(Zhou and Schölkopf, 2005; El Alaoui et al., 2016). Another method in the same vein is
game-theoretic p-Laplacian (Rios et al., 2019), which does not arise through an optimiza-
tion problem and tends to be numerically better conditioned. In comparison, the iterated
approach is more computationally efficient as it assumes an explicit solution, whereas the
method of `p-based Laplacian regularization calls for practical algorithms to solve more ef-
ficiently the implicit optimization (Rios et al., 2019). Also, the iterated Laplacian is found
to outperform p-voltages Laplacian regularization (Bridle and Zhu, 2013), a dual version of
`p-based Laplacian in the context of electrical networks. In addition to avoiding the score
‘flatness’ issue, high-order regularizers fTLqf and their extensions fTg(L)f (Smola and
Kondor, 2003) obviously benefit from more degrees of freedom to improve the classification
performance.

Weighted Nonlocal Laplacian. Other than the methods of high-order regularization,
the approach of weighted nonlocal Laplacian (Shi et al., 2017) has also been observed to be
effective in combating the score flatness problem. By changing the optimization to

min
f[u]∈R

n[u]

n∑
i=n[l]+1

 n∑
j=n[l]+1

wij(fi − fj)2 +
n

n[l]

n[l]∑
j=1

wij(fi − fj)2
 ,

it places a higher weight of n/n[l] on the smoothness penalty between unlabelled data scores
and fixed non-flat ones on labelled points.

6.1.2 Eigenvector-Based Methods

Aside from graph regularization methods, another popular graph-based semi-supervised
approach exists which takes advantage of the spectral information of Laplacian matrices
(Belkin and Niyogi, 2003). Rather than regularizing f over the graph, this method computes
first the eigenmap of Laplacian matrices, then uses a certain number s of eigenvectors
E = [e1, . . . , es] associated with the smallest eigenvalues to build a linear subspace and
search within this space for an f which minimizes ‖f[l] − y[l]‖. By the method of least

squares, f = Ea with a = (ET
[l]E[l])

−1ET
[l]y[l].

As an advantage of using the spectral information, this eigenvector-based method is
guaranteed to achieve at least the performance of spectral clustering, as opposed to the
Laplacian regularization approach. On the other hand, the regularization approach does
not have a performance which depends crucially on how well the class signal is captured by a
small number of eigenvectors, as it uses the graph matrix as a whole. Another benefit of the
graph regularization approach is that it can be easily incorporated into other algorithms
as an additional term in the loss function (e.g., Laplacian SVMs). With our proposed
algorithm of centered regularization, a consistent learning of unlabelled data, related to
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the performance of spectral clustering, can also be achieved by the graph regularization
approach. Moreover, the proposed method has a theoretically-proven efficient usage of
labelled data which is absent in the eigenvector-based method.

6.2 Optimal Performance on Isotropic Gaussian Data of High Dimensionality

A very recent work of Lelarge and Miolane (2019) has established the optimal performance
of semi-supervised learning on a high dimensional Gaussian mixture data model N (±µ, Ip),
with identity covariance matrices.2 In this work, a method of Bayesian estimation is identi-
fied as the one achieving the optimal performance. However, as pointed out by the authors,
this method is computationally expensive except on fully labelled data sets and approxi-
mations are needed for practical usage.

By comparing the results of Lelarge and Miolane (2019) with our performance analysis
in Section 4, we find that the method of centered regularization achieves an optimal per-
formance on fully labelled data sets and a nearly optimal one on partially labelled sets.3

Numerical results are given in Figure 5, where the classification accuracy of the centered
regularization method, computed from Theorem 3 and maximized over the hyperparameter
e, is observed to be extremely close to the optimal performance provided by Lelarge and Mi-
olane (2019). Hence, the centered regularization method can be used as a computationally
efficient alternative to the Bayesian approach which yields the best achievable performance.
In contrast, other graph-based semi-supervised learning algorithms are much less effective
in reaching the optimal performance, as can be observed from Figure 6.

We remark also that the iterated Laplacian regularization method appears to be less
efficient in exploiting unlabelled data and so is the eigenvector-based method in learning
from labelled data. As can be observed in Figure 6, the iterated Laplacian regularization
method falls notably short of approaching the optimal performance when the value of m
yielding the highest accuracy is further away from 1 (scenarios depicted by the blue curves
in the figure). Since we retrieve the standard Laplacian regularization at m = 1, which gives
the optimal performance in the absence of unlabelled data, the performance gain yielded by
the iterated Laplacian regularization technique over the Laplacian method is mainly brought
by the utilization of unlabelled data at higher m. However, as demonstrated in Figure 6, the
utilization of unlabelled data at higher m is unsatisfactory in allowing the method to reach
the optimal semi-supervised learning performance. Since the eigenvector-based approach is
reduced to the purely unsupervised method of spectral clustering at s = 1, the same remark
can be made with respect to its labelled data learning efficiency.

6.3 Applicability of Centered Similarities and High-Order Regularization

The focus of this article is to promote the usage of centered similarities in graph regular-
ization for semi-supervised learning. This fundamental idea can also be applied together
with other regularization techniques. In this section, we start by presenting a higher-order
version of centered regularization that borrows from iterated Laplacian. To investigate the
practical potential of centered similarities, we test the proposed method of centered regu-

2. To the authors’ knowledge, more general results (e.g., with arbitrary covariance matrices) are currently
out-of-reach.

3. We refer to Appendix D for some theoretical details.
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Figure 5: Asymptotic accuracy on isotropic Gaussian mixture data. Performance curves as
a function of c[u] with c[l] = 1/2, for (from top to bottom) ‖µ‖2 = 2, 4/3, or 1.
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Figure 6: Empirical accuracy of graph-based SSL algorithms at different values of hyperpa-
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(bottom) or ‖µ‖2 = 2 (top). Averaged over 1000 realizations. Best empirical
value marked in circle and the asymptotic optimum in cross.
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larization and its higher-order variant on several benchmark data sets. Our experiments
support the benefit of centered similarities, especially on challenging data sets. We find im-
portantly that the proposed higher-order centered regularization, which combines the ideas
of centered similarities and iterated regularization, yields a very competitive performance
when compared to not only related graph-based methods but also a wide range of popular
SSL approaches.

6.3.1 Higher-Order Centered Regularization

It is easy to check that all exponents of a centered simliarity matrix Ŵ enjoy the same prop-
erty of being orthogonal to the constant vector 1n. It is thus possible to apply polynomial
functions of Ŵ in the search of a better centered regularizer. Finding the right parametriza-
tion for the polynomial function can be challenging. Comparing (2) and (9), we notice that
the matrix L̂ = λIn − Ŵ plays the same role in centered regularization as the Laplacian
matrix L in Laplacian regularization. We then borrow the idea from iterated Laplacian to
propose a higher-order centered regularization method, which consists in simply replacing
L̂ = λIn − Ŵ in (9) with its exponents L̂(q) = (λIn − Ŵ )q, leading to

f[u] = −L̂(q)−1
[uu] L̂

(q)
[ul]f[l] (17)

The method of iterated centered regularization is formalized in Algorithm 2.

Algorithm 2 Graph-Based Iterated Centered Regularization

1: Input: n[l] pairs of labelled points and labels {(xi, yi)}
n[l]

i=1, n[u] unlabelled data
{xi}ni=n[l]+1

, parameters α ∈ R+, q ∈ N+.

2: Output: Classification score vector of unlabelled data f[u] ∈ Rn[u]

3: Define the similarity matrix W = {wi,j}ni,j=1 with wij reflecting the closeness between
xi and xj .

4: Compute the centered similarity matrix Ŵ by (7) and the balanced labels f[l] by (4).

5: Set λ = (α+ 1)‖W‖, L̂(q) = (λIn − Ŵ )q, and compute f[u] by (17).

6.3.2 Experimental Results and Comparison to Other Methods

To investigate the practical potential of centered similarities, we test in this section the pro-
posed methods of standard and higher-order centered regularization on several benchmark
data. We first focus on the comparison with the related graph-based SSL methods presented
in Section 6.1, before moving on to a wider range of competitors. Our results attest to the
general interest of centered similarities for improving over the classical Laplacian approach.
Remarkably, the algorithm of iterated centered regularization, which inherits the strengths
of both iterated and centered approaches, is identified as a powerful competitor not only
against other graph-based algorithms but also against a wide range of SSL methods sur-
veyed by Chapelle et al. (2010), with an advantage which tends to be more observable on
challenging data sets.

Firstly, to compare graph-based SSL methods, we conduct experiments on the MINST
data of handwritten digits and the RCV1 data of categorized newswire stories. For MNIST
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n N/6 N/2 N

MNIST

Laplacian 53.9± 11.2 44.7± 10.6 33.5± 14.0
Centered 81.4± 2.6 85.3± 2.5 86.3± 3.9

Iterated Laplacian 81.7± 3.5 83.7± 3.6 86.4± 5.5
Iterated Centered 83.2± 2.7 86.8± 3.7 88.4± 3.2
`p-based Laplacian 72.7± 3.5 75.9± 4.0 76.0± 2.7

WN Laplacian 78.0± 3.2 79.0± 4.3 79.1± 4.1
Eigenvector-based 79.9± 3.7 85.4± 4.2 86.6± 3.8

RCV1

Laplacian 36.8± 12.9 34.2± 9.7 33.4± 9.6
Centered 78.7± 2.7 79.0± 3.2 79.1± 2.3

Iterated Laplacian 81.0± 2.1 81.4± 3.2 80.8± 5.6
Iterated Centered 83.8± 2.4 84.5± 2.1 84.8± 2.7

WN Laplacian 70.1± 3.4 71.7± 4.9 71.8± 4.8
Eigenvector-based 81.8± 5.4 82.1± 4.5 82.8± 3.0

Table 1: Classification accuracy (%) of graph-based SSL algorithms averaged over 10 ran-
dom splits, for n[l] = 5K with K the number of classes (K = 10 for MNIST, K = 4
for RCV1) and n = {N/6, N/2, N} with N the total sample number (N = 60000
for MNIST, N = 19000 for RCV1).

data, we use, as in the experiments of Section 5.2, the raw version4 of vectorized pixels
(LeCun, 1998), and for RCV1 data, we retrieve from the paper of Cai and He (2011) a
preprocessed four-class version5 of tf-idf feature vectors. As suggested in the previous studies
(Belkin and Niyogi, 2003; Zhou and Belkin, 2011; Johnson and Zhang, 2007), satisfying
performance can be observed on MNIST data for KNN graphs with k ∼ 10 and on RCV1
data for k ∼ 100; we will test with k over 10 × 2{0,1,...,6}. To judge the potential of graph-
based methods, we report the best model performance for each method. We test the three
common versions of Laplacian matrices L,Ls, Lr presented in Section 2.1 for Laplacian
methods. The hyperparameter q of higher-order regularization algorithms is tried on 2{1,2,3},
the hyperparameter s of the eigenvector-based method is searched among all possible values
(i.e., all integers from 1 to n[l]), and the hyperparameter α of centered regularization takes

its values in 10{−3,−2,−1,0}. The results are displayed in Table 16, where the advantage of
centered similarities is supported by performance gains over the Laplacian methods. We
also find that the iterated technique is powerful for improving the performance of centering
regularization, which alone can be insufficient for producing superior results.

To evaluate the competitiveness of centered regularization beyond the family of graph-
based methods, we report its performance on SSL benchmark data sets7 established by

4. Available for download at http://yann.lecun.com/exdb/mnist/ .
5. Available for download at http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html .
6. The performance of the `p-based Laplacian is not reported on RCV1 data due to the unsatisfying

performance at small k and the very slow computation at large k.
7. Available for download at http://olivier.chapelle.cc/ssl-book/benchmarks.html .
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g241c g241d Digit1 USPS BCI Text

Laplacian+CMN
(Chapelle et al., 2010)

77.95 71.80 96.85 93.64 53.78 74.29

Best over 13 Algo
(Chapelle et al., 2010)

86.51 95.05 97.56 95.32 68.64 76.91

Iterated Laplacian
(Zhou and Belkin, 2011)

85.18 89.45 97.78 96.04 56.22 74.23

Iterated Centered 87.18 86.31 97.50 94.40 70.78 76.96

Table 2: Classification accuracy (%) on SSL benchmarks with n[l] = 100 and n = 1500,
averaged over 12 random splits.

Chapelle et al. (2010) and tested for an extensive variety of SSL methods including Lapla-
cian regularization (with a class mass normalization technique (CMN) for performance
improvement). The same trials were also carried out by Zhou and Belkin (2011) for the
method of iterated Laplacian regularization.

To produce our results, we simply use a KNN graph with k = 10 on the “Digit1” and
“USPS”8 tasks of image data; for the rest, we switch to fully connected graphs wij =
exp(−‖xi − xj‖2/2σ2) as in the experiments of Chapelle et al. (2010); Zhou and Belkin
(2011). Also following the settings for the Laplacian and iterated Laplacian methods, the
hyperparameters are determined by a (10-fold) cross-validation on the first split of each
data set, searched over the grid σ = {d/3, 3d} for d the average pairwise distance, q =
{21, 24, 27, 210}, and with α set to 10−3. Our results are reported in Table 2, along with
the performances of the iterated Laplacian and Laplacian regularization methods obtained
by Chapelle et al. (2010); Zhou and Belkin (2011), as well as the best performance over 13
algorithms tested by Chapelle et al. (2010).

As can be observed in Table 2, the combined approach of iterated and centering tech-
niques has a remarkable competitiveness overall. We note in particular its superiority on
the three most difficult tasks “g241c”, “BCI” and “Text” with lowest best accuracy, where
the iterated technique alone fails to approach the best performance over 13 algorithms. The
task on which the proposed method yields comparably worst results is “g241d”, observed
to be quite unstable with huge gaps between the best performing algorithm and the rest
(Chapelle et al., 2010).

6.4 Computational Cost on Sparse Graphs

Sparse graphs such as KNN graphs are commonly used in graph-based learning. As our
proposed algorithm involves a centering operation on the weight matrix W , it disrupts the
sparsity of W and may cause increased computational cost in comparison to the original
Laplacian approach. We would like to point out that, even though the centered weight
matrix Ŵ is not sparse, it can be written as a sum of W and a matrix of rank two:

8. The KNN graph is kept directed for USPS data to cope with the effect of imbalanced classes. And for
the same reason we conduct a k-means clustering of the classification scores in order to decide the affinity
group of unlabelled data.
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Ŵ = W +
[
1n v

]
A

[
1Tn
vT

]

where v = W1n and A =

[
(1TnW1n)/n2 −1/n
−1/n 0

]
. Using Woodbury’s inversion formula, we

can then decompose the inverse of λIn[u]
−Ŵ[uu] as the inverse of λIn[u]

−W[uu] plus a matrix
of rank two as:

(
λIn[u]

− Ŵ[uu]

)−1
= Q−Q

[
1n[u]

v[u]
](

A−1 +

[
1Tn[u]

vT[u]

]
Q
[
1n[u]

v[u]
])−1 [1Tn[u]

vT[u]

]
Q

where Q = (λIn[u]
− W[uu])

−1. Therefore, the complexity of computing the solution of
centered regularization can be reduced to that of computing QW[ul]f[l], which benefits from
the sparsity of W . Similar reasoning can also be made for the iterated regularization
algorithm presented in section 6.3.1.

7. Concluding Remarks

The key to the proposed semi-supervised learning method lies in the replacement of con-
ventional Laplacian regularizers by a new graph smoothness regularizer with centered simi-
larities. The motivation is rooted in the failure of the Laplacian regularization approach to
learn effectively from unlabelled data due to the concentration of pairwise distances between
high dimensional data vectors. As anticipated by our theoretical results, the proposed cen-
tered regularization method produced large performance gains over the standard Laplacian
regularization method when the aforementioned distance concentration problem is severe,
thanks to an effective learning from both labelled and unlabelled data learning. Moreover, it
was observed that the proposed algorithm can further improve the performance even on data
sets with weak distance concentration, for which the standard Laplacian approach exhibits
a clear performance growth with respect to unlabelled data. Other than improving upon
the Laplacian regularization method, the proposed algorithm is also theoretically proven to
enjoy a near-optimal performance of semi-supervised learning on isotropic Gaussian mixture
data. From a general perspective, the extended advantage of centered regularization beyond
the initial motivation suggests that placing oneself under the challenging setting of high di-
mensional learning can help identify and address some underlying issues compromising the
performance of popular learning heuristics.

As the usage of centered similarities constitutes a fundamental update to the classi-
cal Laplacian regularization approach, it would be interesting to investigate whether other
algorithms involving Laplacian regularizers benefit from the same update. In this article
we proposed additionally a higher-order version of centered regularization based on the
iterated Laplacian method (Zhou and Belkin, 2011). The empirical analysis on various
real-world data sets showed that adopting centered similarities can improve substantially
the performance on difficult tasks where the Laplacian methods are observed to underper-
form. Future studies can be devoted to analysing and adapting more involved methods like
Laplacian support vector machines (Belkin et al., 2006), which combines the optimization
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of SVMs with the Laplacian regularization approach. The absence of explicit solutions in
the method of Laplacian SVMs calls for additional technical tools to conduct similar precise
performance analyses to the present one, such as the leave-one-out procedure devised in the
work of El Karoui et al. (2013) to deal with implicit optimization solutions.
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Appendix A. Generalization of Theorem 3 and Proof

A.1 Generalized Theorem

We first present an extended version of Theorem 3 for the general setting where C1 may differ
from C2. The functions m(ξ), σ2(ξ) defined in (11) and (12) for describing the statistical
distribution of unlabelled scores in the case of C1 = C2 need be adapted as follows:

m(ξ) =
2c[l]θ(ξ)

c[u]
(
1− θ(ξ)

) (18)

σ2(ξ) =
ρ1ρ2(2c[l] +m(ξ)c[u])

2s(ξ) + ρ1ρ2(4cl +m(ξ)2c[u])ω(ξ)

c[u]
(
c[u] − ω(ξ)

) , k ∈ {1, 2} (19)

where

θ(ξ) = ρ1ρ2ξ(ν1 − ν2)T
(
Ip − ξΣ̄

)−1
(ν1 − ν2)

ω(ξ) = ξ2p−1 tr
[(
Ip − ξΣ̄

)−1
Σ̄
]2

s(ξ) = ρ1ρ2ξ
2(ν1 − ν2)T

(
Ip − ξΣ̄

)−1
Σ̄
(
Ip − ξΣ̄

)−1
(ν1 − ν2), (20)

with

νk =
[√
−2h′(τ)µTk

√
h′′(τ) trCk/

√
p
]T

Σk =

[
−2h′(τ)Ck 0p×1

01×p 2h′′(τ) trCk
2/p

]
and Σ̄ = ρ1Σ1 + ρ2Σ2.

Notice that the adaptation is made here through the redefinitions of θ(ξ), ω(ξ and s(ξ);
the expressions of m(ξ) and σ2(ξ) are kept identical. As in the case of C1 = C2, the positive
functions m(ξ) and σ2(ξ) are defined respectively on the domains (0, ξm) and (0, ξσ2) with
ξm, ξσ2 > 0 uniquely given by θ(ξm) = 1 and ω(ξσ2) = c[u]. We define ξsup as

ξsup = min{ξm, ξσ2} (21)

With these adapted notations, we present the generalized results in the theorem below.
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Theorem 8 Let Assumption 1 hold, the function h of (1) be three-times continuously dif-
ferentiable in a neighborhood of τ , f[u] be the solution of (8) with fixed norm n[u]e

2, and
with the notations of m(ξ), σ2(ξ), ξsup given in (18), (19), (21). Then, for n[l] + 1 ≤ i ≤ n
(i.e., xi unlabelled) and xi ∈ Ck,

fi
L→ N

(
(−1)k(1− ρk)m̂, σ̂2k

)
where

m̂ = m(ξe)

σ̂2k = c−2[u] ρ1ρ2
[
(2c[l] +m(ξe)c[u])

2sk(ξe) + (4cl +m(ξe)
2c[u] + σ2(ξe)c[u])ω(ξe)

]
with

sa(ξe) = ρ1ρ2ξ
2
e (ν1 − ν2)T

(
Ip − ξeΣ̄

)−1
Σk

(
Ip − ξeΣ̄

)−1
(ν1 − ν2), a ∈ {1, 2},

and ξe ∈ (0, ξsup) uniquely given by

ρ1ρ2m(ξe)
2 + σ2(ξe) = e2.

A.2 Proof of Generalized Theorem

The proof of Theorem 8 relies on a leave-one-out approach, in the spirit of El Karoui et al.
(2013), along with arguments from previous related analyses (Couillet and Benaych-Georges,
2016; Mai and Couillet, 2018) based on random matrix theory .

A.2.1 Main Idea

The main idea of the proof is to first demonstrate that for unlabelled data scores fi (i.e.,
with i > n[l]),

fi = γβ(i)Tφc(xi) + oP (1) (22)

where γ is a finite constant, φc a certain mapping from the data space that we shall define,
and β(i) a random vector independent of φc(xi). Additionally, we shall show that

β(i) =
1

p

n∑
j=1

fjφc(xj) + ε (23)

with ‖ε‖/‖β(i)‖ = oP (1).

As a consequence of (22), the statistical behavior of the unlabelled data scores can
be understood through that of β(i), which itself depends on the unlabelled data scores as
described by (23). By combining (22) and (23), we thus establish the equations ruling the
asymptotic statistical behavior (i.e., mean and variance) of the unlabelled data scores fi.
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A.2.2 Detailed Arguments

In addition to the notations given in the end of the introduction (Section 1), we specify
that when multidimensional objects are concerned, O(un) is understood entry-wise. The
notation O‖·‖ is understood as follows: for a vector v, v = O‖·‖(un) means its Euclidean
norm is O(un) and for a square matrix M , M = O‖·‖(un) means that the operator norm of
M is O(un).

First note that, as wij = h(‖xi−xj‖2/p) = h(τ)+O(p−
1
2 ), Taylor-expanding wij around

h(τ) gives (see Appendix C for a detailed proof) Ŵ = O‖·‖(1) and

Ŵ =
1

p
Φ̂TΦ̂ + [h(0)− h(τ) + τh′(τ)]Pn +O‖·‖(p

− 1
2 ) (24)

where Pn = In − 1
n1n1Tn , and Φ̂ = [φ̂(x1), . . . , φ̂(xn)] = [φ(x1), . . . , φ(xn)]Pn with

φ(xi) =
[√
−2h′(τ)xTi

√
h′′(τ)‖xi‖2/

√
p
]T
.

Define νk = E{φ(xi)}, Σk = cov{φ(xi)} for xi ∈ Ck, k ∈ {1, 2}, and let Z = [z1, . . . , zn]
with zi = φ(xi)− νk (i.e., E{zi} = 0). We also write the labelled versus unlabelled divisions

Φ =
[
Φ[l] Φ[u]

]
, Z =

[
Z[l] Z[u]

]
and Φ̂ =

[
Φ̂[l] Φ̂[u]

]
.

Recall that f[u] =
(
λIn[u]

− Ŵ[uu]

)−1
Ŵ[ul]f[l]. To proceed, we need to show that

1
n1Tn[u]

f[u] = O(p−
1
2 ). Applying (24), we can express f[u] as

f[u] =

(
λ̃In[u]

− 1

p
Φ̂T
[u]Φ̂[u] +

r

n
1n[u]

1Tn[u]

)−1(1

p
Φ̂T
[u]Φ̂[l] −

r

n
1n[u]

1Tn[l]

)
f[l] +O(p−

1
2 )

where λ̃ = λ − h(0) + h(τ) − τh′(τ), r = h(0) − h(τ) + τh′(τ). Since 1T[l]f[l] = 0 from its

definition given in (4),

f[u] =

(
λ̃In[u]

− 1

p
Φ̂T
[u]Φ̂[u] +

r

n
1n[u]

1Tn[u]

)−1 1

p
Φ̂T
[u]Φ[l]f[l] +O(p−

1
2 ). (25)

Write Φ̂[u] = E{Φ̂[u]}+Z[u]−(Z1n/n)1Tn[u]
. Evidently, E{Φ̂[u]} = (ν1−ν2)sT where s ∈ Rn[u]

with si = (−1)k(n−nk)/n for xi ∈ Ck, k ∈ {1, 2}. By the large number law, s = ζ+O(p−
1
2 )

where ζ ∈ Rn[u] with ζi = (−1)k(1− ρk) for xi ∈ Ck, therefore

1

p
Φ̂T
[u]Φ̂[u] =

1

p

{
‖ν1 − ν2‖2ζζT + ZT

[u]Z[u] + (1TnZ
TZ1n/n

2)1n[u]
1Tn[u]

+ [ZT
[u](ν1 − ν2)]ζ

T

+ ζ[ZT
[u](ν1 − ν2)]

T − (ZT
[u]Z1n/n)1Tn[u]

− 1n[u]
(ZT

[u]Z1n/n)T
}

+O‖·‖(p
− 1

2 ).

Invoking Woodbury’s identity (Woodbury, 1950) expressed as(
R− UNUT

)−1
= R+RU(N−1 − UTRU)−1UTR,
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we get(
λ̃In[u]

− 1

p
Φ̂T
[u]Φ̂[u] +

r

n
1n[u]

1Tn[u]

)−1
=

(
λ̃In[u]

− 1

p
ZT
[u]Z[u] − UNUT

)−1
+O‖·‖(p

− 1
2 )

= R+RU(N−1 − UTRU)−1UTR+O‖·‖(p
− 1

2 ) (26)

by letting R =
(
λ̃In[u]

− 1
pZ

T
[u]Z[u]

)−1
and

U =
1
√
p

[
ζ ZT

[u](ν1 − ν2) 1n[u]
ZT
[u]Z1n/n

]

N =


‖ν1 − ν2‖2 1 0 0

1 0 0 0
0 0 (1TnZ

TZ1n/n
2)− r

c0
−1

0 0 −1 0

 . (27)

Note also that

1

p
Φ̂T
[u]Φ[l]f[l] =

√
pU


(ν2 − ν1)T 1

pΦ[l]f[l]
2c[l]ρ1ρ2

0
0

+
1

p
ZT
[u]Z[l]f[l] +O(p−

1
2 ). (28)

Now we want to prove that UTRU is of the form

UTRU =

[
A 02×2

02×2 B

]
+O(p−

1
2 ), (29)

for some matrices A,B ∈ R2×2 with elements of O(1). First it should be pointed out that
zi is a Gaussian vector if the last element is ignored. Since ignoring the last element of zi
will not change the concentration results given subsequently to prove the form of UTRU ,
we shall treat zi as Gaussian vectors for simplicity. As there exists a deterministic matrix
R̄ of the form cIn[u]

such that

aTRb− aTR̄b = O(p−
1
2 )

for any a, b = O‖·‖(1) independent of R (Benaych-Georges and Couillet, 2016, Proposition
5), we get immediately that

UT
·1RU·3 =

1

p
ζTR1n[u]

=
1

p
ζTR̄1n[u]

+O(p−
1
2 ) = O(p−

1
2 ).

In order to prove the rest, we begin by showing that

1
√
p
aTZ[u]Rb = O(p−

1
2 ) (30)
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for any a, b = O‖·‖(1) independent of Z[u]. First let us set a′ = Cov{zi}
1
2a and denote by

Pa′ the projection matrix orthogonal to a′. We write then

zi = Cov{zi}
1
2Pa′Cov{zi}−

1
2 zi + Cov{zi}

1
2
a′a′T

‖a′‖2
Cov{zi}−

1
2 zi

= z̃i +
aTzi
‖a′‖2

Cov{zi}a

where z̃i = Cov{zi}
1
2Pa′Cov{zi}−

1
2 zi. Note that in this decomposition of zi, the two terms

are independent. Indeed, since

Cov{z̃i, aTzi} = E{Cov{zi}
1
2Pa′Cov{zi}−

1
2 ziz

T
i a} = Cov{zi}

1
2Pa′Cov{zi}

1
2a = 0p,

aTzi and z̃i are uncorrelated, and thus independent by the property that uncorrelated jointly
Gaussian variables are independent. Applying this decomposition of zi, we have, by letting
Z̃ = [z̃1, . . . , z̃n] and q = [aTz1‖Cov{z1}a‖/‖a′‖2, . . . , aTzn‖Cov{zn}a‖/‖a′‖2] , that

ZT
[u]Z[u] = Z̃T

[u]Z̃[u] + qqT.

Then with the help of Sherman-Morrison’s formula (Sherman and Morrison, 1950), we get

R = R̃− R̃qqTR̃/p

1 + qTR̃q/p
.

Similarly to R, we have also for R̃ a deterministic equivalent ¯̃R = c̃In[u]
with some constant

c̃ such that

uTR̃v − uT ¯̃Rv = O(p−
1
2 )

for any u, v = O‖·‖(1) independent of R̃ (Benaych-Georges and Couillet, 2016, Proposition

5). Since ZT
[u]a and q are independent of R̃, we prove 1√

pa
TZ[u]Rb = O(p−

1
2 ) with

1
√
p
aTZ[u]Rb =

1
√
p
aTZ[u]R̃b−

1√
pa

TZ[u]R̃qq
TR̃b

1 + qTR̃q

=
1
√
p
c̃aTZ[u]b−

1√
p c̃

2aTZ[u]qq
Tb

1 + c̃‖q‖2
+O(p−

1
2 )

= O(p−
1
2 ).

This leads directly to

UT
·2RU·3 =

1
√
p

(ν1 − ν2)Z[u]R1n[u]
/
√
p = O(p−

1
2 ).

With the same argument, we have also

UT
·1RU·4 =

1

p
ζTR

(
ZT
[u]Z[u]1n[u]

/n+ ZT
[u]Z[l]1n[l]

/n
)

= ζT(λ̃R− In[u]
)1n[u]

/n+
1

p
ζTRZT

[u]

(
Z[l]1n[l]

/n
)

= O(p−
1
2 );
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and

UT
·2RU·4 =

1

p
(ν1 − ν2)TZ[u]R

(
ZT
[u]Z[u]1n[u]

/n+ ZT
[u]Z[l]1n[l]

/n
)

=λ̃(ν1 − ν2)TZ[u]R1n[u]
/n− (ν1 − ν2)TZ[u]1n[u]

/n

+ (ν1 − ν2)T
(

1

p
Z[u]RZ

T
[u]

)(
Z[l]1n[l]

/n
)

= O(p−
1
2 ).

We conclude thus that UTRU is of the form (29).

Substituting (26) and (28) into (25) and using the fact that p−
3
2 ‖UTRZT

[u]Z[l]f[l]‖ =

O(p−
1
2 ) derived by similar reasoning to the above, we obtain

1

n
1Tn[u]

f[u] = c−10

[
0 0 1 0

]
K


(ν2 − ν1)T 1

pΦ[l]f[l]
2c[l]ρ1ρ2

0
0

+O(p−
1
2 ) (31)

with

K = UTRU + UTRU(N−1 − UTRU)−1UTRU.

Since UTRU is of the form (29), we find from classical algebraic arguments that K is also
of the same diagonal block matrix form. We thus finally get from (31) that

1

n
1Tn[u]

f[u] = O(p−
1
2 ).

Now that we have shown that 1
n1Tn[u]

f[u] = O(p−
1
2 ), multiplying both sides of (25) with

λ̃In[u]
− 1

p Φ̂T
[u]Φ̂[u] + r

n1n[u]
1Tn[u]

from the left gives

λ̃f[u] =
1

p
Φ̂T
[u]Φ̂[u]f[u] +

1

p
Φ̂T
[u]Φ̂[l]f[l] +O(p−

1
2 ).

Decomposing this equation for any i > n[l] (i.e., xi unlabelled) leads to

λ̃fi =
1

p
φ̂(xi)

TΦ̂f +O(p−
1
2 ) (32)

λ̃f
{i}
[u] =

1

p
Φ̂
{i}T
[u] φ̂(xi)fi +

1

p
Φ̂
{i}T
[u] Φ̂

{i}
[u] f

{i}
[u] +

1

p
Φ̂
{i}T
[u] Φ̂[l]f[l] +O(p−

1
2 ) (33)

with f
{i}
[u] standing for the vector obtained by removing fi from f[u], Φ̂

{i}
[u] for the matrix

obtained by removing φ̂(xi) from Φ̂[u].

Our objective is to compare the behavior of the vector f[u] decomposed as {fi, f{i}[u] } to

the “leave-xi-out” version f
(i)
[u] to be introduced next. To this end, define the leave-one-out

data set X(i) = {x1, . . . , xi−1, xi+1, . . . , xn} ∈ R(n−1)×p for any i > n[l] (i.e., xi unlabelled),
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and Ŵ (i) ∈ R(n−1)×(n−1) the corresponding centered similarity matrix, for which we have,
similarly to Ŵ ,

Ŵ (i) =
1

p
Φ̂(i)TΦ̂(i) + [h(0)− h(τ) + τh′(τ)]Pn−1 +O‖·‖(p

− 1
2 ) (34)

where Φ̂(i) = [φ̂(i)(x1), . . . , φ̂
(i)(xi−1), φ̂

(i)(xi+1), . . . , φ̂
(i)(xn)] = [φ(x1), . . . , φ(xi−1), φ(xi+1),

. . . , φ(xn)]Pn−1. Denote by f
(i)
[u] the solution of the centered similarities regularization on

the “leave-one-out” data set X(i), i.e.,

f
(i)
[u] =

(
λIn[u]−1 − Ŵ

(i)
[uu]

)−1
Ŵ

(i)
[ul]f[l]. (35)

Substituting (34) into (35) leads to

λ̃f
(i)
[u] =

1

p
Φ̂
(i)T
[u] Φ̂

(i)
[u]f

(i)
[u] +

1

p
Φ̂
(i)T
[u] Φ̂[l]f[l] +O(p−

1
2 ) (36)

where Φ̂(i) =
[
Φ̂
(i)
[l] Φ̂

(i)
[u]

]
. From the definitions of Φ̂

(i)
[u] and Φ̂

{i}
[u] , which essentially differ by

the addition of the O(1/
√
p)-norm term φ(xi)/n to every column, we easily have

1
√
p

Φ̂
(i)
[u] −

1
√
p

Φ̂
{i}
[u] = O‖·‖(p

−1),

which entails
1

p
Φ̂
(i)T
[u] Φ̂

(i)
[u] −

1

p
Φ̂
{i}T
[u] Φ̂

{i}
[u] = O‖·‖(p

−1), (37)

Thus, subtracting (36) from (33) gives

M (i)
(
f
{i}
[u] − f

(i)
[u]

)
=

1

p
Φ̂
(i)T
[u] φ̂(xi)fi +O(p−

1
2 ) (38)

with

M (i) = λ̃I(n[u]−1) −
1

p
Φ̂
(i)T
[u] Φ̂

(i)
[u].

Set β = 1
p Φ̂f = O‖·‖(1), the unlabelled data “regression vector” which gives unlabelled

data scores by fi = λ̃−1βTφ̂(xi), and its “leave-one-out” version β(i) = 1
p Φ̂(i)f (i) with

f (i) =
[
f[l] f

(i)
[u]

]
. Applying (37) and (38), we get that

β − β(i) =

(
Ip +

1

p
Φ̂
(i)
[u]

(
M (i)

)−1
Φ̂
(i)T
[u]

)
1

p
fiφ̂(xi) +O‖·‖(p

−1) = O‖·‖(p
− 1

2 ). (39)

By the above result, Equation (32) can be expanded as

λ̃fi =β(i)Tφ̂(xi) +
1

p
φ̂(xi)

T

(
Ip +

1

p
Φ̂
(i)
[u]

(
M (i)

)−1
Φ̂
(i)T
[u]

)
φ̂(xi)fi +O(p−

1
2 ). (40)
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To go further in the development of (40), we first need to evaluate the quadratic form

κi ≡
1

p
φ̂(xi)

TT (i)φ̂(xi)

where

T (i) = Ip +
1

p
Φ̂
(i)
[u]

(
M (i)

)−1
Φ̂
(i)T
[u] .

Since 1
p Φ̂

(i)T
[u] Φ̂

(i)
[u] = O‖·‖(1), it is easy to see that T (i) = O‖·‖(1). As φ̂(xi) is independent of

T (i), it unfolds from the “trace lemma” (Couillet and Debbah, 2011, Theorem 3.4) that

κi −
1

p
tr ΣkT

(i) a.s.−→0.

Notice that

T (i) = λ̃

(
λ̃Ip −

1

p
Φ̂
(i)
[u]Φ̂

(i)T
[u]

)−1
= λ̃

(
λ̃Ip −

1

p
Φ̂
{i}
[u] Φ̂

{i}T
[u]

)−1
+O‖·‖(p

−1)

= T −
λ̃
pT

(i)φ̂(xi)φ̂(xi)
TT (i)

1− 1
p
κi
λ̃

+O‖·‖(p
−1)

where

T = λ̃

(
λ̃Ip −

1

p
Φ̂[u]Φ̂

T
[u]

)−1
= T (i) +

λ̃
pT

(i)φ̂(xi)φ̂(xi)
TT (i)

1− 1
p
κi
λ̃

by Sherman-Morrison’s formula (Sherman and Morrison, 1950). We get consequently

1

p
tr ΣkT

(i) =
1

p
tr ΣkT +O(p−1),

κi converges thus to a deterministic limit κ independent of i at large n, p.
Equation (40) then becomes

fi = γβ(i)Tφ̂(xi) +O(p−
1
2 ). (41)

where γ = (λ̃− κ)−1.
We focus now on the term β(i)Tφ̂(xi) in (41). To discard the “weak” dependence between

β(i)T and φ̂(xi), let us define

φc(xi) = (−1)k(1− ρk)(ν2 − ν1) + zi.

As nk/n = ρk + O(n−
1
2 ), by the law of large numbers, E{φ̂(xi)} = (−1)k[(n− nk)/n](ν2 −

ν1) = E{φc(xi)} + O‖·‖(n
− 1

2 ). Remark that, unlike φ̂(xi), φc(xi) is independent of all xj
with j 6= i, and therefore independent of β(i). We thus now have

β(i)Tφ̂(xi) = β(i)T
(
E{φ̂(xi)}+ zi −

1

n

n∑
m=1

zm

)
= β(i)Tφc(xi) +

1

n
βTZ1n +O(p−

1
2 ).
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We get from (39) that 1
nβ

(i)TZ1n = 1
nβ

TZ1n +O(p−
1
2 ), leading to

fi = γβ(i)Tφc(xi) +
1

n
βTZ1n +O(p−

1
2 ). (42)

Since φc(xi) is independent of β(i), according to the central limit theorem, β(i)Tφc(xi)
asymptotically follows a Gaussian distribution.

To demonstrate that 1
nβ

TZ1n is negligibly small, notice fist that, by summing (42) for
all i > n[u], we have

1

n
1Tn[u]

f[u] =
1

n

n∑
i=n[l]+1

β(i)Tφc(xi) + c[u](β
(i)TZ1n/n) +O(p−

1
2 ).

Since 1
n1Tn[u]

f[u] = O(p−
1
2 ), it suffices to prove 1

n

∑n
i=n[l]+1 β

(i)Tφc(xi) = O(p−
1
2 ) to con-

sequently show that 1
nβ

TZ1n = O(p−
1
2 ) from the above equation. To this end, we shall

examine the correlation between β(i)Tφc(xi) and β(j)Tφc(xj) for i 6= j > n[l]. Consider

β(ij), Φ̂
(ij)
[u] ,M

(ij) obtained in the same way as β(i), Φ̂
(i)
[u],M

(i), but this time by leaving out

the two unlabelled samples xi, xj . Similarly to (39), we have

β(i) − β(ij) =

(
Ip +

1

p
Φ̂
(ij)
[u]

(
M (ij)

)−1
Φ̂
(ij)T
[u]

)
1

p
fjφ̂(xj) +O‖·‖(p

−1) = O‖·‖(p
− 1

2 ). (43)

It follows from the above equation that, for i 6= j > n[l],

Cov{β(i)Tφc(xi), β(i)Tφc(xj)}
= E{β(i)Tφc(xi)β(i)Tφc(xj)} − E{β(i)Tφc(xi)}E{β(j)Tφc(xj)}
= E{β(ij)Tφc(xi)β(ij)Tφc(xj)} − E{β(i)Tφc(xi)}E{β(j)Tφc(xj)}+O(p−1)

= E{β(ij)Tφc(xi)}E{β(ij)Tφc(xj)} − E{β(i)Tφc(xi)}E{β(j)Tφc(xj)}+O(p−1)

= O(p−1), (44)

leading to the conclusion that 1
n[u]

∑n
i=n[l]+1 β

(i)Tφc(xi) = 1
n[u]

∑n
i=n[l]+1 E{β(i)Tφc(xi)} +

O(p−
1
2 ) = O(p−

1
2 ). Hence, 1

nβ
TZ1n = O(p−

1
2 ). Finally, we have that, for i > n[l],

fi = γβ(i)Tφc(xi) +O(p−
1
2 ), (45)

indicating that, up to the constant γ, fi asymptotically follows the same Gaussian distri-
bution as β(i)Tφc(xi).

Moreover, taking the expectation and the variance of the both sides of (45) for xi ∈ Ck
yields

E{fi|i > n[l], x ∈ Ck} = γE{β(i)T}(−1)k(1− ρk)(ν2 − ν1) +O(p−
1
2 )

var{fi|i > n[l], x ∈ Ck} = γ2tr
[
cov{β(i)}Σk

]
+ γ2E{β(i)}TΣkE{β(i)}+O(p−

1
2 ).
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Since β − β(i) = O‖·‖(p
− 1

2 ) as per (39), we obtain

E{fi|i > n[l], x ∈ Ck} = γE{βT}(−1)k(1− ρk)(ν2 − ν1) +O(p−
1
2 ) (46)

var{fi|i > n[l], x ∈ Ck} = γ2tr
[
cov{β}Σk

]
+ γ2E{β}TΣkE{β}+O(p−

1
2 ). (47)

After linking the distribution parameters of unlabelled scores to those of β with Equa-
tion (46) and Equation (47), we now turn our attention to the statistical behaviour of β.
Substituting (45) into β = 1

p Φ̂f yields

β =
1

p

n[l]∑
i=1

fiφ̂(xi) +
1

p

n∑
i=n[l]+1

γβ(i)Tφc(xi)φ̂(xi) +O‖·‖(p
− 1

2 )

=
1

p

n[l]∑
i=1

fiφc(xi) +
1

p

n∑
i=n[l]+1

γβ(i)Tφc(xi)φc(xi) +O‖·‖(p
− 1

2 ). (48)

For i > n[l] and xi ∈ Ck, we decompose φc(xi) as

φc(xi) = E{φc(xi)}+
Σkβ

(i)

β(i)Tzi
+ z̃i (49)

where

z̃i = zi −
Σkβ

(i)

β(i)Tzi
.

By substituting the expression (49) of φc(xi) into (48) and using the fact that β − β(i) =

O‖·‖(p
− 1

2 ), we obtain(
Ip − γc[u]

2∑
a=1

ρaΣa

)
β =

1

p

n[l]∑
i=1

fiE{φc(xi)}+
1

p

n∑
i=n[l]+1

γβ(i)Tφc(xi)E{φc(xi)}

+
1

p

n[l]∑
i=1

fizi +
1

p

n∑
i=n[l]+1

γβ(i)Tφc(xi)z̃i +O‖·‖(p
− 1

2 ). (50)

Recall that f[l] is a deterministic vector (given in (4)) and note that

E{β(i)Tφc(xi)z̃i} = E{β(i)Tzi[zi − Σkβ
(i)/(β(i)Tzi)]} = E{β(i)Tzizi} − ΣkE{β(i)} = 0.

Taking the expectation of both sides of (50) thus gives(
Ip − γc[u]

2∑
a=1

ρaΣa

)
E{β}

=
1

p

n[l]∑
i=1

fiE{φc(xi)}+
1

p

n∑
i=n[l]+1

γE{β(i)}TE{φc(xi)}E{φc(xi)}+O‖·‖(p
− 1

2 )

=
1

p

n[l]∑
i=1

fiE{φc(xi)}+
1

p

n∑
i=n[l]+1

γE{β}TE{φc(xi)}E{φc(xi)}+O‖·‖(p
− 1

2 ). (51)
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Let Q = Ip − γc[u]Σ̄ with Σ̄ = ρ1Σ1 + ρ2Σ2 and denote m̂ ≡ γ(ν2 − ν1)TE{β}. With these
notations, we get directly from the above equation that

m̂ = γρ1ρ2(2c[l] +mc[u])(ν2 − ν1)TQ−1(ν2 − ν1) + oP (1). (52)

With the notation m, (46) notably becomes

E{fi|i > n[l], x ∈ Ck} = (−1)k(1− ρk)m̂+O(p−
1
2 ).

In addition, we get from (51) that

γ2E{β}TΣkE{β} =
[
γρ1ρ2(2c[l] + m̂c[u])

]2
(ν2 − ν1)TQ−1ΣkQ

−1(ν2 − ν1). (53)

Furthermore, we have from (50) and (51)

tr[cov{β}Σk] = E
{

(β − E{β})TΣk(β − E{β})
}

=
1

p2

n[l]∑
i=1

f2i E{zTi Q−1ΣkQ
−1zi}+

1

p2

n∑
i=n[l]+1

γ2E{(β(i)Tφc(xi))2z̃Ti Q−1ΣkQ
−1z̃i}

+O(p−
1
2 ).

Since 1
pz

T
i Q
−1ΣkQ

−1zi = 1
ptr(Q−1Σ̄)2 + O(p−

1
2 ) and 1

p z̃
T
i Q
−1ΣkQ

−1z̃i = 1
ptr(Q−1Σ̄)2 +

O(p−
1
2 ), by the trace lemma (Couillet and Debbah, 2011, Theorem 3.4) and Assumption 1,

γ2tr[cov{β}Σk] =γ2
[
ρ1ρ2(4c[l] + m̂2c[u]) + c[u]

2∑
a=1

ρavar{fi|i > n[l], x ∈ Ca}
]1
p

tr(Q−1Σ̄)2

+O(p−
1
2 ). (54)

Using the shortcut notation σ̂2k ≡ var{fi|i > n[l], x ∈ Ck} for k ∈ {1, 2}, we get by substi-
tuting (53) and (54) into (47) that

σ̂2k =
[
γρ1ρ2(2c[l] + m̂c[u])

]2
(ν2 − ν1)TQ−1ΣkQ

−1(ν2 − ν1)

+ γ2
[
ρ1ρ2(4c[l] + m̂2c[u]) + c[u]

2∑
a=1

ρaσ̂
2
a

]1
p

tr(Q−1Σ̄)2 + oP (1). (55)

Letting ξ ≡ c[u]γ, we get by multiplying the both sides of (52) with c[u] that

c[u]m̂ = ξρ1ρ2(2c[l] + m̂c[u])(ν2 − ν1)T
(
Ip − γc[u]Σ̄

)−1
(ν2 − ν1) + oP (1).

And multiplying the both sides of (55) with c2[u] leads to

c2[u]σ̂
2
k =

[
ρ1ρ2(2c[l] + m̂c[u])

]2
ξ2(ν2 − ν1)TQ−1ΣkQ

−1(ν2 − ν1)

+
[
ρ1ρ2(4c[l] + m̂2c[u]) + c[u]

2∑
a=1

ρaσ̂
2
a

]
ξ2p−1tr(Q−1Σ̄)2 + oP (1). (56)
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Set σ̂2 =
∑2

a=1 ρaσ̂
2
a, we obtain

c2[u]σ̂
2 =

[
ρ1ρ2(2c[l] + m̂c[u])

]2
ξ2(ν2 − ν1)TQ−1Σ̄Q−1(ν2 − ν1)

+
[
ρ1ρ2(4c[l] + m̂2c[u]) + c[u]σ̂

2
]
ξ2p−1tr(Q−1Σ̄)2 + oP (1).

It is derived from the above equations that there exists a ξ ∈ R such that (m̂, σ̂2) =
(m(ξ), σ2(ξ)) with m(ξ), σ2(ξ) as given in (18) and (19). Let us denote by ξe the value of ξ
that allows us to access m̂, σ̂2 at some given value of the hyperparameter e > 0 (which, as
we recall, was introduced in (8)). Notice that, as a direct consequence of (44) and (45), we
have

Cov{fi, fj} = O(p−1)

for i, j > n[l]. With the same arguments, we get easily

Cov{f2i , f2j } = O(p−1),

which entails

1

n[u]
‖f[u]‖2 =

1

n[u]

n∑
i=n[l]+1

f2i =
1

n[u]

n∑
i=n[l]+1

E{f2i }+O(p−
1
2 ) = ρ1ρ2m

2 + σ2 +O(p−
1
2 ).

Therefore, the value ξe should satisfy, up to some asymptotically negligible terms, the
equation

ρ1ρ2m(ξe)
2 + σ2(ξe) = e2.

Note that the above equation does not give an unique ξe if ξe is allowed to take any value
in R. We need thus to further specify the admissible range of ξe as e goes from zero to
infinity. We start by showing that m has always a positive value. With small adjustment
to (31), we have

1

n
ζTf[u] = c−10

[
1 0 0 0

]
K


(ν2 − ν1)T 1

pΦ[l]f[l]
2c[l]ρ1ρ2

0
0

+O(p−
1
2 )

with

K = UTRU + UTRU(N−1 − UTRU)−1UTRU.

We recall UTRU is of the form (29), and further remark that the matrix A in (29) is

of the form A =

[
a11 0
0 a22

]
as we have UT

·1RU·2 by applying (30). As indicated in Sec-

tion 3.2, for any e > 0, λ has a value greater than which is determined by (10). The matrix(
λIn[u]

− Ŵ[uu]

)−1
is thus definite positive. Since

(
λIn[u]

− Ŵ[uu]

)−1
=

(
λ̃In[u]

− 1

p
Φ̂T
[u]Φ̂[u] +

r

n
1n[u]

1Tn[u]

)−1
=R+RU(N−1 − UTRU)−1UTR+O‖·‖(p

− 1
2 ),
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K is definite positive with high probability. Notice also that

K = UTRU + UTRU(N−1 − UTRU)−1UTRU =

[(
UTRU

)−1
−N

]−1
,

meaning that

K12 =
N12

det
{

(UTRU)
−1 −N

} =
1

det
{

(UTRU)
−1 −N

} .
We get thus K12 > 0 since det

{(
UTRU

)−1 −N} = det
{
K−1

}
> 0 due to the definite

positiveness of K, which implies that all the eigenvalues of K are positive. The fact that K

is definite positive implies also K11 > 0, otherwise we would have
[
1 0

]
K

[
1
0

]
= K11 ≤ 0.

Since

1

n
ζTf[u] = c−10

(
K11(ν2 − ν1)T

1

p
Φ[l]f[l] +K122c[l]ρ1ρ2

)
+O(p−

1
2 )

= 2ρ1ρ2(K11‖ν2 − ν1‖2 +K12ln[l]/n) +O(p−
1
2 ),

we get 1
nζ

Tf[u] > 0 at large p. As

1

n
ζTf[u] =

1

n
ζTE{f[u]}+O(p−

1
2 ) = ρ1ρ2̂̂m+O(p−

1
2 )

as a result of Cov{fi, fj} = O(p−1). We remark thus that m̂ > 0 holds asymptotically for
any e > 0. Since σ2 > 0 by definition, we have necessarily ξe ∈ (0, ξsup) for any e, as at
least one of m(ξe), σ

2(ξe) is negative (or not well defined) outside this range. It can also
be observed from the expressions (18)–(19) of m(ξe) and σ2(ξe) that ρ1ρ2m

2(ξ) + σ2(ξ)
monotonously increases from zero to infinity as ξ increases from zero to ξsup. Therefore,
ξe ∈ (0, ξsup) is uniquely given by

ρ1ρ2m(ξe)
2 + σ2(ξe) = e2.

In summary, for any e ∈ (0,+∞), we have that m̂ = m(ξe), σ̂
2 = σ2(ξe) with functions

m(ξ), σ2(ξ) as defined in (18)–(19) and ξe ∈ (0, ξsup) the unique solution of ρ1ρ2m(ξe)
2 +

σ2(ξe) = e2; we get also from (56) the value of σ̂2k as

σ̂2k =c−2[u]

[
ρ1ρ2(2c[l] +m(ξe)c[u])

]2
ξ2e (ν2 − ν1)TQ−1ΣkQ

−1(ν2 − ν1)

+ c−2[u]

[
ρ1ρ2(4c[l] +m(ξe)

2c[u]) + c[u]

2∑
a=1

ρaσ
2(ξe)a

]
ξ2ep
−1tr(Q−1Σ̄)2

The proof of theorem 8 is thus concluded.
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Appendix B. Proof of Proposition 7

As the eigenvector of Ls associated with the smallest eigenvalue is D
1
2 1n, we consider

L′s = nD−
1
2WD−

1
2 − nD

1
2 1n1TnD

1
2

1TnD1n
.

Note that ‖L′s‖ = O(1) according to (Couillet and Benaych-Georges, 2016, Theorem 1), and
if v is an eigenvector of Ls associated with the eigenvalue u, then it is also an eigenvector
of L′s associated with the eigenvalue −u + 1, except for the eigenvalue-eigenvector pair

(n,D
1
2 1n) of Ls turned into (0, D

1
2 1n) for L′s. The second smallest eigenvector vLap of Ls

is the same as the largest eigenvector of L′s.
From the random matrix equivalent of L′s given by Couillet and Benaych-Georges (2016,

Theorem 1) and that of Ŵ expressed in (24), we have

Ŵ = h(τ)L′s +
5h′(τ)2

4
ψψT +O(p−

1
2 )

where ψ = [ψ1, . . . , ψn]T with ψi = ‖xi‖2 − E[‖xi‖2].
Recall that

dinter(v) = |jT1 v/n1 − jT2 v/n2|
dintra(v) = ‖v − (jT1 v/n1)j1 − (jT2 v/n2)j2‖/

√
n

for some v ∈ Rn, and jk ∈ Rn with k ∈ {1, 2} the indicator vector of class k with [jk]i = 1
if xi ∈ Ck, otherwise [jk]i = 0.

Denote by λLap the eigenvalue of h(τ)L′s associated with vLap, and λctr the eigenvalue

of Ŵ associated with vctr. Under the condition of non-trivial clustering upon vLap with
dinter(vLap)/dintra(vLap) = O(1), we have jTk vLap/

√
nk = O(1) from the above expressions of

dinter(v) and dintra(v). The fact that jTk vLap/
√
nk = O(1) implies that the eigenvalue λLap

of h(τ)L′s remains at a non vanishing distance from other eigenvalues of h(τ)L′s (Couillet
and Benaych-Georges, 2016, Theorem 4). The same can be said about Ŵ and its eigenvalue
λctr.

Let γ be a positively oriented complex closed path circling only around λLap and λctr.

Since there can be only one eigenvector of L′s (Ŵ , resp.) whose limiting scalar product with
jk for k ∈ {1, 2} is bounded away from zero (Couillet and Benaych-Georges, 2016, Theorem
4), which is vLap (resp., vctr), we have, by Cauchy’s formula (Walter, 1987, Theorem 10.15),

1

nk
(jTk vLap)2 = − 1

2πi

∮
γ

1

nk
jTk (h(τ)L′s − zIn)−1jkdz + oP (1)

1

nk
(jTk vctr)

2 = − 1

2πi

∮
γ

1

nk
jTk (Ŵ − zIn)−1jkdz + oP (1)

for k ∈ {1, 2}. Since Ŵ is a low-rank perturbation of L̂, invoking Sherman-Morrison’s
formula (Sherman and Morrison, 1950), we further have

jTk (Ŵ − zIn)−1jk = jTk (h(τ)L′s − zIn)−1jk −
(5h′(τ)2/4)

(
jTk (h(τ)L′s − zIn)−1ψ

)2
1 + (5h′(τ)2/4)ψT(h(τ)L′s − zIn)−1ψ

+ oP (nk).
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As 1√
nk
jTk (h(τ)L′s − zIn)−1ψ = oP (1) (Couillet and Benaych-Georges, 2016, Equation 7.6),

we get

1

nk
jTk (Ŵ − zIn)−1jk =

1

nk
jTk (h(τ)L′s − zIn)−1jk + oP (1),

and thus

1

nk
(jTk vLap)2 =

1

nk
(jTk vctr)

2 + oP (1),

which concludes the proof of Proposition 7.

Appendix C. Asymptotic Matrix Equivalent for Ŵ

The objective of this section is to prove the asymptotic matrix equivalent for Ŵ expressed
in (24). Some additional notations that will be useful in the proof:

• for xi ∈ Ck, k ∈ {1, 2}, θi ≡ xi − µk, and θ ≡ [θ1, · · · , θn]T;

• µ◦k = µk − 1
n

∑2
k′=1 nk′µk′ , tk =

(
trCk − 1

n

∑2
k′=1 nk′trCk′

)
/
√
p;

• jk ∈ Rn is the canonical vector of Ck, i.e., [jk]i = 1 if xi ∈ Ck and [jk]i = 0 otherwise;

• ψi ≡
(
‖θi‖2 − E[‖θi‖2

)
/
√
p, ψ ≡ [ψ1, · · · , ψn]T and (ψ)2 ≡ [(ψ1)

2, · · · , (ψn)2]T.

As wij = h(‖xi − xj‖2/p = h(τ) + O(p−
1
2 ) for all i 6= j, we can Taylor-expand wij =

h(‖xi − xj‖2/p around h(τ) to obtain the following expansion for W , which can be found
in the paper of Couillet and Benaych-Georges (2016):

W = h(τ)1n1Tn +
h′(τ)
√
p

[
ψ1Tn + 1nψ

T +

2∑
b=1

tbjb1
T
n + 1n

2∑
a=1

taj
T
a

]

+
h′(τ)

p

[
2∑

a,b=1

‖µ◦a − µ◦b‖2jbjTa − 2θ
2∑

a=1

µ◦aj
T
a + 2

2∑
b=1

diag(jb)θµ
◦
b1

T
n

− 2

2∑
b=1

jbµ
◦T
b θT + 21n

2∑
a=1

µ◦a
TθTdiag(ja)− 2θθT

]

+
h′′(τ)

2p

[
(ψ)21Tn + 1n[(ψ)2]T +

2∑
b=1

t2bjb1
T
n + 1n

2∑
a=1

t2aj
T
a

+ 2

2∑
a,b=1

tatbjbj
T
a + 2

2∑
b=1

diag(jb)tbψ1Tn + 2
2∑
b=1

tbjbψ
T + 2

2∑
a=1

1nψ
Tdiag(ja)ta

+ 2ψ
2∑

a=1

taj
T
a + 2ψψT

]
+ (h(0)− h(τ) + τh′(τ))In +O‖·‖(p

− 1
2 ).
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Applying Pn =
(
In − 1

n1n1Tn
)

on both sides of the above equation, we get

Ŵ = PnWPn

=
−2h′(τ)

p

[
2∑

a,b=1

(µ◦Ta µ◦b)jbj
T
a + Pnθ

2∑
a=1

µ◦aj
T
a +

2∑
b=1

jbµ
◦T
b θTPn + Pnθθ

TPn

]

+
h′′(τ)

p

[
2∑

a,b=1

tatbjbj
T
a +

2∑
b=1

tbjbψ
TPn + Pnψ

2∑
a=1

taj
T
a + Pnψψ

TPn

]
+ (h(0)− h′(τ) + τh′′(τ))Pn +O(p−

1
2 )

=
1

p
Φ̂TΦ̂ + (h(0)− h(τ) + τh′(τ))Pn +O‖·‖(p

− 1
2 )

where the last equality is justified by

1

p
Φ̂TΦ̂ =

−2h′(τ)

p

[
2∑

a,b=1

(µ◦Ta µ◦b)jbj
T
a + Pnθ

2∑
a=1

µ◦aj
T
a +

2∑
b=1

jbµ
◦T
b θTPn + Pnθθ

TPn

]

+
h′′(τ)

p

[
2∑

a,b=1

tatbjbj
T
a +

2∑
b=1

tbjbψ
TPn + Pnψ

2∑
a=1

taj
T
a + Pnψψ

TPn

]
.

Equation (24) is thus proved.

Appendix D. Guarantee for approaching the optimal performance on
isotropic Gaussian data

The purpose of this section is to provide some general guarantee for the proposed centered
regularization method to approach the best achievable performance on isotropic high dimen-
sional Gaussian data, which was characterized in the recent work of Lelarge and Miolane
(2019). In this work, the considered isotropic data model is a special case of our analytical
framework, in which −µ1 = µ2 = µ, C1 = C2 = Ip and ρ1 = ρ2. Reorganizing the results of
Lelarge and Miolane (2019), the optimally achievable classification accuracy in the limit of
large p is equal to

1−Q(
√
q∗)

with q∗ > 0 satisfying the fixed point equation

q∗ = ‖µ‖2 − p‖µ‖2

p+ ‖µ‖2
(
n[l] + Ez∼N (q∗,q∗){tanh(z)}n[u]

) . (57)

It is easy to see that the optimal accuracy is higher with greater q∗. In parallel, reformulating
the results of Corollary 4 for some value of the hyperparameter e > 0 such that

m(ξe) =
m(ξe)

2

m(ξe)2 + σ2(ξe)
, (58)
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Figure 7: Values of g(q) at various q.

the high dimensional classification accuracy achieved by the centered regularization method
is asymptotically equal to

1−Q(
√
qc)

with qc > 0 satisfying the fixed point equation

qc = ‖µ‖2 − p‖µ‖2

p+ ‖µ‖2
(
n[l] + qc

qc+1n[u]

) (59)

Obviously, the fixed-point equations (57)–(59) are identical at n[u] = 0, meaning that
the centered regularization method achieves the optimal performance on fully labelled sets.
For partially labelled sets, the difference between (57) and (59) resides in the multiplying
factors before n[u]. This means that, for a best achievable accuracy of 1−Q(

√
q∗) at some

n[l] and n[u], the centered regularization method achieves, with the hyperparameter e set
to satisfy (58), the same level of accuracy with the same amount of labelled samples and
g(q∗)n[u] unlabelled ones where g(q∗) = Ez∼N (q∗,q∗){tanh(z)}(q∗+ 1)/q∗. The ratio function

g(q) =
Ez∼N (q,q){tanh(z)}(q + 1)

q

is plotted in Figure 7. We remark also that limq→0+ g(q) = 1 and limq→+∞ g(q) = 0.
Although the value of g(q) can get up to 1.168, the number of unlabelled samples required to
reach the optimal performance can be reduced with an optimally chosen e (which generally
does not satisfy (58)). In fact, even with the same numbers of labelled and unlabelled data,
the performance of centered regularization method at an optimally set e is often very close
to the best achievable one, as shown in Figures 5–6.
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