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Abstract. The analysis of dynamic measurements provides numerous challenges that significantly limit the
use of existing calibration facilities and mathematical methodologies. For instance, dynamic measurement anal-
ysis requires the application of methods from digital signal processing, system and control theory, and mul-
tivariate statistics. The design of digital filters and the corresponding evaluation of measurement uncertainty
for high-dimensional measurands are particularly challenging. Several international research projects involv-
ing national metrology institutes (NMIs), academia and industry have developed mathematical, statistical and
technical methodologies for the treatment of dynamic measurements at NMI level. The aim of the European
research project 14SIP08 is the development of guidelines and software to extend the applicability of those
methodologies to a wider range of users. This paper outlines the required activities towards a traceability chain
for dynamic measurements from NMIs to industrial applications. A key aspect is the development and provision
of a new open-source software package. The software is freely available, open for non-commercial distribution,
and contains the most important data analysis tools for dynamic measurements.

1 Introduction

The analysis of dynamic measurements, i.e. measurements
where at least one of the quantities of interest is time-
dependent, is becoming increasingly important in metrology
and industry. Dynamic measurements are encountered in a
wide range of application areas, covering, for instance, single
sensors to complex sensor networks, and measured quantities
changing on scales from picoseconds up to several minutes.
Examples of dynamic measurements of mechanical quanti-
ties can be found in, for instance, (Link et al., 2005) for accel-
eration, in (Schlegel et al., 2012) and (Kobusch et al., 2015)
for force, in (Klaus et al., 2015) for torque and in (Gardner,
1981), (Matthews et al., 2014) and (Wilkens and Koch, 2004)
for pressure. A more general overview on the current state of
dynamic measurements in industrial applications is given in
(Schäfer, 2015). Dynamic measurement of electrical quanti-
ties is covered, for instance, by (Younan et al., 1991), (Hale
et al., 2009) and (Humphreys et al., 2015).

Despite the widespread occurrence of dynamic measure-
ments, there is a lack of guidelines and standards for their
treatment, application and analysis. For static measurements,
i.e. measurements where no quantity of interest is time-
dependent, the Guide to the Expression of Uncertainty in
Measurement (GUM) and its supplements (BIPM et al.,
2008a, b, 2011) are widely considered as quasi-standards re-
garding the evaluation of uncertainty. These documents have
led to the development of many software packages of vary-
ing complexity, which provide easy-to-use implementations
of the GUM framework. This, together with the availability
of international standards with uncertainty evaluation based
on the GUM framework, has led to an acceptance and ap-
plication of metrologically validated uncertainty treatment.
Moreover, it provides the foundation of traceability for static
measurements.

In contrast, the situation for dynamic measurements is
more complicated. Currently, there is a lack of harmonized
vocabulary, mathematical and statistical modelling, and mea-
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surement analysis, as outlined in (Eichstädt et al., 2016),
(Ruhm, 2016) and others.

Dynamic metrology is a very active field of development,
and various approaches to the evaluation and propagation
of uncertainty can be found in the literature. For instance,
on-line evaluation of uncertainty in the application of fi-
nite impulse response (FIR) filters is addressed by (Elster
and Link, 2008), and infinite impulse response (IIR) filters
by (Link and Elster, 2009); efficient Monte Carlo meth-
ods for uncertainty propagation is presented in (Eichstädt
et al., 2012), the efficient reporting of high-dimensional co-
variance matrices is addressed by (Humphreys et al., 2015),
regularized deconvolution in the frequency domain is con-
sidered by (Hale et al., 2009) and (Dienstfrey and Hale,
2014), and propagation of uncertainty in the application of
the discrete Fourier transform (DFT) is addressed by (Eich-
städt and Wilkens, 2016). Moreover, the European Metrology
Research Programme (EMRP) projects IND09, “Traceable
dynamic measurement of mechanical quantities1”, (2011–
2014) and IND16, “Metrology for ultra-fast electronics and
high-speed communications2”, (2011–2014) laid the founda-
tions for primary dynamic calibration of force, torque and
pressure sensors, as well as bridge amplifiers and ultra-fast
electronic devices. However, application of the methods de-
veloped within IND09 and IND16 is still mostly limited
to national metrology institutes (NMIs). Consequently, the
main goal of the European Metrology Programme for In-
novation and Research (EMPIR) project 14SIP08 Standards
and software to maximize end user uptake of NMI calibra-
tions of dynamic force, torque and pressure sensors3 (2015–
2018) is to bridge the gap between the analysis of dynamic
measurements at NMI-level and that within industry. There-
fore, NMIs PTB (Physikalisch-Technische Bundesanstalt,
Germany) and NPL (National Physical Laboratory, UK), to-
gether with international companies HBM GmbH and Rolls-
Royce Ltd., aim to develop practical guidelines, tutorials,
training material and software. In this contribution we out-
line the challenges to be tackled by the analysis of dynamic
measurements, indicate recent publications on the state of
the art at NMI level, and give an introduction to the pub-
licly available open-source software package PyDynamic4

being developed within 14SIP08. The newly developed soft-
ware allows for the first time an off-the-shelf application of
NMI-level data analysis and measurement uncertainty eval-
uation methods. As mentioned above, this is a pre-requisite
for achieving a wide acceptance and application of dynamic
measurement analysis. Moreover, a wide acceptance and val-
idation of this software is ensured by a clear documentation
as part of the source code and in terms of documented ex-
amples together with a transparent and open system for the

1https://www.ptb.de/emrp/ind09.html
2https://www.ptb.de/emrp/ultrafast.html
3http://mathmet.org/projects/14SIP08
4https://github.com/eichstaedtPTB/PyDynamic

Figure 1. Basic outline of a dynamic measurement with analogue-
to-digital conversion (ADC) of the measured system output before
processing.

documentation of the software development using a public
repository. Finally, the deployment through the established
platform PyPi5 allows for an easy installation with the sim-
ple command pip install PyDynamic.

2 Development of standards for dynamic
measurements

Harmonization and standardization are underpinning most
of today’s metrology and industrial areas where compara-
bility, conformity and quality assurance play an important
role. The Guide to the Expression of Uncertainty in Mea-
surement (GUM) (BIPM et al., 2008a) and its supplements
(BIPM et al., 2008b, 2011) represent a well-established foun-
dation of an uncertainty framework that can be applied to a
large variety of application areas. It is based on a clear def-
inition of the measurand, i.e. the quantity of interest, and a
mathematical model for its evaluation. An important aspect
of metrology research for dynamic measurements is thus the
development of a framework that allows the adaption of the
GUM methodology for dynamic metrology. Here we give a
comprehensive overview for the challenges to be addressed
by such adaptions and provide questions and tasks to be con-
sidered in future standardization activities.

For most applications in dynamic metrology, the analysis
of dynamic measurements follows the basic workflow illus-
trated in Fig. 1.

The measurand is thus the sequence Y=
(Y [1],Y [2], . . .Y [N ])T of discrete time values and, conse-
quently, its uncertainty is a covariance matrix of dimension
N ×N , with N typically larger than 1000. In some ap-
plications, certain parameters are to be derived from this
sequence. Such single parameter values can, for instance, be
positive and negative peak values, an integral over a certain
time interval, the rise time of a step or the frequency of an
oscillation. However, the propagation of uncertainties to
such parameters often require knowledge of the uncertainty
over a certain time interval. The typical example is the
calculation of an integral which also requires correlations
between different time instants to be accounted for. Thus,
we here consider as measurand the whole sequence Y.

Although the top-level workflow for dynamic measure-
ments is the same as that for static measurements, the in-

5https://pypi.python.org
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dividual low-level steps differ significantly for the following
reasons:

1. The measurement system input is a function of time;

2. The measuring device is a dynamic system (often linear
and time-invariant);

3. The estimation task requires the solution of an ill-posed
inverse problem;

4. The measurand is a high-dimensional multivariate
quantity.

In contrast, (1) in static measurements all quantities are
static, i.e. time dependence can be neglected; (2) the mea-
surement system is usually not dynamic, but can be described
by algebraic equations; (3) the model for the evaluation of
a static measurand is usually not an ill-posed inverse prob-
lem, but an algebraic equation; and (4) measurands in static
measurements are typically univariate or of small dimension
(< 10) whereas dynamic measurands may contain several
thousand values. Altogether, the distinction between static
and dynamic measurements is that, for the latter, the fre-
quency content of the involved time series in relation to the
frequency-dependent (i.e. dynamic) behaviour of the measur-
ing device has to be taken into account. For instance, when
the bandwidth of the dynamic measurand exceeds that of the
measuring system employed, significant time-dependent er-
rors are to be expected in the output of the measuring system.
For the compensation and correction of such errors, method-
ologies from static measurement analysis are not sufficient.

These differences pose various challenges for metrology
and require the development of a new metrological vocabu-
lary, the adaptation of methods from signal processing and
system theory for metrological purposes, and the harmoniza-
tion of regularization methods regarding the corresponding
evaluation of uncertainty. In particular:

1. Quantities whose values are continuous functions of
time would require the translation of the GUM uncer-
tainty framework to the treatment of stochastic pro-
cesses as described in (Eichstädt, 2012). In order to
avoid the corresponding mathematical complexities, a
discretized measurand may be considered instead. That
is, in the workflow in Fig. 1 the discrete-time sequence
Y [n] ≡ Y (tn) is considered as the measurand in order
to enable treatment within the GUM uncertainty frame-
work.

2. Estimation of the measurand requires knowledge of the
dynamic behaviour of the measurement system. Hence,
a calibration has to identify and quantify the frequency-
dependent characteristics of the complete measurement
chain. As a consequence, measurement principles from
the static case do not transfer to the dynamic case.

3. The estimation task is a mathematically ill-posed in-
verse problem, which requires some kind of regulariza-
tion to obtain valuable results. Although many regular-
ization methods can be found in the literature, the ma-
jority of the available approaches are heuristic and their
application to metrology is an ongoing topic of research.
In particular, evaluation of the uncertainty contribution
of the regularization is a challenging task, because it in-
corporates prior knowledge about the measurand in the
estimation process. This approach is common, for in-
stance, in Bayesian statistical inference, but is not yet
considered within the GUM uncertainty framework.

4. The reporting and dissemination of a dynamic measure-
ment result cannot be carried out in the same way as
for static measurements, due to the high dimensional-
ity of the measurand. Typically, a dynamic measurand
is a time series of dimension greater than 1000 with
its uncertainty being a corresponding covariance matrix.
Conventional reporting for static measurements are of-
ten based on a printed report with a table for the uncer-
tainty budget. This kind of reporting is thus infeasible
for dynamic measurands.

Several research efforts in dynamic metrology have devel-
oped initial answers to some of the challenges listed above.
For instance, primary dynamic calibration methods for sev-
eral mechanical and electrical quantities have been devel-
oped at NMIs during the last few years – see Sect. 1 and
references therein.

Despite the availability of many publications on dynamic
metrology, the translation into international standards and
guidelines is still at an early stage. Some national guide-
lines, such as the draft German DKD-R 3–10 on dynamic
calibration of uni-axial testing machines, and international
standards, such as (ISO 16063-43:2015) on methods for the
calibration of vibration and shock transducers, directly ad-
dress dynamic calibration. The majority of current standards
and guidelines, however, either refer to the lack of common
methods and harmonized treatment and the general need for
research or they are limited to static measurements only.

In a first step, a harmonized vocabulary has to be deter-
mined. For instance, (Ruhm, 2016) proposes calling dynamic
measurement devices “systems” and the dynamic quantities
“signals”. Then, system and control theory are the founda-
tion for a comprehensive vocabulary in dynamic metrology.
First attempts in this regard are made within EMPIR 14SIP08
by providing input to the BIPM JCGM working group 1 for
the development of the third supplement to the GUM, which
will focus on the topic of modelling. Based on a common
vocabulary, guidelines and standards for dynamic calibration
can be developed in a consistent way. Many standardization
bodies already have technical committees which are work-
ing on such documents. The required mathematical tools,
though, are often much more complicated than the corre-
sponding methods in the realm of static measurements. For
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certain examples this may result in the acceptance of larger
errors and possibly unreliable uncertainties in order to ben-
efit from easily applicable mathematical methods. For in-
stance, the (CIE TC2-60:2013) guideline “Effect of instru-
mental bandpass function and measurement interval on spec-
tral quantities” advises the use of methods related to classi-
cal approaches in that field despite well-known drawbacks,
because of their easier application. In order to compensate
for the mathematical complexity of a superior method, PTB
had developed a software tool with a graphical user inter-
face; see (Eichstädt et al., 2013). This resulted in a wider
acceptance and application of the method, which would not
have been possible with the availability of the method alone6.
Similar situations can be found in many other applications.
For instance, the parametric dynamic calibration method in
ISO 16063 requires the availability of a measured frequency
response with associated uncertainties and the propagation
of uncertainties to the estimated transducer model param-
eters. The required mathematical methods are beyond the
standard toolbox of most dedicated laboratories. Another ex-
ample can be found in the standard (IEC 62127-1:2007-11)
for hydrophones used for the characterization of medical ul-
trasound devices. There, the need of deconvolution for non-
ideal hydrophones is identified. An incorporation of respec-
tive mathematical procedures, though, is postponed until eas-
ily applicable approaches are available. Therefore, several re-
search activities are on the way in order to lay the foundation
for a revision of this standard. The availability of approach-
able methods and ready-to-use software will be an important
aspect for the acceptance of the revision in practice.

3 PyDynamic – software for dynamic metrology

Many tasks in dynamic metrology involve the application
of signal processing, for which ready-to-use implementa-
tions are available in almost all major software packages.
These software implementations, though, lack the corre-
sponding evaluation of uncertainty. As a consequence, un-
certainty evaluation is frequently undertaken using either
rule-of-thumb methods or time-consuming simulation ap-
proaches, or is neglected completely. The EMPIR project
14SIP08 develops a user-friendly software environment to
carry out data processing for dynamic metrology. The soft-
ware is called PyDynamic and it implements recently pub-
lished mathematical and statistical methods required to carry
out the workflow shown in Fig. 1. Since the methods have
been published elsewhere, we will focus on the demonstra-
tion of their simple application by using PyDynamic. There-
fore, the currently implemented methods are illustrated using
three typical tasks in the analysis of dynamic measurements.

6The software can be downloaded free of charge from the PTB
website.

3.1 Design of a compensation filter

Estimation of the dynamic measurand in the workflow de-
picted in Fig. 1 can be undertaken through the application of
a digital compensation filter; cf. (Eichstädt et al., 2010). To
this end, a digital finite impulse response (FIR) filter,

g(z)=
M∑
k=0

bkz
−k, (1)

can be designed such that its frequency response,

G(e−jω/Fs )=
M∑
k=0

bke
−jkω/Fs , (2)

approximates that of the inverse measurement system in a
certain frequency interval, i.e.

H (jω)G(e−jω/Fs )e−jωτ ≈ 1, |ω| ≤ ω1, (3)

with H (jω) the frequency response of the measurement sys-
tem. The time delay τ = n0Ts is introduced as a means of
addressing the unphysical nature of the inverse system; cf.
(Eichstädt et al., 2010). An example of such a filter is shown
in Fig. 2.

Provided that the frequency response of the measurement
system is available at a set of frequencies, the design of a
compensation filter can be carried out by solving the lin-
ear least-squares problem for the filter coefficient vector b

of length M + 1:

b = argminb(H −Db)>W−1 (H −Db) , (4)

with D the design matrix of dimension 2N × (M + 1), W a
chosen 2N × 2N symmetric weighting matrix, and the 2N
frequency response values of the measurement system ex-
pressed in terms of real and imaginary parts,

H = (<H (jω1), . . .,=H (jωN )) . (5)

See (Elster and Link, 2008). Typically, these values are deter-
mined by dynamic calibration experiments or derived from
information provided by the manufacturer. Thus, the values
of H are accompanied by a statement of their uncertainty UH
which has to be propagated to an uncertainty Ub associated
with the filter coefficients b. Since the filter coefficient esti-
mate is evaluated by means of weighted linear least-squares,
the associated uncertainty is the covariance matrix,

Ub =
(

D>WD
)−1

D>WUHWD
(

D>WD
)−1

. (6)

Care must be taken to avoid numerical errors that may arise
if the design matrix is ill-conditioned. In this case, truncated
singular value decomposition can be used to calculate a sta-
ble pseudo-inverse; see (Elster and Link, 2008). The deriva-
tion of a mathematical model for the evaluation of the mea-
surand thus comprises (i) the provision of the frequency re-
sponse values with associated uncertainties, (ii) the formula-
tion of the filter estimation problem as a least-squares model,
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Figure 2. Frequency response of the measurement system of the
FIR deconvolution filter and the resulting compensation as a product
of the measurement system and deconvolution filter.

(iii) the numerical solution of the (weighted) least-squares
problem and finally (iv) the propagation of uncertainties to
the estimated filter coefficients. In PyDynamic, task (i) can
typically be carried out by using the methods for working
with the discrete Fourier transform, and tasks (ii)–(iv) are
carried out by the function LSFIR_unc:

b, Ub = LSFIR_unc(H, UH, M, n0, f, Fs)

with f the vector of frequencies at which the system’s fre-
quency response is given and Fs the sampling frequency.
Thus, the mathematical complexity of the filter design task
is encapsulated within one Python function call.

Figure 3 shows the result of applying an FIR deconvolu-
tion filter to the output of a measurement system whose reso-
nance frequency is excited by the simulated input signal. On
the scale of Fig. 3, the FIR filter output is almost indistin-
guishable from the simulated input signal.

If, instead of an FIR filter, an IIR filter is sought, the Py-
Dynamic function

b, a, Uab = LSIIR_unc(H,UH,Mb,Ma,f,Fs)

which implements a Monte Carlo method for uncertainty
propagation can be used. Here, Mb and Ma denote the or-
der of the numerator and denominator IIR filter part, respec-
tively.

3.2 Uncertainty propagation for digital filtering

The application of digital filters is one of the most basic tasks
in the processing of dynamic measurement data. A common
example is the application of a low-pass filter for noise at-
tenuation or a compensation filter for input estimation, as
described above. The implementation of digital filtering is
straightforward in almost all scientific software packages,
whereas the propagation of uncertainty is typically neglected.

Figure 3. Input signal for a simulated measurement, calculated out-
put signal, and estimate obtained by the application of a FIR decon-
volution filter to the system output.

This statement in particular holds true when the filter coeffi-
cients have associated uncertainty. However, the propagation
of uncertainties is a prerequisite for the final step in the work-
flow depicted in Fig. 1.

3.2.1 FIR filtering

Consider the FIR filter with coefficient vector b having
associated uncertainty Ub, and the filter input signal x =

(x(t1), . . .,x(tN ))> with associated point-wise uncertainties
ux = (ux1 , . . .,uxN )>. Following (Elster and Link, 2008), the
filter output is obtained as

y(tn)=
M∑
k=0

bkx(tn−k), (7)

with uncertainty evaluated as

u2
yn
= b>UX(n)b+X>(n)UbX(n)+Tr(UX(n)Ub), (8)

where UX(n) denotes the covariance matrix associated with
X(n)= (x(tn), . . .,x(tn−M ))> and Tr denotes the trace of a
matrix. When b is a deconvolution filter, its application to
the measured system output is typically complemented with
a low-pass filter for noise attenuation; see (Elster and Link,
2008). Then UX(n) also contains the correlation introduced
by the low-pass filter. Otherwise, the covariance matrix UX(n)
contains only a diagonal with elements equal to ux . Hence,
the propagation of uncertainties through an FIR filter with
uncertain coefficients requires the calculation of the time-
dependent covariance matrix UX(n) and the implementation
of Eq. (8). InPyDynamic, this task is carried out simply by

y, uy = FIRuncFilter(x, ux, b, Ub)

The uncertainty calculated for the FIR estimation result
depicted in Fig. 3 is shown in Fig. 4. The time dependence of
the uncertainty associated with the measurand is typical for
dynamic measurements.
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Figure 4. Point-wise standard uncertainties associated with the out-
put of the FIR deconvolution filter.

3.2.2 IIR filtering

The application of a digital filter with IIR is given mathemat-
ically by

y(tn)=
M∑
k=0

bkx(tn−k)−
M∑
k=1

aky(tn−k). (9)

An example of the application of an IIR filter is given in
Fig. 5.

The recursive structure of the IIR filter makes an analytic
calculation of the uncertainty associated with its output dif-
ficult. Therefore, (Link and Elster, 2009) considered a trans-
formation of the model equation into a state-space system
instead, yielding

z(n+ 1)=Az(n)+ qx(n), (10)

y(n)=c>z(n)+ b0x(n), (11)

with q = (0, . . .,0,1)>, c = (bM−b0aM , . . .,b1−b0a1)> and

A=



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · 0 1
−aM −aM−1 −aM−2 · · · −a2 −a1


.

(Link and Elster, 2009) derived an uncertainty propagation
scheme based on a linearization of the state-space model with
respect to the filter coefficients and the input sequence x[n].
The resulting uncertainty calculation can be carried out in
parallel with the application of the IIR filter. The mathemati-
cal procedure as proposed by (Link and Elster, 2009) requires
the implementation of a state-space model with time-varying
derivatives in order to propagate the uncertainty through the
IIR filter with uncertain coefficients. In PyDynamic, this task
is carried out simply by

y, uy = IIRuncFilter(x, ux, b, a, Uab)

Figure 5. Rectangular signal and corresponding output of a sixth-
order IIR low-pass filter of Butterworth type.

It is well known that uncertainty evaluation using the
GUM uncertainty framework can produce unreliable results
due to the use of a linearization of the model function. A
Monte Carlo method, as described in GUM Supplement 1
(cf. (BIPM et al., 2008b)), can instead be applied. A straight-
forward implementation of the Monte Carlo method, though,
is infeasible due to the high dimensionality of the measur-
and. Therefore, (Eichstädt et al., 2012) developed an efficient
sequential implementation of the GUM Monte Carlo proce-
dure specifically for measurement models that involve digital
filtering. With the sequential implementation of the Monte
Carlo simulation, the required computer memory is indepen-
dent of the length of the involved signals. In (Eichstädt et al.,
2012), the corresponding algorithms are provided as pseudo-
code. The implementation, however, may require advanced
programming skills in order to carry out the required steps ef-
ficiently. In PyDynamic, the sequential Monte Carlo method
is used by calling

y, uy = SMC(x,noise,b,a,Uab,runs=10000)

and it also allows for the sequential calculation of point-
wise coverage intervals with prescribed coverage probability.
Figure 6 shows the uncertainty associated with the output of
the low-pass filter depicted in Fig. 5 when the filter cut-off
frequency is uncertain, which consequently results in uncer-
tain filter coefficients.

3.3 Uncertainty evaluation for the discrete Fourier
transform

The DFT and inverse DFT are common tools applied in
signal processing, and all major scientific software pack-
ages provide corresponding implementations. Uncertainty
evaluation, though, is usually neglected due to the lack of
suitable software implementations. To this end, (Eichstädt
and Wilkens, 2016) proposed efficient implementations for
GUM-compliant uncertainty evaluation for the DFT, inverse

J. Sens. Sens. Syst., 6, 97–105, 2017 www.j-sens-sens-syst.net/6/97/2017/



S. Eichstädt et al.: Dynamic uncertainty 103

Figure 6. Point-wise standard uncertainties associated with the IIR
low-pass filter output signal, when the filter cut-off frequency is un-
certain.

DFT, multiplication in the frequency domain, deconvolu-
tion in the frequency domain, and the conversion from an
amplitude–phase representation of a system’s frequency re-
sponse to its representation by real and imaginary parts.
In PyDynamic, these methods are contained in the module
propagate_DFT.

For instance, the propagation through the application of
the DFT for the discrete-time signal y with associated uncer-
tainty Uy is carried out by

Y, UY = GUM_DFT(y,Uy)

A deconvolution in the frequency domain to obtain an es-
timate X of the DFT of the system input x from knowledge
of the system output y and the system frequency response
H (jω) with associated uncertainty UH is carried out by

X, UX = DFT_deconv(H, Y, UH, UY)

A low-pass filter for noise-attenuation can then be applied
to the result of the deconvolution by

Xl, UXl = DFT_multiply(X, UX, HL)

with HL the frequency response of the chosen low-pass
filter.

The DFT domain methods in PyDynamic provide an end-
to-end propagation of uncertainties in many important ap-
plication areas. For instance, dynamic calibration of second-
order systems based on measurement of the input and output
signal can be carried out by using (i) GUM_DFT to propagate
the time-domain signals and their uncertainty to the Fourier
domain, (ii) DFT_deconv to calculate the frequency re-
sponse of the system to be calibrated and its associated un-
certainty, (iii) fit_sos to fit the parameters of a second-
order system to the uncertain frequency response and calcu-
late their associated uncertainties, (iv) LSFIR_unc to de-
sign a corresponding FIR-type deconvolution filter with un-
certain coefficients and, finally, (v) FIRuncFilter to ap-
ply that filter to a measured system output and calculate an

estimate of its input and its associated uncertainty in line with
the GUM framework. Similar workflows can be outlined for
many other application areas of dynamic metrology. In this
way PyDynamic lays the foundation for a wide implementa-
tion of reliable NMI-level and GUM-compliant tools in the
analysis of dynamic measurements.

4 Outlook

With the availability of a harmonized vocabulary, a princi-
pal and general mathematical modelling approach, together
with established routines for the evaluation of measurement
uncertainties and the development of a traceability chain for
industrial end users of dynamic measurement, can finally be
achieved. The next steps in the development of PyDynamic
will thus focus on the implementation of further mathemat-
ical and statistical approaches to common tasks in dynamic
metrology. This includes, for instance, the identification of
general transfer function models to frequency response data
with associated uncertainties, the propagation of the uncer-
tainty associated with dynamic quantities of high dimension-
ality, sub-sampling and interpolation of dynamic quantities.
There is an increasing use of sensors in distributed networks
with automated data assimilation and evaluation. This re-
quires common data protocols in order to enable a reliable
communication for the sensor network. Therefore, we are de-
veloping a custom data format “Signal” for PyDynamic that
allows the user to carry out standard data operations with-
out the need to manually propagate the uncertainties. That
is, “Signals” can be added, subtracted from one another us-
ing standard “+” and “−” operations; digital filters with or
without uncertain coefficients can be applied to a “Signal”;
application of sub-sampling, interpolation and multiplication
with a scalar or a vector can be carried out easily. Each “Sig-
nal” has at least three properties: a time axis, signal values
and associated uncertainties. For all operations on and with
“Signals”, the propagation of uncertainties is carried without
intervention of the user. In this way, complex programs and
calculations can be carried out without additional costs re-
garding the implementation of the corresponding uncertainty
evaluation.

PyDynamic is distributed under the LGPLv3 software li-
cense which allows the incorporation of PyDynamic routines
in closed source code. Together with the implemented ver-
satile data analysis methods, this opens the possibility of in-
telligent sensors with embedded data analysis that provides
data values with associated dynamic uncertainty. In addition,
data analysis for sensor networks can then be based on PyDy-
namic’s “Signal” data format and the implemented functions.
Moreover, due to the employed object-oriented programming
approach for the data structure, users can easily extend the
existing code functionality to their needs.
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5 Conclusions

Analysis of dynamic measurements is the topic of a grow-
ing number of research initiatives. The majority of publica-
tions in this area focus on measurements at the level of NMIs.
However, dynamic measurements are routinely carried out at
the industrial level and mathematical and statistical methods,
guidelines and best-practice guides, which are suitable for
typical industrial applications, are required. The prerequisite
for the development and wide acceptance of such guidance
documents, though, is the availability of well-established and
approachable methodologies. At present, there is a signifi-
cant lack of methods and advice, standard software tools and
international standards. This lack has been acknowledged
in several publications and support is being requested by a
growing number of standardization groups. Therefore, in the
EMPIR project 14SIP08, NMIs PTB (Germany) and NPL
(UK), together with international companies HBM GmbH
and Rolls-Royce Ltd., aim to develop practical guidelines, tu-
torials, training material and software. One of the outcomes
of this project is the software package PyDynamic, which
after only one year of development already provides imple-
mentations of the major tools required for the analysis of dy-
namic measurements. The software development will con-
tinue throughout and beyond the duration of 14SIP08. The
intention is for PyDynamic to act as ready-to-use software
that removes the barrier between the analysis of static and
dynamic measurements, and makes dynamic measurement
analysis standard practice within both NMIs and industry. We
outlined, for three typical-use cases in dynamic metrology,
how such a software tool can enable the application of so-
phisticated mathematical approaches. In many applications,
the complete data analysis workflow can already be carried
out with the help of PyDynamic functions, making the prop-
agation of uncertainties through that workflow a simple task
for the user. In the future, this will be improved even more
by the provision of the custom data format “Signal” which
allows the propagation of uncertainties without the need to
know which PyDynamic function would be required for the
operation on the data. Together with the cooperation of EM-
PIR 14SIP08 with JCGM WG1 and the publication of guid-
ance documents, this lays the foundation for future standards
and international guidelines in dynamic metrology.

6 Code and data availability

The “data” used for this publication is simulated data, gen-
erated by the code available for download at https://github.
com/eichstaedtPTB/PyDynamic/tree/master/examples
(Eichstädt and Smith, 2016).
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