CORE ERLANG 1.0.3
language specification

Richard Carlsson Bjorn Gustavsson Erik Johansson
Thomas Lindgren Sven-Olof Nystrom Mikael Pettersson

1

Robert Virding
November 26, 2004

Abstract

We describe a core language for the concurrent functional language ERLANG,
aptly named “CORE ERLANG”, presenting its grammar and informal static
and dynamic semantics relative to ERLANG. We also discuss built-in func-
tions and other open issues, and sketch a syntax tree representation.

Motivation

CORE ERLANG is an intermediate representation of ERLANG, intended to lie
at a level between source code and the intermediate code typically found in
compilers.

During its evolution, the syntax of ERLANG has become somewhat compli-
cated, making it difficult to develop programs that operate on the source. Such
programs might be new parsers, optimisers that transform source code, and var-
ious instrumentations on the source code, for example profilers and debuggers.

CORE ERLANG should meet the following goals:

CORE ERLANG should be as regular as possible, to facilitate the develop-
ment of code-walking tools.

CORE ERLANG should have a clear and simple semantics.

CORE ERLANG should be straight-forward to translate to every interme-
diate code used in any ERLANG implementation; similarly, it should be
straightforward to translate from ERLANG programs to equivalent CORE
ERLANG programs.

There should exist a well-defined textual representation of CORE ERLANG,
with a simple and preferably unambiguous grammar, making it easy to
construct tools for printing and reading programs. This representation
should be possible to use for communication between tools using different
internal representations of CORE ERLANG.

e The textual representation should be easy for humans to read and edit, in
case the developer wants to check what the ERLANG source looks like in
CORE ERLANG form, inspect — or modify — the results of code transfor-
mations, or maybe write some CORE ERLANG code by hand.

These goals force CORE ERLANG to a fairly high level of abstraction. It is not,
for example, possible to break down the receive construct into operations that
operate on the mailbox, since no such (useful) translation would be compatible
with all ERLANG implementations.

Section 2 describes changes since the first published version of this document.
Section 3 discusses lexical analysis and parsing. Section 4 gives the grammar for
the language and Section 5 the static semantics. Section 6 describes evaluation
of programs and expressions. Section 7 discusses issues that may need further
specification. Appendix A contains a quick reference to the language and Ap-
pendix B lists character escape sequences. Appendix C shows a simple syntax
tree representation.

2 Revision history

The following is a summary of the changes since version 1.0 of this document.

2.1 Changes in version 1.0.3

e Added binary-syntax expressions and patterns.

e try expressions given explicit success-continuation (of...) as well as fail-
continuation (catch...).

e Updated semantics of exceptions, try expressions and catch expressions.

e Relaxed restrictions on expressions in guards.

2.2 Changes in version 1.0.2

e protected expressions replaced by restricted form of try expressions.

2.3 Changes in version 1.0.1
e receive expressions (p. 9) no longer terminated by an end keyword.
e Semantics of catch expressions (p. 18) slightly modified.

e Guards no longer implicitly evaluated within protected (cf. p. 20).

3 Lexical analysis and parsing

We discuss the lexical processing of a CORE ERLANG program in terms of op-
erations on a sequence of Unicode [4] characters (of which both ASCII and
Latin-1 [3], ISO/IEC 8859-1, are subsets), such that there are no Unicode es-
capes (written \uXXXX, where each X is a hexadecimal digit) in the sequence.
Note, though, that it is not required that tools handling CORE ERLANG source

programs use Unicode for input and output; like ERLANG, no part of the written
language per se requires characters outside the 7-bit ASCII subset. However, in
order to support StdErlang [2], tools must be able to handle Unicode encodings
of CORE ERLANG character, string and atom literals.

We assume that the translation from the sequence of characters into a se-
quence of tokens, suitable for parsing according to the grammar of the following
section, is straightforward, being very similar to that of ERLANG. In CORE
ERLANG, atom literals are always single-quoted, to avoid any possible confu-
sion with keywords. Comments on any source code line in CORE ERLANG, like
in ERLANG, begin with the leftmost percent character ‘%4’, (\u0025) on that
line that does not occur as part of an atom, string or character literal, and con-
tinue up to (but not including) the first line terminator following that character.
Comments are ignored by the tokenisation, in effect only recognising the line
terminator.

A line terminator is defined as the longest sequence of input characters con-
sisting of exactly one ASCII CR (\u000d), one ASCII LF (\u000a), or one CR
followed by one LF. Line terminators are generally treated as whitespace, ex-
cept in atom and string literals where line terminators are not allowed. CORE
ERLANG does not distinguish between periods (‘.’ characters) that are followed
by whitespace (called FullStop tokens in the ERLANG Reference Manual [1]) and
those that are not (i.e., ordinary separator periods).

The tokenisation should concatenate all adjacent string literals (these may
be separated by any number of whitespace characters, line terminators and
comments). Thus, the text “"Hey" "Ho"” denotes the same string literal as
"HeyHo". This allows strings to be split over several lines.

4 Grammar

This section describes the basic grammar of CORE ERLANG programs. An effort
has been made to reduce the language as far as it is possible — and practical —
while maintaining readability and preserving most of the lexical conventions of
ERLANG. For instance, it can be noted that the syntactic distinction between
variables and function names is not really necessary, but makes the connection
between exported function names and calls to locally bound functions more ob-
vious to the eye than if “plain” ERLANG-style variables were used for all bindings.

4.1 Notation

Literals are described using ordinary regular expressions, where ? stands for
“zero or one occurrence of”; + for “one or more repetitions of”; and ellipsis (...)
indicates repetition over a range of characters; no other symbols are used except
parentheses and the standard | for alternative choices and * for zero or more
repetitions.

For some widely used grammar rules we use abbreviations, such as i for In-
teger and v for AnnotatedVariable. The abbreviations are given within paren-
theses by the corresponding rules.

To further keep the presentation compact, we use ellipsis notation with in-
dices (“xy...x,”) instead of giving explicit recursive rules for (possibly empty)
sequences.

4.2 Lexical definitions

sign n= + |-
digit == 0]1]...1]9
uppercase = A| ... |Z]\u00cO| ... | \u00d6 | \u00d8 | ... | \uo0de
lowercase == al| ... |z|\u00df | ... | \u00£f6 | \uo0£8 | ... | \uooff
inputchar = any character except CR and LF
control ::= \u0000 | ... | \u0O1f
space = \u0020
namechar = uppercase | lowercase | digit | @ | _
escape == \ (octal | (* ctrichar) | escapechar)
octaldigit == 01| ... |7
octal = octaldigit (octaldigit octaldigit?)?
ctrichar = \u0040 | ... | \uo05f
escapechar bld|e|f|n|z|s|t]|v]"]|’]\

An escape sequence \ octal denotes the character whose Unicode value is given
by the octal numeral. An escape sequence \ ~ ctrichar denotes the character
whose Unicode value is 64 less than that of the ctrichar. The meanings of escape
sequences \ escapechar are defined in Appendix B.
4.3 Terminals
Integer (i):

sign? digit™
Float:

sign? digit™ . digit™ ((E | e) sign? digit™)?
Atom (a):

> ((inputchar except control and \ and ’) | escape)* ’
Char:

$ ((inputchar except control and space and \) | escape)
String:

" ((inputchar except control and \ and ") | escape)* "
VariableName:

(uppercase | (_ namechar)) namechar™

Note that a single underscore character ‘_’ is not a valid VariableName.

4.4 Non-terminals

AnnotatedModule:

Module

(Module =1 L e1, ooy ¢ 1)
Module:

module a ModuleHeader ModuleBody end
ModuleHeader:

FExports Attributes
Ezxports:

[FunctionNamey , ..., FunctionName,,]
FunctionName (a/i):

ali

where a is called the identifier, and ¢ the arity.
Attributes:

attributes [ModuleAttribute; , ..., ModuleAttribute,]
ModuleAttribute:

a=c

where a is called the key, and c the value of the attribute.
ModuleBody:

FunctionDefinition; --- FunctionDefinition,
FunctionDefinition:

AnnotatedFunctionName = AnnotatedFun
AnnotatedFunctionName:

FunctionName

(FunctionName =1 [c1, ..., cp 1)
AnnotatedFun:

Fun

(FPun-1 [Lery, ooy en 1)

(n>0)

(n>0)

Constant (c):

AtomicLiteral

{ec, ..., cn} (n>0)

Lci, ooy Cn] (n>1)

Leis, ooy Cpe1 | oepn] (n>2)
AtomicLiteral:

Integer

Float

Atom

Nil

Char

String
Nil:

(1]
Annotated Variable (v):

VariableName

(VariableName =1 [¢y, ..., ¢ 1) (n>0)
AnnotatedPattern (p):

ol

Pattern

(Pattern -1 [c1, ..., ¢n 1) (n>0)
Pattern:

AtomicLiteral

{pi, ..., pn '} (n>0)

Lprs -oos pn (n>1)

Lpis -oos Poo1 | pn] (n>2)

{ BitstringPattern, , ..., BitstringPattern,, } # (n>0)

v=p

where the last form v = p is called an alias pattern.

1The separation of variables from other patterns is necessary to keep the grammar LALR(1)

BitstringPattern:

#<p>C(Cer, ..., €y)
Ezxpression (e):

Annotated ValueList

AnnotatedSingleExpression
Annotated ValueList:

ValueList

(ValueList =1 [¢1, ..., ¢n 1)

ValueList:

< AnnotatedSingleExpression; , ...

AnnotatedSingleExpression,, >
AnnotatedSingle Expression:

Single Expression

(SingleFExpression = [¢1, ...

Single Expression:
AtomicLiteral
VariableName
FunctionName
Tuple
List
Binary
Let
Case
Fun
Letrec
Application
InterModuleCall
PrimOpCall
Try
Receive
Sequencing

Catch

» Cn 1)

Tuple:

{61, ey en}

Note that this includes the 0-tuple {} and 1-tuples {z}.

List:

Ler, ..., ey]

Ler, .oy €1 | en]
Binary:

{ Bitstring, , ..., Bitstring, }
Bitstring:

#<e> (Cery, ...y €5)
Let:

let Variables = e; in eg
Variables:

v

VL, ooy Up >
Case:

case ¢ of AnnotatedClause; --- AnnotatedClause, end
AnnotatedClause:

Clause

(Clause =1 [e, ...y ¢ 1)
Clause:

Patterns Guard -> e
Patterns:

p

< PLy <oy Pn >
Guard:

when e
Fun:

fun C vy, ..., v,) —>e

Note that there is no end keyword terminating the expression.

(n = 0)

Letrec:

letrec FunctionDefinition; --- FunctionDefinition, in e (n>0)
Application:

apply e Ce1, ..., €) (n>0)
InterModuleCall:

call ef : e, (e, ..., e) (n>0)
PrimOpCall:

primop a C e1, ..., €,) (n>0)
Try:

try e; of Variables -=> eq

catch Variables -> e3 (m,n >0)
Receve:

receive AnnotatedClause; - -- AnnotatedClause, Timeout (n>0)
Timeout:

after e; —> eg

where e; is called the expiry expression and es the expiry body.
Sequencing:

do ey es
Catch:

catch e

5 Static semantics

5.1 Annotations

An annotation (e -| [¢y, ..., ¢, 1) associates a list of constant literals ¢y,

.., ¢, with the enclosed phrase e. Annotations are always optional; leaving
out an annotation is equivalent to specifying an empty annotation list. The
interpretation of annotations on program phrases is implementation-dependent.

5.2 Module definitions

The general form of a module definition is:

module a [FunctionNamey, ..., FunctionName,,]
attributes [ModuleAttribute, ..., ModuleAttribute,,]
FunctionDefinition; --- FunctionDefinition

end

(cf. p. 5), where the atom « is the name of the module.

For each FunctionName a/i listed in the Ezports declaration, it is a compile-
time error if the function name a/i does not occur on the left-hand side of a
FunctionDefinition in the corresponding ModuleBody.

For each ModuleAttribute a = c listed in the Attributes declaration, it is a
compile-time error if there exists more than one ModuleAttribute with the same
key a in the list. The interpretation of module attributes is implementation-
dependent.

Each FunctionDefinition in the ModuleBody associates a FunctionName ay, /i,
with a Fun fr. It is a compile-time error if the number of parameters of the
right-hand side fi does not equal the left-hand side arity 7. The scope of each
such function definition is the whole of the corresponding Module; see evalu-
ation of InterModuleCall expressions (p. 16) for details. It is a compile-time
error if the same function name a/i occurs on the left-hand side of two function
definitions D, Dy, j # k, in a ModuleBody D; --- D,,. (Cf. Letrec expressions,
p. 11.) A function name thus defined in the module body is said to be exported
by the module if and only if it is also in the Ezports declaration of the module.

5.3 Atomic literals

A String (p. 4) is defined as shorthand for the corresponding list of Char literals
(cf. List, p. 8). E.g., "Hi!" denotes the list [$H, $i, $!']. Also recall that
the tokenisation process will concatenate all adjacent String literals that are
separated only by whitespace and/or comments.

5.4 Lists

For lists in general, the following equivalences are defined:
Lz, ooy 2l o= [a1, ..oy | [1]
for n > 1, and
Lz, oo Tpor |2l = [21y vy Tneo | [axpn_1 | 2 11

for n > 3. Thus, every list (p. 8) can be equivalently written on a unique normal
form using only the list constructor primitive? [o | o 1, and the constant
literal [] (Nil). This also applies to lists in constants (p. 6) and patterns (p. 6).

5.5 Expressions

e For a VariableName or FunctionName expression, it is a compile-time
error if the occurrence is not within the scope of a corresponding binding.
A VariableName can only be bound in a Let, a Clause, a Fun, or a Try,
while a FunctionName can only be bound in a FunctionDefinition of a
Module or a Letrec.

e In Fun (p. 8) expressions fun (vy, ..., v,) —-> e, and in Let (p. 8) ex-
pressions let <vi, ..., v,> = €1 in ey, no variable name may occur
more than once in vy, ..., v,. Likewise, in Try (p. 9) expressions try e;

2Usually called cons.

10

of <vy, ..., vp> => eg catch <Up41, ..., Untm> —> €3, NO variable
name may occur more than once in vy, ..., Up, Or il Vpi1, vy Untm-
The number m of variables in the catch branch of a Try expression is an
implementation-dependent constant.

Note that a singleton variable, as in let <v> = e; in ey, may equiva-
lently be written without the surrounding <...>, asin let v = e; in es.

e In a Letrec (p. 9) expression letrec D;---D, in e, it is a compile-time
error if the same FunctionName a/i occurs on the left-hand side of two
function definitions D;, Dy, j # k, in Dy --- Dy,.

e In a Case (p. 8) expression case e of Clause; --- Clause, end, it is
a compile-time error if not all clauses of the expression have the same
number of patterns (cf. Section 5.6).

e In a Receive (p. 9) expression, on the general form:
receive Clause; --- Clause, after e; —> eq

it is a compile-time error if some clause of the expression does not have
exactly one pattern (cf. Section 5.6).

5.6 Clauses and patterns

A Clause (p. 8) has the general form <py, ..., p,> when e; -> ey, where e;
is known as the guard and ey as the body of the clause. es is any expression,
whereas e; is a restricted expression that must be valid as a CORE ERLANG
clause guard (see Section 6.7 for details). If n is 1, the clause can equivalently
be written p; when e; -> es.

Each p; is a Pattern (p. 6) consisting of variables, atomic literals, tuple and
list constructors, and alias patterns. No wariable name may occur more than

once in the patterns p1,...,p, of a clause. Pattern matching is described in
Section 6.5.

In a BitstringPattern #<p>(e1, ..., e,) of a binary pattern #{ ... }# both
the subpattern p and the arguments eq,...,e, are restricted to constants c

and variables v. (Variables in such arguments are not subject to the general
single occurrence limitation on variables in clause patterns.) The number n of
arguments of a BitstringPattern must be the same as the number of arguments
of a Bitstring template of a Binary expression (p. 8), and is an implementation-
dependent constant.

6 Dynamic semantics

CORE ERLANG is a higher-order functional language operating on the same data
types as ERLANG. As in ERLANG, functions are identified by the pair of the
identifier and the arity. However, while in ERLANG a function call evaluates
to a single value, in CORE ERLANG the result of evaluating an expression is
an ordered sequence, written <xq, ..., x,>, of zero, one or more values ;. A
sequence is not in itself a value; thus it is not possible to create sequences of
sequences. For simplicity we denote any single-value sequence <x> by x where
no confusion can ensue. If an expression e always evaluates to a sequence of

11

values <x1, ..., x,>, then we define the degree of e to be the length n of this
sequence.

An environment p is a mapping from names to ERLANG values; e.g., p = [v —
>true’] maps the single variable name v to the atom ’true’. We write p1ps to
denote the extension of p; by the elements of pa, such that if v +— z is in p; and
v — y is in po, then only the latter is in p;ps. To simplify the presentation, in
the context of environments all names are assumed to be without annotations.

6.1 Programs and processes

A CORE ERLANG program consists of an unordered set of definitions of distinctly
named modules (cf. Module, p. 5). Execution of a program is performed by
evaluating an initial expression call aq:as(x1, ..., x,), where a; and ay are
atoms and z1,...,x, are any values (cf. InterModuleCall, p. 16), in an empty
environment. The program execution ends when the evaluation of the initial
call is completed, either normally, yielding a final result (the interpretation of
which is implementation-dependent), or abruptly, by causing an exception to be
raised that is not caught by a Try expression (cf. p. 16) in the program.

Each particular instance of a program execution is associated with some
specific process. We define a process to be an object with a unique identity
and a mutable state. The state of a process is assumed to contain a mailbox
object, but otherwise its details are implementation-dependent. A mailbox is an
ordered sequence of values, such that its contents may be inspected, a value may
be appended to the sequence, and any value (at any position) may be removed
from the sequence; no other operations are allowed. The state of a process,
including the mailbox, may be mutated at any point during its lifetime, as a
side effect of program execution or by other causes; this is also implementation-
dependent.

The set of module definitions constituting the program is mutable, and at
any time, module definitions may be added, removed or replaced,? maintaining
the invariant that each module definition in the set is distinctly named. A
definition m with name « in the set at any time, is generally referred to as the
latest version of a at that time.

6.2 Exceptions

An exception is a value £ describing an abrupt termination of evaluation. In
implementations of ERLANG, this is a pair (r, z), where r is an arbitrary ERLANG
value, usually referred to as the “reason” or “error term” of the exception, and
x is an implementation-dependent ERLANG value that specifies further details
about the exception.

For any such x, at least one primitive operation must be defined:

exc_class(x)

which yields an atom representing the class of the exception - in ERLANG, this
is currently one of ’error’, ’throw’, or ’exit’.

3Variously known as “dynamic code replacement”, “run-time code replacement”, and “hot
code loading”.

12

CORE ERLANG defines no specific way of raising exceptions, but given a prim-
itive operation named e.g. raise, of arity 2, which always terminates abruptly
with an exception whose corresponding class and reason are the actual param-
eters to the call, one could define:

erlang:error(R) = primop ’raise’(’error’, R)
erlang:exit(R) := primop ’raise’(’exit’, R)
erlang:throw(R) = primop ’raise’ (’throw’, R)

for the ERLANG built-in standard functions erlang:error/1, erlang:exit/1
and erlang:throw/1.

6.3 Evaluation of expressions

Argument evaluation in CORE ERLANG is strict, i.e., all arguments to an op-
erator are completely evaluated before the evaluation of the operator begins;
furthermore, the evaluation order of arguments is always undefined, unless oth-
erwise stated (notably in Let expressions, Case expressions, Receive expressions
and Try expressions). The degree of any expression used as argument to another
is unless otherwise stated expected to be 1 (one); if the degree of an expression
does not match its use, the behaviour is undefined.

Every expression is assumed to be evaluated in a given environment p, map-
ping all free variables and function names in the expression to ERLANG values.

Expression evaluation can either terminate normally, yielding a sequence of
values, or abruptly, by raising an exception (cf. Section 6.2). Except for Try
expressions (see p. 16), if the evaluation of an immediate subexpression e’ of
some expression e terminates abruptly with exception £, then evaluation of e
also terminates abruptly with exception &.

ValueList:

<815 «vvy Sp>

where each s; is a SingleExpression, which must have degree 1.

This evaluates to the sequence <zy, ..., x,> where for i € [1,n], s;
evaluates to x;. The degree of the ValueList expression is thus n.

AtomicLiteral:

This evaluates to the ERLANG value denoted by the literal. Nil (p. 6)
denotes the empty list, which is a unique constant whose type is distinct
from all other constants; it is thus not e.g. an atom. Char literals (p. 4)
may be interpreted as denoting integer values representing character codes,
but implementations may instead support a distinct character type.

VariableName:

This evaluates to the value to which the VariableName v is bound in the
environment p, that is, the value of p(v).

13

FunctionName:
ali

This evaluates to the closure to which the FunctionName a/i is bound
in the environment p, that is, the value of p(a/i). See also Application
(p. 15) and Fun (p. 15).

Tuple:
{e]_, ey Cn}

This evaluates to the ERLANG n-tuple {1, ..., z,}, where fori € [1,n],
e; evaluates to z;. Note that a 1-tuple {z} is distinct from the value x,
and that the 0-tuple {2} is a unique value.

List:
[e1 | e2]

This evaluates to the ERLANG list constructor [z | 2], where for i €
[1,2], e; evaluates to z;. See Section 5.4 for details on list notation.

Binary:
#{b1, ..., b J#

where each b; is a Bitstring #<e;0>(e;1, ..., €k).

This evaluates to an ERLANG binary value representing the concatenation
of the individual bit strings described by the templates b1, ..., b,, in that
order. The number of bits in the resulting value must be divisible by 8.

The templates and their subexpressions are evaluated in the same envi-
ronment p as the binary expression itself. For each b;, the result z;y of
evaluating e;g specifies a value to be encoded as a sequence of bits, and
the results z;1,...,z;;, respectively, of evaluating the argument expres-
sions €;1,..., €k, control how the encoding is done. The details of this
encoding is implementation-dependent.*

Let:
let <v1, ..., vp,> = €1 in eo
e; is evaluated in the environment p, yielding a sequence <x1, ..., ;> of
values. es is then evaluated in the environment plvy — 1, ..., v, — Zy].

e; must be completely evaluated before evaluation of e; begins, unless
interleaving their evaluation yields no observable difference. The result is
that of ey if evaluation of both expressions completes normally.

Note that if for all i € [1,n], v; is not used in es, the expression is effectively
a sequencing operator (cf. Sequencing, p. 18), evaluating e; before e3 but
discarding its value.

If e; does not have degree n, the behaviour is undefined.

4The details of binary encoding can get very complicated, and includes which types of values
may be encoded, and how the encoding is controlled by the parameters. Typical parameters
include number of bits, signedness and endianism of integers, floating-point format, etc.

14

Case:

Fun:

case ¢ of P, when ¢g; -> by --- P, when g, -> b, end

where each P;, i € [1,n], is a sequence <p;1, ..., p;x> of patterns, for
some fixed k (cf. p. 11).

The switch expression e is first evaluated in the environment p. If this
succeeds, yielding a sequence <xy, ..., xp> of values, that sequence is
then tried against the clauses of the Case in environment p as described
in Section 6.6.

If clause selection succeeds with selected clause j and mapping p’ as result,
the body b; is evaluated in the environment pp’, and the result of that
evaluation is the result of the Case expression.

If no clause can be selected, or if e does not have degree k, the behaviour
is undefined.

fun (v1, ..., v,) —> ¢

This evaluates to the closure® defined by abstracting the expression e
with respect to the parameters vy, ..., v, in the environment p; see also
Application (p. 15).

Letrec:

letrec a1/iy = f1 -+ ap/in = fn in e

where for k € [1,n], each ay /iy is a FunctionName and each fj a Fun.

The result of evaluating the Letrec in environment p is the result of evalu-
ating expression e in the environment p’, which is the smallest environment
such that:

e for each x in the domain of p, except x € {a1/i1,...,an/in}, p'(z) is
equal to p(z)
e for each ay/ir € {a1/i1,...,an/in}, p'(ax/ix) is equal to the result of
evaluating the corresponding Fun expression fj in the environment
;s
o itself.

(Note that this definition of p’ is circular; however, also note that only
Fun expressions can be bound by a Letrec.)

Application:

apply ep(e1, ..., €n)

where eg evaluates to a closure f (cf. Fun, p. 15).

All of eg,e1,...,e, are evaluated in the environment p. Assume that
e1,...,en evaluate to values x1,...,x,, respectively, and that f is the

SA

closure is defined as the pair consisting of: a) the program code of the function, and b)

the environment in which it should be evaluated.

15

result of evaluating an expression fun (vy, ..., vg) —-> €' in an envi-
ronment p’. Evaluation of the application is then performed by evaluating
e’ in the environment p'[vy — x1,...,v, — x,], if n = k.

If ey does not evaluate to a closure, or if the number n of arguments
in the application is not equal to the arity k of f, the behaviour is
implementation-dependent.

If the code defining the function of the closure is no longer available® at
the time of evaluation of the application, the behaviour is implementation-
dependent.

InterModuleCall:
call ef:ebCer, ..., ey)

where €] and e/, evaluate to atoms a; and ag, respectively.

All of ¢!, ¢}, and ey,...,e, are evaluated in the environment p. Let m
be the latest version of the module named by a; at the time of evalua-
tion of the InterModuleCall expression. If the ModuleBody Dy --- Dy of
m (cf. p. 5) contains a FunctionDefinition defining the name as/n, and
as/n is also in the Ezports declaration of m, then let the closure f be
the result of evaluating the expression letrec D;--- Dy in as/n, in the
empty environment.” The InterModuleCall expression is then equivalent
to an Application apply f(e1, ..., en).

If as/n is not defined and exported by m, the behaviour of the inter-
module call expression is implementation-dependent.

If € and €}, do not both evaluate to atoms, the behaviour is implementation-

dependent.
PrimOpCall:
primop a(ey, ..., €,)
€1,...,en are evaluated in the environment p to values x4, ..., x,, respec-

tively. The primitive operation to be performed is identified by the name
a and the number n of arguments (its arity).

Evaluation of a PrimOpCall is always implementation-dependent and may
depend on the values z1,...,z,, the state of the associated process (e.g.
the mailbox), or the external state (i.e., the world). The evaluation may
have side effects, and may complete abruptly by raising an exception (cf.

Try, below).
Try:
try e; of <v1, ..., vp> > €9
catch <vUp41, ..., Upym> —> €3

6 An implementation could use a garbage collection scheme to safely remove unused code.
Another strategy, used by current ERLANG implementations, is to force the removal of code
which has been superseded twice by a newer version. This so-called purging of code might
however be unsafe, unless extra runtime checks are done.

"The domain of the environment of such a closure is simply the function names defined by
the module, and it is therefore not necessary to represent the closure explicitly.

16

e1 is evaluated in the environment p, and if that evaluation completes
normally, yielding a sequence <xy, ..., ,> of values, then ey is eval-
uated in the environment p[v; — z1,...,v, —], and the result of
that evaluation becomes the result of the Try expression. Otherwise, if
evaluation of e; completes abruptly with exception &, ez is evaluated in
the environment plv,11 — ¢1(£), ..., Vnem — Odm(§)], for some fixed set
of implementation-dependent functions @1, ..., ¢, of £, and the result of
that evaluation becomes the result of the Try expression.

In implementations of ERLANG, the number of exception variables m is 3,
and if evaluation of e; completes abruptly with exception £ = (r, x), es is
evaluated in the environment plv,+1 — exc_class(x), vpia — 7, Utz — 2
(cf. Section 6.2).

Recetve:

receive <p;> when g1 —> by --- <p,> when g, —> b,
after e; -> eg

Evaluation of a Receive is divided into stages, as follows:

1. First, the expiry expression e; is evaluated to a value ¢ in the en-
vironment p. ¢ must be either a nonnegative integer or the atom
>infinity’, otherwise the behaviour is implementation-dependent.

2. Next, each value in the mailbox (of the associated process), in first-
to-last order, is tried one at a time against the clauses <p;> when ¢;
-> by -+ <p,p> when g, -> b, in the environment p, as described in
Section 6.6, until one of the following occurs:

e If for some value M) at position k£ in the mailbox and some
i € [1,n], clause selection succeeds yielding a selected clause 4
and a mapping p’, then the element at position k is first deleted
from the mailbox, and expression b; is evaluated in environment
pp’ to yield the value of the Receive.

e If there are no remaining values to be tried in the mailbox, then
either if ¢ is the integer 0 (zero), or t is a positive integer and ¢ or
more milliseconds have passed since the transition from stage 1 to
stage 2 was made, the expiry body es is evaluated in environment
p to yield the value of the Receive; otherwise stage 3 is entered.

3. The evaluation of the Receive is at this point suspended, and may be
resumed when either or both of the following has occurred:

e One or more values have been appended to the mailbox.

e ¢ or more milliseconds have passed since the transition from stage
1 to stage 2 was made, when ¢ is a positive integer.

The evaluation then again enters stage 2, where this time only those
values in the mailbox (if any) should be tried that have not been
tried since the latest transition from stage 1 to stage 2 was made.
(Note that any subsequent Receive will thus start over from the first

value in the mailbox, and not continue where any previous Receive
finished.)

17

A Receive may never be evaluated as part of the evaluation of a clause
guard of another Receive. The removal of a message from the mailbox is
a side effect, and this is not allowed in a guard. Even more importantly,
two Receive expressions being evaluated in a nested fashion using the
same mailbox could want to select and remove the same message, and it
is not obvious how such conflicts could be resolved in a consistent way
useful to the programmer. Another, lesser complication would be that the
evaluation would have to be able to track nested timeouts to any depth.

Because the timeout limit ¢ (when ¢ is a positive integer) is soft, i.e., a lower
bound only, an implementation is free to allow any number of values to be
appended to the mailbox while evaluation is suspended in stage 3, even
after the timeout limit has expired. However, implementations should in
general attempt to detect timeouts as soon as possible.

It can be noted that it is quite possible for an implementation to signal
timeouts by simply appending a unique value, associated with a particular
active Receive, to the corresponding mailbox, causing the second wake-up
condition of stage 3 to be subsumed by the first. However, unselected time-
out messages will then need to be garbage collected from the mailboxes in
order to prevent cases of unbounded growth.

6.4 Standard syntactic sugar

This section describes CORE ERLANG expressions that are defined in terms of the
primitives that have been described above, but which are nevertheless included
in the language for convenience (usually referred to as “syntactic sugar”.)

Sequencing:
do e es
This is equivalent to let <vy, ..., v,> = e; in eq, where n is the de-
gree of ey, and the variables vy, ..., v, do not occur free in e5. Thus, e;

is evaluated before ey, but its result is not used (cf. Let, p. 14).
Catch:
catch e
This is equivalent to

try e of <vy, ..., vp> >
<ULy, «vvy Up>
catch <vp41, Upg2, Upyz> —>
case Up41 of
’throw’ when ’true’ ->
Un+2
’exit’ when ’true’ ->
{’EXIT’, vp42}
’error’ when ’true’ ->
{’EXIT’, {vn4+2, primop exc_trace(v,43)}}
end

18

where n is the degree of expression e, and all the vq,...,v, are distinct
variables (cf. Try, p. 16), as well as the v,41,...,0,43. This encodes
the behaviour of ERLANG catch expressions. The primitive operation
exc_trace(x) is supposed to yield a symbolic representation of the call
context (the “stack trace”) at the point when the caught exception origi-
nally occurred, as an ERLANG value (typically a list), but the details are
implementation-dependent. An implementation may trivially yield the
empty list for exc_trace(x).

6.5 Pattern matching

Pattern matching recursively matches the structures of a sequence of values

Z1,...,%, against a corresponding sequence of patterns (cf. p. 6) p1,...,pn,
either succeeding, yielding as result a mapping from the variables in py,...,pn
to subterms of z1,...,z,, or otherwise failing. No variable name may occur

more than once in the sequence of patterns.

Because of the parameterized binary-syntax patterns, pattern matching must
be performed in the context of an existing environment py which supplies bind-
ings for the argument expressions. Unless otherwise stated, if a pattern is
matched in environment p, its immediate subpatterns are also matched in p.

e A sequence of patterns p1,...,p, matches a sequence of values x1, ..., 2y,
yielding the mapping p; - - - pn, if and only if for all ¢ € [1,n], p; matches
x; yielding the mapping p;.

e An AtomicLiteral pattern p matches a value x, yielding the empty map-
ping [], if and only if p denotes x.

o A VariableName pattern p always matches a value x, yielding the mapping
[p— a].

e A tuple pattern {py, ..., p,} matches a value {z1, ..., x,}, yielding
the mapping p1 - - - pp, if and only if for all ¢ € [1, n], p; matches x; yielding
the mapping p;.

e A list constructor pattern [p; | p2] matches a value [x7 | x2], yielding
the mapping pjpe, if and only if for 7 € [1,2], p; matches z; yielding the
mapping p;.

e An alias pattern v = p matches a value z, yielding the mapping p'[v — z],
if and only if p matches x yielding the mapping p’.

e A binary pattern #{b;, ..., b,}# matches a value z, yielding the mapping
P, if and only if z is an ERLANG binary value representing the bit string
s, and binary matching of s against by, ...,b, in environment p succeeds
yielding p’.

The matching of bit strings has its own particular rules:

e Binary matching of an empty bit string s against an empty sequence of bit
string patterns succeeds trivially, yielding the empty mapping [] as result.

19

e Binary matching of a bit string s against a nonempty sequence of bit string
patterns by,...,b, in environment p succeeds yielding the mapping p’p”
if matching of s against by in p succeeds with result (s, p), and matching
of s’ against b, ..., b, in pp’ succeeds with result p”.

e Binary matching of a bit string s against a single bit string pattern b =
#<p>(ey, ..., e) in environment p succeeds with result (s’,p’) if and
only if:

— pis a constant ¢, and b in p specifies an encoding of ¢ as a bit string
t (see p. 14) such that s = ts’, and p’ is the empty mapping []

— pis a variable v, and there exists some x such that b in p specifies an
encoding of x as a bit string ¢ such that s = ts’, and p’ = [v — z]

Note that within a binary pattern #{by, ..., b,}#, a variable bound by one
bit string pattern b; can be used in the arguments of another b;, i < j < n,
shadowing any previous bindings of that variable in the current environment.
However, all variables bound in a binary pattern must be unique, and the bind-
ings cannot be used elsewhere in the patterns of the same clause.

6.6 Clause selection

Given a sequence 1, ...,z of switch values and an environment p, a sequence
of clauses
P, when g -> by -+ P, when g, -> b,

where each P; is a sequence <p;1, ..., pir> of patterns, is tried in left-to-right
order as follows:

If the pattern sequence p;1, . . . , p;x is matched successfully against x4, . .., Tk,
yielding a mapping p’ = [v1 — z},..., vy — 2], where vy, ..., v, are exactly
the variables occurring in p;1, ..., pik, each bound in p’ to some subterm z; of
Z1,...,x as the result of the pattern matching (cf. Section 6.5 for details), then
the expression g; is evaluated in the environment pp’. If the result is ’true’,
clause selection succeeds, yielding the selected clause ¢ and mapping p’ as result.
If the result is ’false’, the next clause in order is tried; if no clause remains,
clause selection fails.

6.7 Clause guards

A CoRE ERLANG clause guard must not have observable side effects and should
evaluate in bounded (preferably constant or linear) time. Thus, Receive ex-
pressions may never be allowed within clause guards. Furthermore, Application
expressions are currently not allowed in guards, and all Try expressions in a
guard must have the form try e of <vy, ..., v,> => <vy, ..., v,> catch
Up41s --v» Unym> —> ’false’.

For any PrimOpCall primop a(ey, ..., e,), the primitive operation a/n
must be side effect free, and for any InterModuleCall call e}:eb(er, ..., en),
e} and e) must be atom literals such that the function named e)/n in module
e} is trusted to exist and not have observable side effects.® The set of trusted

8Not all such “remote” functions must have actual implementations in existing ERLANG
modules, but may instead be aliases for built-in operations known to the compiler.

20

functions and primitive operations is implementation-dependent; in implemen-
tations of ERLANG, it typically includes those so called built-in functions (BIFs)
that are classified as “guard BIFs”, and type tests; see the ERLANG Reference
Manual [1] for details.

If the evaluation of a clause guard completes abruptly with exception (r, x),
the containing expression (either case or receive) also completes abruptly with
exception (r,2).Y If a clause guard evaluates to a value other than ’true’ or
’false’, the behaviour is undefined.

7 Open issues

This section discusses known issues that may warrant further specification in
future versions of this document.

7.1 Source code portability

Because several details of the semantics of CORE ERLANG have been defined
as implementation-dependent, it is possible for an implementation to expect a
particular behaviour for each of those details. (Typical examples of expected
behaviour could be that an exception on a particular form is raised, or that
an attempt is made to load missing code.) Therefore, CORE ERLANG code
generated by one implementation (e.g., by translation from ERLANG source
code) might not be suitable as input to another implementation that makes
different assumptions.

At present, there is no canonical translation from ERLANG to CORE ERLANG,
which preserves the semantics of the ERLANG program while making as few
assumptions as possible about implementation-dependent behaviour in CORE
ERLANG.

7.2 Built-in functions

The ERLANG language specifies a large number of so-called built-in functions
(BIFs), including a set of unary and binary operators and boolean type test
functions. Most BIFs, but not all, currently belong to the erlang module.
Some BIFs may be used in clause guard expressions. Some BIFs are recognised
by the compiler as if implicitly declared as imported, thus not needing to be
qualified by their module names.

BIF's are predefined functions supplied with the implementation, but do not
have to be implemented in any particular way — they can be inline-expanded by
the compiler, implemented in another language such as C, or be implemented
directly in ERLANG. The only requirement on a BIF is that it “must not be
redefined during the lifetime of a node” [1], which makes it possible for an
implementation to “use all information in the description of the BIF to make
execution efficient”. All BIFs have a “home module”, making it possible to
dynamically call also those BIFs that are not implemented in ERLANG by their
module and function names.

9ERLANG guard tests are generally wrapped by try expressions upon translation to CORE
ERLANG, so that if evaluation fails, the raised exception is implicitly caught and discarded,
and the value >false’ is used for the result, thus failing the clause quietly, adhering to the
semantics of ERLANG.

21

The CORE ERLANG representation of an explicit call to a statically named
ERLANG BIF can therefore be either of call aj:as(...), where a; and as are
atom literals, or primop a(...), where a is an atom literal. In the former case,
the compiler is allowed to generate code that bypasses the normal inter-module
call mechanism if it recognizes a BIF call, possibly by first rewriting the call as
a primop. The names and semantics of primop operations are however always
implementation-dependent, and it can be expected that programs operating on
CORE ERLANG code will be more portable if the form call aj:as(...) is used
and adhered to for as long as possible in the compilation process.

In order to extend the portability of programs that operate on CORE ERLANG
code, it will be necessary to parameterise information about built-in functions.
Because the ERLANG language keeps evolving, and because different ERLANG
implementations may not have the exact same sets of predefined functions, it
is generally not a good idea to hard-code assumptions about BIFs. Instead,
such information should in as much as possible be moved to separate modules,
so that when porting a CORE ERLANG analysis or transformation from one
ERLANG implementation to another, only these modules need rewriting. It is
then possible that a set of standard modules for BIF information could be agreed
on, which could be assumed to be supplied by every ERLANG implementation.

22

References

1]

2]

Jonas Barklund and Robert Virding. Erlang 4.7.3 reference manual. Draft
version 0.7, June 1999.

Jonas Barklund and Robert Virding. Specification of the Standard Erlang
Programming Language. Draft version 0.7, June 1999.

ISO/IEC. Information processing — 8-bit single-byte coded graphic character
sets, 1987. Reference number ISO 8879:1987.

The Unicode Consortium. The Unicode Standard, Version 2.0. Addison-
Wesley, Reading, Mass., 1996.

23

A Quick reference

This section gives an informal overview of the elements of the language.

A.1 Comments
Example:

% This is a comment; it ends just before the line break.

A.2 Constant literals

Examples:

Integers: 8, +17, 299792458, -4711

Floating-point numbers: 0.0, 2.7182818, -3.14, +1.2E-6,
-1.23e12, 1.0e+9

Atoms: ’foo’, ’Bar’, foo bar’, ’’, *%#\010@\n!’,
’_hello_world’

Character literals: $A, 3, $\n, $\s, $\\, $\12, $\101, $\"A

Strings: "Hello, world!", "Two\nlines", "",
"Ring\"G" "My\7" "Bell\0O7!"

A.3 Variables

Examples:

X, Bar, Value_2, One2Three, Stay@home, _hello_world

A.4 Keywords

after apply attributes call case
catch do end fun in

let letrec module of primop
receive try when

A.5 Separators

() { } L] < >
| # , : / = -> -1

A.6 Annotations

(e -| [consty, ..., consty,]1)

24

A.7 Programs and expressions
module ::= module Atom [fnamei1 s s fnameik]

attributes [Atom; = consty, ..., Atom,, = const,,]

fname, = fun, --- fname,, = fun,, end

fname = Atom / Integer
const == lit | [consty | consta]l | {consty, ..., const,?
lit == Integer | Float Atom
| Char | String | []

fun = fun (vary, ..., vary) -> exprs

var = VariableName
exprs = expr | <expry, ..., erpr,>

expr == wvar | fname | lit | fun

Cexprsy | exprse]l | {exprsi, ..., exprs,}

let wvars = exprs; in exprss
case exprs of clausey --- clause, end

letrec fnamey = funy - -+ fname, = fun, in exprs

|

\

|

|

| apply exprso(ezprsy, ..., exprsy)

| call exprs):exprsh(exprsy, ..., exprsy,)

| primop Atom(exprsy, ..., exprsy)

| receive clause; --- clause, after exprs; => exprsq

| try exprs; of <wary, ...varp,> —=> exprsy
catch <var,4i, ...0arp4m> —> €xPrsy

| do exprsy exprsy

| catch exprs

vars = war | <wvary, ..., var,>
clause ::= pats when exprs; —> exprss
pats = pat | <paty, ..., pat,>
pat == war | lit | [paty | pata]l | A{paty, ..., pat,?

| wvar=pat

25

B Escape sequences

This table shows the Unicode character values for the escape sequences defined
by CORE ERLANG; they are the same as in ERLANG.

\'b \u0008 (backspace, BS)

\d \u007f (delete, DEL)

\e \u001b (escape, ESC)

\ £ \u000c¢ (form feed, FF)

\'n \u000a (linefeed, LF)

\r \u000d (carriage return, CR)
\'s \u0020 (space, SPA)

\t \u0009 (horizontal tab, HT)
\ v \u000b (vertical tab, VT)
\" \u0022 (double quote, ")
\’ \u0027 (apostrophe/single quote, *)
A\ \u005¢ (backslash, \)

26

C Syntax tree representation

The following schema describes a representation of CORE ERLANG syntax trees,
suitable for most general purposes. For brevity, define z* to mean an ordered
sequence (z1,...,2;), for i > 0, and z* to mean any sequence in J,_,{z"'}.

module ::= module (atom a) fname™ attr™ def *
fname ::= fnameai
attr = (atoma, const)
const == lit const”
lit == inti | float f
| atoma | charc
| nil | coms | tuple
def = (fname, fun)
fun = funov*w
v u= vars
w == e | valuese®
e == v | fname | lLtw* | fun
| letv* ww
| case w clause™
| letrec def " w
| apply w w*
| call ww w*
| primop a w*
| trywov* wo*w
| receive clause™ w w
| doww
| catchw
clause = clause pat™ ww
pat == v | lit pat*™ | aliaswv pat

where a stands for an atom, ¢ for an integer, f for a floating-point number, ¢
for a character and s for a string.

Implicitly, each constructor above should also have an additional field for an
associated list of annotations (atom a, const).

27

Index

" see strings

$, see character literals
%, see comments

> see atom literals

., see period characters
[]1, see nil

abrupt termination, 13

alias pattern, 6

annotations, 9, 24

application, see functions, applica-

tion

argument evaluation
order, see evaluation order
strictness, 13

ASCII, 2

atom literals, 4

attributes, see module attributes

BIFs, 21
binary syntax, 6, 8
binary expression, 8, 11, 14
binary pattern, 6, 11
bit string pattern, 7, 11
bit string template, 8, 14
built-in operations, see primitive op-
eration calls

calling functions

application of functional value,

9,15

inter-module calls, 9, 16
case expressions, 8, 11, 15
catch expressions, 9, 18
catching errors, see error handling
character literals, 4, 13
clause guards, 8, 11

evaluation, 20

failing, 21

restrictions on, 20

result of evaluation, 21
clauses, 8, 11

annotations on, 8

body, 11

evaluation, 15

guard, see clause guards
closure, 14, 15

28

application of, see functions, ap-
plication
unavailable code, see functions,
calling purged code
code replacement, 12, 16
comments, 3, 24
compile-time error
arity mismatch in function def-
inition, 10
exported name not defined, 10
multiply defined function, 10,
11
multiply defined module attribute,
10
unbound function name, 10
unbound variable, 10
wrong number of patterns in case,
11
wrong number of patterns in
receive, 11
cons, see list constructor
constant literals, 6, 24

data types, 11
degree of expression, 12
do expressions, 9, 18

empty list, see nil
environment, 12
ERLANG
BIFs, 21
receive, 2
tokenisation, 3
error handling, see try expressions
escape sequences, 4, 26
evaluation order
in case expressions, 15
in let expressions, 14
in receive expressions, 17
in try expressions, 17
of arguments, 13
of clauses, 20
exceptions, 12
catching, see try expressions
raising, 13
execution, see programs
expiry expression, 9

expressions, 7, 10, 25 Attributes, 5

evaluation Binary, 8
Application, 15 Bitstring, 8
AtomicLiteral, 13 BitstringPattern, 7
Binary, 14 Case, 8
Case, 15 Catch, 9
Catch, 18 Char, 4
Fun, 15 Clause, 8
FunctionName, 14 Constant, 6
InterModuleCall, 16 FExports, 5
Let, 14 Expression, 7
Letrec, 15 Float, 4
List, 14 Fun, 8
PrimOpCall, 16 FunctionDefinition, 5
Receive, 17 FunctionName, 5
Sequencing, 18 Guard, 8
Try, 16 Integer, 4
Tuple, 14 InterModuleCall, 9
ValueList, 13 Let, 8
VariableName, 13 List, 8

guards, 11 Module, 5

result of evaluation, 11 ModuleAttribute, 5

syntax, see grammar ModuleBody, 5

ModuleHeader, 5
floating-point literals, 4 Nil, 6
full stop tokens, 3 Pattern, 6
fun expressions, 8, 10, 15, 16 Patterns, 8
functions PrimOpCall, 9

abstraction, see fun expressions Receive, 9

application, 9, 15 Sequencing, 9

calling purged code, 16 SingleEzxpression, 7

defining String, 4
in Letrec expressions, 9, 15 Timeout, 9
in module definitions, 5 Try, 9

exported, 10 Tuple, 8

function names, 3, 5, 11, 14 ValueList, 7

inter-module call, 9, 16 VariableName, 4

Variables, 8

grammar, 3 guards, see clause guards

AnnotatedClause, 8

AnnotatedFun, 5 hot-code loading, see code replace-
AnnotatedFunctionName, 5 ment

AnnotatedModule, 5

AnnotatedPattern, 6 implementation-dependent behaviour
AnnotatedSingle Expression, 7 application of non-closure, 16
AnnotatedValueList, 7 arity mismatch, 16

Annotated Variable, 6 binding of exception variables
Application, 9 in try expressions, 17
Atom, 4 calling purged code, 16

AtomicLiteral, 6

29

encoding and decoding of bit
strings, 14
improper value of expiry expres-
sion, 17
meaning of module attributes,
10
meaning of program annotations,
9
meaning of program result, 12
module or function name in call
not an atom, 16
number of arguments of bitstring
templates, 11
number of exception variables
in try expressions, 11
process state, 12
representation of exception de-
tails, 12
target of inter-module call not
found, 16
infinity, 17
input encoding, 3
integer literals, 4
inter-module calls, see functions
ISO/IEC 8859-1, see Latin-1

keywords, 24

lambda abstraction, see fun expres-
sions

latest version, see module
Latin-1, 2
let expressions, 8, 10, 14
letrec expressions, 9, 11, 15
line terminators, 3
list constructor, 10
lists, 8, 10, 14

in constant literals, 6

in patterns, 6
literals, 6, 10

mailbox, see processes, 12
module
attributes, 5
definition, 5
garbage collecting, 16
latest version, 12
purging, 16

nil, 6, 10, 13

30

open issues, 21
operations, see primitive operation
calls

pattern matching, 19
patterns, 6, 8, 11
period characters, 3
portability of source code, 21
primitive operation calls, 9, 16
processes, 12

identity, 12

mailbox, 12

mutating the state of, 12

state, 12
programs, 12, 25

execution, 12

quick reference, 24
receive expressions, 9, 11, 17

scope of function definitions, 10
separators, 3, 24
sequencing of expressions
explicit, 9, 18
implicit, see let expressions
StdErlang, 3
strictness, see argument evaluation
strings, 4
switching, see case expressions
syntactic sugar, 18
syntax
grammar, 3
representation, 27

timeout, see expiry expression
tokenisation, 3
try expressions, 9, 10, 16
tuples, 8, 14

in constant literals, 6

in patterns, 6

undefined behaviour
degree mismatch, 13-15
evaluation order, 13
no matching case clause, 15
non-boolean clause guard, 21
Unicode, 2

value sequences, 7, 11
variables, 4, 6, 24

binding by pattern matching, 20
explicit binding, see let expres-
sions
in patterns, 11
versions of code, 16

whitespace, 3

31

