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ABSTRACT: 
 
The paper describes two different methods for extraction of two types of urban objects from lidar digital surface model (DSM) and 
digital aerial images. Within the preprocessing digital terrain model (DTM) and orthoimages for three test areas were generated from 
aerial images using automatic photogrammetric methods. Automatic building extraction was done using DSM and multispectral 
orthoimages. First, initial building mask was created from the normalized digital surface model (nDSM), then vegetation was 
eliminated from the building mask using multispectral orthoimages. The final building mask was produced employing several 
morphological operations and buildings were vectorised using Hough transform. Automatic extraction of other green urban features 
(trees and natural ground) started from orthoimages using iterative object-based classification. This method required careful 
selection of segmentation parameters; in addition to basic spectral bands also information from nDSM was included. After the 
segmentation of images the segments were classified based on their attributes (spatial, spectral, geometrical, texture) using rule set 
classificator. First iteration focused on visible (i.e. unshaded) urban features, and second iteration on objects in deep shade. Results 
from both iterations were merged into appropriate classes. Evaluation of the final results (completeness, correctness and quality) was 
carried out on a per-area level and on a per-object level by ISPRS Commission III, WG III/4.  
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

1.1 Motivation and aims 

Urban systems are very complex and are composed of a large 
number of spatially heterogeneous components. By their very 
nature, such systems require advanced methods and algorithms 
in order to obtain results closer to automatic extraction. The 
automated extraction of urban objects from data acquired by 
airborne sensors has been an important topic of research in 
photogrammetry for at least two decades. In March 2011 ISPRS 
Commission III, WG III/4 provided test data to the participants 
of the ISPRS Test Project on Urban Classification and 3D 
Building Reconstruction in order to evaluate techniques for the 
extraction of various urban object classes. The aim of this 
project was to analyse state-of-the-art data sets which were used 
to obtain urban objects with selected methods and algorithms. 
In attempt to provide results closely matching to the reference 
data two approaches were implemented: a method for automatic 
building extraction and an object based-classification based on 
rule set classifier for automatic vegetation extraction. 
 
1.2 Overview 

The paper presents two different methods used to obtain 
buildings and urban vegetation. For building extraction we 
combined lidar DSM and multispectral photogrammetric 
imagery. Images were used to automatically produce DTM 
employing image matching techniques and morphological 
filtering to remove the objects that do not belong to the ground. 

Additionally orthoimages were produced using 
photogrammetric methods. By subtracting lidar DSM and 
photogrammetric DTM a nDSM was calculated. Building 
extraction procedure included the production of several building 
masks by employing nDSM threshold, vegetation removal 
based on orthoimages and several morphologic operations to 
produce building outlines. Final vectorisation of buildings was 
performed using Hough transform.  
  
On the other hand automatic extraction of vegetation was based 
on the object-based image analysis (OBIA). OBIA was 
developed to bridge the gap between the increasing amount of 
detailed geospatial data and complex feature recognition 
problems (Blaschke, 2010). Thoroughly selected segmentation 
parameters yielded segments that were classified into most 
resembling class (vegetation, shadows) using selected rule set. 
Procedure was repeated for visible vegetation and vegetation 
under shadows separately. Obtained results were later divided 
into high vegetation (trees) and lower vegetation (natural 
ground), based on height attribute of segments derived from 
nDSM data.  
 
1.3 References to related work 

A large number of authors use the combination of lidar data and 
photogrammetric imagery for building extraction. Techniques 
integrating lidar data and imagery can be divided into two 
groups (Awrangjeb et al., 2010): techniques which use the lidar 
data as the primary cue for building detection and employ the 
imagery only to remove vegetation, and integration techniques, 
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which use both lidar data and imagery as primary cues to 
delineate building outlines. Our method belongs to the first 
group. Authors of the first group use the full information of the 
lidar point cloud (Rottensteiner et al., 2005) or interpolate point 
cloud into a grid format (Vu et al., 2009). Demir and Baltsavias 
(2010) used DSM/DTM comparison in combination with 
normalized differential vegetation index (NDVI) analysis for 
building detection. The vectorisation of buildings by Hough 
transform was proposed by several authors (e.g. Lee et al., 
2003, Cha et al., 2006, Koc San and Turker, 2010). The similar 
approach employing Radon transform is described in Grigillo et 
al. (2011). 
 
Research of the automatic tree detection and delineation from 
digital imagery dates back to the mid- 1980s. On the other hand 
lidar data emerged as source for vegetation analysis only in 
recent years, however only few studies are focusing on a 
detailed identification of urban vegetation. Ardila et al. (2012) 
successfully extracted tree crown objects with OBIA at multiple 
segmentation scales in urban areas using VHR satellite images, 
since object-based classification has been argued as the most 
appropriate method to obtain information from urban remote 
sensing applications. Ardila et al. (2011) used Markov random 
field based super resolution mapping approach for crown 
detection from VHR satellite data. Walton et al. (2010) used a 
combination of aerial and satellite imagery to estimate the 
canopy cover in urban areas, whereas Van der Sande (2010) 
combined optical imagery with topographic data to extract 
urban trees. Đurić (2011) used object-oriented approach on 
VHR satellite imagery with the additional lidar data for 
estimation of urban tree crowns in urban park. Not many studies 
have been found on extraction of only natural grounds, but 
there are plenty of researches where this land use was extracted 
as part of whole urban scene. 
 
 

2. METHODS 

2.1 Study area and data description 

The data set was captured over Vaihingen in Germany. Area 
consists of three test areas: Area 1 (Inner City), Area 2 (High 
Riser) and Area 3 (Residential Area). Each test area contains 
different urban structure, showing different degrees of shape 
complexity and urban structure. The test data consist of digital 
aerial images with orientation parameters and Airborne 
Laserscanner (ALS) data. Images are pan-sharpened colour 
infrared images with ground resolution of 8 cm and radiometric 
resolution of 11 bits. The mean point density of the ALS point 
cloud is 4 points per m2. In addition to the original ALS point 
cloud, a DSM with a grid width of 25 cm was provided. For 
both presented methods we used only digital aerial images and 
DSM as input data. 
 
2.2 Preprocessing 

For all three Vaihingen data sets the DTM with 1 m grid cell 
was produced from digital aerial images and interpolated to 
0.25 m grid cell. The orthoimages with spatial resolution of 
0.25 m were created using DTM and aerial images. DTM and 
orthoimages were generated with the Socet Set software. The 
NGATE software module enables the automatic creation of 
DSM employing image matching and various morphological 
operations for removing objects that do not belong to the relief 
to produce DTM. By calculating the difference between DSM 
and DTM a nDSM was also generated for all three test areas. 

 
The paper describes results based on DTM produced from aerial 
images by photogrammetric procedures. This DTM contains 
some errors due to incorrect image matching or inefficient 
morphological filtering of high objects. Consequently we were 
not able to detect some smaller buildings from the derived 
nDSM. Some of those buildings could have been detected if we 
would have used lidar-based DTM for nDSM generation 
instead, which we prepared from ALS point cloud using 
software LAStools. The comparison of the results is given in 
the Results and discussion section.  
 
2.3 Automatic building extraction 

By applying the 1.5 m threshold to nDSM a nDSM high objects 
mask was produced. Apart from buildings the mask also 
included other objects higher than 1.5 m. Such objects were 
mainly vegetation. By removing vegetation from high objects 
mask the initial building mask was created. Vegetation was 
extracted from orthoimages with the object-based methodology 
as described in section 2.4. Faster approach for the production 
of vegetation mask would be calculation of the NDVI from red 
(R) and infrared (IR) band of the orthoimage (1): 
 

 
RIR

RIR




NDVI        (1) 

 
We used NDVI to remove vegetation from nDSM high objects 
mask only in Area 3. For this area the 0.17 NDVI threshold was 
applied to produce the vegetation mask. 
 
In further processing we deal with three different masks: the 
nDSM high object mask, initial building mask and the mask for 
the building area test. Additionally we used building outlines 
image. The elaboration of mask for the building area test and 
the building outlines image is in detail discussed in Grigillo et 
al. (2011) within section 3.3. The mask for the building area test 
is made with a series of morphological operations from the 
initial building mask. Morphological operations were used to 
remove irregularities from the initial building mask. 
Irregularities are the consequence of different objects, which 
are higher than 1.5 m and do not represent buildings (fences, 
vehicles), noise in nDSM, errors in the calculation of the 
vegetation etc. The mask for the building area test contains only 
buildings in the test area. 
 
For the building extraction the building outlines image was also 
included in the procedure. The nDSM high objects mask, the 
mask for the building area test and serial of morphological 
operations were employed to produce the nDSM building mask, 
where one object in the mask represented one building or 
several buildings, if these touched each other. Finally, the 
building outlines were produced from the nDSM building mask.  
 
Since the building outlines image was in raster format, the 
contours were not presented with straight lines as expected for 
buildings and angles between outlines were not rectangular. For 
this reason, the final building outlines were vectorised using 
Hough transform, separately for each object within the building 
outlines image. The full scenario of vectorisation procedure 
with Hough transform included the following steps: 
 
 Orientation of the main building axis is determined by 

straight line which included the largest number of pixels 
that belonged to the building outline (Figure 1 (a)). 
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 Detection of all straight lines parallel to the main building 
axis that described individual building in the building 
outlines image. The detection of straight lines went on until 
at least four pixels were included within the line or until at 
least two parallel straight lines were detected. Straight lines 
were detected with the mutual distance of 0.5 m. 

 Since we assumed that buildings have rectangular sides 
(which however is not true for some of the buildings in 
Area 1), in the same way also all rectangular straight lines 
describing building outline were detected. In this case the 
threshold when to stop straight line detection along the axis 
perpendicular to the main building axis was slightly 
lowered (until 3 pixels were in the line or at least two 
rectangular straight lines were detected). Figure 1 (b) shows 
parallel and perpendicular lines in the building outline. 

 Intersections among rectangular straight lines were detected 
and out of them rectangles were made (Figure 1 (c)). 

 All obtained rectangles do not necessarily correspond to 
buildings (Figure 1 (d) shows constructed rectangles on the 
mask for the building area test). To detect false positives we 
used the following criteria: if the ratio between the surface 
area obtained by the intersection of the rectangle with the 
mask for the building area test and the surface area 
calculated from the rectangle’s corners was larger than 0.5, 
the rectangle was retained, otherwise it was discarded 
(Figure 1 (e)). When dealing with building interiors, the 
surface area test was carried out by negating the mask for 
the building area test. 

 Vectorised building was obtained using the outline of 
retained rectangles. Figure 1 (f) shows the vectorised 
building on the DSM. 

 
 

 
 

Figure 1. Building vectorisation procedure. 
 

Building vectorisation procedure is shown in Figure 1. 
Figures 1 (a), (b) and (c) are shown as negatives. 
 
2.4 Automatic vegetation extraction  

Object-based classification was performed with iterative object 
based image analysis implemented on orthoimages with three 
spectral bands (IR, R, G); as the fourth band a nDSM layer was 
added. The resulting combined image (3+1) gave best results to 
locate and delineate trees and other green areas, marked as 
natural ground. All three test sites contain several tree species, 
implying large variation of distance between trees, crown sizes 
and surrounding elements, resulting in challenging and realistic 
cases for mainly deciduous tree detection.  

The data has been processed with ENVI EX Feature Extraction 
module that includes object-based approach implemented in 
two steps. In the first step the segments are created based on the 
spectral signature of the different image parts (segmentation), 
while in the second step the segments are analysed and 
classified into the classes (classification). 
 
Although many image segmentation methods have been 
developed, there is a strong need for new and more 
sophisticated segmentation methods to produce more accurate 
segmentation results for urban object identification on a fine 
scale (Li et al., 2011). Segmentation can be especially 
problematic in areas with low contrast or where different 
appearance does not imply different meaning. In this case the 
outcomes are represented as wrongly delineated image objects 
(Kanjir et al., 2010). Object features of type vegetation were 
examined at multiple segmentation scales which yielded 
different shapes of image-objects. After the segmentation 
different attributes (spatial, spectral, geometrical, texture) were 
calculated for each segment. NDVI (see Equation 1) was 
assigned to each segment. 
 
After image was segmented segments were classified by 
creating a rule set according to suitable segment attributes. 
Texture, shape and contextual features are keys to the 
identification of trees in urban scenes (Ardila et al., 2012). Due 
to the complexity of the scene and several factors limiting 
vegetation detection, we detected vegetation objects using the 
following processing steps: 1.) classify ‘visible’ vegetation (i.e. 
vegetation within unshaded areas) and shadows, 2.) create mask 
of shadows, 3.) detect vegetation under shadows, 4.) merge 
vegetation results from visible vegetation and vegetation under 
shadows, 5.) divide vegetation results into trees and natural 
ground (high and low vegetation). Figure 2 presents a diagram 
of the workflow described in this section.  
 
 

 
 

Figure 2. Workflow for urban vegetation extraction with object-
based approach. 

 
Objects of visible vegetation were detected based on NDVI 
which is high on vegetated areas. Simultaneously, we detected 
also class “shadows”; these dark areas may also contain 
vegetation, however in the shades the contrast between the 
image objects of adjacent land covers was smaller, therefore 
shaded vegetation areas could not be detected exclusively from 
NDVI. The rule set of attributes used in this procedure that 
correspond to class shadows is listed in Table 1. The threshold 
value for each attribute was identified through visual 
interpretation.  
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Class Attribute Value 
Visible 
vegetation 

NDVI 
 

>0.15 

Shadows nDSM <2.5 
R band value <800 

area >10 
NDVI <0.15 

Vegetation under 
shadows 

R band value <725 
G band value >260 

NDVI >0 
area >1.5 

 
Table 1. Rule set of attributes for three given classes. 

 
Later, shadowed areas were masked out from the whole image 
scene and analysed in the same way as visible vegetation. 
Shadows produced by high objects (high buildings or high 
vegetation) are elemental in urban vegetation analysis. They 
represent a great challenge in remote sensing and symbolize a 
factor that considerably influences the results. Although land 
use under shadows has low spectral separability, vegetation 
under shadows still appears to have higher NDVI than other 
land use classes under shadows. Further promising 
characteristic we successfully utilize is that objects that are 
assigned to vegetation under shadows class have specific 
geometrical and spectral properties (Table 1). 
 
The set of all vegetation objects was created by merging 
segments of obtained visible vegetation and vegetation under 
shadows. Last step was to distinguish trees from the natural 
grounds. It was based on nDSM value of segments – values > 1 
m were assigned to trees and values < 1 m were assigned to 
natural grounds. 
 
 

3. RESULTS AND DISCUSSION 

The results were evaluated by the organizers based on reference 
data. The reference data for Vaihingen were generated by 
photogrammetric plotting. All objects were evaluated by a 
comparison of label images and provide completeness, 
correctness and quality of the results both on a per-area level 
and on a per-object level. The detailed description of evaluation 
techniques is given in Rutzinger et al. (2009).  
 
Figure 3 shows the overlay of the automatic building extraction 
results in Area 3 and DSM. Table 2 shows the evaluation of 
automatic building extraction for all three Vaihingen test areas 
respectively. Completeness (Comp.) is the percentage of 
entities in the reference that were detected. Correctness (Corr.) 
indicates how well the detected entities match the reference and 
is closely linked to the false alarm rate. The Quality of the 
results provides a compound performance metric that balances 
completeness and correctness. The last column in Table 2 
(Area3*) shows the evaluation results for building extraction 
based on the nDSM produced using lidar DTM.  

 
 

Figure 3. Results of the automatic building extraction. 
 
 

Evaluation method Area 1 Area 2 Area3 Area3*
Per-area Comp. 87.5 93.8 89.7 94.4 
 Corr. 96.2 95.4 97.0 95.4 
 Quality 84.6 89.7 87.3 90.3 
Per-object Comp. 81.1 85.7 76.8 82.1 
 Corr. 100.0 100.0 100.0 100.0 
 Quality 81.1 85.7 76.8 82.1 
Per-object Comp. 98.8 99.7 97.1 98.7 
(balanced Corr. 100.0 100.0 100.0 100.0 
by area) Quality 98.8 99.7 97.1 98.7 

 
Table 2. Evaluation of automatic building extraction. 

 
Per-area evaluation method actually means pixel based 
evaluation, where the raster representation of the detection 
results and the reference are compared. Building extraction 
results are influenced by some errors, e.g. use of orthoimages 
for vegetation removal, created using photogrammetric DTM 
where tall objects are not included, slightly miscalculated 
orientation of some buildings in the area from building outlines 
and the assumption that all the buildings have rectangular shape 
(which is not the case especially in Area 1; see Figure 4). 
 
 

 
 

Figure 4. Example of low quality building extraction due to 
assumption that building has rectangular shape (a) compared to 

the reference image (b). 
 
In per-object evaluation, an object is considered to be a true 
positive if a certain minimum percentage of its area is covered 
by objects in the reference. Per-object correctness shows that all 
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extracted buildings actually represent buildings. Lower 
completeness shows that some buildings were not detected by 
the procedure. All of these buildings had small surface area or 
were low. The nDSM generated using lidar DTM enabled us to 
detect some of the smaller buildings, as can be seen from the 
last column in Table 2. Consequently, the completeness and the 
quality are enhanced, not only for per-object evaluation but also 
for per-area evaluation. 
 
Tables 3 and 4 show the detection rates of trees and natural 
ground in all three areas. Object-based method for vegetation 
identification described in Section 2.4 gave better results than 
solely NDVI calculations since it enabled extraction of 
vegetation also under shadowed areas. Figure 5 shows the 
results of tree and natural ground extraction in Area 3.  
 
 

Evaluation method Area 1 Area 2 Area3 
Per-area Comp. 59.3 88.9 76.7 
 Corr. 61.8 59.2 58.7 
 Quality 43.4 55.1 49.8 
Per-object Comp. 63.8 79.0 70.3 
 Corr. 47.2 55.2 39.1 
 Quality 37.2 48.1 33.6 
Per-object Comp. 71.9 95.8 90.8 
(balanced Corr. 71.1 72.5 69.9 
by area) Quality 55.6 70.2 65.3 

 
Table 3. Evaluation of automatic tree extraction. 

 
 

Evaluation method Area 1 Area 2 Area3 
Per-area Comp. 67.5 68.7 83.4 
 Corr. 65.9 85.2 60.6 
 Quality 50.0 61.3 54.0 
Per-object Comp. 73.7 36.8 88.0 
 Corr. 26.3 17.6 46.4 
 Quality 24.1 13.5 43.7 
Per-object Comp. 95.8 97.5 98.8 
(balanced Corr. 78.2 94.0 72.1 
by area) Quality 75.6 91.8 71.4 

 
Table 4. Evaluation of automatic extraction of natural ground. 

 
Compared to building extraction this methodology gave poorer 
results. This is mainly due to: 1.) low spectral separability 
between vegetation and other land use (typically sealed areas), 
especially when under shadows, 2.) extraction of trees from the 
orthoimages produced from DTM (see Figure 6), 3.) substantial 
difference between reference geometrical shapes (tree crowns 
were simplified into correct circles) and obtained results 
(variety of irregular pixel shapes). There was no geometrical 
delineation improvement performed in our methodology (see 
Figure 7). 
 
False negatives were concentrated mostly in places with trees or 
higher natural grounds. This shows the necessity of improving 
rule sets for vegetation distinction. Nevertheless, general 
quality of vegetation mask was still high enough to obtain 
qualitative building extraction. 
 

 
 

Figure 5. Extracted trees (green) and natural ground (light 
green). 

 
 

 
 

Figure 6. Extracted tree from orthoimage (a) shown on 
DSM (b). The example shows the radial image displacement of 

orthoimage produced from photogrammetric DTM. 
 
 

 
 

Figure 7. Different geometrical shapes of reference data and 
obtained results for trees (a) and natural ground (b). 

 
Regarding the vegetation results in urban areas it can also be 
seen that remote sensing analysis overestimate vegetation and 
underestimate land use that is located under trees (usually 
impervious area). 
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4. CONCLUSION 

This paper has demonstrated two methods for obtaining two 
types of urban structure: buildings and vegetation. On all three 
test areas we have shown that objects of both types can be 
separated from the rest urban scenery with high accuracy. 
Extracted buildings were obtained from nDSM, generated from 
lidar DSM and photogrammetric DTM. Multispectral images 
were used to remove vegetation. Building outlines were 
produced using morphologic operations and vectorised using 
Hough transform. Average per-pixel completeness was 90.3%. 
Results could be improved if we would use DTM produced 
from lidar data since the automatically generated DTM from 
aerial images contains some errors due to incorrect image 
matching or inefficient morphological filtering of high objects. 
Consequently we were not able to detect some smaller buildings 
from the derived nDSM. Per-pixel quality was the lowest in 
Area 1 where not all buildings were rectangular. For the future 
work we should consider expanding the method of building 
delineation to allow lines in arbitrary directions. 
  
Specific characteristics of urban areas proved to be very 
challenging for semi-automatic image identification of trees and 
natural ground. Proposed methodology yielded irregular shapes; 
only such are found in nature and also on optical data. This was 
the main reason of poor quality assessment comparing to 
reference data, where trees were presented as circles. Results 
were overestimating vegetated areas and underestimating 
impervious areas. For the future work we propose contextual 
identification of vegetation. Contextual rules can model the 
occurrence of natural ground and trees in urban areas, since 
context (information that can be used to characterize the 
situation of an entity) is an essential element for feature 
recognition (Ardila et al., 2012). Also more detailed separation 
between high and low vegetation is suggested.   
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