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Abstract

In this formalization, I introduce a higher-order term algebra, generalizing
the notions of free variables, matching, and substitution. The need arose
from the work on a verified compiler from Isabelle to CakeML [3]. Terms
can be thought of as consisting of a generic (free variables, constants, ap-
plication) and a specific part. As example applications, this entry pro-
vides instantiations for de-Bruijn terms, terms with named variables, and
Blanchette’s λ-free higher-order terms [1]. Furthermore, I implement trans-
lation functions between de-Bruijn terms and named terms and prove their
correctness.
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Chapter 1

Names as a unique datatype

theory Name
imports Main
begin

I would like to model names as strings. Unfortunately, there is no default
order on lists, as there could be multiple reasonable implementations: e.g.
lexicographic and point-wise. For both choices, users can import the corre-
sponding instantiation.
In Isabelle, only at most one implementation of a given type class for a given
type may be present in the same theory. Consequently, I avoided importing
a list ordering from the library, because it may cause conflicts with users
who use another ordering. The general approach for these situations is to
introduce a type copy.
The full flexibility of strings (i.e. string manipulations) is only required where
fresh names are being produced. Otherwise, only a linear order on terms
is needed. Conveniently, Sternagel and Thiemann [5] provide tooling to
automatically generate such a lexicographic order.
datatype name = Name (as-string: string)

— Mostly copied from List-Lexorder

instantiation name :: ord
begin

definition less-name where
xs < ys ←→ (as-string xs, as-string ys) ∈ lexord {(u, v). (of-char u :: nat) <
of-char v}

definition less-eq-name where
(xs :: name) ≤ ys ←→ xs < ys ∨ xs = ys

instance ..
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end

instance name :: order
proof

fix xs :: name
show xs ≤ xs by (simp add: less-eq-name-def )

next
fix xs ys zs :: name
assume xs ≤ ys and ys ≤ zs
then show xs ≤ zs

apply (auto simp add: less-eq-name-def less-name-def )
apply (rule lexord-trans)
apply (auto intro: transI )
done

next
fix xs ys :: name
assume xs ≤ ys and ys ≤ xs
then show xs = ys

apply (auto simp add: less-eq-name-def less-name-def )
apply (rule lexord-irreflexive [THEN notE ])
defer
apply (rule lexord-trans)
apply (auto intro: transI )
done

next
fix xs ys :: name
show xs < ys ←→ xs ≤ ys ∧ ¬ ys ≤ xs

apply (auto simp add: less-name-def less-eq-name-def )
defer
apply (rule lexord-irreflexive [THEN notE ])
apply auto
apply (rule lexord-irreflexive [THEN notE ])
defer
apply (rule lexord-trans)
apply (auto intro: transI )
done

qed

instance name :: linorder
proof

fix xs ys :: name
have (as-string xs, as-string ys) ∈ lexord {(u, v). (of-char u::nat) < of-char v} ∨

xs = ys ∨ (as-string ys, as-string xs) ∈ lexord {(u, v). (of-char u::nat) < of-char
v}

by (metis (no-types, lifting) case-prodI lexord-linear linorder-neqE-nat mem-Collect-eq
name.expand of-char-eq-iff )

then show xs ≤ ys ∨ ys ≤ xs
by (auto simp add: less-eq-name-def less-name-def )
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qed

lemma less-name-code[code]:
Name xs < Name [] ←→ False
Name [] < Name (x # xs) ←→ True
Name (x # xs) < Name (y # ys) ←→ (of-char x ::nat) < of-char y ∨ x = y ∧

Name xs < Name ys
unfolding less-name-def by auto

lemma le-name-code[code]:
Name (x # xs) ≤ Name [] ←→ False
Name [] ≤ Name (x # xs) ←→ True
Name (x # xs) ≤ Name (y # ys) ←→ (of-char x ::nat) < of-char y ∨ x = y ∧

Name xs ≤ Name ys
unfolding less-eq-name-def less-name-def by auto

context begin

qualified definition append :: name ⇒ name ⇒ name where
append v1 v2 = Name (as-string v1 @ as-string v2 )

lemma name-append-less:
assumes xs 6= Name []
shows append ys xs > ys

proof −
have Name (ys @ xs) > Name ys if xs 6= [] for xs ys

using that
proof (induction ys)

case Nil
thus ?case

unfolding less-name-def
by (cases xs) auto

next
case (Cons y ys)
thus ?case

unfolding less-name-def
by auto

qed
with assms show ?thesis

unfolding append-def
by (cases xs, cases ys) auto

qed

end

end
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Chapter 2

A monad for generating
fresh names

theory Fresh-Monad
imports

HOL−Library.State-Monad
Term-Utils

begin

Generation of fresh names in general can be thought of as picking a string
that is not an element of a (finite) set of already existing names. For Is-
abelle, the Nominal framework [7, 8] provides support for reasoning over
fresh names, but unfortunately, its definitions are not executable.
Instead, I chose to model generation of fresh names as a monad based on
state. With this, it becomes possible to write programs using do-notation.
This is implemented abstractly as a locale that expects two operations:

• next expects a value and generates a larger value, according to linorder

• arb produces any value, similarly to undefined, but executable

locale fresh =
fixes next :: ′a::linorder ⇒ ′a and arb :: ′a
assumes next-ge: next x > x

begin

abbreviation update-next :: ( ′a, unit) state where
update-next ≡ State-Monad.update next

lemma update-next-strict-mono[simp, intro]: strict-mono-state update-next
using next-ge by (auto intro: update-strict-mono)

lemma update-next-mono[simp, intro]: mono-state update-next
by (rule strict-mono-implies-mono) (rule update-next-strict-mono)
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definition create :: ( ′a, ′a) state where
create = update-next >>= (λ-. State-Monad.get)

lemma create-alt-def [code]: create = State (λa. (next a, next a))
unfolding create-def State-Monad.update-def State-Monad.get-def State-Monad.set-def
State-Monad.bind-def
by simp

abbreviation fresh-in :: ′a set ⇒ ′a ⇒ bool where
fresh-in S s ≡ Ball S ((≥) s)

lemma next-ge-all: finite S =⇒ fresh-in S s =⇒ next s /∈ S
by (metis antisym less-imp-le less-irrefl next-ge)

definition Next :: ′a set ⇒ ′a where
Next S = (if S = {} then arb else next (Max S))

lemma Next-ge-max: finite S =⇒ S 6= {} =⇒ Next S > Max S
unfolding Next-def using next-ge by simp

lemma Next-not-member-subset: finite S ′ =⇒ S ⊆ S ′ =⇒ Next S ′ /∈ S
unfolding Next-def using next-ge
by (metis Max-ge Max-mono empty-iff finite-subset leD less-le-trans subset-empty)

lemma Next-not-member : finite S =⇒ Next S /∈ S
by (rule Next-not-member-subset) auto

lemma Next-geq-not-member : finite S =⇒ s ≥ Next S =⇒ s /∈ S
unfolding Next-def using next-ge
by (metis (full-types) Max-ge all-not-in-conv leD le-less-trans)

lemma next-not-member : finite S =⇒ s ≥ Next S =⇒ next s /∈ S
by (meson Next-geq-not-member less-imp-le next-ge order-trans)

lemma create-mono[simp, intro]: mono-state create
unfolding create-def
by (auto intro: bind-mono-strong)

lemma create-strict-mono[simp, intro]: strict-mono-state create
unfolding create-def
by (rule bind-strict-mono-strong2 ) auto

abbreviation run-fresh where
run-fresh m S ≡ fst (run-state m (Next S))

abbreviation fresh-fin :: ′a fset ⇒ ′a ⇒ bool where
fresh-fin S s ≡ fBall S ((≥) s)
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context includes fset.lifting begin

lemma next-ge-fall: fresh-fin S s =⇒ next s |/∈| S
by (transfer fixing: next) (rule next-ge-all)

lift-definition fNext :: ′a fset ⇒ ′a is Next .

lemma fNext-ge-max: S 6= {||} =⇒ fNext S > fMax S
by transfer (rule Next-ge-max)

lemma next-not-fmember : s ≥ fNext S =⇒ next s |/∈| S
by transfer (rule next-not-member)

lemma fNext-geq-not-member : s ≥ fNext S =⇒ s |/∈| S
by transfer (rule Next-geq-not-member)

lemma fNext-not-member : fNext S |/∈| S
by transfer (rule Next-not-member)

lemma fNext-not-member-subset: S |⊆| S ′ =⇒ fNext S ′ |/∈| S
by transfer (rule Next-not-member-subset)

abbreviation frun-fresh where
frun-fresh m S ≡ fst (run-state m (fNext S))

end

end

end

2.1 Fresh monad operations as class operations
theory Fresh-Class
imports

Fresh-Monad
Name

begin

The fresh locale allows arbitrary instantiations. However, this may be incon-
venient to use. The following class serves as a global instantiation that can
be used without interpretation. The arb parameter of the locale redirects to
default.
Some instantiations are provided. For names, underscores are appended to
generate a fresh name.
class fresh = linorder + default +

fixes next :: ′a ⇒ ′a
assumes next-ge: next x > x
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global-interpretation Fresh-Monad.fresh next default
defines fresh-create = create

and fresh-Next = Next
and fresh-fNext = fNext
and fresh-frun = frun-fresh
and fresh-run = run-fresh

proof
show x < next x for x by (rule next-ge)

qed

lemma [code]: fresh-frun m S = fst (run-state m (fresh-fNext S))
by (simp add: fresh-fNext-def fresh-frun-def )

lemma [code]: fresh-run m S = fst (run-state m (fresh-Next S))
by (simp add: fresh-Next-def fresh-run-def )

instantiation nat :: fresh begin

definition default-nat :: nat where
default-nat = 0

definition next-nat where
next-nat = Suc

instance
by intro-classes (auto simp: next-nat-def )

end

instantiation char :: default
begin

definition default-char :: char where
default-char = CHR ′′- ′′

instance ..

end

instantiation name :: fresh begin

definition default-name where
default-name = Name ′′- ′′

definition next-name where
next-name xs = Name.append xs default

instance proof
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fix v :: name
show v < next v

unfolding next-name-def default-name-def
by (rule name-append-less) simp

qed

end

primrec fresh-list :: ‹nat ⇒ ′a :: fresh set ⇒ ′a list› where
‹fresh-list 0 - = []› |
‹fresh-list (Suc n) A = Next A # fresh-list n (insert (Next A) A)›

lemma fresh-list-length[simp]: ‹length (fresh-list n A) = n›
by (induction n arbitrary: A) auto

context
fixes A :: ‹ ′a :: fresh set›
assumes finite: ‹finite A›

begin

lemma fresh-list-fresh: ‹set (fresh-list n A) ∩ A = {}›
using finite
by (induction n arbitrary: A) (auto simp: Next-not-member)

lemma fresh-list-fresh-elem: ‹x ∈ set (fresh-list n A) =⇒ x /∈ A›
using fresh-list-fresh by auto

lemma fresh-list-distinct: ‹distinct (fresh-list n A)›
using finite proof (induction n arbitrary: A)

case (Suc n)
then have ‹Next A /∈ set (fresh-list n (insert (Next A) A))›

by (meson Fresh-Class.fresh-list-fresh-elem finite.insertI insertI1 )
then show ?case

using Suc by auto
qed simp

end

export-code
fresh-create fresh-Next fresh-fNext fresh-frun fresh-run fresh-list
checking Scala? SML?

end
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Chapter 3

Terms

theory Term-Class
imports

Datatype-Order-Generator .Order-Generator
Name
Term-Utils
HOL−Library.Disjoint-FSets

begin

hide-type (open) term

3.1 A simple term type, modelled after Pure’s term
type

datatype term =
Const name |
Free name |
Abs term (Λ - [71 ] 71 ) |
Bound nat |
App term term (infixl $ 70 )

derive linorder term

3.2 A type class describing terms

The type class is split into two parts, pre-terms and terms. The only differ-
ence is that terms assume more axioms about substitution (see below).
A term must provide the following generic constructors that behave like
regular free constructors:

• const :: name ⇒ τ

• free :: name ⇒ τ
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• app :: τ ⇒ τ ⇒ τ

Conversely, there are also three corresponding destructors that could be
defined in terms of Hilbert’s choice operator. However, I have instead opted
to let instances define destructors directly, which is simpler for execution
purposes.
Besides the generic constructors, terms may also contain other construc-
tors. Those are abstractly called abstractions, even though that name is not
entirely accurate (bound variables may also fall under this).
Additionally, there must be operations that compute the list of all free vari-
ables (frees), constants (consts), and substitutions (subst). Pre-terms only
assume some basic properties of substitution on the generic constructors.
Most importantly, substitution is not specified for environments containing
terms with free variables. Term types are not required to implement α-
renaming to prevent capturing of variables.
class pre-term = size +

fixes
frees :: ′a ⇒ name fset and
subst :: ′a ⇒ (name, ′a) fmap ⇒ ′a and
consts :: ′a ⇒ name fset

fixes
app :: ′a ⇒ ′a ⇒ ′a and unapp :: ′a ⇒ ( ′a × ′a) option

fixes
const :: name ⇒ ′a and unconst :: ′a ⇒ name option

fixes
free :: name ⇒ ′a and unfree :: ′a ⇒ name option

assumes unapp-app[simp]: unapp (app u1 u2) = Some (u1, u2)
assumes app-unapp[dest]: unapp u = Some (u1, u2) =⇒ u = app u1 u2

assumes app-size[simp]: size (app u1 u2) = size u1 + size u2 + 1
assumes unconst-const[simp]: unconst (const name) = Some name
assumes const-unconst[dest]: unconst u = Some name =⇒ u = const name
assumes unfree-free[simp]: unfree (free name) = Some name
assumes free-unfree[dest]: unfree u = Some name =⇒ u = free name
assumes app-const-distinct: app u1 u2 6= const name
assumes app-free-distinct: app u1 u2 6= free name
assumes free-const-distinct: free name1 6= const name2
assumes frees-const[simp]: frees (const name) = fempty
assumes frees-free[simp]: frees (free name) = {| name |}
assumes frees-app[simp]: frees (app u1 u2) = frees u1 |∪| frees u2

assumes consts-free[simp]: consts (free name) = fempty
assumes consts-const[simp]: consts (const name) = {| name |}
assumes consts-app[simp]: consts (app u1 u2) = consts u1 |∪| consts u2

assumes subst-app[simp]: subst (app u1 u2) env = app (subst u1 env) (subst u2

env)
assumes subst-const[simp]: subst (const name) env = const name
assumes subst-free[simp]: subst (free name) env = (case fmlookup env name of

Some t ⇒ t | - ⇒ free name)
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assumes free-inject: free name1 = free name2 =⇒ name1 = name2
assumes const-inject: const name1 = const name2 =⇒ name1 = name2
assumes app-inject: app u1 u2 = app u3 u4 =⇒ u1 = u3 ∧ u2 = u4

instantiation term :: pre-term begin

definition app-term where
app-term t u = t $ u

fun unapp-term where
unapp-term (t $ u) = Some (t, u) |
unapp-term - = None

definition const-term where
const-term = Const

fun unconst-term where
unconst-term (Const name) = Some name |
unconst-term - = None

definition free-term where
free-term = Free

fun unfree-term where
unfree-term (Free name) = Some name |
unfree-term - = None

fun frees-term :: term ⇒ name fset where
frees-term (Free x) = {| x |} |
frees-term (t1 $ t2) = frees-term t1 |∪| frees-term t2 |
frees-term (Λ t) = frees-term t |
frees-term - = {||}

fun subst-term :: term ⇒ (name, term) fmap ⇒ term where
subst-term (Free s) env = (case fmlookup env s of Some t ⇒ t | None ⇒ Free s) |
subst-term (t1 $ t2) env = subst-term t1 env $ subst-term t2 env |
subst-term (Λ t) env = Λ subst-term t env |
subst-term t env = t

fun consts-term :: term ⇒ name fset where
consts-term (Const x) = {| x |} |
consts-term (t1 $ t2) = consts-term t1 |∪| consts-term t2 |
consts-term (Λ t) = consts-term t |
consts-term - = {||}

instance
by standard

(auto
simp: app-term-def const-term-def free-term-def
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elim: unapp-term.elims unconst-term.elims unfree-term.elims
split: option.splits)

end

context pre-term begin

definition freess :: ′a list ⇒ name fset where
freess = ffUnion ◦ fset-of-list ◦ map frees

lemma freess-cons[simp]: freess (x # xs) = frees x |∪| freess xs
unfolding freess-def by simp

lemma freess-single: freess [x] = frees x
unfolding freess-def by simp

lemma freess-empty[simp]: freess [] = {||}
unfolding freess-def by simp

lemma freess-app[simp]: freess (xs @ ys) = freess xs |∪| freess ys
unfolding freess-def by simp

lemma freess-subset: set xs ⊆ set ys =⇒ freess xs |⊆| freess ys
unfolding freess-def comp-apply
by (intro ffunion-mono fset-of-list-subset) auto

abbreviation id-env :: (name, ′a) fmap ⇒ bool where
id-env ≡ fmpred (λx y. y = free x)

definition closed-except :: ′a ⇒ name fset ⇒ bool where
closed-except t S ←→ frees t |⊆| S

abbreviation closed :: ′a ⇒ bool where
closed t ≡ closed-except t {||}

lemmas term-inject = free-inject const-inject app-inject

lemmas term-distinct[simp] =
app-const-distinct app-const-distinct[symmetric]
app-free-distinct app-free-distinct[symmetric]
free-const-distinct free-const-distinct[symmetric]

lemma app-size1 : size u1 < size (app u1 u2)
by simp

lemma app-size2 : size u2 < size (app u1 u2)
by simp

lemma unx-some-lemmas:
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unapp u = Some x =⇒ unconst u = None
unapp u = Some x =⇒ unfree u = None
unconst u = Some y =⇒ unapp u = None
unconst u = Some y =⇒ unfree u = None
unfree u = Some z =⇒ unconst u = None
unfree u = Some z =⇒ unapp u = None

subgoal by (metis app-unapp const-unconst app-const-distinct not-None-eq surj-pair)
subgoal by (metis app-free-distinct app-unapp free-unfree option.exhaust surj-pair)
subgoal by (metis app-unapp const-unconst app-const-distinct old.prod.exhaust
option.distinct(1 ) option.expand option.sel)
subgoal by (metis const-unconst free-const-distinct free-unfree option.exhaust)
subgoal by (metis const-unconst free-const-distinct free-unfree option.exhaust)
subgoal by (metis app-free-distinct app-unapp free-unfree not-Some-eq surj-pair)
done

lemma unx-none-simps[simp]:
unapp (const name) = None
unapp (free name) = None
unconst (app t u) = None
unconst (free name) = None
unfree (const name) = None
unfree (app t u) = None

subgoal by (metis app-unapp app-const-distinct not-None-eq surj-pair)
subgoal by (metis app-free-distinct app-unapp option.exhaust surj-pair)
subgoal by (metis const-unconst app-const-distinct option.distinct(1 ) option.expand
option.sel)
subgoal by (metis const-unconst free-const-distinct option.exhaust)
subgoal by (metis free-const-distinct free-unfree option.exhaust)
subgoal by (metis app-free-distinct free-unfree not-Some-eq)
done

lemma term-cases:
obtains (free) name where t = free name

| (const) name where t = const name
| (app) u1 u2 where t = app u1 u2

| (other) unfree t = None unapp t = None unconst t = None
apply (cases unfree t)
apply (cases unconst t)
apply (cases unapp t)
subgoal by auto
subgoal for x by (cases x) auto
subgoal by auto
subgoal by auto
done

definition is-const where
is-const t ←→ (unconst t 6= None)

definition const-name where
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const-name t = (case unconst t of Some name ⇒ name)

lemma is-const-simps[simp]:
is-const (const name)
¬ is-const (app t u)
¬ is-const (free name)

unfolding is-const-def by simp+

lemma const-name-simps[simp]:
const-name (const name) = name
is-const t =⇒ const (const-name t) = t

unfolding const-name-def is-const-def by auto

definition is-free where
is-free t ←→ (unfree t 6= None)

definition free-name where
free-name t = (case unfree t of Some name ⇒ name)

lemma is-free-simps[simp]:
is-free (free name)
¬ is-free (const name)
¬ is-free (app t u)

unfolding is-free-def by simp+

lemma free-name-simps[simp]:
free-name (free name) = name
is-free t =⇒ free (free-name t) = t

unfolding free-name-def is-free-def by auto

definition is-app where
is-app t ←→ (unapp t 6= None)

definition left where
left t = (case unapp t of Some (l, -) ⇒ l)

definition right where
right t = (case unapp t of Some (-, r) ⇒ r)

lemma app-simps[simp]:
¬ is-app (const name)
¬ is-app (free name)
is-app (app t u)

unfolding is-app-def by simp+

lemma left-right-simps[simp]:
left (app l r) = l
right (app l r) = r
is-app t =⇒ app (left t) (right t) = t
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unfolding is-app-def left-def right-def by auto

definition ids :: ′a ⇒ name fset where
ids t = frees t |∪| consts t

lemma closed-except-const[simp]: closed-except (const name) S
unfolding closed-except-def by auto

abbreviation closed-env :: (name, ′a) fmap ⇒ bool where
closed-env ≡ fmpred (λ-. closed)

lemma closed-except-self : closed-except t (frees t)
unfolding closed-except-def by simp

end

class term = pre-term + size +
fixes

abs-pred :: ( ′a ⇒ bool) ⇒ ′a ⇒ bool
assumes

raw-induct[case-names const free app abs]:
(
∧

name. P (const name)) =⇒
(
∧

name. P (free name)) =⇒
(
∧

t1 t2. P t1 =⇒ P t2 =⇒ P (app t1 t2)) =⇒
(
∧

t. abs-pred P t) =⇒
P t

assumes
raw-subst-id: abs-pred (λt. ∀ env. id-env env −→ subst t env = t) t and
raw-subst-drop: abs-pred (λt. x |/∈| frees t −→ (∀ env. subst t (fmdrop x env) =

subst t env)) t and
raw-subst-indep: abs-pred (λt. ∀ env1 env2. closed-env env2 −→ fdisjnt (fmdom

env1) (fmdom env2) −→ subst t (env1 ++f env2) = subst (subst t env2) env1) t
and

raw-subst-frees: abs-pred (λt. ∀ env. closed-env env −→ frees (subst t env) =
frees t |−| fmdom env) t and

raw-subst-consts ′: abs-pred (λa. ∀ x. consts (subst a x) = consts a |∪| ffUnion
(consts |‘| fmimage x (frees a))) t and

abs-pred-trivI : P t =⇒ abs-pred P t
begin

lemma subst-id: id-env env =⇒ subst t env = t
proof (induction t arbitrary: env rule: raw-induct)

case (abs t)
show ?case

by (rule raw-subst-id)
qed (auto split: option.splits)

lemma subst-drop: x |/∈| frees t =⇒ subst t (fmdrop x env) = subst t env
proof (induction t arbitrary: env rule: raw-induct)
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case (abs t)
show ?case

by (rule raw-subst-drop)
qed (auto split: option.splits)

lemma subst-frees: fmpred (λ-. closed) env =⇒ frees (subst t env) = frees t |−|
fmdom env
proof (induction t arbitrary: env rule: raw-induct)

case (abs t)
show ?case

by (rule raw-subst-frees)
qed (auto split: option.splits simp: closed-except-def )

lemma subst-consts ′: consts (subst t env) = consts t |∪| ffUnion (consts |‘| fmimage
env (frees t))
proof (induction t arbitrary: env rule: raw-induct)

case (free name)
then show ?case

by (auto
split: option.splits
simp: ffUnion-alt-def fmlookup-ran-iff fmlookup-image-iff fmlookup-dom-iff
intro!: fBexI )

next
case (abs t)
show ?case

by (rule raw-subst-consts ′)
qed (auto simp: funion-image-bind-eq finter-funion-distrib fbind-funion)

fun match :: term ⇒ ′a ⇒ (name, ′a) fmap option where
match (t1 $ t2) u = do {
(u1, u2) ← unapp u;
env1 ← match t1 u1;
env2 ← match t2 u2;
Some (env1 ++f env2)
} |
match (Const name) u =
(case unconst u of

None ⇒ None
| Some name ′⇒ if name = name ′ then Some fmempty else None) |

match (Free name) u = Some (fmap-of-list [(name, u)]) |
match (Bound n) u = None |
match (Abs t) u = None

lemma match-simps[simp]:
match (t1 $ t2) (app u1 u2) = do {

env1 ← match t1 u1;
env2 ← match t2 u2;
Some (env1 ++f env2)
}
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match (Const name) (const name ′) = (if name = name ′ then Some fmempty else
None)
by auto

lemma match-some-induct[consumes 1 , case-names app const free]:
assumes match t u = Some env
assumes

∧
t1 t2 u1 u2 env1 env2. P t1 u1 env1 =⇒ match t1 u1 = Some env1

=⇒ P t2 u2 env2 =⇒ match t2 u2 = Some env2 =⇒ P (t1 $ t2) (app u1 u2) (env1

++f env2)
assumes

∧
name. P (Const name) (const name) fmempty

assumes
∧

name u. P (Free name) u (fmupd name u fmempty)
shows P t u env

using assms
by (induction t u arbitrary: env rule: match.induct)

(auto split: option.splits if-splits elim!: option-bindE)

lemma match-dom: match p t = Some env =⇒ fmdom env = frees p
by (induction p arbitrary: t env)

(fastforce split: option.splits if-splits elim: option-bindE)+

lemma match-vars: match p t = Some env =⇒ fmpred (λ- u. frees u |⊆| frees t)
env
proof (induction p t env rule: match-some-induct)

case (app t1 t2 u1 u2 env1 env2)
show ?case

apply rule
using app
by (fastforce intro: fmpred-mono-strong)+

qed auto

lemma match-appE-split:
assumes match (t1 $ t2) u = Some env
obtains u1 u2 env1 env2 where

u = app u1 u2 match t1 u1 = Some env1 match t2 u2 = Some env2 env = env1

++f env2

using assms
by (auto split: option.splits elim!: option-bindE)

lemma subst-consts:
assumes consts t |⊆| S fmpred (λ- u. consts u |⊆| S) env
shows consts (subst t env) |⊆| S

apply (subst subst-consts ′)
using assms by (auto intro!: ffUnion-least)

lemma subst-empty[simp]: subst t fmempty = t
by (auto simp: subst-id)

lemma subst-drop-fset: fdisjnt S (frees t) =⇒ subst t (fmdrop-fset S env) = subst
t env
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by (induct S) (auto simp: subst-drop fdisjnt-alt-def )

lemma subst-restrict:
assumes frees t |⊆| M
shows subst t (fmrestrict-fset M env) = subst t env

proof −
have ∗: fmrestrict-fset M env = fmdrop-fset (fmdom env − M ) env

by (rule fmap-ext) auto

show ?thesis
apply (subst ∗)
apply (subst subst-drop-fset)
unfolding fdisjnt-alt-def
using assms by auto

qed

corollary subst-restrict ′[simp]: subst t (fmrestrict-fset (frees t) env) = subst t env
by (simp add: subst-restrict)

corollary subst-cong:
assumes

∧
x. x |∈| frees t =⇒ fmlookup Γ1 x = fmlookup Γ2 x

shows subst t Γ1 = subst t Γ2

proof −
have fmrestrict-fset (frees t) Γ1 = fmrestrict-fset (frees t) Γ2

apply (rule fmap-ext)
using assms by simp

thus ?thesis
by (metis subst-restrict ′)

qed

corollary subst-add-disjnt:
assumes fdisjnt (frees t) (fmdom env1)
shows subst t (env1 ++f env2) = subst t env2

proof −
have subst t (env1 ++f env2) = subst t (fmrestrict-fset (frees t) (env1 ++f

env2))
by (metis subst-restrict ′)

also have . . . = subst t (fmrestrict-fset (frees t) env1 ++f fmrestrict-fset (frees
t) env2)

by simp
also have . . . = subst t (fmempty ++f fmrestrict-fset (frees t) env2)

unfolding fmfilter-alt-defs
apply (subst fmfilter-false)
using assms
by (auto simp: fdisjnt-alt-def intro: fmdomI )

also have . . . = subst t (fmrestrict-fset (frees t) env2)
by simp

also have . . . = subst t env2

by simp
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finally show ?thesis .
qed

corollary subst-add-shadowed-env:
assumes frees t |⊆| fmdom env2

shows subst t (env1 ++f env2) = subst t env2

proof −
have subst t (env1 ++f env2) = subst t (fmdrop-fset (fmdom env2) env1 ++f

env2)
by (subst fmadd-drop-left-dom) rule

also have . . . = subst t (fmrestrict-fset (frees t) (fmdrop-fset (fmdom env2) env1

++f env2))
by (metis subst-restrict ′)

also have . . . = subst t (fmrestrict-fset (frees t) (fmdrop-fset (fmdom env2) env1)
++f fmrestrict-fset (frees t) env2)

by simp
also have . . . = subst t (fmempty ++f fmrestrict-fset (frees t) env2)

unfolding fmfilter-alt-defs
using fsubsetD[OF assms]
by auto

also have . . . = subst t env2

by simp
finally show ?thesis .

qed

corollary subst-restrict-closed: closed-except t S =⇒ subst t (fmrestrict-fset S env)
= subst t env
by (metis subst-restrict closed-except-def )

lemma subst-closed-except-id:
assumes closed-except t S fdisjnt (fmdom env) S
shows subst t env = t

using assms
by (metis fdisjnt-subset-right fmdom-drop-fset fminus-cancel fmrestrict-fset-dom

fmrestrict-fset-null closed-except-def subst-drop-fset subst-empty)

lemma subst-closed-except-preserved:
assumes closed-except t S fdisjnt (fmdom env) S
shows closed-except (subst t env) S

using assms
by (metis subst-closed-except-id)

corollary subst-closed-id: closed t =⇒ subst t env = t
by (simp add: subst-closed-except-id fdisjnt-alt-def )

corollary subst-closed-preserved: closed t =⇒ closed (subst t env)
by (simp add: subst-closed-except-preserved fdisjnt-alt-def )
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context begin

private lemma subst-indep0 :
assumes closed-env env2 fdisjnt (fmdom env1) (fmdom env2)
shows subst t (env1 ++f env2) = subst (subst t env2) env1

using assms proof (induction t arbitrary: env1 env2 rule: raw-induct)
case (free name)
show ?case

using ‹closed-env env2›
by (cases rule: fmpred-cases[where x = name]) (auto simp: subst-closed-id)

next
case (abs t)
show ?case

by (rule raw-subst-indep)
qed auto

lemma subst-indep:
assumes closed-env Γ ′

shows subst t (Γ ++f Γ ′) = subst (subst t Γ ′) Γ
proof −

have subst t (Γ ++f Γ ′) = subst t (fmrestrict-fset (frees t) (Γ ++f Γ ′))
by (metis subst-restrict ′)

also have . . . = subst t (fmrestrict-fset (frees t) Γ ++f Γ ′)
by (smt fmlookup-add fmlookup-restrict-fset subst-cong)

also have . . . = subst t (fmrestrict-fset (frees t |−| fmdom Γ ′) Γ ++f Γ ′)
by (rule subst-cong) (simp add: fmfilter-alt-defs(5 ))

also have . . . = subst (subst t Γ ′) (fmrestrict-fset (frees t |−| fmdom Γ ′) Γ)
apply (rule subst-indep0 [OF assms])
using fmdom-restrict-fset
unfolding fdisjnt-alt-def
by auto

also have . . . = subst (subst t Γ ′) (fmrestrict-fset (frees (subst t Γ ′)) Γ)
using assms by (auto simp: subst-frees)

also have . . . = subst (subst t Γ ′) Γ
by simp

finally show ?thesis .
qed

lemma subst-indep ′:
assumes closed-env Γ ′ fdisjnt (fmdom Γ ′) (fmdom Γ)
shows subst t (Γ ′ ++f Γ) = subst (subst t Γ ′) Γ

using assms by (metis subst-indep fmadd-disjnt)

lemma subst-twice:
assumes Γ ′ ⊆f Γ closed-env Γ ′

shows subst (subst t Γ ′) Γ = subst t Γ
proof −

have subst (subst t Γ ′) Γ = subst t (Γ ++f Γ ′)
apply (rule subst-indep[symmetric])
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apply fact
done

also have . . . = subst t Γ
apply (rule subst-cong)
using ‹Γ ′ ⊆f Γ› unfolding fmsubset-alt-def
by fastforce

finally show ?thesis .
qed

end

fun matchs :: term list ⇒ ′a list ⇒ (name, ′a) fmap option where
matchs [] [] = Some fmempty |
matchs (t # ts) (u # us) = do { env1 ← match t u; env2 ← matchs ts us; Some
(env1 ++f env2) } |
matchs - - = None

lemmas matchs-induct = matchs.induct[case-names empty cons]

context begin

private lemma matchs-alt-def0 :
assumes length ps = length vs
shows map-option (λenv. m ++f env) (matchs ps vs) = map-option (foldl (++f )

m) (those (map2 match ps vs))
using assms proof (induction arbitrary: m rule: list-induct2 )

case (Cons x xs y ys)
show ?case

proof (cases match x y)
case x-y: Some
show ?thesis

proof (cases matchs xs ys)
case None
with x-y Cons show ?thesis

by simp
next

case Some
with x-y show ?thesis

apply simp
using Cons(2 ) apply simp
apply (subst option.map-comp)
by (auto cong: map-option-cong)

qed
qed simp

qed simp

lemma matchs-alt-def :
assumes length ps = length vs
shows matchs ps vs = map-option (foldl (++f ) fmempty) (those (map2 match
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ps vs))
by (subst matchs-alt-def0 [where m = fmempty, simplified, symmetric, OF assms])

(simp add: option.map-ident)

end

lemma matchs-neq-length-none[simp]: length xs 6= length ys =⇒ matchs xs ys =
None
by (induct xs ys rule: matchs.induct) fastforce+

corollary matchs-some-eq-length: matchs xs ys = Some env =⇒ length xs = length
ys
by (metis option.distinct(1 ) matchs-neq-length-none)

lemma matchs-app[simp]:
assumes length xs2 = length ys2
shows matchs (xs1 @ xs2) (ys1 @ ys2) =

matchs xs1 ys1 >>= (λenv1. matchs xs2 ys2 >>= (λenv2. Some (env1 ++f

env2)))
using assms
by (induct xs1 ys1 rule: matchs.induct) fastforce+

corollary matchs-appI :
assumes matchs xs ys = Some env1 matchs xs ′ ys ′ = Some env2

shows matchs (xs @ xs ′) (ys @ ys ′) = Some (env1 ++f env2)
using assms
by (metis (no-types, lifting) Option.bind-lunit matchs-app matchs-some-eq-length)

corollary matchs-dom:
assumes matchs ps ts = Some env
shows fmdom env = freess ps

using assms
by (induction ps ts arbitrary: env rule: matchs-induct)

(auto simp: match-dom elim!: option-bindE)

fun find-match :: (term × ′a) list ⇒ ′a ⇒ ((name, ′a) fmap × term × ′a) option
where
find-match [] - = None |
find-match ((pat, rhs) # cs) t =
(case match pat t of

Some env ⇒ Some (env, pat, rhs)
| None ⇒ find-match cs t)

lemma find-match-map:
find-match (map (λ(pat, t). (pat, f pat t)) cs) t =

map-option (λ(env, pat, rhs). (env, pat, f pat rhs)) (find-match cs t)
by (induct cs) (auto split: option.splits)

lemma find-match-elem:
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assumes find-match cs t = Some (env, pat, rhs)
shows (pat, rhs) ∈ set cs match pat t = Some env

using assms
by (induct cs) (auto split: option.splits)

lemma match-subst-closed:
assumes match pat t = Some env closed-except rhs (frees pat) closed t
shows closed (subst rhs env)

using assms
by (smt fminusE fmpred-iff fset-mp fsubsetI closed-except-def match-vars match-dom
subst-frees)

fun rewrite-step :: (term × ′a) ⇒ ′a ⇒ ′a option where
rewrite-step (t1, t2) u = map-option (subst t2) (match t1 u)

abbreviation rewrite-step ′ :: (term × ′a) ⇒ ′a ⇒ ′a ⇒ bool (-/ `/ - →/ -
[50 ,0 ,50 ] 50 ) where
r ` t → u ≡ rewrite-step r t = Some u

lemma rewrite-step-closed:
assumes frees t2 |⊆| frees t1 (t1, t2) ` u → u ′ closed u
shows closed u ′

proof −
from assms obtain env where ∗: match t1 u = Some env

by auto
then have closed (subst t2 env)

apply (rule match-subst-closed[where pat = t1 and t = u])
using assms unfolding closed-except-def by auto

with ∗ show ?thesis
using assms by auto

qed

definition matches :: ′a ⇒ ′a ⇒ bool (infix . 50 ) where
t . u ←→ (∃ env. subst t env = u)

lemma matchesI [intro]: subst t env = u =⇒ t . u
unfolding matches-def by auto

lemma matchesE [elim]:
assumes t . u
obtains env where subst t env = u

using assms unfolding matches-def by blast

definition overlapping :: ′a ⇒ ′a ⇒ bool where
overlapping s t ←→ (∃ u. s . u ∧ t . u)

lemma overlapping-refl: overlapping t t
unfolding overlapping-def matches-def by blast
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lemma overlapping-sym: overlapping t u =⇒ overlapping u t
unfolding overlapping-def by auto

lemma overlappingI [intro]: s . u =⇒ t . u =⇒ overlapping s t
unfolding overlapping-def by auto

lemma overlappingE [elim]:
assumes overlapping s t
obtains u where s . u t . u

using assms unfolding overlapping-def by blast

abbreviation non-overlapping s t ≡ ¬ overlapping s t

corollary non-overlapping-implies-neq: non-overlapping t u =⇒ t 6= u
by (metis overlapping-refl)

end

inductive rewrite-first :: (term × ′a::term) list ⇒ ′a ⇒ ′a ⇒ bool where
match: match pat t = Some env =⇒ rewrite-first ((pat, rhs) # -) t (subst rhs env)
|
nomatch: match pat t = None =⇒ rewrite-first cs t t ′ =⇒ rewrite-first ((pat, -) #
cs) t t ′

code-pred (modes: i ⇒ i ⇒ o ⇒ bool) rewrite-first .

lemma rewrite-firstE :
assumes rewrite-first cs t t ′

obtains pat rhs env where (pat, rhs) ∈ set cs match pat t = Some env t ′ =
subst rhs env
using assms by induction auto

This doesn’t follow from find-match-elem, because rewrite-first requires the
first match, not just any.
lemma find-match-rewrite-first:

assumes find-match cs t = Some (env, pat, rhs)
shows rewrite-first cs t (subst rhs env)

using assms proof (induction cs)
case (Cons c cs)
obtain pat0 rhs0 where c = (pat0 , rhs0 )

by fastforce
thus ?case

using Cons
by (cases match pat0 t) (auto intro: rewrite-first.intros)

qed simp

definition term-cases :: (name ⇒ ′b) ⇒ (name ⇒ ′b) ⇒ ( ′a ⇒ ′a ⇒ ′b) ⇒ ′b ⇒
′a::term ⇒ ′b where
term-cases if-const if-free if-app otherwise t =
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(case unconst t of
Some name ⇒ if-const name |
None ⇒ (case unfree t of

Some name ⇒ if-free name |
None ⇒
(case unapp t of

Some (t, u) ⇒ if-app t u
| None ⇒ otherwise)))

lemma term-cases-cong[fundef-cong]:
assumes t = u otherwise1 = otherwise2
assumes (

∧
name. t = const name =⇒ if-const1 name = if-const2 name)

assumes (
∧

name. t = free name =⇒ if-free1 name = if-free2 name)
assumes (

∧
u1 u2. t = app u1 u2 =⇒ if-app1 u1 u2 = if-app2 u1 u2)

shows term-cases if-const1 if-free1 if-app1 otherwise1 t = term-cases if-const2
if-free2 if-app2 otherwise2 u
using assms
unfolding term-cases-def
by (auto split: option.splits)

lemma term-cases[simp]:
term-cases if-const if-free if-app otherwise (const name) = if-const name
term-cases if-const if-free if-app otherwise (free name) = if-free name
term-cases if-const if-free if-app otherwise (app t u) = if-app t u

unfolding term-cases-def
by (auto split: option.splits)

lemma term-cases-template:
assumes

∧
x. f x = term-cases if-const if-free if-app otherwise x

shows f (const name) = if-const name
and f (free name) = if-free name
and f (app t u) = if-app t u

unfolding assms by (rule term-cases)+

context term begin

function (sequential) strip-comb :: ′a ⇒ ′a × ′a list where
[simp del]: strip-comb t =
(case unapp t of

Some (t, u) ⇒
(let (f , args) = strip-comb t in (f , args @ [u]))

| None ⇒ (t, []))
by pat-completeness auto

termination
apply (relation measure size)
apply rule
apply auto
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done

lemma strip-comb-simps[simp]:
strip-comb (app t u) = (let (f , args) = strip-comb t in (f , args @ [u]))
unapp t = None =⇒ strip-comb t = (t, [])

by (subst strip-comb.simps; auto)+

lemma strip-comb-induct[case-names app no-app]:
assumes

∧
x y. P x =⇒ P (app x y)

assumes
∧

t. unapp t = None =⇒ P t
shows P t

proof (rule strip-comb.induct, goal-cases)
case (1 t)
show ?case

proof (cases unapp t)
case None
with assms show ?thesis by metis

next
case (Some a)
then show ?thesis

apply (cases a)
using 1 assms by auto

qed
qed

lemma strip-comb-size: t ′ ∈ set (snd (strip-comb t)) =⇒ size t ′ < size t
by (induction t rule: strip-comb-induct) (auto split: prod.splits)

lemma sstrip-comb-termination[termination-simp]:
(f , ts) = strip-comb t =⇒ t ′ ∈ set ts =⇒ size t ′ < size t

by (metis snd-conv strip-comb-size)

lemma strip-comb-empty: snd (strip-comb t) = [] =⇒ fst (strip-comb t) = t
by (induction t rule: strip-comb-induct) (auto split: prod.splits)

lemma strip-comb-app: fst (strip-comb (app t u)) = fst (strip-comb t)
by (simp split: prod.splits)

primrec list-comb :: ′a ⇒ ′a list ⇒ ′a where
list-comb f [] = f |
list-comb f (t # ts) = list-comb (app f t) ts

lemma list-comb-app[simp]: list-comb f (xs @ ys) = list-comb (list-comb f xs) ys
by (induct xs arbitrary: f ) auto

corollary list-comb-snoc: app (list-comb f xs) y = list-comb f (xs @ [y])
by simp

lemma list-comb-size[simp]: size (list-comb f xs) = size f + size-list size xs
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by (induct xs arbitrary: f ) auto

lemma subst-list-comb: subst (list-comb f xs) env = list-comb (subst f env) (map
(λt. subst t env) xs)
by (induct xs arbitrary: f ) auto

abbreviation const-list-comb :: name ⇒ ′a list ⇒ ′a (infixl $$ 70 ) where
const-list-comb name ≡ list-comb (const name)

lemma list-strip-comb[simp]: list-comb (fst (strip-comb t)) (snd (strip-comb t)) =
t
by (induction t rule: strip-comb-induct) (auto split: prod.splits)

lemma strip-list-comb: strip-comb (list-comb f ys) = (fst (strip-comb f ), snd (strip-comb
f ) @ ys)
by (induct ys arbitrary: f ) (auto simp: split-beta)

lemma strip-list-comb-const: strip-comb (name $$ xs) = (const name, xs)
by (simp add: strip-list-comb)

lemma frees-list-comb[simp]: frees (list-comb t xs) = frees t |∪| freess xs
by (induct xs arbitrary: t) (auto simp: freess-def )

lemma consts-list-comb: consts (list-comb f xs) = consts f |∪| ffUnion (fset-of-list
(map consts xs))
by (induct xs arbitrary: f ) auto

lemma ids-list-comb: ids (list-comb f xs) = ids f |∪| ffUnion (fset-of-list (map ids
xs))
unfolding ids-def frees-list-comb consts-list-comb freess-def
apply auto
apply (smt fbind-iff finsert-absorb finsert-fsubset funion-image-bind-eq inf-sup-ord(3 ))
apply (metis fbind-iff funionCI funion-image-bind-eq)
by (smt fbind-iff funionE funion-image-bind-eq)

lemma frees-strip-comb: frees t = frees (fst (strip-comb t)) |∪| freess (snd (strip-comb
t))
by (metis list-strip-comb frees-list-comb)

lemma list-comb-cases ′:
obtains (app) is-app (list-comb f xs)

| (empty) list-comb f xs = f xs = []
by (induction xs arbitrary: f ) auto

lemma list-comb-cases[consumes 1 ]:
assumes t = list-comb f xs
obtains (head) t = f xs = []

| (app) u v where t = app u v
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using assms by (metis list-comb-cases ′ left-right-simps(3 ))

end

fun left-nesting :: ′a::term ⇒ nat where
[simp del]: left-nesting t = term-cases (λ-. 0 ) (λ-. 0 ) (λt u. Suc (left-nesting t)) 0
t

lemmas left-nesting-simps[simp] = term-cases-template[OF left-nesting.simps]

lemma list-comb-nesting[simp]: left-nesting (list-comb f xs) = left-nesting f +
length xs
by (induct xs arbitrary: f ) auto

lemma list-comb-cond-inj:
assumes list-comb f xs = list-comb g ys left-nesting f = left-nesting g
shows xs = ys f = g

using assms proof (induction xs arbitrary: f g ys)
case Nil
fix f g :: ′a
fix ys
assume prems: list-comb f [] = list-comb g ys left-nesting f = left-nesting g

hence left-nesting f = left-nesting g + length ys
by simp

with prems show [] = ys f = g
by simp+

next
case (Cons x xs)
fix f g ys
assume prems: list-comb f (x # xs) = list-comb g ys left-nesting f = left-nesting

g

hence left-nesting (list-comb f (x # xs)) = left-nesting (list-comb g ys)
by simp

hence Suc (left-nesting f + length xs) = left-nesting g + length ys
by simp

with prems have length ys = Suc (length xs)
by linarith

then obtain z zs where ys = z # zs
by (metis length-Suc-conv)

thus x # xs = ys f = g
using prems Cons[where ys = zs and f = app f x and g = app g z]
by (auto dest: app-inject)

qed

lemma list-comb-inj-second: inj (list-comb f )
by (metis injI list-comb-cond-inj)
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lemma list-comb-semi-inj:
assumes length xs = length ys
assumes list-comb f xs = list-comb g ys
shows xs = ys f = g

proof −
from assms have left-nesting (list-comb f xs) = left-nesting (list-comb g ys)

by simp
with assms have left-nesting f = left-nesting g

unfolding list-comb-nesting by simp
with assms show xs = ys f = g

by (metis list-comb-cond-inj)+
qed

fun no-abs :: ′a::term ⇒ bool where
[simp del]: no-abs t = term-cases (λ-. True) (λ-. True) (λt u. no-abs t ∧ no-abs u)
False t

lemmas no-abs-simps[simp] = term-cases-template[OF no-abs.simps]

lemma no-abs-induct[consumes 1 , case-names free const app, induct pred: no-abs]:
assumes no-abs t
assumes

∧
name. P (free name)

assumes
∧

name. P (const name)
assumes

∧
t1 t2. P t1 =⇒ no-abs t1 =⇒ P t2 =⇒ no-abs t2 =⇒ P (app t1 t2)

shows P t
using assms(1 ) proof (induction rule: no-abs.induct)

case (1 t)
show ?case

proof (cases rule: pre-term-class.term-cases[where t = t])
case (free name)
then show ?thesis

using assms by auto
next

case (const name)
then show ?thesis

using assms by auto
next

case (app u1 u2)
with assms have P u1 P u2

using 1 by auto
with assms ‹no-abs t› show ?thesis

unfolding ‹t = -› by auto
next

case other
then show ?thesis

using ‹no-abs t›
apply (subst (asm) no-abs.simps)
apply (subst (asm) term-cases-def )
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by simp
qed

qed

lemma no-abs-cases[consumes 1 , cases pred: no-abs]:
assumes no-abs t
obtains (free) name where t = free name

| (const) name where t = const name
| (app) t1 t2 where t = app t1 t2 no-abs t1 no-abs t2

proof (cases rule: pre-term-class.term-cases[where t = t])
case (app u1 u2)
show ?thesis

apply (rule that(3 ))
apply fact
using ‹no-abs t› unfolding ‹t = -› by auto

next
case other
then have False

using ‹no-abs t›
apply (subst (asm) no-abs.simps)
by (auto simp: term-cases-def )

then show ?thesis ..
qed

definition is-abs :: ′a::term ⇒ bool where
is-abs t = term-cases (λ-. False) (λ-. False) (λ- -. False) True t

lemmas is-abs-simps[simp] = term-cases-template[OF is-abs-def ]

definition abs-ish :: term list ⇒ ′a::term ⇒ bool where
abs-ish pats rhs ←→ pats 6= [] ∨ is-abs rhs

locale simple-syntactic-and =
fixes P :: ′a::term ⇒ bool
assumes app: P (app t u) ←→ P t ∧ P u

begin

context
notes app[simp]

begin

lemma list-comb: P (list-comb f xs) ←→ P f ∧ list-all P xs
by (induction xs arbitrary: f ) auto

corollary list-combE :
assumes P (list-comb f xs)
shows P f x ∈ set xs =⇒ P x

using assms
by (auto simp: list-comb list-all-iff )
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lemma match:
assumes match pat t = Some env P t
shows fmpred (λ-. P) env

using assms
by (induction pat t env rule: match-some-induct) auto

lemma matchs:
assumes matchs pats ts = Some env list-all P ts
shows fmpred (λ-. P) env

using assms
by (induction pats ts arbitrary: env rule: matchs.induct) (auto elim!: option-bindE
intro: match)

end

end

locale subst-syntactic-and = simple-syntactic-and +
assumes subst: P t =⇒ fmpred (λ-. P) env =⇒ P (subst t env)

begin

lemma rewrite-step:
assumes (lhs, rhs) ` t → t ′ P t P rhs
shows P t ′

using assms by (auto intro: match subst)

end

locale simple-syntactic-or =
fixes P :: ′a::term ⇒ bool
assumes app: P (app t u) ←→ P t ∨ P u

begin

context
notes app[simp]

begin

lemma list-comb: P (list-comb f xs) ←→ P f ∨ list-ex P xs
by (induction xs arbitrary: f ) auto

lemma match:
assumes match pat t = Some env ¬ P t
shows fmpred (λ- t. ¬ P t) env

using assms
by (induction pat t env rule: match-some-induct) auto

end
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sublocale neg: simple-syntactic-and λt. ¬ P t
by standard (auto simp: app)

end

global-interpretation no-abs: simple-syntactic-and no-abs
by standard simp

global-interpretation closed: simple-syntactic-and λt. closed-except t S for S
by standard (simp add: closed-except-def )

global-interpretation closed: subst-syntactic-and closed
by standard (rule subst-closed-preserved)

corollary closed-list-comb: closed (name $$ args) ←→ list-all closed args
by (simp add: closed.list-comb)

locale term-struct-rel =
fixes P :: ′a::term ⇒ ′b::term ⇒ bool
assumes P-t-const: P t (const name) =⇒ t = const name
assumes P-const-const: P (const name) (const name)
assumes P-t-app: P t (app u1 u2) =⇒ ∃ t1 t2. t = app t1 t2 ∧ P t1 u1 ∧ P t2 u2

assumes P-app-app: P t1 u1 =⇒ P t2 u2 =⇒ P (app t1 t2) (app u1 u2)
begin

abbreviation P-env :: ( ′k, ′a) fmap ⇒ ( ′k, ′b) fmap ⇒ bool where
P-env ≡ fmrel P

lemma related-match:
assumes match x u = Some env P t u
obtains env ′ where match x t = Some env ′ P-env env ′ env

using assms proof (induction x u env arbitrary: t thesis rule: match-some-induct)
case (app v1 v2 w1 w2 env1 env2)
obtain u1 u2 where t = app u1 u2 P u1 w1 P u2 w2

using P-t-app[OF ‹P t (app w1 w2)›] by auto
with app obtain env1

′ env2
′

where match v1 u1 = Some env1
′ P-env env1

′ env1

and match v2 u2 = Some env2
′ P-env env2

′ env2

by metis
hence match (v1 $ v2) (app u1 u2) = Some (env1

′ ++f env2
′)

by simp

show ?case
proof (rule app.prems)

show match (v1 $ v2) t = Some (env1
′ ++f env2

′)
unfolding ‹t = -› by fact

next
show P-env (env1

′ ++f env2
′) (env1 ++f env2)

by rule fact+
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qed
qed (auto split: option.splits if-splits dest: P-t-const)

lemma list-combI :
assumes list-all2 P us1 us2 P t1 t2
shows P (list-comb t1 us1) (list-comb t2 us2)

using assms
by (induction arbitrary: t1 t2 rule: list.rel-induct) (auto intro: P-app-app)

lemma list-combE :
assumes P t (name $$ args)
obtains args ′ where t = name $$ args ′ list-all2 P args ′ args

using assms proof (induction args arbitrary: t thesis rule: rev-induct)
case Nil
hence P t (const name)

by simp
hence t = const name

using P-t-const by auto
with Nil show ?case

by simp
next

case (snoc x xs)
hence P t (app (name $$ xs) x)

by simp
obtain t ′ y where t = app t ′ y P t ′ (name $$ xs) P y x

using P-t-app[OF ‹P t (app (name $$ xs) x)›] by auto
with snoc obtain ys where t ′ = name $$ ys list-all2 P ys xs

by blast
show ?case

proof (rule snoc.prems)
show t = name $$ (ys @ [y])

unfolding ‹t = app t ′ y› ‹t ′ = name $$ ys›
by simp

next
have list-all2 P [y] [x]

using ‹P y x› by simp
thus list-all2 P (ys @ [y]) (xs @ [x])

using ‹list-all2 P ys xs›
by (metis list-all2-appendI )

qed
qed

end

locale term-struct-rel-strong = term-struct-rel +
assumes P-const-t: P (const name) t =⇒ t = const name
assumes P-app-t: P (app u1 u2) t =⇒ ∃ t1 t2. t = app t1 t2 ∧ P u1 t1 ∧ P u2

t2
begin
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lemma unconst-rel: P t u =⇒ unconst t = unconst u
by (metis P-const-t P-t-const const-name-simps(2 ) is-const-def unconst-const)

lemma unapp-rel: P t u =⇒ rel-option (rel-prod P P) (unapp t) (unapp u)
by (smt P-app-t P-t-app is-app-def left-right-simps(3 ) option.rel-sel option.sel op-
tion.simps(3 ) rel-prod-inject unapp-app)

lemma match-rel:
assumes P t u
shows rel-option P-env (match p t) (match p u)

using assms proof (induction p arbitrary: t u)
case (Const name)
thus ?case

by (auto split: option.splits simp: unconst-rel)
next

case (App p1 p2 )
hence rel-option (rel-prod P P) (unapp t) (unapp u)

by (metis unapp-rel)
thus ?case

using App
by cases (auto split: option.splits intro!: rel-option-bind)

qed auto

lemma find-match-rel:
assumes list-all2 (rel-prod (=) P) cs cs ′ P t t ′

shows rel-option (rel-prod P-env (rel-prod (=) P)) (find-match cs t) (find-match
cs ′ t ′)
using assms proof induction

case (Cons x xs y ys)
moreover obtain px tx py ty where x = (px, tx) y = (py, ty)

by (cases x, cases y) auto
moreover note match-rel[OF Cons(4 ), where p = px]
ultimately show ?case

by (auto elim: option.rel-cases)
qed auto

end

fun convert-term :: ′a::term ⇒ ′b::term where
[simp del]: convert-term t = term-cases const free (λt u. app (convert-term t)
(convert-term u)) undefined t

lemmas convert-term-simps[simp] = term-cases-template[OF convert-term.simps]

lemma convert-term-id:
assumes no-abs t
shows convert-term t = t

using assms by induction auto
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lemma convert-term-no-abs:
assumes no-abs t
shows no-abs (convert-term t)

using assms by induction auto

lemma convert-term-inj:
assumes no-abs t no-abs t ′ convert-term t = convert-term t ′

shows t = t ′

using assms proof (induction t arbitrary: t ′)
case (free name)
then show ?case

by cases (auto dest: term-inject)
next

case (const name)
then show ?case

by cases (auto dest: term-inject)
next

case (app t1 t2)
from ‹no-abs t ′› show ?case

apply cases
using app by (auto dest: term-inject)

qed

lemma convert-term-idem:
assumes no-abs t
shows convert-term (convert-term t) = convert-term t

using assms by (induction t) auto

lemma convert-term-frees[simp]:
assumes no-abs t
shows frees (convert-term t) = frees t

using assms by induction auto

lemma convert-term-consts[simp]:
assumes no-abs t
shows consts (convert-term t) = consts t

using assms by induction auto

The following lemma does not generalize to when match t u = None. As-
sume matching return None, because the pattern is an application and the
object is a term satisfying is-abs. Now, convert-term applied to the object
will produce undefined. Of course we don’t know anything about that and
whether or not that matches. A workaround would be to require implemen-
tations of term to prove ∃ t. is-abs t, such that convert-term could use that
instead of undefined. This seems to be too much of a special case in order
to be useful.
lemma convert-term-match:
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assumes match t u = Some env
shows match t (convert-term u) = Some (fmmap convert-term env)

using assms by (induction t u env rule: match-some-induct) auto

3.3 Related work

Schmidt-Schauß and Siekmann [4] discuss the concept of unification alge-
bras. They generalize terms to objects and substitutions to mappings. A
unification problem can be rephrased to finding a mapping such that a set
of objects are mapped to the same object. The advantage of this generaliza-
tion is that other – superficially unrelated – problems like solving algebraic
equations or querying logic programs can be seen as unification problems.
In particular, the authors note that among the similarities of such problems
are that “objects [have] variables” whose “names do not matter” and “there
exists an operation like substituting objects into variables”. The major dif-
ference between this formalization and their work is that I use concrete
types for variables and mappings. Otherwise, some similarities to here can
be found.
Eder [2] discusses properties of substitutions with a special focus on a par-
tial ordering between substitutions. However, Eder constructs and uses a
concrete type of first-order terms, similarly to Sternagel and Thiemann [6].
Williams [9] defines substitutions as elements in a monoid. In this setting,
instantiations can be represented as monoid actions. Williams then pro-
ceeds to define – for arbitrary sets of terms and variables – the notion of
instantiation systems, heavily drawing on notation from Schmidt-Schauß
and Siekmann. Some of the presented axioms are also present in this for-
malization, as are some theorems that have a direct correspondence.
end

3.4 Instantiation of class term for type term
theory Term
imports Term-Class
begin

instantiation term :: term begin

All of these definitions need to be marked as code del; otherwise the code
generator will attempt to generate these, which will fail because they are
not executable.
definition abs-pred-term :: (term ⇒ bool) ⇒ term ⇒ bool where
[code del]: abs-pred P t ←→
(∀ x. t = Bound x −→ P t) ∧
(∀ t ′. t = Λ t ′ −→ P t ′ −→ P t)
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instance proof (standard, goal-cases)
case (1 P t)
then show ?case

by (induction t) (auto simp: abs-pred-term-def const-term-def free-term-def
app-term-def )
qed (auto simp: abs-pred-term-def )

end

lemma is-const-free[simp]: ¬ is-const (Free name)
unfolding is-const-def by simp

lemma is-free-app[simp]: ¬ is-free (t $ u)
unfolding is-free-def by simp

lemma is-free-free[simp]: is-free (Free name)
unfolding is-free-def by simp

lemma is-const-const[simp]: is-const (Const name)
unfolding is-const-def by simp

lemma list-comb-free: is-free (list-comb f xs) =⇒ is-free f
apply (induction xs arbitrary: f )
apply auto
subgoal premises prems

apply (insert prems(1 )[OF prems(2 )])
unfolding app-term-def
by simp

done

lemma const-list-comb-free[simp]: ¬ is-free (name $$ args)
by (fastforce dest: list-comb-free simp: const-term-def )

corollary const-list-comb-neq-free[simp]: name $$ args 6= free name ′

by (metis const-list-comb-free is-free-simps(1 ))

declare const-list-comb-neq-free[symmetric, simp]

lemma match-list-comb-list-comb-eq-lengths[simp]:
assumes length ps = length vs
shows match (list-comb f ps) (list-comb g vs) =
(case match f g of

Some env ⇒
(case those (map2 match ps vs) of

Some envs ⇒ Some (foldl (++f ) env envs)
| None ⇒ None)

| None ⇒ None)
using assms
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by (induction ps vs arbitrary: f g rule: list-induct2 ) (auto split: option.splits simp:
app-term-def )

lemma matchs-match-list-comb[simp]: match (name $$ xs) (name $$ ys) = matchs
xs ys
proof (induction xs arbitrary: ys rule: rev-induct)

case Nil
show ?case

by (cases ys rule: rev-cases) (auto simp: const-term-def )
next

case (snoc x xs)
note snoc0 = snoc
have match (name $$ xs $ x) (name $$ ys) = matchs (xs @ [x]) ys

proof (cases ys rule: rev-cases)
case (snoc zs z)
show ?thesis

unfolding snoc using snoc0
by simp

qed auto
thus ?case

by (simp add: app-term-def )
qed

fun bounds :: term ⇒ nat fset where
bounds (Bound i) = {| i |} |
bounds (t1 $ t2) = bounds t1 |∪| bounds t2 |
bounds (Λ t) = (λi. i − 1 ) |‘| (bounds t − {| 0 |}) |
bounds - = {||}

definition shift-nat :: nat ⇒ int ⇒ nat where
[simp]: shift-nat n k = (if k ≥ 0 then n + nat k else n − nat |k|)

fun incr-bounds :: int ⇒ nat ⇒ term ⇒ term where
incr-bounds inc lev (Bound i) = (if i ≥ lev then Bound (shift-nat i inc) else Bound
i) |
incr-bounds inc lev (Λ u) = Λ incr-bounds inc (lev + 1 ) u |
incr-bounds inc lev (t1 $ t2) = incr-bounds inc lev t1 $ incr-bounds inc lev t2 |
incr-bounds - - t = t

lemma incr-bounds-frees[simp]: frees (incr-bounds n k t) = frees t
by (induction n k t rule: incr-bounds.induct) auto

lemma incr-bounds-zero[simp]: incr-bounds 0 i t = t
by (induct t arbitrary: i) auto

fun replace-bound :: nat ⇒ term ⇒ term ⇒ term where
replace-bound lev (Bound i) t = (if i < lev then Bound i else if i = lev then
incr-bounds (int lev) 0 t else Bound (i − 1 )) |
replace-bound lev (t1 $ t2) t = replace-bound lev t1 t $ replace-bound lev t2 t |
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replace-bound lev (Λ u) t = Λ replace-bound (lev + 1 ) u t |
replace-bound - t - = t

abbreviation β-reduce :: term ⇒ term ⇒ term (- [-]β) where
t [u]β ≡ replace-bound 0 t u

lemma replace-bound-frees: frees (replace-bound n t t ′) |⊆| frees t |∪| frees t ′

by (induction n t t ′ rule: replace-bound.induct) auto

lemma replace-bound-eq:
assumes i |/∈| bounds t
shows replace-bound i t t ′ = incr-bounds (−1 ) (i + 1 ) t

using assms
by (induct t arbitrary: i) force+

fun wellformed ′ :: nat ⇒ term ⇒ bool where
wellformed ′ n (t1 $ t2) ←→ wellformed ′ n t1 ∧ wellformed ′ n t2 |
wellformed ′ n (Bound n ′) ←→ n ′ < n |
wellformed ′ n (Λ t) ←→ wellformed ′ (n + 1 ) t |
wellformed ′ - - ←→ True

lemma wellformed-inc:
assumes wellformed ′ k t k ≤ n
shows wellformed ′ n t

using assms
by (induct t arbitrary: k n) auto

abbreviation wellformed :: term ⇒ bool where
wellformed ≡ wellformed ′ 0

lemma wellformed ′-replace-bound-eq:
assumes wellformed ′ n t k ≥ n
shows replace-bound k t u = t

using assms
by (induction t arbitrary: n k) auto

lemma wellformed-replace-bound-eq: wellformed t =⇒ replace-bound k t u = t
by (rule wellformed ′-replace-bound-eq) simp+

lemma incr-bounds-eq: n ≥ k =⇒ wellformed ′ k t =⇒ incr-bounds i n t = t
by (induct t arbitrary: k n) force+

lemma incr-bounds-subst:
assumes

∧
t. t ∈ fmran ′ env =⇒ wellformed t

shows incr-bounds i n (subst t env) = subst (incr-bounds i n t) env
proof (induction t arbitrary: n)

case (Free name)
show ?case

proof (cases fmlookup env name)
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case (Some t)
hence wellformed t

using assms by (auto intro: fmran ′I )
hence incr-bounds i n t = t

by (subst incr-bounds-eq) auto
with Some show ?thesis

by simp
qed auto

qed auto

lemma incr-bounds-wellformed:
assumes wellformed ′ m u
shows wellformed ′ (k + m) (incr-bounds (int k) n u)

using assms
by (induct u arbitrary: n m) force+

lemma replace-bound-wellformed:
assumes wellformed u wellformed ′ (Suc k) t i ≤ k
shows wellformed ′ k (replace-bound i t u)

using assms
apply (induction t arbitrary: i k)
apply auto
using incr-bounds-wellformed[where m = 0 , simplified]
using wellformed-inc by blast

lemma subst-wellformed:
assumes wellformed ′ n t fmpred (λ-. wellformed) env
shows wellformed ′ n (subst t env)

using assms
by (induction t arbitrary: n) (auto split: option.splits intro: wellformed-inc)

global-interpretation wellformed: simple-syntactic-and wellformed ′ n for n
by standard (auto simp: app-term-def )

global-interpretation wellformed: subst-syntactic-and wellformed
by standard (auto intro: subst-wellformed)

lemma match-list-combE :
assumes match (name $$ xs) t = Some env
obtains ys where t = name $$ ys matchs xs ys = Some env

proof −
from assms that show thesis

proof (induction xs arbitrary: t env thesis rule: rev-induct)
case Nil
from Nil(1 ) show ?case

apply (auto simp: const-term-def split: option.splits if-splits)
using Nil(2 )[where ys = []]
by auto

next
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case (snoc x xs)
obtain t ′ y where t = app t ′ y

using ‹match - t = Some env›
by (auto simp: app-term-def elim!: option-bindE)

from snoc(2 ) obtain env1 env2

where match (name $$ xs) t ′ = Some env1 match x y = Some env2 env =
env1 ++f env2

unfolding ‹t = -› by (fastforce simp: app-term-def elim: option-bindE)

with snoc obtain ys where t ′ = name $$ ys matchs xs ys = Some env1

by blast

show ?case
proof (rule snoc(3 ))

show t = name $$ (ys @ [y])
unfolding ‹t = -› ‹t ′ = -›
by simp

next
have matchs [x] [y] = Some env2

using ‹match x y = -› by simp
thus matchs (xs @ [x]) (ys @ [y]) = Some env

unfolding ‹env = -› using ‹matchs xs ys = -›
by simp

qed
qed

qed

lemma left-nesting-neq-match:
left-nesting f 6= left-nesting g =⇒ is-const (fst (strip-comb f )) =⇒ match f g =

None
proof (induction f arbitrary: g)

case (Const x)
then show ?case

apply (auto split: option.splits)
apply (fold const-term-def )
apply auto
done

next
case (App f1 f2 )
then have f1-g: Suc (left-nesting f1 ) 6= left-nesting g and f1 : is-const (fst

(strip-comb f1 ))
apply (fold app-term-def )
by (auto split: prod.splits)

show ?case
proof (cases unapp g)

case (Some g ′)
obtain g1 g2 where g ′ = (g1 , g2 )

by (cases g ′) auto
with Some have g = app g1 g2
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by auto
with f1-g have left-nesting f1 6= left-nesting g1

by simp
with f1 App have match f1 g1 = None

by simp
then show ?thesis

unfolding ‹g ′ = -› ‹g = -›
by simp

qed simp
qed auto

context begin

private lemma match-list-comb-list-comb-none-structure:
assumes length ps = length vs left-nesting f 6= left-nesting g
assumes is-const (fst (strip-comb f ))
shows match (list-comb f ps) (list-comb g vs) = None

using assms
by (induction ps vs arbitrary: f g rule: list-induct2 ) (auto simp: split-beta left-nesting-neq-match)

lemma match-list-comb-list-comb-some:
assumes match (list-comb f ps) (list-comb g vs) = Some env left-nesting f =

left-nesting g
assumes is-const (fst (strip-comb f ))
shows match f g 6= None length ps = length vs

proof −
have match f g 6= None ∧ length ps = length vs

proof (cases rule: linorder-cases[where y = length vs and x = length ps])
assume length ps = length vs
thus ?thesis

using assms
proof (induction ps vs arbitrary: f g env rule: list-induct2 )

case (Cons p ps v vs)
have match (app f p) (app g v) 6= None ∧ length ps = length vs

proof (rule Cons)
show is-const (fst (strip-comb (app f p)))

using Cons by (simp add: split-beta)
next

show left-nesting (app f p) = left-nesting (app g v)
using Cons by simp

next
show match (list-comb (app f p) ps) (list-comb (app g v) vs) = Some

env
using Cons by simp

qed
thus ?case

unfolding app-term-def
by (auto elim: match.elims option-bindE)

qed auto

43



next
assume length ps < length vs
then obtain vs1 vs2 where vs = vs1 @ vs2 length ps = length vs2 0 < length

vs1
by (auto elim: list-split)

have match (list-comb f ps) (list-comb (list-comb g vs1) vs2) = None
proof (rule match-list-comb-list-comb-none-structure)

show left-nesting f 6= left-nesting (list-comb g vs1)
using assms(2 ) ‹0 < length vs1› by simp

qed fact+
hence match (list-comb f ps) (list-comb g vs) = None

unfolding ‹vs = -› by simp
hence False

using assms by auto
thus ?thesis ..

next
assume length vs < length ps
then obtain ps1 ps2 where ps = ps1 @ ps2 length ps2 = length vs 0 < length

ps1
by (auto elim: list-split)

have match (list-comb (list-comb f ps1) ps2) (list-comb g vs) = None
proof (rule match-list-comb-list-comb-none-structure)

show left-nesting (list-comb f ps1) 6= left-nesting g
using assms ‹0 < length ps1› by simp

next
show is-const (fst (strip-comb (list-comb f ps1)))

using assms by (simp add: strip-list-comb)
qed fact

hence match (list-comb f ps) (list-comb g vs) = None
unfolding ‹ps = -› by simp

hence False
using assms by auto

thus ?thesis ..
qed

thus match f g 6= None length ps = length vs
by simp+

qed

end

lemma match-list-comb-list-comb-none-name[simp]:
assumes name 6= name ′

shows match (name $$ ps) (name ′ $$ vs) = None
proof (rule ccontr)

assume match (name $$ ps) (name ′ $$ vs) 6= None
then obtain env where ∗: match (name $$ ps) (name ′ $$ vs) = Some env

by blast
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hence match (const name) (const name ′ :: ′a) 6= None
by (rule match-list-comb-list-comb-some) (simp add: is-const-def )+

hence name = name ′

unfolding const-term-def
by (simp split: if-splits)

thus False
using assms by blast

qed

lemma match-list-comb-list-comb-none-length[simp]:
assumes length ps 6= length vs
shows match (name $$ ps) (name ′ $$ vs) = None

proof (rule ccontr)
assume match (name $$ ps) (name ′ $$ vs) 6= None
then obtain env where match (name $$ ps) (name ′ $$ vs) = Some env

by blast
hence length ps = length vs

by (rule match-list-comb-list-comb-some) (simp add: is-const-def )+
thus False

using assms by blast
qed

context term-struct-rel begin

corollary related-matchs:
assumes matchs ps ts2 = Some env2 list-all2 P ts1 ts2
obtains env1 where matchs ps ts1 = Some env1 P-env env1 env2

proof −
fix name — dummy

from assms have match (name $$ ps) (name $$ ts2) = Some env2

by simp
moreover have P (name $$ ts1) (name $$ ts2)

using assms by (auto intro: P-const-const list-combI )
ultimately obtain env1 where match (name $$ ps) (name $$ ts1) = Some

env1 P-env env1 env2

by (metis related-match)
hence matchs ps ts1 = Some env1

by simp

show thesis
by (rule that) fact+

qed

end

end
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Chapter 4

Wellformedness of patterns

theory Pats
imports Term
begin

The term class already defines a generic definition of matching a pattern
with a term. Importantly, the type of patterns is neither generic, nor a
dedicated pattern type; instead, it is term itself.
Patterns are a proper subset of terms, with the restriction that no abstrac-
tions may occur and there must be at most a single occurrence of any vari-
able (usually known as linearity). The first restriction can be modelled
in a datatype, the second cannot. Consequently, I define a predicate that
captures both properties.
Using linearity, many more generic properties can be proved, for example
that substituting the environment produced by matching yields the matched
term.
fun linear :: term ⇒ bool where
linear (Free -) ←→ True |
linear (Const -) ←→ True |
linear (t1 $ t2) ←→ linear t1 ∧ linear t2 ∧ ¬ is-free t1 ∧ fdisjnt (frees t1) (frees
t2) |
linear - ←→ False

lemmas linear-simps[simp] =
linear .simps(2 )[folded const-term-def ]
linear .simps(3 )[folded app-term-def ]

lemma linear-implies-no-abs: linear t =⇒ no-abs t
proof induction

case Const
then show ?case

by (fold const-term-def free-term-def app-term-def ) auto
next

case Free
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then show ?case
by (fold const-term-def free-term-def app-term-def ) auto

next
case App
then show ?case

by (fold const-term-def free-term-def app-term-def ) auto
qed auto

fun linears :: term list ⇒ bool where
linears [] ←→ True |
linears (t # ts) ←→ linear t ∧ fdisjnt (frees t) (freess ts) ∧ linears ts

lemma linears-butlastI [intro]: linears ts =⇒ linears (butlast ts)
proof (induction ts)

case (Cons t ts)
hence linear t linears (butlast ts)

by simp+
moreover have fdisjnt (frees t) (freess (butlast ts))

proof (rule fdisjnt-subset-right)
show freess (butlast ts) |⊆| freess ts

by (rule freess-subset) (auto dest: in-set-butlastD)
next

show fdisjnt (frees t) (freess ts)
using Cons by simp

qed
ultimately show ?case

by simp
qed simp

lemma linears-appI [intro]:
assumes linears xs linears ys fdisjnt (freess xs) (freess ys)
shows linears (xs @ ys)

using assms proof (induction xs)
case (Cons z zs)
hence linears zs

by simp+

have fdisjnt (frees z) (freess zs |∪| freess ys)
proof (rule fdisjnt-union-right)

show fdisjnt (frees z) (freess zs)
using ‹linears (z # zs)› by simp

next
have frees z |⊆| freess (z # zs)

unfolding freess-def by simp
thus fdisjnt (frees z) (freess ys)

by (rule fdisjnt-subset-left) fact
qed

moreover have linears (zs @ ys)
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proof (rule Cons)
show fdisjnt (freess zs) (freess ys)

using Cons
by (auto intro: freess-subset fdisjnt-subset-left)

qed fact+

ultimately show ?case
using Cons by auto

qed simp

lemma linears-linear : linears ts =⇒ t ∈ set ts =⇒ linear t
by (induct ts) auto

lemma linears-singleI [intro]: linear t =⇒ linears [t]
by (simp add: freess-def fdisjnt-alt-def )

lemma linear-strip-comb: linear t =⇒ linear (fst (strip-comb t))
by (induction t rule: strip-comb-induct) (auto simp: split-beta)

lemma linears-strip-comb: linear t =⇒ linears (snd (strip-comb t))
proof (induction t rule: strip-comb-induct)

case (app t1 t2)
have linears (snd (strip-comb t1) @ [t2])

proof (intro linears-appI linears-singleI )
have freess (snd (strip-comb t1)) |⊆| frees t1

by (subst frees-strip-comb) auto
moreover have fdisjnt (frees t1) (frees t2)

using app by auto
ultimately have fdisjnt (freess (snd (strip-comb t1))) (frees t2)

by (rule fdisjnt-subset-left)
thus fdisjnt (freess (snd (strip-comb t1))) (freess [t2])

by simp
next

show linear t2 linears (snd (strip-comb t1))
using app by auto

qed
thus ?case

by (simp add: split-beta)
qed auto

lemma linears-appendD:
assumes linears (xs @ ys)
shows linears xs linears ys fdisjnt (freess xs) (freess ys)

using assms proof (induction xs)
case (Cons x xs)
assume linears ((x # xs) @ ys)

hence linears (x # (xs @ ys))
by simp
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hence linears (xs @ ys) linear x fdisjnt (frees x) (freess (xs @ ys))
by auto

hence linears xs
using Cons by simp

moreover have fdisjnt (frees x) (freess xs)
proof (rule fdisjnt-subset-right)

show freess xs |⊆| freess (xs @ ys) by simp
qed fact

ultimately show linears (x # xs)
using ‹linear x› by auto

have fdisjnt (freess xs) (freess ys)
by (rule Cons) fact

moreover have fdisjnt (frees x) (freess ys)
proof (rule fdisjnt-subset-right)

show freess ys |⊆| freess (xs @ ys) by simp
qed fact

ultimately show fdisjnt (freess (x # xs)) (freess ys)
unfolding fdisjnt-alt-def
by auto

qed (auto simp: fdisjnt-alt-def )

lemma linear-list-comb:
assumes linear f linears xs fdisjnt (frees f ) (freess xs) ¬ is-free f
shows linear (list-comb f xs)

using assms
proof (induction xs arbitrary: f )

case (Cons x xs)

hence ∗: fdisjnt (frees f ) (frees x |∪| freess xs)
by simp

have linear (list-comb (f $ x) xs)
proof (rule Cons)

have linear x
using Cons by simp

moreover have fdisjnt (frees f ) (frees x)
using ∗ by (auto intro: fdisjnt-subset-right)

ultimately show linear (f $ x)
using assms Cons by simp

next
show linears xs

using Cons by simp
next

have fdisjnt (frees f ) (freess xs)
using ∗ by (auto intro: fdisjnt-subset-right)

moreover have fdisjnt (frees x) (freess xs)
using Cons by simp

ultimately show fdisjnt (frees (f $ x)) (freess xs)
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by (auto intro: fdisjnt-union-left)
qed auto

thus ?case
by (simp add: app-term-def )

qed auto

corollary linear-list-comb ′: linears xs =⇒ linear (name $$ xs)
by (auto intro: linear-list-comb simp: fdisjnt-alt-def )

lemma linear-strip-comb-cases[consumes 1 ]:
assumes linear pat
obtains (comb) s args where strip-comb pat = (Const s, args) pat = s $$ args

| (free) s where strip-comb pat = (Free s, []) pat = Free s
using assms
proof (induction pat rule: strip-comb-induct)

case (app t1 t2)
show ?case

proof (rule app.IH )
show linear t1

using app by simp
next

fix s
assume strip-comb t1 = (Free s, [])
hence t1 = Free s

by (metis fst-conv snd-conv strip-comb-empty)
hence False

using app by simp
thus thesis

by simp
next

fix s args
assume strip-comb t1 = (Const s, args)
with app show thesis

by (fastforce simp add: strip-comb-app)
qed

next
case (no-app t)
thus ?case

by (cases t) (auto simp: const-term-def )
qed

lemma wellformed-linearI : linear t =⇒ wellformed ′ n t
by (induct t) auto

lemma pat-cases:
obtains (free) s where t = Free s

| (comb) name args where linears args t = name $$ args
| (nonlinear) ¬ linear t

proof (cases t)
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case Free
thus thesis using free by simp

next
case Bound
thus thesis using nonlinear by simp

next
case Abs
thus thesis using nonlinear by simp

next
case (Const name)
have linears [] by simp
moreover have t = name $$ [] unfolding Const by (simp add: const-term-def )
ultimately show thesis

by (rule comb)
next

case (App u v)
show thesis

proof (cases linear t)
case False
thus thesis using nonlinear by simp

next
case True
thus thesis

proof (cases rule: linear-strip-comb-cases)
case free
thus thesis using that by simp

next
case (comb name args)
moreover hence linears (snd (strip-comb t))

using True by (blast intro: linears-strip-comb)
ultimately have linears args

by simp
thus thesis using that comb by simp

qed
qed

qed

corollary linear-pat-cases[consumes 1 ]:
assumes linear t
obtains (free) s where t = Free s

| (comb) name args where linears args t = name $$ args
using assms
by (metis pat-cases)

lemma linear-pat-induct[consumes 1 , case-names free comb]:
assumes linear t
assumes

∧
s. P (Free s)

assumes
∧

name args. linears args =⇒ (
∧

arg. arg ∈ set args =⇒ P arg) =⇒ P
(name $$ args)
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shows P t
using wf-measure[of size] ‹linear t›
proof (induction t)

case (less t)

show ?case
using ‹linear t›
proof (cases rule: linear-pat-cases)

case (free name)
thus ?thesis

using assms by simp
next

case (comb name args)
show ?thesis

proof (cases args = [])
case True
thus ?thesis

using assms comb by fastforce
next

case False
show ?thesis

unfolding ‹t = -›
proof (rule assms)

fix arg
assume arg ∈ set args

then have (arg, t) ∈ measure size
unfolding ‹t = -›
by (induction args) auto

moreover have linear arg
using ‹arg ∈ set args› ‹linears args›
by (auto dest: linears-linear)

ultimately show P arg
using less by auto

qed fact
qed

qed
qed

context begin

private lemma match-subst-correctness0 :
assumes linear t
shows case match t u of

None ⇒ (∀ env. subst (convert-term t) env 6= u) |
Some env ⇒ subst (convert-term t) env = u

using assms proof (induction t arbitrary: u)
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case Free
show ?case

unfolding match.simps
by (fold free-term-def ) auto

next
case Const
show ?case

unfolding match.simps
by (fold const-term-def ) (auto split: option.splits)

next
case (App t1 t2)
hence linear : linear t1 linear t2 fdisjnt (frees t1) (frees t2)

by simp+

show ?case
proof (cases unapp u)

case None
then show ?thesis

apply simp
apply (fold app-term-def )
apply simp
using app-simps(3 ) is-app-def by blast

next
case (Some u ′)
then obtain u1 u2 where u: unapp u = Some (u1, u2) by (cases u ′) auto
hence u = app u1 u2 by auto

note 1 = App(1 )[OF ‹linear t1›, of u1]
note 2 = App(2 )[OF ‹linear t2›, of u2]

show ?thesis
proof (cases match t1 u1)

case None
then show ?thesis

using u
apply simp
apply (fold app-term-def )
using 1 by auto

next
case (Some env1)
with 1 have s1 : subst (convert-term t1) env1 = u1 by simp
show ?thesis

proof (cases match t2 u2)
case None
then show ?thesis

using u
apply simp
apply (fold app-term-def )
using 2 by auto
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next
case (Some env2)
with 2 have s2 : subst (convert-term t2) env2 = u2 by simp

note match = ‹match t1 u1 = Some env1› ‹match t2 u2 = Some env2›

let ?env = env1 ++f env2

from match have frees t1 = fmdom env1 frees t2 = fmdom env2

by (auto simp: match-dom)
with linear have env1 = fmrestrict-fset (frees t1) ?env env2 =

fmrestrict-fset (frees t2) ?env
apply auto
apply (auto simp: fmfilter-alt-defs)

apply (subst fmfilter-false; auto simp: fdisjnt-alt-def intro: fmdomI )+
done

with s1 s2 have subst (convert-term t1) ?env = u1 subst (convert-term
t2) ?env = u2

using linear
by (metis subst-restrict ′ convert-term-frees linear-implies-no-abs)+

then show ?thesis
using match unfolding ‹u = -›
apply simp
apply (fold app-term-def )
by simp

qed
qed

qed
qed auto

lemma match-subst-some[simp]:
match t u = Some env =⇒ linear t =⇒ subst (convert-term t) env = u

by (metis (mono-tags) match-subst-correctness0 option.simps(5 ))

lemma match-subst-none:
match t u = None =⇒ linear t =⇒ subst (convert-term t) env = u =⇒ False

by (metis (mono-tags, lifting) match-subst-correctness0 option.simps(4 ))

end

lemma match-matches: match t u = Some env =⇒ linear t =⇒ t . u
by (metis match-subst-some linear-implies-no-abs convert-term-id matchesI )

lemma overlapping-var1I : overlapping (Free name) t
proof (intro overlappingI matchesI )

show subst (Free name) (fmap-of-list [(name, t)]) = t
by simp
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next
show subst t fmempty = t

by simp
qed

lemma overlapping-var2I : overlapping t (Free name)
proof (intro overlappingI matchesI )

show subst (Free name) (fmap-of-list [(name, t)]) = t
by simp

next
show subst t fmempty = t

by simp
qed

lemma non-overlapping-appI1 : non-overlapping t1 u1 =⇒ non-overlapping (t1 $
t2) (u1 $ u2)
unfolding overlapping-def matches-def by auto

lemma non-overlapping-appI2 : non-overlapping t2 u2 =⇒ non-overlapping (t1 $
t2) (u1 $ u2)
unfolding overlapping-def matches-def by auto

lemma non-overlapping-app-constI : non-overlapping (t1 $ t2) (Const name)
unfolding overlapping-def matches-def by simp

lemma non-overlapping-const-appI : non-overlapping (Const name) (t1 $ t2)
unfolding overlapping-def matches-def by simp

lemma non-overlapping-const-constI : x 6= y =⇒ non-overlapping (Const x) (Const
y)
unfolding overlapping-def matches-def by simp

lemma match-overlapping:
assumes linear t1 linear t2
assumes match t1 u = Some env1 match t2 u = Some env2

shows overlapping t1 t2
proof −

define env1
′ where env1

′ = (fmmap convert-term env1 :: (name, term) fmap)
define env2

′ where env2
′ = (fmmap convert-term env2 :: (name, term) fmap)

from assms have match t1 (convert-term u :: term) = Some env1
′ match t2

(convert-term u :: term) = Some env2
′

unfolding env1
′-def env2

′-def
by (metis convert-term-match)+

with assms show ?thesis
by (metis overlappingI match-matches)

qed

end
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Chapter 5

Terms with explicit bound
variable names

theory Nterm
imports Term-Class
begin

The nterm type is similar to term, but removes the distinction between
bound and free variables. Instead, there are only named variables.
datatype nterm =

Nconst name |
Nvar name |
Nabs name nterm (Λn -. - [0 , 50 ] 50 ) |
Napp nterm nterm (infixl $n 70 )

derive linorder nterm

instantiation nterm :: pre-term begin

definition app-nterm where
app-nterm t u = t $n u

fun unapp-nterm where
unapp-nterm (t $n u) = Some (t, u) |
unapp-nterm - = None

definition const-nterm where
const-nterm = Nconst

fun unconst-nterm where
unconst-nterm (Nconst name) = Some name |
unconst-nterm - = None

definition free-nterm where
free-nterm = Nvar

56



fun unfree-nterm where
unfree-nterm (Nvar name) = Some name |
unfree-nterm - = None

fun frees-nterm :: nterm ⇒ name fset where
frees-nterm (Nvar x) = {| x |} |
frees-nterm (t1 $n t2) = frees-nterm t1 |∪| frees-nterm t2 |
frees-nterm (Λn x. t) = frees-nterm t − {| x |} |
frees-nterm (Nconst -) = {||}

fun subst-nterm :: nterm ⇒ (name, nterm) fmap ⇒ nterm where
subst-nterm (Nvar s) env = (case fmlookup env s of Some t ⇒ t | None ⇒ Nvar
s) |
subst-nterm (t1 $n t2) env = subst-nterm t1 env $n subst-nterm t2 env |
subst-nterm (Λn x. t) env = (Λn x. subst-nterm t (fmdrop x env)) |
subst-nterm t env = t

fun consts-nterm :: nterm ⇒ name fset where
consts-nterm (Nconst x) = {| x |} |
consts-nterm (t1 $n t2) = consts-nterm t1 |∪| consts-nterm t2 |
consts-nterm (Nabs - t) = consts-nterm t |
consts-nterm (Nvar -) = {||}

instance
by standard

(auto
simp: app-nterm-def const-nterm-def free-nterm-def
elim: unapp-nterm.elims unconst-nterm.elims unfree-nterm.elims
split: option.splits)

end

instantiation nterm :: term begin

definition abs-pred-nterm :: (nterm ⇒ bool) ⇒ nterm ⇒ bool where
[code del]: abs-pred P t ←→ (∀ t ′ x. t = (Λn x. t ′) −→ P t ′ −→ P t)

instance proof (standard, goal-cases)
case (1 P t)
then show ?case

by (induction t) (auto simp: abs-pred-nterm-def const-nterm-def free-nterm-def
app-nterm-def )
next

case 3
show ?case

unfolding abs-pred-nterm-def
apply auto
apply (subst fmdrop-comm)
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by auto
next

case 4
show ?case

unfolding abs-pred-nterm-def
apply auto
apply (erule-tac x = fmdrop x env1 in allE)
apply (erule-tac x = fmdrop x env2 in allE)
by (auto simp: fdisjnt-alt-def )

next
case 5
show ?case

unfolding abs-pred-nterm-def
apply clarify
subgoal for t ′ x env

apply (erule allE [where x = fmdrop x env])
by auto

done
next

case 6
show ?case

unfolding abs-pred-nterm-def
apply clarify
subgoal premises prems[rule-format] for t x env

unfolding consts-nterm.simps subst-nterm.simps frees-nterm.simps
apply (subst prems)
unfolding fmimage-drop fmdom-drop
apply (rule arg-cong[where f = (|∪|) (consts t)])
apply (rule arg-cong[where f = ffUnion])
apply (rule arg-cong[where f = λx. consts |‘| fmimage env x])
by auto

done
qed (auto simp: abs-pred-nterm-def )

end

lemma no-abs-abs[simp]: ¬ no-abs (Λn x. t)
by (subst no-abs.simps) (auto simp: term-cases-def )

end
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Chapter 6

Converting between terms
and nterms

theory Term-to-Nterm
imports

Fresh-Class
Find-First
Term
Nterm

begin

6.1 α-equivalence
inductive alpha-equiv :: (name, name) fmap ⇒ nterm ⇒ nterm ⇒ bool where
const: alpha-equiv env (Nconst x) (Nconst x) |
var1 : x |/∈| fmdom env =⇒ x |/∈| fmran env =⇒ alpha-equiv env (Nvar x) (Nvar
x) |
var2 : fmlookup env x = Some y =⇒ alpha-equiv env (Nvar x) (Nvar y) |
abs: alpha-equiv (fmupd x y env) n1 n2 =⇒ alpha-equiv env (Λn x. n1 ) (Λn y. n2 )
|
app: alpha-equiv env n1 n2 =⇒ alpha-equiv env m1 m2 =⇒ alpha-equiv env (n1
$n m1 ) (n2 $n m2 )

code-pred alpha-equiv .

abbreviation alpha-eq :: nterm ⇒ nterm ⇒ bool (infixl ≈α 50 ) where
alpha-eq n1 n2 ≡ alpha-equiv fmempty n1 n2

lemma alpha-equiv-refl[intro?]:
assumes fmpred (=) Γ
shows alpha-equiv Γ t t

using assms proof (induction t arbitrary: Γ)
case Napp
show ?case
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apply (rule alpha-equiv.app; rule Napp)
using Napp.prems unfolding fdisjnt-alt-def by auto

qed (auto simp: fdisjnt-alt-def intro: alpha-equiv.intros)

corollary alpha-eq-refl: alpha-eq t t
by (auto intro: alpha-equiv-refl)

6.2 From Term-Class.term to nterm
fun term-to-nterm :: name list ⇒ term ⇒ (name, nterm) state where
term-to-nterm - (Const name) = State-Monad.return (Nconst name) |
term-to-nterm - (Free name) = State-Monad.return (Nvar name) |
term-to-nterm Γ (Bound n) = State-Monad.return (Nvar (Γ ! n)) |
term-to-nterm Γ (Λ t) = do {

n ← fresh-create;
e ← term-to-nterm (n # Γ) t;
State-Monad.return (Λn n. e)
} |
term-to-nterm Γ (t1 $ t2) = do {

e1 ← term-to-nterm Γ t1;
e2 ← term-to-nterm Γ t2;
State-Monad.return (e1 $n e2)
}

lemmas term-to-nterm-induct = term-to-nterm.induct[case-names const free bound
abs app]

lemma term-to-nterm:
assumes no-abs t
shows fst (run-state (term-to-nterm Γ t) x) = convert-term t

using assms
apply (induction arbitrary: x)
apply auto
by (auto simp: free-term-def free-nterm-def const-term-def const-nterm-def app-term-def
app-nterm-def split-beta split: prod.splits)

definition term-to-nterm ′ :: term ⇒ nterm where
term-to-nterm ′ t = frun-fresh (term-to-nterm [] t) (frees t)

lemma term-to-nterm-mono: mono-state (term-to-nterm Γ x)
by (induction Γ x rule: term-to-nterm.induct) (auto intro: bind-mono-strong)

lemma term-to-nterm-vars0 :
assumes wellformed ′ (length Γ) t
shows frees (fst (run-state (term-to-nterm Γ t) s)) |⊆| frees t |∪| fset-of-list Γ

using assms proof (induction Γ t arbitrary: s rule: term-to-nterm-induct)
case (bound Γ i)
hence Γ ! i |∈| fset-of-list Γ

including fset.lifting by transfer auto
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thus ?case
by (auto simp: State-Monad.return-def )

next
case (abs Γ t)
let ?x = next s

from abs have frees (fst (run-state (term-to-nterm (?x # Γ) t) ?x)) |⊆| frees t
|∪| {|?x|} |∪| fset-of-list Γ

by simp
thus ?case

by (auto simp: create-alt-def split-beta)
qed (auto simp: split-beta)

corollary term-to-nterm-vars:
assumes wellformed t
shows frees (fresh-frun (term-to-nterm [] t) F) |⊆| frees t

proof −
let ?Γ = []
from assms have wellformed ′ (length ?Γ) t

by simp
hence frees (fst (run-state (term-to-nterm ?Γ t) (fNext F))) |⊆| (frees t |∪|

fset-of-list ?Γ)
by (rule term-to-nterm-vars0 )

thus ?thesis
by (simp add: fresh-fNext-def fresh-frun-def )

qed

corollary term-to-nterm-closed: closed t =⇒ wellformed t =⇒ closed (term-to-nterm ′

t)
using term-to-nterm-vars[where F = frees t and t = t, simplified]
unfolding closed-except-def term-to-nterm ′-def
by (simp add: fresh-frun-def )

lemma term-to-nterm-consts: pred-state (λt ′. consts t ′ = consts t) (term-to-nterm
Γ t)
apply (rule pred-stateI )
apply (induction t arbitrary: Γ)
apply (auto split: prod.splits)
done

6.3 From nterm to Term-Class.term
fun nterm-to-term :: name list ⇒ nterm ⇒ term where
nterm-to-term Γ (Nconst name) = Const name |
nterm-to-term Γ (Nvar name) = (case find-first name Γ of Some n ⇒ Bound n |
None ⇒ Free name) |
nterm-to-term Γ (t $n u) = nterm-to-term Γ t $ nterm-to-term Γ u |
nterm-to-term Γ (Λn x. t) = Λ nterm-to-term (x # Γ) t
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lemma nterm-to-term:
assumes no-abs t fdisjnt (fset-of-list Γ) (frees t)
shows nterm-to-term Γ t = convert-term t

using assms proof (induction arbitrary: Γ)
case (free name)
then show ?case

apply simp
apply (auto simp: free-nterm-def free-term-def fdisjnt-alt-def split: option.splits)
apply (rule find-first-none)
by (metis fset-of-list-elem)

next
case (const name)
show ?case

apply simp
by (simp add: const-nterm-def const-term-def )

next
case (app t1 t2)
then have nterm-to-term Γ t1 = convert-term t1 nterm-to-term Γ t2 = con-

vert-term t2
by (auto simp: fdisjnt-alt-def finter-funion-distrib)

then show ?case
apply simp
by (simp add: app-nterm-def app-term-def )

qed

abbreviation nterm-to-term ′ ≡ nterm-to-term []

lemma nterm-to-term ′: no-abs t =⇒ nterm-to-term ′ t = convert-term t
by (auto simp: fdisjnt-alt-def nterm-to-term)

lemma nterm-to-term-frees[simp]: frees (nterm-to-term Γ t) = frees t − fset-of-list
Γ
proof (induction t arbitrary: Γ)

case (Nvar name)
show ?case

proof (cases find-first name Γ)
case None
hence name |/∈| fset-of-list Γ

including fset.lifting
by transfer (metis find-first-some option.distinct(1 ))

with None show ?thesis
by auto

next
case (Some u)
hence name |∈| fset-of-list Γ

including fset.lifting
by transfer (metis find-first-none option.distinct(1 ))

with Some show ?thesis
by auto
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qed
qed (auto split: option.splits)

6.4 Correctness

Some proofs in this section have been contributed by Yu Zhang.
lemma term-to-nterm-nterm-to-term0 :

assumes wellformed ′ (length Γ) t fdisjnt (fset-of-list Γ) (frees t) distinct Γ
assumes fBall (frees t |∪| fset-of-list Γ) (λx. x ≤ s)
shows nterm-to-term Γ (fst (run-state (term-to-nterm Γ t) s)) = t

using assms proof (induction Γ t arbitrary: s rule: term-to-nterm-induct)
case (free Γ name)
hence fdisjnt (fset-of-list Γ) {|name|}

by simp
hence name /∈ set Γ

including fset.lifting by transfer ′ (simp add: disjnt-def )
hence find-first name Γ = None

by (rule find-first-none)
thus ?case

by (simp add: State-Monad.return-def )
next

case (bound Γ i)
thus ?case

by (simp add: State-Monad.return-def find-first-some-index)
next

case (app Γ t1 t2)
have fdisjnt (fset-of-list Γ) (frees t1)

apply (rule fdisjnt-subset-right[where N = frees t1 |∪| frees t2])
using app by auto

have fdisjnt (fset-of-list Γ) (frees t2)
apply (rule fdisjnt-subset-right[where N = frees t1 |∪| frees t2])
using app by auto

have s: s ≤ snd (run-state (term-to-nterm Γ t1) s)
apply (rule state-io-relD[OF term-to-nterm-mono])
apply (rule surjective-pairing)
done

show ?case
apply (auto simp: split-beta)
subgoal

apply (rule app)
subgoal using app by simp
subgoal by fact
subgoal by fact
using app by auto

subgoal
apply (rule app)
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subgoal using app by simp
subgoal by fact
subgoal by fact
using app s by force+

done
next

case (abs Γ t)

have next s |/∈| frees t |∪| fset-of-list Γ
using abs(5 ) next-ge-fall by auto

have nterm-to-term (next s # Γ) (fst (run-state (term-to-nterm (next s # Γ) t)
(next s))) = t

proof (subst abs)
show wellformed ′ (length (next s # Γ)) t

using abs by auto
show fdisjnt (fset-of-list (next s # Γ)) (frees t)

apply simp
apply (rule fdisjnt-insert)
using ‹next s |/∈| frees t |∪| fset-of-list Γ› abs by auto

show distinct (next s # Γ)
apply simp
apply rule

using ‹next s |/∈| frees t |∪| fset-of-list Γ› apply (simp add: fset-of-list-elem)
apply fact
done

have fBall (frees t |∪| fset-of-list Γ) (λx. x ≤ next s)
proof (rule fBall-pred-weaken)

show fBall (frees t |∪| fset-of-list Γ) (λx. x ≤ s)
using abs(5 ) by simp

next
show

∧
x. x |∈| frees t |∪| fset-of-list Γ =⇒ x ≤ s =⇒ x ≤ next s

by (metis Fresh-Class.next-ge dual-order .strict-trans less-eq-name-def )
qed
thus fBall (frees t |∪| fset-of-list (next s # Γ)) (λx. x ≤ next s)

by simp
qed auto

thus ?case
by (auto simp: split-beta create-alt-def )

qed (auto simp: State-Monad.return-def )

lemma term-to-nterm-nterm-to-term:
assumes wellformed t frees t |⊆| S
shows nterm-to-term ′ (frun-fresh (term-to-nterm [] t) (S |∪| Q)) = t

proof (rule term-to-nterm-nterm-to-term0 )
show wellformed ′ (length []) t

using assms by simp
next
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show fdisjnt (fset-of-list []) (frees t)
unfolding fdisjnt-alt-def by simp

next
have fBall (S |∪| Q) (λx. x < fresh.fNext next default (S |∪| Q))

by (metis fNext-geq-not-member fresh-fNext-def le-less-linear fBallI )
hence fBall (S |∪| Q) (λx. x ≤ fresh.fNext next default (S |∪| Q))

by (meson fBall-pred-weaken less-eq-name-def )
thus fBall (frees t |∪| fset-of-list []) (λx. x ≤ fresh.fNext next default (S |∪| Q))

using ‹frees t |⊆| S›
by auto

qed simp

corollary term-to-nterm-nterm-to-term-simple:
assumes wellformed t
shows nterm-to-term ′ (term-to-nterm ′ t) = t

unfolding term-to-nterm ′-def using assms
by (metis order-refl sup.idem term-to-nterm-nterm-to-term)

lemma nterm-to-term-eq:
assumes frees u |⊆| fset-of-list (common-prefix Γ Γ ′)
shows nterm-to-term Γ u = nterm-to-term Γ ′ u

using assms
proof (induction u arbitrary: Γ Γ ′)

case (Nvar name)
hence name ∈ set (common-prefix Γ Γ ′)

unfolding frees-nterm.simps
including fset.lifting
by transfer ′ simp

thus ?case
by (auto simp: common-prefix-find)

next
case (Nabs x t)
hence ∗: frees t − {|x|} |⊆| fset-of-list (common-prefix Γ Γ ′)

by simp

show ?case
apply simp
apply (rule Nabs)
using ∗ Nabs by auto

qed auto

corollary nterm-to-term-eq-closed: closed t =⇒ nterm-to-term Γ t = nterm-to-term
Γ ′ t
by (rule nterm-to-term-eq) (auto simp: closed-except-def )

lemma nterm-to-term-wellformed: wellformed ′ (length Γ) (nterm-to-term Γ t)
proof (induction t arbitrary: Γ)

case (Nabs x t)
hence wellformed ′ (Suc (length Γ)) (nterm-to-term (x # Γ) t)
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by (metis length-Cons)
thus ?case

by auto
qed (auto simp: find-first-correct split: option.splits)

corollary nterm-to-term-closed-wellformed: closed t =⇒ wellformed (nterm-to-term
Γ t)
by (metis Ex-list-of-length nterm-to-term-eq-closed nterm-to-term-wellformed)

lemma nterm-to-term-term-to-nterm:
assumes frees t |⊆| fset-of-list Γ length Γ = length Γ ′

shows alpha-equiv (fmap-of-list (zip Γ Γ ′)) t (fst (run-state (term-to-nterm Γ ′

(nterm-to-term Γ t)) s))
using assms proof (induction Γ t arbitrary: s Γ ′ rule:nterm-to-term.induct)

case (4 Γ x t)
show ?case

apply (simp add: split-beta)
apply (rule alpha-equiv.abs)
using 4 .IH [where Γ ′ = next s # Γ ′] 4 .prems
by (fastforce simp: create-alt-def intro: alpha-equiv.intros)

qed
(force split: option.splits intro: find-first-some intro!: alpha-equiv.intros

simp: fset-of-list-elem find-first-in-map split-beta fdisjnt-alt-def )+

corollary nterm-to-term-term-to-nterm ′: closed t =⇒ t ≈α term-to-nterm ′ (nterm-to-term ′

t)
unfolding term-to-nterm ′-def closed-except-def
apply (rule nterm-to-term-term-to-nterm[where Γ = [] and Γ ′ = [], simplified])
by auto

context begin

private lemma term-to-nterm-alpha-equiv0 :
length Γ1 = length Γ2 =⇒ distinct Γ1 =⇒ distinct Γ2 =⇒ wellformed ′ (length

Γ1 ) t1 =⇒
fresh-fin (frees t1 |∪| fset-of-list Γ1 ) s1 =⇒ fdisjnt (fset-of-list Γ1 ) (frees t1 )

=⇒
fresh-fin (frees t1 |∪| fset-of-list Γ2 ) s2 =⇒ fdisjnt (fset-of-list Γ2 ) (frees t1 )

=⇒
alpha-equiv (fmap-of-list (zip Γ1 Γ2 )) (fst( run-state (term-to-nterm Γ1 t1 ) s1 ))

(fst ( run-state (term-to-nterm Γ2 t1 ) s2 ))
proof (induction Γ1 t1 arbitrary: Γ2 s1 s2 rule:term-to-nterm-induct)

case (free Γ1 name)
then have name |/∈| fmdom (fmap-of-list (zip Γ1 Γ2 ))

unfolding fdisjnt-alt-def
by force

moreover have name |/∈| fmran (fmap-of-list (zip Γ1 Γ2 ))
apply rule
apply (subst (asm) fmran-of-list)
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apply (subst (asm) fset-of-list-map[symmetric])
apply (subst (asm) distinct-clearjunk-id)
subgoal

apply (subst map-fst-zip)
apply fact
apply fact
done

apply (subst (asm) map-snd-zip)
apply fact
using free unfolding fdisjnt-alt-def
by fastforce

ultimately show ?case
by (force intro:alpha-equiv.intros)

next
case (abs Γ t)
have ∗: next s1 > s1 next s2 > s2

using next-ge by force+
from abs.prems(5 ,7 ) have next s1 /∈ set Γ next s2 /∈ set Γ2

unfolding fBall-funion
by (metis fset-of-list-elem next-ge-fall)+

moreover have fresh-fin (frees t |∪| fset-of-list Γ) (next s1 )
fresh-fin (frees t |∪| fset-of-list Γ2 ) (next s2 )

using ∗ abs
by (smt dual-order .trans fBall-pred-weaken frees-term.simps(3 ) less-imp-le)+

moreover have fdisjnt (finsert (next s1 ) (fset-of-list Γ)) (frees t)
fdisjnt (finsert (next s2 ) (fset-of-list Γ2 )) (frees t)

unfolding fdisjnt-alt-def using abs frees-term.simps
by (metis fdisjnt-alt-def finter-finsert-right funionCI inf-commute next-ge-fall)+

moreover have wellformed ′ (Suc (length Γ2 )) t
using wellformed ′.simps abs
by (metis Suc-eq-plus1 )

ultimately show ?case
using abs.prems(1 ,2 ,3 )
by (auto simp: split-beta create-alt-def

intro: alpha-equiv.abs abs.IH [of - next s2 # Γ2 , simplified])
next

case (app Γ1 t1 t2)
hence wellformed ′ (length Γ1 ) t1 wellformed ′ (length Γ1 ) t2
and fresh-fin (frees t1 |∪| fset-of-list Γ1 ) s1 fresh-fin (frees t1 |∪| fset-of-list Γ2 )

s2
and fdisjnt (fset-of-list Γ1 ) (frees t1) fdisjnt (fset-of-list Γ2 ) (frees t1)
and fdisjnt (fset-of-list Γ1 ) (frees t2) fdisjnt (fset-of-list Γ2 ) (frees t2)

using app
unfolding fdisjnt-alt-def
by (auto simp: inf-sup-distrib1 )

have s1 ≤ snd (run-state (term-to-nterm Γ1 t1) s1 ) s2 ≤ snd (run-state (term-to-nterm
Γ2 t1) s2 )

using term-to-nterm-mono
by (simp add: state-io-rel-def )+
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hence fresh-fin (frees t2 |∪| fset-of-list Γ1 ) (snd (run-state (term-to-nterm Γ1
t1) s1 ))

using ‹fresh-fin (frees (t1 $ t2) |∪| fset-of-list Γ1 ) s1 ›
by force

have fresh-fin (frees t2 |∪| fset-of-list Γ2 ) (snd (run-state (term-to-nterm Γ2 t1)
s2 ))

apply rule
using app frees-term.simps ‹s2 ≤ -› dual-order .trans
by (metis funion-iff )

show ?case
apply (auto simp: split-beta create-alt-def )
apply (rule alpha-equiv.app)
subgoal

using app.IH
using ‹fBall (frees t1 |∪| fset-of-list Γ1 ) (λy. y ≤ s1 )›

‹fBall (frees t1 |∪| fset-of-list Γ2 ) (λy. y ≤ s2 )›
‹fdisjnt (fset-of-list Γ1 ) (frees t1)›
‹fdisjnt (fset-of-list Γ2 ) (frees t1)› ‹wellformed ′ (length Γ1 ) t1›
app.prems(1 ) app.prems(2 ) app.prems(3 ) by blast

subgoal
using app.IH

using ‹fBall (frees t2 |∪| fset-of-list Γ1 ) (λy. y ≤ snd (run-state (term-to-nterm
Γ1 t1) s1 ))›

‹fBall (frees t2 |∪| fset-of-list Γ2 ) (λy. y ≤ snd (run-state (term-to-nterm
Γ2 t1) s2 ))›

‹fdisjnt (fset-of-list Γ1 ) (frees t2)›
‹fdisjnt (fset-of-list Γ2 ) (frees t2)›
‹wellformed ′ (length Γ1 ) t2›
app.prems(1 ) app.prems(2 ) app.prems(3 ) by blast

done
qed (force intro: alpha-equiv.intros simp: fmlookup-of-list in-set-zip)+

lemma term-to-nterm-alpha-equiv:
assumes length Γ1 = length Γ2 distinct Γ1 distinct Γ2 closed t
assumes wellformed ′ (length Γ1 ) t
assumes fresh-fin (fset-of-list Γ1 ) s1 fresh-fin (fset-of-list Γ2 ) s2
shows alpha-equiv (fmap-of-list (zip Γ1 Γ2 )) (fst (run-state (term-to-nterm Γ1

t) s1 )) (fst (run-state (term-to-nterm Γ2 t) s2 ))
— An instantiated version of this lemma with Γ1 = [] and Γ2 = [] would not

make sense because then it would just be a special case of alpha-eq-refl.
using assms
by (simp add: fdisjnt-alt-def closed-except-def term-to-nterm-alpha-equiv0 )

end

global-interpretation nrelated: term-struct-rel-strong (λt n. t = nterm-to-term
Γ n) for Γ
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proof (standard, goal-cases)
case (5 name t)
then show ?case by (cases t) (auto simp: const-term-def const-nterm-def split:

option.splits)
next

case (6 u1 u2 t)
then show ?case by (cases t) (auto simp: app-term-def app-nterm-def split:

option.splits)
qed (auto simp: const-term-def const-nterm-def app-term-def app-nterm-def )

lemma env-nrelated-closed:
assumes nrelated.P-env Γ env nenv closed-env nenv
shows nrelated.P-env Γ ′ env nenv

proof
fix x
from assms have rel-option (λt n. t = nterm-to-term Γ n) (fmlookup env x)

(fmlookup nenv x)
by auto

thus rel-option (λt n. t = nterm-to-term Γ ′ n) (fmlookup env x) (fmlookup nenv
x)

using assms
by (cases rule: option.rel-cases) (auto dest: fmdomI simp: nterm-to-term-eq-closed)

qed

lemma nrelated-subst:
assumes nrelated.P-env Γ env nenv closed-env nenv fdisjnt (fset-of-list Γ) (fmdom

nenv)
shows subst (nterm-to-term Γ t) env = nterm-to-term Γ (subst t nenv)

using assms
proof (induction t arbitrary: Γ env nenv)

case (Nvar name)
thus ?case

proof (cases rule: fmrel-cases[where x = name])
case (some t1 t2)
with Nvar have name |/∈| fset-of-list Γ

unfolding fdisjnt-alt-def by (auto dest: fmdomI )
hence find-first name Γ = None

including fset.lifting by transfer ′ (simp add: find-first-none)
with some show ?thesis

by auto
qed (auto split: option.splits)

next
case (Nabs x t)
show ?case

apply simp
apply (subst subst-drop[symmetric, where x = x])
subgoal by simp
apply (rule Nabs)
using Nabs unfolding fdisjnt-alt-def
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by (auto intro: env-nrelated-closed)
qed auto

lemma nterm-to-term-insert-dupl:
assumes y ∈ set (take n Γ) n ≤ length Γ
shows nterm-to-term Γ t = incr-bounds (− 1 ) (Suc n) (nterm-to-term (insert-nth

n y Γ) t)
using assms
proof (induction t arbitrary: n Γ)

case (Nvar name)
show ?case

proof (cases y = name)
case True
with Nvar obtain i where find-first name Γ = Some i i < n

by (auto elim: find-first-some-strong)

hence find-first name (take n Γ) = Some i
by (rule find-first-prefix)

show ?thesis
apply simp
apply (subst ‹find-first name Γ = Some i›)
apply simp
apply (subst find-first-append)
apply (subst ‹find-first name (take n Γ) = Some i›)
apply simp
using ‹i < n› by simp

next
case False
show ?thesis

apply (simp del: insert-nth-take-drop)
apply (subst find-first-insert-nth-neq)
subgoal using False by simp
by (cases find-first name Γ) auto

qed
next

case (Nabs x t)
show ?case

apply simp
apply (subst Nabs(1 )[where n = Suc n])
using Nabs by auto

qed auto

lemma nterm-to-term-bounds-dupl:
assumes i < length Γ j < length Γ i < j
assumes Γ ! i = Γ ! j
shows j |/∈| bounds (nterm-to-term Γ t)

using assms
proof (induction t arbitrary: Γ i j)
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case (Nvar name)
show ?case

proof (cases find-first name Γ)
case (Some k)
show ?thesis

proof
assume j |∈| bounds (nterm-to-term Γ (Nvar name))
with Some have find-first name Γ = Some j

by simp

moreover have find-first name Γ 6= Some j
proof (rule find-first-later)

show i < length Γ j < length Γ i < j
by fact+

next
show Γ ! j = name

by (rule find-first-correct) fact
thus Γ ! i = name

using Nvar by simp
qed

ultimately show False
by blast

qed
qed simp

next
case (Nabs x t)
show ?case

proof
assume j |∈| bounds (nterm-to-term Γ (Λn x. t))
then obtain j ′ where j ′ |∈| bounds (nterm-to-term (x # Γ) t) j ′ > 0 j = j ′

− 1
by auto

hence Suc j |∈| bounds (nterm-to-term (x # Γ) t)
by simp

moreover have Suc j |/∈| bounds (nterm-to-term (x # Γ) t)
proof (rule Nabs)

show Suc i < length (x # Γ) Suc j < length (x # Γ) Suc i < Suc j (x #
Γ) ! Suc i = (x # Γ) ! Suc j

using Nabs by simp+
qed

ultimately show False
by blast

qed
qed auto

fun subst-single :: nterm ⇒ name ⇒ nterm ⇒ nterm where
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subst-single (Nvar s) s ′ t ′ = (if s = s ′ then t ′ else Nvar s) |
subst-single (t1 $n t2) s ′ t ′ = subst-single t1 s ′ t ′ $n subst-single t2 s ′ t ′ |
subst-single (Λn x. t) s ′ t ′ = (Λn x. (if x = s ′ then t else subst-single t s ′ t ′)) |
subst-single t - - = t

lemma subst-single-eq: subst-single t s t ′ = subst t (fmap-of-list [(s, t ′)])
proof (induction t)

case (Nabs x t)
then show ?case

by (cases x = s) (simp add: fmfilter-alt-defs)+
qed auto

lemma nterm-to-term-subst-replace-bound:
assumes closed u ′ n ≤ length Γ x /∈ set (take n Γ)
shows nterm-to-term Γ (subst-single u x u ′) = replace-bound n (nterm-to-term

(insert-nth n x Γ) u) (nterm-to-term Γ u ′)
using assms
proof (induction u arbitrary: n Γ)

case (Nvar name)
note insert-nth-take-drop[simp del]
show ?case

proof (cases name = x)
case True
thus ?thesis

using Nvar
apply (simp add: find-first-insert-nth-eq)
apply (subst incr-bounds-eq[where k = 0 ])
subgoal by simp
apply (rule nterm-to-term-closed-wellformed)
by auto

next
case False
thus ?thesis

apply auto
apply (subst find-first-insert-nth-neq)
subgoal by simp
by (cases find-first name Γ) auto

qed
next

case (Nabs y t)
note insert-nth-take-drop[simp del]
show ?case

proof (cases x = y)
case True
have nterm-to-term (y # Γ) t = replace-bound (Suc n) (nterm-to-term (y #

insert-nth n y Γ) t) (nterm-to-term Γ u ′)
proof (subst replace-bound-eq)

show Suc n |/∈| bounds (nterm-to-term (y # insert-nth n y Γ) t)
apply (rule nterm-to-term-bounds-dupl[where i = 0 ])
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subgoal by simp
subgoal using Nabs(3 ) by (simp add: insert-nth-take-drop)
subgoal by simp
apply simp
apply (subst nth-insert-nth-index-eq)
using Nabs by auto

show nterm-to-term (y # Γ) t = incr-bounds (− 1 ) (Suc n + 1 )
(nterm-to-term (y # insert-nth n y Γ) t)

apply (subst nterm-to-term-insert-dupl[where Γ = y # Γ and y = y
and n = Suc n])

using Nabs by auto
qed

with True show ?thesis
by auto

next
case False
have nterm-to-term (y # Γ) (subst-single t x u ′) = replace-bound (Suc n)

(nterm-to-term (y # insert-nth n x Γ) t) (nterm-to-term Γ u ′)
apply (subst Nabs(1 )[of Suc n])
subgoal by fact
subgoal using Nabs by simp
subgoal using False Nabs by simp
apply (subst nterm-to-term-eq-closed[where t = u ′])
using Nabs by auto

with False show ?thesis
by auto

qed
qed auto

corollary nterm-to-term-subst-β:
assumes closed u ′

shows nterm-to-term Γ (subst u (fmap-of-list [(x, u ′)])) = nterm-to-term (x #
Γ) u [nterm-to-term Γ u ′]β
using assms
by (rule nterm-to-term-subst-replace-bound[where n = 0 , simplified, unfolded subst-single-eq])

end
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Chapter 7

Instantiation for
HOL−ex .Unification from
session HOL−ex

theory Unification-Compat
imports

HOL−ex.Unification
Term-Class

begin

The Isabelle library provides a unification algorithm on lambda-free terms.
To illustrate flexibility of the term algebra, I instantiate my class with that
term type. The major issue is that those terms are parameterized over the
constant and variable type, which cannot easily be supported by the classy
approach, where those types are fixed to name. As a workaround, I introduce
a class that requires the constant and variable type to be isomorphic to name.
hide-const (open) Unification.subst

class is-name =
fixes of-name :: name ⇒ ′a
assumes bij: bij of-name

begin

definition to-name :: ′a ⇒ name where
to-name = inv of-name

lemma to-of-name[simp]: to-name (of-name a) = a
unfolding to-name-def using bij by (metis bij-inv-eq-iff )

lemma of-to-name[simp]: of-name (to-name a) = a
unfolding to-name-def using bij by (meson bij-inv-eq-iff )

lemma of-name-inj: of-name name1 = of-name name2 =⇒ name1 = name2
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using bij by (metis to-of-name)

end

instantiation name :: is-name begin

definition of-name-name :: name ⇒ name where
[code-unfold]: of-name-name x = x

instance by standard (auto simp: of-name-name-def bij-betw-def inj-on-def )

end

lemma [simp, code-unfold]: (to-name :: name ⇒ name) = id
unfolding to-name-def of-name-name-def by auto

instantiation trm :: (is-name) pre-term begin

definition app-trm where
app-trm = Comb

definition unapp-trm where
unapp-trm t = (case t of Comb t u ⇒ Some (t, u) | - ⇒ None)

definition const-trm where
const-trm n = trm.Const (of-name n)

definition unconst-trm where
unconst-trm t = (case t of trm.Const a ⇒ Some (to-name a) | - ⇒ None)

definition free-trm where
free-trm n = Var (of-name n)

definition unfree-trm where
unfree-trm t = (case t of Var a ⇒ Some (to-name a) | - ⇒ None)

primrec consts-trm :: ′a trm ⇒ name fset where
consts-trm (Var -) = {||} |
consts-trm (trm.Const c) = {| to-name c |} |
consts-trm (M · N ) = consts-trm M |∪| consts-trm N

context
includes fset.lifting

begin

lift-definition frees-trm :: ′a trm ⇒ name fset is λt. to-name ‘ vars-of t
by auto

end
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lemma frees-trm[code, simp]:
frees (Var v) = {| to-name v |}
frees (trm.Const c) = {||}
frees (M · N ) = frees M |∪| frees N

including fset.lifting
by (transfer ; auto)+

primrec subst-trm :: ′a trm ⇒ (name, ′a trm) fmap ⇒ ′a trm where
subst-trm (Var v) env = (case fmlookup env (to-name v) of Some v ′ ⇒ v ′ | - ⇒
Var v) |
subst-trm (trm.Const c) - = trm.Const c |
subst-trm (M · N ) env = subst-trm M env · subst-trm N env

instance
by standard

(auto
simp: app-trm-def unapp-trm-def const-trm-def unconst-trm-def free-trm-def

unfree-trm-def of-name-inj
split: trm.splits option.splits)

end

instantiation trm :: (is-name) term begin

definition abs-pred-trm :: ( ′a trm ⇒ bool) ⇒ ′a trm ⇒ bool where
abs-pred-trm P t ←→ True

instance proof (standard, goal-cases)
case (1 P t)
then show ?case

proof (induction t)
case Var
then show ?case

unfolding free-trm-def
by (metis of-to-name)

next
case Const
then show ?case

unfolding const-trm-def
by (metis of-to-name)

qed (auto simp: app-trm-def )
qed (auto simp: abs-pred-trm-def )

end

lemma assoc-alt-def [simp]:
assoc x y t = (case map-of t x of Some y ′⇒ y ′ | - ⇒ y)

by (induction t) auto
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lemma subst-eq: Unification.subst t s = subst t (fmap-of-list s)
by (induction t) (auto split: option.splits simp: fmlookup-of-list)

end
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Chapter 8

Instantiation for λ-free terms
according to Blanchette

theory Lambda-Free-Compat
imports Unification-Compat Lambda-Free-RPOs.Lambda-Free-Term
begin

Another instantiation of the algebra for Blanchette et al.’s term type [1].
hide-const (open) Lambda-Free-Term.subst

instantiation tm :: (is-name, is-name) pre-term begin

definition app-tm where
app-tm = tm.App

definition unapp-tm where
unapp-tm t = (case t of App t u ⇒ Some (t, u) | - ⇒ None)

definition const-tm where
const-tm n = Hd (Sym (of-name n))

definition unconst-tm where
unconst-tm t = (case t of Hd (Sym a) ⇒ Some (to-name a) | - ⇒ None)

definition free-tm where
free-tm n = Hd (Var (of-name n))

definition unfree-tm where
unfree-tm t = (case t of Hd (Var a) ⇒ Some (to-name a) | - ⇒ None)

context
includes fset.lifting

begin

lift-definition frees-tm :: ( ′a, ′b) tm ⇒ name fset is λt. to-name ‘ vars t
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by auto

lift-definition consts-tm :: ( ′a, ′b) tm ⇒ name fset is λt. to-name ‘ syms t
by auto

end

lemma frees-tm[code, simp]:
frees (App f x) = frees f |∪| frees x
frees (Hd h) = (case h of Sym - ⇒ fempty | Var v ⇒ {| to-name v |})

including fset.lifting
by (transfer ; auto split: hd.splits)+

lemma consts-tm[code, simp]:
consts (App f x) = consts f |∪| consts x
consts (Hd h) = (case h of Var - ⇒ fempty | Sym v ⇒ {| to-name v |})

including fset.lifting
by (transfer ; auto split: hd.splits)+

definition subst-tm :: ( ′a, ′b) tm ⇒ (name, ( ′a, ′b) tm) fmap ⇒ ( ′a, ′b) tm where
subst-tm t env =

Lambda-Free-Term.subst (fmlookup-default env (Hd ◦ Var ◦ of-name) ◦ to-name)
t

lemma subst-tm[code, simp]:
subst (App t u) env = App (subst t env) (subst u env)
subst (Hd h) env = (case h of

Sym s ⇒ Hd (Sym s) |
Var x ⇒ (case fmlookup env (to-name x) of

Some t ′⇒ t ′

| None ⇒ Hd (Var x)))
unfolding subst-tm-def
by (auto simp: fmlookup-default-def split: hd.splits option.splits)

instance
by standard

(auto
simp: app-tm-def unapp-tm-def const-tm-def unconst-tm-def free-tm-def un-

free-tm-def of-name-inj
split: tm.splits hd.splits option.splits)

end

instantiation tm :: (is-name, is-name) term begin

definition abs-pred-tm :: (( ′a, ′b) tm ⇒ bool) ⇒ ( ′a, ′b) tm ⇒ bool where
abs-pred-tm P t ←→ True

instance proof (standard, goal-cases)
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case (1 P t)
then show ?case

proof (induction t)
case (Hd h)
then show ?case

apply (cases h)
apply (auto simp: free-tm-def const-tm-def )
apply (metis of-to-name)+
done

qed (auto simp: app-tm-def )
qed (auto simp: abs-pred-tm-def )

end

lemma apps-list-comb: apps f xs = list-comb f xs
by (induction xs arbitrary: f ) (auto simp: app-tm-def )

end

80



Bibliography

[1] J. C. Blanchette, U. Waldmann, and D. Wand. Formalization of re-
cursive path orders for lambda-free higher-order terms. Archive of
Formal Proofs, Sept. 2016. http://isa-afp.org/entries/Lambda_Free_
RPOs.html, Formal proof development.

[2] E. Eder. Properties of substitutions and unifications. Journal of Symbolic
Computation, 1(1):31–46, mar 1985.

[3] L. Hupel and T. Nipkow. A verified compiler from isabelle/hol to
cakeml. In A. Ahmed, editor, Programming Languages and Systems,
pages 999–1026, Cham, 2018. Springer International Publishing.

[4] M. Schmidt-Schauß and J. Siekmann. Unification algebras: An axiomatic
approach to unification, equation solving and constraint solving. Tech-
nical Report SEKI-report SR-88-09, FB Informatik, Universität Kaiser-
slautern, 1988.

[5] C. Sternagel and R. Thiemann. Deriving class instances for datatypes.
Archive of Formal Proofs, Mar. 2015. http://isa-afp.org/entries/
Deriving.html, Formal proof development.

[6] C. Sternagel and R. Thiemann. First-order terms. Archive of Formal
Proofs, Feb. 2018. http://isa-afp.org/entries/First_Order_Terms.html,
Formal proof development.

[7] C. Urban. Nominal techniques in Isabelle/HOL. Journal of Automated
Reasoning, 40(4):327–356, 2008.

[8] C. Urban, S. Berghofer, and C. Kaliszyk. Nominal 2. Archive of Formal
Proofs, Feb. 2013. http://isa-afp.org/entries/Nominal2.shtml, Formal
proof development.

[9] J. G. Williams. Instantiation Theory. Springer-Verlag, 1991.

81

http://isa-afp.org/entries/Lambda_Free_RPOs.html
http://isa-afp.org/entries/Lambda_Free_RPOs.html
http://isa-afp.org/entries/Deriving.html
http://isa-afp.org/entries/Deriving.html
http://isa-afp.org/entries/First_Order_Terms.html
http://isa-afp.org/entries/Nominal2.shtml

	Names as a unique datatype
	A monad for generating fresh names
	Fresh monad operations as class operations

	Terms
	A simple term type, modelled after Pure's 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 term type
	A type class describing terms
	Related work
	Instantiation of class 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 term for type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 term

	Wellformedness of patterns
	Terms with explicit bound variable names
	Converting between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 terms and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nterms
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -equivalence
	From 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Term-Class.term to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nterm
	From 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nterm to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Term-Class.term
	Correctness

	Instantiation for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOL-ex.Unification from session 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 HOL-ex
	Instantiation for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -free terms according to Blanchette

