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ABSTRACT: Two methods are investigated for interpolating daily minimum and maximum air temper- 
atures (I,,, and T,,,,,) at a 1 km spatial resolution over a large mountainous region (830000 km2) in the 
U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect 
of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neu- 
tral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert 
measured temperatures and elevations to sea-level potential temperatures. The potential temperatures 
were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the ele- 
vation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment 
(LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of 
the potential temperature equation. Cross-validation analyses were performed using the NSA and 
LLRA methods to interpolate Tm,, and T,,,, each day for the 1990 water year, and the methods were 
evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias 
for sites associated with vertical extrapolation. A correction based on clmate statiodgrid cell elevation 
differences was developed and found to successfully remove the bias. The LLRA method was tested 
using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and 
the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 
and 1.3"C), and produced very similar temperature surfaces based on image difference statistics. In 
terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods 
tested. 
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1. INTRODUCTION 

Air temperature is an important input to a variety of 
spatially distributed hydrological and ecological mod- 
els. These models use air temperature to drive 
processes such as  evapotranspiration, snowmelt, soil 
decomposition, and plant productivity. Since most 
near-surface air-temperature data are collected a t  
irregularly spaced point locations rather than over con- 
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tinuous surfaces, the point-based temperatures must 
be accurately distributed over the landscape in order to 
be useful in spatially distributed modeling. The objec- 
tive of this study is to analyze and compare 2 methods 
for interpolating air temperature at high spatial (1 km 
grid) and temporal (daily) resolution over a large 
mountainous region (830 000 km2). The methods were 
selected because of their ability to account for the rela- 
tionship between elevation and temperature, and to 
handle large volumes of data. 

Several methods exist for spatial interpolation of 
point-based data, including inverse-distance weight- 
ing, kriging, 2-dimensional splines, and trend-surface 
regression (Myers 1994). These methods often work 
well over relatively flat, homogeneous terrain. In 
mountainous terrain, however, the strong relationship 
between temperature and elevation precludes a sim- 
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ple interpolation of point-based temperature observa- 
tions. Unless the effect of elevation on temperature is 
explicitly accounted for, an interpolation of tempera- 
ture can produce grossly inaccurate results. For exam- 
ple, in the case where a set of temperature obser- 
vations exist around the base of a mountain, an 
interpolation which ignores elevation would seriously 
overestimate the temperature at  the mountain top, as it 
would not account for the fact that temperature gener- 
ally decreases with increasing elevation. 

An additional problem with point-based tempera- 
ture data is that the locations of meteorological stations 
tend to be biased toward lower elevations. High- 
elevation regions are represented poorly by the spatial 
distribution of most meteorological station networks 
(Robeson 1995). These 2 difficulties-the correlation 
between temperature and elevation, and the skewed 
elevational distribution of temperature-recording sta- 
tions-present a considerable challenge to deriving 
accurate air-temperature surfaces over mountainous 
terrain. 

The data generated in this study were one part of a 
larger database-production and  ecological-modeling 
project. Our task was to derive daily surfaces for mini- 
mum and maximum air temperature at a 1 km grid res- 
olution over a large mountainous region. Given the 
computational size of this task, we limited our choice 
of temperature-interpolation algorithms to a class of 
methods which are  simple to implement and relatively 
fast. These algorithms have both been used in the liter- 
ature but to our knowledge have not been subjected to 
any rigorous accuracy assessment at  high spatial and 
temporal resolution. One algorithm assumes neutral 
atmospheric stability and the other assumes a constant 
linear lapse rate. Our objectives in this study were to 
assess the accuracy of each temperature-interpolation 
algorithm, and to determine, if possible, which algo- 
rithm is the better one to use based on simplicity, 
speed,  and accuracy. 

2. STUDY AREA 

The study area encompassed the Columbia River 
Basin, an  area of approximately 670000 km2 in the 
northwest U.S. and southwestern Canada,  plus the 
coastal areas of Oregon and Washington (Fig l ) ,  mak- 
ing a total area of about 830 000 km2. The terrain of this 
region is heterogeneous and includes 3 mountain 
ranges (the Pacific Coast Range, the Cascade Range, 
and  the Rocky Mountains) as well as relatively flat 
regions (the Willamette Valley, the Columbia Plateau, 
the Snake River Valley, and the Puget Trough). 

The study area was represented by a 15-arc-second 
digital elevation model (DEM) (S. Jensen, US Geologi- 

cal Survey, EROS Data Center, pers. comm. 1989). The 
DEM was projected to an  Albers equal-area conic map 
projection and resampled to 1 km resolution using the 
Image Processing Workbench software package (Frew 
1990, Longley et  al. 1992). 

2.1. Meteorological station data 

The temperature data used in this analysis came 
from a combined set of SNOTEL, USDA Forest Service, 
and Canadian meteorological stations (USDA-SCS 
1988, EarthInfo 1990, Environment Canada 1989). 
These stations provide daily measurements of mini- 
mum and maximum temperature (T,,, and T,,,,,, re- 
spectively) for sites specified by location and  elevation. 
Most of the station measurements were made with 
high-quality electronic thermistors, which have a typl- 
cal calibration accuracy of +OS°C, with a measure- 
ment precision of 0 . l0C (USDA 1989, Marks et al. 
1992). Some of the stations, however, were manually 
operated and provided measurement precisions as 
coarse as 0.2B°C (O.S°F). The time period considered in 
this analysis is the 1990 water year (October 1,  1989 to 
September 30, 1990). 1990 was chosen because it rep- 
resents a climatologically 'typical' year based on the 
historical climate record (Greenland 1994), and 
because it coincides with a comprehensive database of 
AVHRR satellite imagery (EROS Data Center 1991). 

The temperature data were checked extensively for 
impossible and implausible values (Davidson 1996, 
p. 127) and for excessive amounts of missing values. 
Stations with more than 100 days of missing data were 
not considered in the analysis, nor were stations with 
reported elevations that differed from their corre- 
sponding DEM elevations by more than 500 m, making 
a total of 907 stations, 679 of which are  within the study 
area boundaries. 1.37% of the daily temperature 
observations consisted of missing values. The spatial 
distribution of meteorological stations is shown in 
Fig. 1. Fig. 2 shows the distribution of elevations for the 
station data and for the DEM cells within the study 
area. It is clear from this figure that there are  propor- 
tionally more low-elevation stations than there are  
low-elevation DEM cells in the study area. 

3. INCORPORATING ELEVATION EFFECTS ON 
AIR TEMPERATURE 

The main difficulty in accurately interpolating tem- 
perature data in mountainous terrain is the effect of 
elevation on temperature. Mountains, acting as physi- 
cal barriers, force air to move vertically, a process 
called orographic uplift. When an air parcel rises, it 
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Fig. 1. Shaded-relief map of a 1 km DEM (digital elevation model) over the Columbia River Basin study area (828 595 km2) north- 
western U.S. and Canada. Crosses denote meteorological station locations (907 total, 679 within the study area). Map projection 

is Albers equal-area conic 

expands and cools. If no heat is exchanged with the 
outside system, this cooling is termed adiabatic. The 
rate at which air cools with elevation change, the lapse 
rate, varies from about -9.8"C km-' for dry air (the dry 
adiabatic lapse rate) to about -4.0°C km-' for very 
warm saturated air (the saturated adiabatic lapse rate) 
(Barry & Chorley 1987, p. 76). The lapse rate is seldom 
purely adiabatic due to outside heat exchange caused 
by radiational heating or cooling at the surface, hon- 
zontal mixing (advection) of air masses, and evapora- 
tion or condensation of moisture. The actual lapse rate 
at a given place and time is termed the environmental 
lapse rate. A typical value used for the global mean 
environmental lapse rate is -6.5"C km-' (Barry & Chor- 
ley 1987, p. 56). 

Several methods exist in the literature for dealing 
with elevation effects when interpolating temperature. 
One method is to compute temperature deviations, 
also called anomalies, by subtracting a monthly or 

annual mean from each temperature observation and 
then to interpolate the temperature anomaly data 
rather than the raw temperatures. This method does a 
good job at removing elevation effects in the investiga- 
tion of temperature trends over time (Robeson 1993), 
however it is not well-suited to ecological or hydrolog- 
ical applications where the actual temperatures are of 
interest rather than the temperature anomalies. 

Another method, climatologically aided interpola- 
tion (CAI), is related to the anomaly approach (Robe- 
son 1993, Willmott & Robeson 1995). CA1 involves 
computing temperature anomalies at each station, 
interpolating the anomalies, and using the interpolated 
anomaly surface to modulate a climatology (a pre- 
existing surface of long-term mean temperatures). 
Robeson (1993) employs CA1 to create mean annual 
temperature surfaces for the land area of the globe, 
using the Legates & Willmott (1990) temperature data 
set as the climatology. Two disadvantages to this 
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method are first, that the climatology surface often 
does not account for elevation, as is the case for the 
Legates & Willmott (1990) climatology, and second, 
that high-quality climatologies may not exist for a 
given region of interest, especially at  higher spatial 
and temporal resolutions. 

Hutchinson (1989) uses multi-dimensional thin-plate 
splines to fit temperature surfaces to 3 variables-lati- 
tude, longitude, and elevation-over the Australian 
continent. This approach creates a smooth surface of 
temperatures by minimizing the roughness of the 
interpolated surface. Hutchinson estimates a smooth- 
ing parameter by minimizing the generalized cross- 
validation errors of the f~t ted surface. The thin-plate 
spline method is reported to work as well as kriging 
while requiring less parameterization, however thin- 
plate splines are computationally demanding and com- 
plicated to implement. 

The creators of the IIASA database (Leemans & 
Cramer 1991) use a simpler technique for incorporat- 
ing elevation effects. Temperature values were first 
normalized to sea-level equivalents, using the station 
elevation and a constant linear lapse rate adjustment of 
-6.0°C km-'. The adjusted sea-level temperatures 
were then interpolated using a combination triangula- 
tion/smooth surface fitting approach. Finally, the inter- 
polated sea-level temperatures were adjusted back to 
actual temperatures using the same lapse rate function 
and a surface of elevation values stored in a DEM. 
Based on visual inspection and comparison with the 
Legates & Willmott database (1990), Leemans & 
Cramer (1991) conclude that their temperature sur- 
faces do a good job at resolving temperature features 
in mountainous regions. However, they also note that 
certain high-altitude and data-sparse regions (e.g. the 
Tibetan Plateau) are consistently colder than expected, 
possibly because of over-estimating the magnitude of 
the lapse rate in these regions. No rigorous accuracy 
assessment is performed. 

Willmott & Matsuura (1995) explore 2 methods for 
incorporating elevation effects. Their first method, 

g 5 t o  Fig. 2. Histograms of eleva- 
tion for all meteorological 
stations (solid bars) and all 
DEM cells within the study 

area (dashed bars) 

'topographically informed interpolation', is essentially 
the same as the Leemans & Cramer (1991) method 
above, except for a different lapse rate (-6.5"C km-') 
and spatial interpolation algorithm (a form of inverse- 
distance weighting using spherical geometry). The 
second method, 'topographically and climatologically 
informed interpolation', combines their first method 
with the CA1 method described above (Robeson 1993, 
Willmott & Robeson 1995). Willmott & Matsuura per- 
form a detailed accuracy assessment based on cross- 
validated interpolation errors for annual average air 
temperatures in the United States from 1920 to 1987. 
They find that their methods are considerably more 
accurate than simpler interpolation methods, with the 
topographically and climatologically informed interpo- 
lation method performing best. 

Marks (1990) presents a method for elevation correc- 
tion that is similar to, but slightly more complicated 
than, the linear lapse rate adjustment used by Lee- 
mans & Cramer (1991) and Willmott & Matsuura 
(1995). The basic procedure is the same: temperature 
observations are adjusted to sea-level equivalents; the 
sea-level temperatures are interpolated; and the sur- 
face of sea-level temperatures is converted to actual 
temperatures by mapping it to the elevations of a DEM 
surface. The difference here is in the way actual tem- 
peratures are adjusted to sea-level: instead of using a 
constant linear adjustment based on elevation and 
lapse rate, Marks employs the hydrostatic equation 
(Byers 1974, p. 82-85) to estimate air pressure at each 
station based on the station's elevation. The station 
temperature and pressure are then used, under an 
assumption of neutral atmospheric stability, in the 
potential temperature equation (Barry & Chorley 1987, 
p. 77) to compute sea-level potential temperatures. 
This approach has been implemented by Dolph et al. 
(1992), Marks et al. (1993), and Phillips & Marks (1996) 
to create temperature surfaces used in spatially distrib- 
uted hydrological modeling, however these studies 
focus on modeling potential evapotranspiration and 
not specifically on the interpolation methods used to 
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create the model inputs. An in-depth assessment of the 
method's accuracy has not been done. 

Given the size of our temperature interpolation task, 
w e  decided against a thin-plate spline approach due to 
its computational complexity. We rejected the CA1 
method due to the lack of a pre-existing high-resolu- 
tion climatology suitable for use at a daily time step. 
We also rejected the anomaly approach because the 
actual temperature data, rather than the deviations, 
were of interest. We felt that the class of methods 
which convert temperatures to sea-level reference 
temperatures, interpolate, and then convert back to 
actual temperatures showed the most promise in terms 
of both computational feasibility and accounting for 
elevation effects. Therefore for this study we chose the 
constant linear lapse rate adjustment employed by 
Leemans & Cramer (1991) and Willmott & Matsuura 
(1995), and the neutral stability assumption procedure 
used by Marks (1990). We will refer to the former as 
Linear Lapse Rate Adjustment (LLRA), and the latter as 
the Neutral Stability Algorithm (NSA). 

For the spatial interpolation step in the LLRA and NSA 
methods, we chose inverse-squared-distance interpola- 
tion (Isaaks & Srivastava 1989) for its speed, simplicity, 
and ease of implementation. Inverse-squared-distance 
interpolation is part of a general class of Inverse Distance 
Weighting interpolators, and will be referred to as IDW. 
Note that Leemans & Cramer did not use IDW in their 
implementation of LLRA, and that Willmott & Matsuura 
used a different, more sophisticated form of IDW in their 
work. We use simple IDW here in order to more easily 
compare results from the LLRA and NSA methods. 

4. THE NEUTRAL STABILITY ALGORITHM (NSA) 

The overall procedure of the NSA is: convert air tem- 
perature measurements (T,) to sea-level potential tem- 
peratures (O,), spatially interpolate 0, points to a grid 
surface, and use the inverse of the potential tempera- 
ture function to map the @, surface to DEM elevations. 
This procedure assumes that the atmosphere in the 
vicinity of a measurement site is neutrally stable. Neu- 
tral atmospheric stability implies that O, is effectively 
the same for neighboring grid cells regardless of their 
elevations. Note that the atmosphere is, strictly speak- 
ing, not often neutrally stable. Neutral stability is a 
simplifying assumption which enables the processing 
of large volumes of data. 

Air temperatures T, (K) were converted to potential 
temperatures O, (K) :  

where PO is 1.0 X 105 Pa (approximately sea-level pres- 
sure), P, is the air pressure (Pa) at elevation z (m), R is 

the gas constant (8.3143 J mol-' K-'), m is the molecu- 
lar weight of dry air (0.02897 kg  mol-'), and  C,, is the 
specific heat of dry air at  constant pressure (1005 J kg-' 
K-'). 

Measurement site elevations were used to derive the 
air pressures using a form of the hydrostatic equation 
(Byers 1974, Barry & Chorley 1987): 

where Tb is an assumed sea level temperature (300 K), 
h is an  assumed temperature lapse rate (-0.0065 K 
m-'), z is the station elevation (m), and g is the acceler- 
ation due  to gravity (9.80616 m S-'). This form of the 
hydrostatic equation uses a constant lapse rate in order 
to compute pressure, however when combined with 
the potential temperature equation the effective lapse 
rate is variable and tends to decrease in magnitude 
with increasing elevation or decreasing temperature. 

We performed a short sensitivity analysis of the NSA 
method to the parameters h and Tb. Assuming a station 
at  1500 m elevation with T, values of -10.0 and 10.O°C, 
we used NSA to derive neighboring T, values at 0 ,500,  
1000, 2000, 2500, and 3000 m elevations. We used a 
range of values for h (-0.002 to -0.010 K m-') and Tb 
(290 to 310 K), and compared the predicted T, values 
to those using NSA with our assumed defaults of 
-0.0065 K m-' for h, and 300 K for Tb. For most combi- 
nations of k and Tb, the final Ta values differed by no 
more than 0.5"C from the NSA using default parame- 
ters, and these discrepancies occurred at  only the 
largest vertical extrapolations (station elevation * 
1500 m).  Two combinations of parameters ( h =  -0.010 K 
m-2, T, = 290 K) and (h = -0.002 K m-2, T, = 310 K )  pro- 
duced larger discrepancies (up to l.O°C), again only at  
(station elevation * 1500 m). At elevations closer to sta- 
tion elevation, NSA was less sensitive to the h and  Tb 
parameters. 

4.1. The spatial interpolation algorithm 

Potential temperatures at the meteorological station 
locations were interpolated to the geographic grid 
spacing of the DEM data using a simple inverse dis- 
tance weighting (IDW) approach. Within the general 
class of IDW methods, we used an  inverse-squared- 
distance weighting function and a neighborhood size 
of 8 (i.e. the 8 nearest neighbors). We decided that 8 
was  a reasonable number of neighbors to use in terms 
of reducing computation time while maintaining a 
smooth surface. From our experience with inverse- 
squared-distance interpolation, moving beyond 5 or 6 
neighbors adds little additional information. 

Due to the uneven density of stations across the 
study area,  a maximum neighbor distance threshold 
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was not used. In the case where some neighbors are 
very far from the interpolation point, the l / d 2  weight- 
ing function ensures that distant stations receive pro- 
portionally little weight. When a missing value was 
encountered during the interpolation, that station was 
ignored and the nearest 8 stations with valid data were 
used. 

The IDW interpolation is: 

V,, = [X,(V;/~~~)]/[Z,(~.O/~;~)] (3) 

where V,, is the interpolated value at a grid cell, v, is 
the measured value of the ith nearest neighbor, and d, 
is the distance to the i th nearest neighbor. In the case 
where d = 0.0 for a particular vi, Vgc is assigned the 
value of v,, making IDW an  exact interpolator. 

The IDW interpolation algorithm was chosen 
because it is simple, relatively fast, and easy to imple- 
ment. Robeson (1994) investigated 3 methods of spa- 
tially interpolating temperature anomaly data and 
found that, on average, the inverse-distance method 
gave about the same results as the other 2 methods, tri- 
angulated surface patches and thin-plate splines. 

Using a subset of the Columbia River Basin data set 
and a 10 km grid cell resolution, we compared the re- 
sults of interpolating potential temperatures by kriging 
(Phillips & Marks 1996) versus IDW (Table 1). The krig- 
ing method tended to smooth the data slightly by re- 
ducing the extreme values, however the surfaces inter- 
polated by kriging and IDW were very similar, with 
mean absolute pixel differences of 0214°C or less be- 
tween predicted 0, for each of the days during which 
the comparison was made. The similarity between the 
kriging and IDW results is a compelling argument in 
favor of the simpler and faster IDW method. 

4.2. The cold bias 

The interpolated surfaces of O, were converted back 
to air temperature (T,) by inverting Eq. (1) and using 
the DEM surface to map 0, to the elevations of the 
DEM grid. A typical air temperature surface made by 
NSA (minimum temperature on January 1, 1990) is 
shown in Fig. 3. The general spatial pattern of temper- 
atures is intuitively consistent. Low elevations (coastal 
areas, intenor valleys) tend to be warmer than h ~ g h  
elevations, and inland areas have cooler minimum 
temperature values than coastal areas. However, 
closer examination revealed that the estimated tem- 
peratures for some mountain cells were far cooler than 
expected. Daily temperatures for selected cells were 
plotted for the entire year and indicated a possible bias 
in the interpolated surfaces. For example, a cell in the 
Olympic Peninsula at 2080 m elevation had an  average 
annual T,,, of -3.9"C (median = -4.5"C). The average 

Table 1. Comparison of potential temperature interpolation 
using kriging and inverse-distance weighting (IDW) on 743 
station values to estimate 5693 ten km grid cells for the U.S. 
portion of the Columbia River Basin. Data are from Phillips & 
Marks (1996). Units are 'C. MPD. mean pixel difference; 
MAPD: mean absolute pixel difference. Pixel differences were 

computed as (IDW surface minus kriging surface) 

Kriging IDW 

January 10,1990 
Min. 2.94 -3.69 
Max. 21.97 24.84 
Median 11.97 11.82 
Mean 11.91 11.87 
S D 4.36 4.47 
MPD -0.04 
MAPD 0.54 

April 5, 1990 
Min. 
Max. 
Median 
Mean 
SD 
MPD 
MAPD 

August 3, 1990 
Min. 
Max. 
Median 
Mean 
S D 
MPD -0.02 
MAPD 0.49 

summer T,,, (June, July, August) was 3.2"C (median = 
2.8"C). Over the entire year, 256 days had a T,,, less 
than O.O°C. For comparison purposes, we looked at 
T,,, statistics for the nearest comparable station. The 
station with the most similar elevation and latitude to 
the Olympic Peninsula grid cell was in western Mon- 
tana at an elevation of 2103 m and a latitude 35 km 
south of the grid cell's latitude. For this station, the 
mean T,,, was 7.2"C; the mean summer T,,, was 
17.1°C, and the number of sub-zero T,,, days was 102. 
The Olympic Peninsula grid cell was rather extreme, 
but many other high-elevation cells exhibited similar 
behavior and led us to suspect some sort of bias in the 
NSA temperature surfaces. 

5. CROSS-VALIDATION ANALYSIS OF THE NSA 

In order to assess the accuracy of the NSA, we per- 
formed a cross-validation analys~s using all stations 
within the study area (n  = 679), and interpolating both 
Tmi, and T,,, each day for the entire year. The cross- 
validation procedure was as follows: For each meteoro- 
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Fig. 3. Map of minimum temperature on January 1, 1990, interpolated with the neutral stability algorithm 

logical station point, find the DEM grid cell that con- 
tains the station location and estimate Tmin and T,,, for 
each day of the year from the nearest 8 stations which 
are outside the grid cell. Compute the interpolation 
error (IE) as the observed temperature (at the station 
inside the grid cell) minus the interpolated tempera- 
ture (interpolated from the 8 stations outside the grid 
cell). Note that the DEM cell and the station it contains 
do not necessarily have identical elevations. The mean 
elevation difference (DEM - station) is 32 m (standard 
deviation = 98 m). 

The cross-validation analysis produced, for each of 
the 679 stations, 365 interpolation errors for both T,, 
and T,,,. Fig. 4a shows the cross-validation results for 
a high-elevation (2286 m) station in southern Idaho. 
The interpolated value (dashed line) is consistently 
lower than the known temperature (solid line) 
throughout the year. The interpolation error (observed 
minus interpolated value) for this point is graphed in 
Fig. 4b. While there is considerable noise in the signal 
of daily interpolation error, it is clear that this point is, 
in general, being predicted too cold. Rather than deal 

with the noisy daily errors, in the following analyses 
we use the mean annual interpolation errors for T,,, 
and T,,, (2 sets of 679 values). These 2 sets of mean 
annual errors were combined into a single data set (n = 
1358). 

A histogram of the mean annual interpolation errors 
(Fig. 5) shows a relatively symmetrical distribution 
centered near zero with a mean value of 0.22OC (i.e. on 
average, each point was predicted 0.22"C too cold). A 
plot of station elevation versus interpolation error 
(Fig. 6) shows a very weak positive relationship for ele- 
vation values above about 1000 m, but in general the 
relationship between elevation and interpolation error 
is nonexistent. 

5.1. The A Z  measure 

A map of the T,,, interpolation errors (Fig. 7) shows 
a few spatlal patterns of interest. A band of relatively 
high-magnitude errors occurs along the Cascade 
Range, while the interior valleys have mostly low-mag- 
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Day of water year 1990 
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Day of water year 1990 

Fig. 4 (a)  Daily minimum temperature for a representative high-elevation meteorological station In southern Idaho (2286 m). The 
solid line 1s the observed temperature and the dashed line is the cross-validated interpolated temperature using the NSA method. 

(b)  Dady ~nterpolation error (observed minus cross-validated interpolated temperature) for the station depicted In (a) 

Mean annual interpolation error (deg C) 

Fig. 5. Histogram of NSA mean annual interpolation error (observed minus cross-validated interpolated temperature) for 
combined T,,, and T,,,, over the 679 stations within the study area 

nitude errors. The mountains of central Idaho tend to 
have errors at about the same magnitude as those in 
the Cascades, even though the Cascades have lower 
elevations. It appears that the interpolation errors are 
related to changes in elevation across the landscape 
rather than to absolute magnitudes of elevation. 

These spatial patterns of interpolation error led to 
the development of a measure we call AZ, which is the 
difference between a DEM grid-cell elevation and the 
weighted mean of the DEM elevations of a neighbor- 
ing set of stations: 

where Zg, is the DEM elevation (m) of the grid cell 
under consideration, zj is the DEM elevation of the ith 
nearest station (1  = 1 to 8), and di is the distance to the 
i th nearest station. The purpose of the AZmeasure is to 
quantitatively flag regions of the study area which are 
likely to be susceptible to interpolation error. Grid cells 
with high positive (negative) values of AZ are cells 
which are much higher (lower) in elevation than the 
neighboring stations used for interpolating tempera- 
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Elevation (m) 

Fig. 6. Station elevation versus mean annual interpolation error for comb~ned T,, and T,,, over the 679 study area stations 

Obsetmd rnlnus ~nlarpolatwl Tmin (deg Cl 

e 9  0 -9 

6 0 -6 

3 0 -3 
Star~ons w ~ t h  a b W a  err- 
less than 0.5 deg C 

Fig. 7. Map of mean annual interpolation error for Tmi,. Circle diameters are proportional to error magnitude. Errors less than 
+0.5"C are denoted by a cross 

ture, and therefore represent areas where significant Cells with low-magnitude values of AZare at about the 
vertical extrapolation occurs when potential tempera- same elevation as neighboring stations and are not 
tures are  converted to DEM-elevation temperatures. expected to have serious problen~s associated with 
We suspect that it is this type of extrapolation that is extrapolation. 
responsible for the very cold temperatures observed in Fig. 8 shows the spatial distribution of AZ across 
the initial set of interpolated temperature surfaces. the study area. As expected, we see high positive AZ 
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Fig. 8. Map of AZ (grid cell elevation minus we~ghted mean station elevation). Positive AZ values denote grid cells which are 
higher in elevation than the nearest 8 meteorological stations; negative AZ denotes cells which are lower than the 8 neighboring 

stations. 

values associated with mountain tops, e .g .  Mount 
Rainier (DEM elevation = 4210 m; AZ = 2739 m) 
and  Mount Adams (DEM elevation 3650 m; AZ = 
2446 m). A more interesting, and less obvious, pat- 
tern is the  large group of very high AZ values in the 
mountains of Washington's Olympic Peninsula. Only 
a few grid cells in the Olympic Mountains have ele- 
vations above 2000 m, yet most of the AZ values for 
these cells are  extreme (greater than 1000 m). This is 
due  to the fact that these mountains are  devoid of 
any meteorological stations and are  surrounded by 
stations very close to sea level (the highest neighbor- 
ing station 1s at  134 m) .  As for areas which are lower 
than neighboring stations, the high-magnitude nega- 
tive AZ values in Fig. 8 are  fewer in number and are  
mostly confined to valley bottoms and narrow 
canyons. 

If we compute a AZ value for each grid cell that con- 
tains a meteorological station, while ignoring the sta- 
tion within that gnd  cell, then the resulting set of AZ 

values corresponds to the situation in which we 
ignored a station during the cross-validation of tem- 
perature interpolations. We will denote these values as 
CVAZ. When the CVAZ are  plotted against the inter- 
polation errors, we see an  obvious and relatively 
strong positive relationship (Fig. 9a).  

The relationship depicted in Fig. 9a confirn~s our 
suspicion of a bias: high positive values of AZ tend to 
have high positive interpolation errors (i.e. tend to be 
predicted too cold). Fig. 9a also shows that the con- 
verse is true: high negative values of AZ tend to be 
predicted too warm. A simple linear regression of 
CVAZ on interpolation error (IE) yields a meaningful 
fit (R2 = 0.43) and the following equation: IE = 0.297 + 
0.004449(CVAZ) (n = 1358) Thus the interpolation 
errors tend to increase 4.449"C for each 1000 m 
increase in AZ. Note that spatial autocorrelation in 
the temperature data prevents the unbiased assess- 
ment of statistical significance in the regression 
analysis. 
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Cross-validated delta2 (m) 
3 

Cross-validated delta2 (m) 

Interpolation error (deg. C) 

Fig. 9. (a) CVAZ versus mean annual interpolation error for the unadjusted NSA method, with a linear regression line (dashed). 
Data are combined T,,,, and T,,, from 679 stations (n = 1358). The regression equation was: IE = 0.297 + 0.004449 CVAZ (R2 = 
0.43). (b) CVAZversus mean annual interpolation error for the bias-corrected NSA method, with a linear regression line (dashed). 
The regression equation was: IE = 0.297 - 0.0000003 CVAZ (R2 = 0.00). (C) Histograms of mean annual interpolation error for NSA: 

uncorrected (dashed bars, mean = 0.21, MAE = 1.58) and bias-corrected (solid bars, mean = 0.30, MAE = 1.27) 

To remove the interpolation bias, we used the slope 
of the regression above1 as a bias correction factor 
(BCF). The cross-validated temperature estimates 
were adjusted by 4.44g°C for each km of CVAZ. These 
adjusted temperatures were subtracted from the 
observed data to obtain adjusted interpolation errors, 
which were plotted against CVAZ in Fig. 9b. A visual 
inspection of this figure reveals no apparent relation- 
ship, and a regression of CVAZ on adjusted interpola- 

'The intercept is assumed zero so that known data values 
(where AZ is zero) are not altered during the bias correction 
procedure described in Section 5.2 

tion error yields a n  R2 of 0.0. The histogram of adjusted 
interpolation errors (Fig. 9c) shows that the bias cor- 
rection resulted in a modest increase of interpolation 
accuracy. When compared to the raw, unadjusted 
errors, the solid histogram of Fig. 9c has smaller tails 
(fewer large errors) and larger central bars (more small 
errors) than the dashed histogram. Mean absolute 
error (MAE) decreased from 1.58 to 1.27"C, and the 
standard deviation decreased from 2.28 to 1.73"C). 

The above BCF (4.44goC km-') was computed using 
temperatures over a n  entire year and  over a large geo- 
graphic region. To assess the stability of the correction 
factor in space and time, it was  re-computed using 
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Table 2 Regress~on and ~nterpolahon error (IE) statlstlcs for spa- 
tial and  temporal subsets of the study area ,  for each ~nterpola-  
tion method The 'lnt , 'Slope', and R2  columns pertaln to the 
intercept, slope, and f ~ t  of the regression where cross-vahdated 
AZ IS used to predict IE IE pertains to mean ~nterpolahon error 
for pooled dally T,, and T ,,,, 'IE,,,' and 'IE,,d,,' a re  the mean 
absolute error and standard dev~at ion  of IE, respectively Error 
standard devia t~on IS also known as  root mean square error 
(RMSE) Slope unlts a r e  ("C km-'), Int and  IE unlts a re  ("C) 

SubseUMethod Int. Slope IE~AAE IEstdev 

NSA-raw 
Daily, e n t ~ r e  study area 0.30 4.45 0 43 1.58 2.28 
Monthly, entire study area 0.29 4.51 0.43 1.59 2.30 
Daily, J an  0.31 3.42 0.29 1.51 2.14 
Daily, Aug 0.29 5.10 0.45 1.75 2.52 
Dally, Oct-Mar 0.30 3 78 0.36 1 4 5  2.10 
Daily, Sep-Apr 0.29 5.12 0.46 1.76 2.53 
Dally, NW quadrant 0.25 4.62 0.52 1.40 2.05 
Dally, NE quadrant 0.34 3.79 0.46 1.46 2.08 
Dally, SW quadrant 0.37 4.90 0.44 1.67 2.39 
Dally, SE quadrant 0.25 4.57 0.35 1.78 2.55 
NSA-adj 
Daily, entire study area  0.30 0 00 0.00 1.27 1.73 
Monthly, entire study area  0.29 0.00 0.00 1.28 1.73 
Dally, J an  0.31 -1 03 0.03 1.41 1.84 
Dally, Aug 0.29 0 65 0 01 1.33 1.88 
Dally, Oct-Mar 0.30 -0.67 0 02 1.26 1.69 
Dally, Sep-Apr 0.29 0.67 0 01 1.36 1 8 7  
Dally, NW quadrant 0.25 0.17 0 00 1.02 1.42 
Dally, NE quadrant 0 34 -0.65 0 02 1.21 1 5 5  
Dally, SW quadrant 0 37 0.45 0 01 1.35 1 8 1  
Dally, SE quadrant 0 25 0.12 0.00 1.51 2.05 
LLRA3.9 
Dally, entire study area 0 13 -0 96 0 03 1.30 l 75 
Monthly, entire study area 0 14 -0 91 0 03 1.31 1.75 
Dally, J a n  0.15 -2.02 0.12 1.47 1.93 
Daily, Aug 013-0 .06  0 0 0  1.31 1 8 3  
Dally, Oct-Mar 0 14 -1.55 0 09 1.30 1.75 
Dally, Sep-Apr 0.13 -0 37 0 00 1.37 1.85 
Daily, NW quadrant 0.08 -0.72 0.03 1.02 1.41 
Dally, NE quadrant 0 13 -1.61 0.13 1.26 1.64 
Dally, SW quadrant 0.22 -0.52 0 01 1.38 1.81 
Dally, SE quadrant 0.13 -0.90 0.02 1.56 2.07 
LLRA4.8 
Daily, e n t ~ r e  study area 0.17 0.00 0 00 1.26 1.72 
Monthly, e n t ~ r e  study area 0.17 0.06 0 00 1.26 1.73 
Daily, J a n  0.18 -1 04 0.04 1.40 1.85 
Daily, Aug 0.16 0.84 0.02 1.30 1.86 
Daily, Oct-Mar 0.17 -0 59 0.01 1.23 1.68 
Daily, Sep-Apr 0 1 6  0 5 9  0 0 1  134  1 8 6  
Daily, NW quadrant 0 1 1  024  0.00 1 0 0  1.40 
Daily. NE quadrant 0 1 7 - 0 6 4  0.02 1.17 1.55 
Dally, SW quadrant 0 25 0 44 0.01 134 1.81 
Dally, SE quadrant 0 1 5  0.05 0.00 1.51 2 0 5  
LLRA6.5 
Dally, entire study area 0.22 1 61 0 09 1 26 1 81 
Monthly, entire study area 0 22 l 67 0 09 1 27 1.82 
Dally, J an  0 23 0.57 0.01 1.36 1 82 
Dally, Aug 0 21 2.45 0.16 1.38 2.01 
Dally, Oct-~Var  0 2 3  1.02 004  1.20 171  
Dally, Sep-Apr 0.21 2.20 0.14 1.39 2.00 
Dally, NW quadrant 0.17 1.84 0 1 5  1.05 1.53 
Daily, NE quadrant 0.24 0.98 0 05 1.13 1 5 8  
Daily, SW quadrant 0.30 2.05 0.12 1.36 1.92 
Dally, SE quadrant 0.20 1.67 0 07 1.50 2 13 

smaller time periods and spatial subsets of the study area 
(Table 2 ,  'NSA-raw'). The BCF did not change by more 
than about l.O°C km-' when computed over just the 
warm months (April to September), the cold months (Oc- 
tober to March), the warmest month (August), and the 
coolest month (January). When computed using mean 
monthly temperatures instead of daily temperatures (re- 
ducing the computation time by a factor of 30), the BCF 
differed by only 0.064"C km-'. When the study area was 
partitioned spatially into quadrants (using the median of 
the X,Y station coordinates to define the quadrants), the 
BCF was stable to within 0.65"C km-'. 

5.2. Bias-correcting the interpolated NSA 
temperatures 

Since the bias correction of the cross-validated tem- 
perature estimates was successful and the correction 
factor appeared to be fairly stable over space and time, 
we applied the procedure to the daily temperature sur- 
faces. The bias correction of interpolated temperature 
for a given grid cell is: 

Tddl = Traw + BCF(AZ) (5) 

where Tadl is the temperature ("C) adjusted for bias 
correction, T,,,, is the raw temperature ("C) interpo- 
lated with NSA, BCF is the bias correction factor 
(0.004449"C m-') and AZis the AZvalue (m) of the grid 
cell. The AZ measure works well as a basis for adjust- 
ing temperatures for 2 reasons. First, the AZ surface is 
relatively smooth and continuous, thus a correction 
based on AZ wlll tend to produce a surface free of 
sharp breaks and discontinuities. This is desirable 
since air temperature varies smoothly over space. The 
second reason that AZ works well is that the correction 
will not alter known data points. We ensured this by 
setting the intercept value from the regression in 
Fig. 9a (0.297"C) to zero. Grid cells that contain a sta- 
tion point will have a AZvalue near zero, since the con- 
tained station will dominate the l ld2  weight computa- 
tion. Therefore the bias correction at these cells ( l  e .  
the value added to T,,,,) will be near zero. 

6. THE LINEAR LAPSE RATE ADJUSTMENT 
(LLRA) METHOD 

The LLRA analysis was done in order to answer 2 
questions. First, is the NSA method, with its additional 
amount of computational complexity and its bias, any 
more accurate than the simpler LLRA method and 
therefore worth the trouble of bias correction? Second, 
will the bias occur with the LLRA method or is it strictly 
a problem with NSA? 
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The LLRA method involves the same procedure as 
the NSA, except that instead of using Eqs. (1) and (2) to 
compute potential temperatures, the following equa- 
tion is used to con~pute  sea-level reference tempera- 
tures (T,,): 

where TSI is the sea-level reference temperature ("C), 
T, is the measured air temperature ("C), h is the lapse 
rate ("C km-') ,  and z is the station elevation (km).  The 
only parameter that needs to be determined is h. 

6.1. Choosing the lapse rate 

The observed bias in the NSA method occurs pre- 
sumably because the NSA lapse rate is too steep. The 
effective lapse rate used by NSA varies with tempera- 
ture and elevation, but is usually within about a degree 
of the dry adiabatic lapse rate (DALR) of -9.8"C km-'. 

Thus it would seen1 that an optimal lapse rate exists, 
less steep than the DALR, which would not cause a 
bias in the interpolated temperature surfaces. Since 
there are many ways to empirically derive a lapse rate 
from a set of observed air temperatures and elevations, 
we initially used 2 approaches for deriving h and per- 
formed a cross-validation analysis on each approach. 

In the first approach, T,,, and T,,, were used to 
compute mean annual temperature (Tan,) for all sta- 
tions which had no missing values for T,,, or T,,, (n = 

669). Station elevation (Z, in meters) was regressed on 
Tan,, resulting in a reasonably strong fit (R2 = 0.72) and 
the following equation: Tan, = 12.18 - 0.003931Z 
(Fig. 10). The regression slope (-3.93l0C km-') was 
taken as the lapse rate. 

The Tann/elevation regression approach aggregates 
the data spatially and temporally and computes a sin- 
gle lapse rate. The second method used a less aggre- 

gated approach to compute a large number of regional 
monthly lapse rates. For the same set of 669 stations, 
elevation was regressed on monthly mean T,,, and 
T,,, using a moving spatial window which considered 
all stations within a 100 km radius. The 100 km thresh- 
old was chosen as a distance small enough to represent 
a relatively local area yet large enough to produce a 
reasonable sample size for bivariate regression. The 
sample sizes ranged from 1 to 41, with a mean of 19.5. 
For a particular regression to be included in the calcu- 
lation of the overall lapse rate, we considered only 
those with sample sizes of at least 10 and with R2 val- 
ues of at  least 0.7, where 0.7 was chosen as a threshold 
for a meaningful relationship. The constraint on sam- 
ple size brings the total number of stations available for 
this analysis down to 605. 

The local regressions were run on each valid station, 
for each month, for both T,,, and T,,,. The slopes 
(lapse rates) for all regressions which satisfied the 
0.7 threshold were averaged in order to produce a 
single lapse rate estimate for the region of -6.506"C 
km-'. The T,,, data produced a larger number of valid 
regressions (where > 0.7) than did the T,,, data. The 
mean number of valid regressions per month (out of a 
possible 605) was 167 for T,, and 390 for T,,,. These 
numbers suggest that, at a region size of 100 km, the 
T,,, lapse rate is more stable over space than that of 
T,,,. One possible explanation for this is that T,,, is 
more susceptible to cold air drainage effects which 
would tend to create local temperature inversions and 
confound the elevation/temperature relationship with- 
in the moving spatial window. 

6.2. Cross-validation analysis of LLRA 

Given the 2 derived lapse rates of -3.931 and 
-6.506"C km-', we performed cross-validation analy- 
ses on the LLRA method just as was done with NSA. 

Elevation (m) 

Fig. 10. Elevation versus mean annual temperature for all stations with no missing values (n = 669), with a hnear regression line 
(dashed). The regression equation was: Tan, = 12.18 - 0.0039312 (R2 = 0.72) 
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Cross-validated delta2 (m) 

Interpolation error (deg. C) 

Fig. 11 (a) CVAZ versus mean annual interpolation error for the LLRA3.9 method, with a linear regression line (dashed). Data 
are combined T,,, and T,,, from 679 stations (n = 1358). The regression equation was: IE = 0.135 - 0.00096CVAZ (R2 = 0.03). 

( b )  Histogram of mean annual interpolat~on error for LLRA3 9 (mean = 0.15, MAE = 1.30) 

These 2 analyses will be denoted LLRA3.9 and 
LLRA6.5. The LLRA3.9 method (Fig. 11) produced a 
mean interpolation error of 0.15"C and a standard 
deviation of 1.75. A regression of CVAZ on IE pro- 
duced the equation: IE = 0.135 - 0.00096CVAZ (R2 = 
0.03). For the LLRA6.5 method (Fig. 12), the mean IE 
was 0.19"C with a standard deviation of 1.81. The 
regression equation was: IE = 0.220 + 0.001611 CVAZ 
(RZ = 0.09). Neither of the regressions showed a strong 
relationship between CVAZ and IE, however both had 
non-zero slopes, and the NSA bias correction proce- 
dure resulted in a very slight reduction in the interpo- 
lation errors for both methods. The bias-corrected 
LLRA data were generated only to test whether LLRA 
can benefit from bias-correction. The following analy- 
ses and discussion pertain to uncorrected LLRA data. 

In the regressions of CVAZ and IE, the negative 
slope of the LLRA3.9 method (-0.960°C km-') and the 
positive slope of the LLRA6.5 method (1.61 1°C km-') 
suggest that a lapse rate between -3.931 and -6.506"C 
km-' exists where the associated regression slope is 
zero. For a final LLRA analysis, we assumed a h e a r  
relationship between the lapse rates input to LLRA (i.e. 
-3.931 and -6.506"C km-')  and the associated regres- 
sion slopes (i.e. -0.960 and 1.611°C km-'). Solving for 

(slope = 0.0) gave an 'optimal' lapse rate of -4.893"C 
km-', where the R2 relationship between CVAZ and IE 
should be exactly zero. We ran another cross-valida- 
hon analysis using this optimal lapse rate (Fig. 13), and 
the resulting interpolation errors had a mean of 0.17"C 
and a standard deviation of 1.72. The regression equa- 
tion was: IE = 0.167 -0.0000015CVAZ (R2 = 0.00). This 
method will be denoted LLRA4.8 in the discussion 
below. Table 2 shows the spatial and temporal sensi- 
tivity of the CVAZ/IE regressions and summary statis- 
tics of IE for each of the LLRA methods. 

7. DISCUSSION 

The NSA method uses standard principles and for- 
mulas from the meteorological literature (Byers 1974, 
Barry & Chorley 1987) combined with a commonly- 
used spatial interpolation routine (IDW) to distribute 
point-based measurements of daily air temperature. 
When a single station is used to predict a nearby grid 
cell's temperature, the effective lapse rate of the NSA 
can be back-calculated from the elevations and tem- 
peratures of the station and grid cell [(Tqrld - TStatlon)/ 
(Z,,,, - Z ,,,,,,, ) ] .  To get at the root of the AZ bias, we 
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Fig. 12. (a) CVAZversus mean annual interpolation error for the LLRA6.5 method, with a linear regression line (dashed). Data are 
combined T,,,, and Tm,, from 679 stations (n = 1358). The regression equation was- IE = 0.220 + 0 001611 CVAZ (R' = 0.09). 

(b)  Histogram of mean annual interpolation error for LLRA6.5 (mean = 0 19, MAE = 1.26) 
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computed the effective NSA lapse rate, using a wide 
range of station temperature (-40 to 40°C), elevation 
(0 to 4000 m), h (-2.0 to -lO.O°C km-'), and Tb (290 to 
310 K) values. In most cases the effective NSA lapse 
rate was steeper than -8.0°C km-'. In the extreme 
case where a sea-level station temperature of -40°C is 
used to predict a DEM cell at 4000 m (with h = -2.0 
and Tb = 310), the effective lapse rate goes as shallow 
as -?.O°C km-'. The consistently-steep lapse rates 
imposed by NSA are the source of the AZ bias. The 
physics of the hydrostatic and potential temperature 
equations fails to account for the non-adiabatic 
processes at work in the environment, such as hori- 
zontal advection or inversions caused by cold air 
drainage. 

The LLRA methods, on the other hand, make use of a 
lapse rate derived explicitly from the observed data 
which better reflects the physical realities of the study 
area. The LLRA results confirm the relationship 
between lapse rate and A Z  bias. In Table 2, the slope 
and R2 columns reflect the strength of the AZ bias. At 
the shallow lapse rate of LLRA3.9, the slope is always 
negative, indicating that high-elevation cells tend to 
be predicted slightly too warm. At the optimal LLRA4.8 
lapse rate, the slope wavers around zero, indicating no 

K -1 000 -500 0 500 1000 

Cross-validated delta2 (m) 

systematic relationship with AZ.  And at the steeper 
LLRA6.5 lapse rate, the slope is consistently positive, 
indicating that high-elevation cells tend to be pre- 
dicted slightly too cold. Note that in all cases the R2 
value denotes a very poor or non-existent fit, however 
it tends to stay closer to zero at LLRA4.8 and to rise 
slightly when the lapse rate changes to LLRA3.9 and 
LLRA6.5. At the very high lapse rates used by the 
NSA-raw method, the slope is much higher and the RZ 
rises enough to indicate signs of a meaningful relation- 
ship. 

Table 3. Interpolation error (IE) statistics for various interpola- 
tion methods (n  = 1358 stations). Units are "C. MAE: mean 
absolute error; Med: median. The mean IE is also known as  
mean bias error (MBE). Error standard deviation is also 

known as  root mean square error (RMSE) 

Method Min. Max. Mean Med. SD MAE 
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Cross-validated delta2 (m) 

Interpolation error (deg. C) 

Fig. 13. (a) CVAZ versus mean annual interpolation error for the LLRA4.8 method, with a linear regression line (dashed). Data 
are combined T,,, and T,, from 679 stations (n = 1358). The regression equation was: IE = 0.167 - 0.0000015 CVAZ (R2 = 0.00). 

(b) Histogram of mean annual interpolation error for LLRA4.8 (mean = 0.17, MAE = 1.26) 

error for each of the methods under investigation. The 
errors for the NSA method are reported both before 
and after the A Z  bias adjustment, and are denoted 
'NSA-raw' and 'NSA-adj'. The NSA bias adjustment 
corrected the larger interpolation errors and slightly 
improved the overall accuracy of the method by lower- 
ing the MAE and standard deviation. However, the 
bias adjustment slightly raised the overall bias of the 
method by moving the mean interpolation error farther 
from zero (from 0.21 to 0.30°C). The overall bias indi- 
cates that, on average, each cross-validated station 
was predicted 0.30°C too cold. This is different from 
the AZ bias, which indicates a systematic relationship 
between vertical extrapolation ( A 4  and interpolation 
error. The bias correction procedure effectively re- 
moves the AZ bias. The 3 LLRA methods in Table 3 
show very similar results. LLRA4.8 has the lowest over- 
all error in terms of MAE and standard deviation, while 
LLRA3.9 has lower-magnitude extrema and LLRA6.5 
has a median error closer to zero. The accuracy of all 
methods (except NSA-raw), as measured by MAE and 
standard deviation, is essentially the same to within 
0 . l0C.  

The cross-validation technique used for assessing 
interpolation accuracy is useful and informative, how- 

ever its value is limited as it only provides information 
on areas associated with observed data (Robeson 
1994). Cross-validation tells us nothing about areas 
between measurement stations, especially those areas 
which are beyond the elevational range of the stations. 
While it is impossible to assess accuracy in areas with- 
out measured data, these areas should at least be 
examined and evaluated with exploratory data analy- 
sis techniques (Tukey 1977). To this end, we picked 
January 1 and July 1 as examples of cold and warm 
days and examined the entire distribution of interpo- 
lated T,,, and T,,, using all NSA and LLRA methods. 
Fig. 14 shows boxplots of these temperature surfaces 
as well as the station data used to derive the surfaces. 
The discrepancy between the minimum station values 
and the minimum interpolated values in Fig. 14 reflects 
the elevational bias in the station sample (illustrated in 
Fig. 2). We know that the study area contains higher 
elevations than the station data, therefore we expect 
the interpolated data to have lower minima. However, 
there is little basis for determining how much lower the 
interpolated data should go. It is probably safe to dis- 
miss the NSA-raw method because of its relatively 
high interpolation errors and its extremely low minima 
(e.g. the minimum July T,,, of -9.7"C seen in Fig. 14d, 
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Table 4. Image difference statistics for January 1 and July 1 (n = 828595 pixels). 
Units are "C. MAD: mean absolute difference; Med.: median 

Methods Min. Max. Med. Mean SD MAD 

T,,,,,. Jan 1 
NSA-adj minus LLRA3.9 -5 63 0.99 -0 07 -0.12 0.31 0.22 
NSA-adj minus LLRA4.8 -4.38 1.39 0.07 0.08 0 24 0.18 
NSA-adj minus LLRA6.5 -4.34 6.04 0.23 0.41 0.76 0.59 
LLRA4.8 minus LLRA3.9 -2.82 0.94 0.00 -0.20 0.38 0.28 
LLRA4.8minusLLRA6.5 - 1 8 9  4.69 0.32 0.33 0.62 0.46 
LLRA3.9 minus LLRA6.5 -2 83 7.53 0.34 0.53 0.97 0.74 

T,,,, Jan 1 
NSA-adj minus LLRA3.9 -5.63 1.26 -0 10 -0.15 0 36 0.27 
NSA-adj minus LLRA4.8 -4.43 1.28 0.05 0.04 0.22 0.15 
NSA-adj minus LLRA6.5 -4.33 5.73 0.21 0.37 0.69 0.53 

dure which depended on some sub- 
jective parameters (i.e. minimum 
regression sample size, distance 
radius, and threshold R2 value). The 
LLRA3.9 lapse rate required only a 
single regression: elevation versus 
mean annual temperature. The NSA 
method, on the other hand, depends 
on a cross-validation analysis to derive 
the bias correction factor and then 
requires the additional processing of 
the bias correction procedure. The 
LLRA4.8 method requires 2 cross-vali- 
dation analyses in order to derive the 

NSA-ad; minus LLRA4.8 
NSA-adj minus LLRA6.5 
LLRA4.8 minus LLRA3.9 
LLRA4.8 minus LLRA6.5 
LLRA3.9 minus LLRA6.5 

T A ,  Jul l 
NSA-adj minus LLRA3.9 
NSA-ad] minus LLRA4.8 
NSA-adj minus LLRA6 5 
LLRA4 8 minus LLRA3.9 
LLRA4.8 minus LLRA6.5 
LLRA3.9 minus LLRA6.5 

LLRA4.8 minus LLRA3.9 -2.80 1.28 -0.13 -0.20 0.39 0.31 
LLRA4.8 minus LLRA6.5 -1 83 4.48 0.17 0.33 0.62 0.48 
LLRA3 9 minus LLRA6.5 -2 83 7.20 0.34 0.53 0 97 0.74 

T,,,. J u ~  1 
NSA-adi minus LLRA3.9 -2.39 4.18 -0.1 1 -0.17 0.41 0.32 

(Table 4 ) .  Of all the methods compared in Table 4 ,  the 
pair which differed the most was LLRA3.9 and  
LLRA6.5, with a mean absolute difference (MAD) of 
0.73 to 0.74OC. The NSA-adj and LLRA4.8 methods 
were the most similar, with MADs of 0.13 to 0.22"C. 

Based on the error statistics (Table 3) and the image 
difference statistics (Table 4,  Fig. 14), all methods 
(aside from NSA-raw) perform about the same. The 
rationale for choosing the 'best' method, then, becomes 
a question of simplicity. A single cross-validation 
analys~s ,  where Tm, and T,,,,, are  computed for 365 d 
over 679 stations, running simultaneously on four 
SPARC 20 and  two SPARC 10 CPUs, takes approxi- 
mately 48 h to complete2 Cross-vaIidation is desirable 
as a means for assessing accuracy, but it is not r equ~red  
by every interpolation method considered in this study. 
The LLRA3.9 and LLRA6.5 methods rely only on the 
calculation of a lapse rate. For LLRA6.5 this involved a 
rather complicated moving-window regression proce- 

'optimal' lapse rate where the bias 
correction factor is exactly zero. Note, 
however, that the NSA method, run at 
a monthly timestep, produced essen- 

'Exact times varied depending on system and network load. 
The cross-val~dation jobs were not run a t  maximum priority. 
The cross-validallon procedure was implemented as a set of 
linked PERL scripts whlch use IPW routines (Frew 1990, Lon- 
gley et al 1992) to perform spatial processing tasks 

0.18 0.13 tially the same bias correction factor 
0.61 0.48 a s  the daily timestep (Table 2) while 
0.38 0.27 
0.61 0.46 

reducing the computation time by a 

0.96 0.73 factor of 30. This time-reduction may 
also hold true for deriving a n  'optimal' 

0.57 0.46 LLRA lapse rate. 
0.28 0.22 Our results suggest that the best of 
0.47 0.35 the methods investigated is LLRA, 
0 39 0.28 
0.61 0.46 using a lapse rate determined by the 
0.96 0.73 relationship between mean annual 

temperature and elevation (LLRA3.9 
in our case). LLRA3.9 was by far the 

simplest method to implement, and differs only slightly 
from the 'optimal lapse rate' method of LLRA4.8 (e.g. 
the maximum MAD of the 2 methods was only 0.31°C; 
Table 4). If time and resources permit a number of 
cross-validation analyses, then it might be  worthwhile 
to compute an  optimal LLRA lapse rate (LLRA4.8 in our 
case). 

8. CONCLUSIONS 

The temperature interpolation methods considered 
in this study were selected specifically for the task of 
processing very large amounts of data. As such, they 
make some unrealistic simplifying assumptions. The 
NSA effectively imposes a lapse rate close to the dry 
adiabatic lapse rate. Since there are numerous non- 
adiabatic processes a t  work in the environment, such 
as radiational heating/cooling at  the surface and hori- 
zontal advection, the lapse rates imposed by NSA tend 
to be too steep, causing a blas with respect to vertical 
extrapolation (the A Z  bias). The AZ bias is later cor- 
rected, however the effect on areas outside the eleva- 
tional range of the station data is unknown. The LLRA 
uses a better approximation of the overall environmen- 
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tal lapse rate, however the notion of a lapse rate which 
is constant over space and time is flawed. Lapse rates 
fluctuate a t  many scales: seasonally, diurnally, and 
regionally, and in the case of temperature inversions 
may even change sign (Barry & Chorley 1987, p. 56). 
Other sources of error which have undoubtedly intro- 
duced noise into all of the analyses include recording 
errors, instrument bias, uncertainty in the measured 
air temperatures, incorrectly reported locations and 
elevations of the measurement stations, DEM uncer- 
tainty, and the presence of missing values in the tem- 
perature data set. Also note that daily T,,, and T,,, 
measurements tend to be much more noisy, and there- 
fore more difficult to interpolate, than monthly or 
annually averaged temperature data. 

More sophisticated procedures exist for modeling a 
changing relationship between 2 variables over space, 
such as the moving-window regression logic of the 
PRISM model (Daly et al. 1994), where smoothed ele- 
vation is regressed on precipitation over a set of topo- 
graphically similar slope facets. However, such models 
are difficult to implement, usually require considerable 
parameterization, and are often too slow to be used 
over large areas at high resolutions. 

Air temperature surfaces are rarely developed as  an 
end in themselves. Often they are used as  one of a set 
of inputs to a spatially distributed model. Unfortu- 
nately, there are few instances in the literature where 
a spatially-distributed ecological or hydrologic model- 
ing project included a rigorous accuracy assessment of 
all input data. Indeed, statements of accuracy in digital 
spatial databases are still somewhat rare (Goodchild 
1993). An accuracy statement for the best temperature 
surfaces created in this study would read something 
like the following: 

At elevations below about 2500 m, errors in inter- 
polated temperatures have an expected value near 
zero and a n  average magnitude (MAE) of about 
1.3"C. Individual errors with magnitudes up  to 7 or 
8°C are likely. At elevations above 2500 m, accu- 
racy is unknown, but is probably less than the 
accuracy at lower elevations. 

More sophisticated methods will undoubtedly 
improve on accuracy as measured by cross-validation, 
but error will always be present, especially as temporal 
resolution, spatial resolution, and ruggedness of the 
terrain increase. In particular, the bias toward lower 
elevations in meteorological station networks will 
always make interpolated values in high-elevation 
mountainous regions suspect. Cross-validation is a t  
best a rough indicator of the accuracy of the interpo- 
lated surface. Given the reasonable levels of cross-val- 
idation accuracy obtained by the LLRA and NSA meth- 
ods, it is debatable whether the extra effort of a highly 

complex interpolation method is warranted in order to 
shave a few tenths of a degree off of the cross-vali- 
dated MAE. The methods investigated in this study 
require very little parameterization, are easy to imple- 
ment and fast to execute (LLRA in particular), and pre- 
dict temperature at a reasonable level of accuracy. 
They should provide adequate inputs for use in spa- 
tially distributed modeling in mountainous regions. 
Further work on temperature interpolation methods is 
certainly needed, but perhaps more important are 
methods for modeling the errors themselves. Meaning- 
ful and realistic error surfaces would enable sensitivity 
analyses to be performed on the spatial models which 
rely on air temperature surfaces as  input. 
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