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Abstract

A large number of emergency humanitarian res-
cue demands in conflict areas around the world are
accompanied by intentional, persistent and unpre-
dictable attacks on rescuers and supplies. Unfortu-
nately, existing work on humanitarian relief plan-
ning mostly ignores this challenge in reality result-
ing a parlous and short-sighted relief distribution
plan to a large extent. To address this, we first
propose an offline multi-stage optimization prob-
lem of emergency relief planning under intentional
attacks, in which all parameters in the game be-
tween the rescuer and attacker are supposed to be
known or predictable. Then, an online version of
this problem is introduced to meet the need of on-
line and irrevocable decision making when those
parameters are revealed in an online fashion. To
achieve a far-sighted emergency relief planning un-
der attacks, we design an online learning approach
which is proven to obtain a near-optimal solution
of the offline problem when those online revealed
parameters are generated i.i.d. from unknown dis-
tributions. Finally, extensive experiments on a real
anti-Ebola relief planning case based on the data of
Ebola outbreak and armed attacks in DRC Congo
show the scalability and effectiveness of our ap-
proach.

1 Introduction
Humanitarian relief operations have become much more sig-
nificant because of the increasing number of disasters around
the world [Besiou and van Wassenhove, 2020; De Vries and
Van Wassenhove, 2020]. For instance, 2011 Japan earth-
quake, 2017 Hurricane Maria, 2019 Australia Wildfires, as
well as the ongoing virus epidemics, i.e., the COVID-19
across the world. These disasters have taken millions of lives
and resulted in huge economic losses. Fueled by the need of
mitigating the miserable effects of these disasters, humani-
tarian relief operations and disaster management received an
increasing attention from researchers, and different aspects of
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the operations management have been studied in the literature
[Huang and Song, 2018; Ekici and Özener, 2020].

However, despite the uncertainty derived from the disaster
itself, security issue and the derived uncertainty from mali-
cious attackers are also vital factors affecting the actual hu-
manitarian relief operations in conflict areas [Chaudhri et al.,
2019]. There has been a rise in the number of attacks on hu-
manitarian aid workers (including UN staff, NGO staff, etc.),
reporting 226 attacks on aid workers in 2018 with 131 deaths,
which is nearly four times the 2004 number of 63 incidents
(with 56 deaths) [AWSD, 2018]. Attacks against aid workers
have become a big challenge facing humanitarian organiza-
tions to provide security in fragile and conflict-affected ar-
eas [Hoelscher et al., 2017]. For example, the second largest
DRC Congo Ebola outbreak in December 2019 has been a
humanitarian crisis that originated in an active conflict area,
which has severely affected the ability of relief efforts and
vaccination [Schwartz, 2020]. The major epidemic area is the
Eastern Congo including Nord-Kivu and Sud-Kivu province,
in which more than 10 armed rebel groups exist [Usanov et
al., 2013]. These armed groups actively operate in the regions
of Ebola virus relief, controlling the routes in and out of the
regions; levying taxes on households and transport; attacking
healthcare and relief workers [Schwartz, 2020]. Hence, hu-
manitarian relief planning practice in conflict-affected areas
facing huge risk and uncertainty from hostile rebel groups.

To the best of our knowledge, few studies has focused on
the multi-stage online emergency relief planning problem in
conflict areas (MonERP) which takes the uncertainty from
both adversary and environment into account. In this pa-
per, we address this challenging problem, in which the hu-
manitarian organization aims at transporting urgent resources
(e.g., living and medical supplies) from the resource base to
cities applying for the relief in real time, while the hostile
armed group operates to hinder the relief operations by con-
trolling some routes and levying taxes on transport. Differ-
ent from general extensive-form games, data and parameters
of the game (e.g., the amount of demands, the cost of trans-
portation, the distribution of hostile rebel groups) come in an
online fashion instead of being revealed at the outset. On
receiving a relief request, the rescuer with limited resources
needs to make an irrevocable decision whether to accept or re-
ject the demand, with the overall objective of maximizing the
demand satisfaction while considering the security risks of

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4679



humanitarian operations. The attacker, on the other hand, has
an opposite interest and can mobilize armed forces to control
towns in their surrounding area.

In this work, we aim to develop the first salable and effi-
cient online learning approach to MonERP, and the key con-
tributions are: (1) We first model the omniscient version of
MonERP as a multi-stage offline emergency relief planning
problem (MoffERP), which is transformed as a binary integer
linear programming with all data and parameters known in
advance. The solution of MoffERP provides us with the up-
per bound of MonERP. (2) To meet the need of online and ir-
revocable decision making, MonERP is modeled as an online
linear programming after integrating the result of Nash Equi-
librium in each decision-making stage. (3) An online learn-
ing algorithm is proposed to solve MonERP, which achieves
a O( 1√

n
) average regret when those online revealed parame-

ters are generated i.i.d. from an unknown distribution; here,
n is the number of decision-making stages. (4) Extensive ex-
periments are conducted on a real anti-Ebola relief planning
case based on the data of Ebola outbreak and armed attacks
in DRC Congo. Evaluation results show the performance ad-
vantages of the far-sighted relief planning considering online
features, and the proposed approach are applicable to large
realistic-scale problems efficiently.

2 Related Works
2.1 Humanitarian Relief Planning
Humanitarian relief operations require efforts on many fronts,
such as facility location and network design, vehicle rout-
ing, inventory management, network flow, and combination
of them, etc. Typical works of relief routing problems include
models and methods for achieving objectives like minimizing
delivery delay in various situations [Yuan and Wang, 2009;
Sabouhi et al., 2019], maximizing the number of victims
served [Ozdamar et al., 2018], minimizing life losses and hu-
man sufferings [Huang and Song, 2018], reducing cost and
guaranteeing fairness [Zhu et al., 2019], etc. Some mod-
els focus on routing problems with determinate parameters,
while problems with uncertainty attract more attention since
they are closer to actual needs. For example, Allahviranloo et
al. [2014] use robust optimization to address the demand un-
certainty in vehicle routing problems. A robust optimization
approach with a coaxial uncertainty set is developed by [Bal-
cik and Yanıkoǧlu, 2020] for humanitarian needs assessment
routing under travel time uncertainty. Unfortunately, the risk
and uncertainty derived from malicious attacks are not con-
sidered in existing research.

2.2 Network Interdiction Game
Network interdiction problem is a kind of Stackelberg game,
which has been widely applied to security decision-making
scenarios relating to operations on networks, involving mil-
itary operations, humanitarian relief, fare evasion, telecom-
munication, transportation and logistics, and cyber-security
[Smith and Song, 2020; Sinha et al., 2018]. Besides of
classic models [Fulkerson and Harding, 1977; Israeli and
Wood, 2002], different variants of SPNI models with new

features have received considerable attentions recently, in-
cluding incomplete information [Borrero et al., 2019], goal
recognition assistance [Xu et al., 2017], dynamic or adap-
tive interdiction [Correa et al., 2017; Xiao et al., 2018;
Zhang et al., 2019] etc. However, few studies focus on the
interdiction game with online data inputs.

2.3 Online Linear Programming
Sequential decision making has been an increasingly attrac-
tive research topic especially in scenarios with dynamic en-
vironment and long-term consideration. For instance, the
scenario of online packing problem[Buchbinder and Naor,
2009], auction problem [Balseiro and Gur, 2019], and re-
source allocation[Balseiro et al., 2020]. These problems can
be viewed as online linear programming (OLP), i.e., the prob-
lem of solving linear programs in a sequential setting. A sim-
ple and fast online algorithm for solving a general class of
binary integer linear programs is proposed in [Li et al., 2020]
achieving O(m

√
n) expected regret under the stochastic in-

put online data, where n is the number of decision variables
and m is the number of constraints. These studies provide
a theoretically guaranteed algorithm for long-term revenue in
sequential decision making, which is instructive for achieving
far-sighted emergency relief planning.

3 Offline Multi-stage Relief Planning
In this section, we first model the offline version of Mon-
ERP as a sequence of stage-based games between the rescuer
and attacker, after which it is integrated and transformed to a
linear programming. Then, based on the mixed Nash equilib-
rium of stage-based games, the optimal offline relief planning
is given by solving the linear programming.

3.1 The Simultaneous Relief Routing Game at
Each Stage

In each stage of the MonERP, there is a simultaneous relief
routing game between the rescuer and attacker. Both of them
play the game on a road network G = (V,E) consisting a set
of nodes V representing intersections (cities,towns, etc.) and
a set of edges E representing roads. If the rescuer in stage t
decides to meet the relief demand wt from the resource base
city ot to the city of demand gt, she needs to plan a road
path through the network so as to minimize the cost of trans-
porting. The attacker, on the other hand, has several armed
forces distributed in different nodes of the network and aims
to mobilize them to interdict the rescuer thereby levying taxes
or directly robbing under the constraint of mobility. We then
model this stage-based confrontation between the rescuer and
attacker as a simultaneous relief routing game as follows:

The attacker problem is implementing his armed forces dis-
tributed in the network to control some selected nodes so as
to interdicting the relief routing of the rescuer. Denote by
ht = (hjt)j∈V ∈ {0, 1}|V | the distribution vector of the
armed forces, and hjt = 1 if there is an arm force stationed at
node j. The strategy of the attacker is made up of |I| vectors,
denoted by zit = (zijt)j∈V ∈ {0, 1}|V |, and zijt = 1 if the
armed force i is decided to reach and control node j at stage
t. Also, the actions of attacker are restricted by movement
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constraints, i.e., the movement cost of each armed force i ∈ I
should not exceed the budget fit at stage t (vector form f t).
Then, the set of all feasible strategies for the attacker can be
denoted by

Zt =
{
Zt = (zit)i∈I

∣∣∣ ZT
t 1 ≤ 1, ZT

t Lht ≤ f t,
}
, (1)

where 1 denotes the all 1 vectors, and the first constraint illus-
trates that one armed force can only be deployed once in each
stage. Let L = (lj′j)j′,j∈V ∈ R|V |×|V |+ represent the cost
of implementing the stationed force from node j to node j′,
which can be estimated by the attacker using road transport
information. Hence, the second constraint makes the deploy-
ment of armed forces not exceed the attacker’s budget.

The rescuer problem is planning a routing path through the
network from ot to gt which can be modeled as a shortest-
path problem. Denote by yt = (ykt)k∈E ∈ {0, 1}|E| the
decision variables of the rescuer representing a path in the
network, and ykt = 1 if she selects the edge k to traverse.
Let FS(i) and RS(i) represent the set of edges directed
from/into node i. Then, the strategy space of the rescuer is
determined by the following flow conversation constraints:

∑
k∈FS(i)

ykt −
∑

k∈RS(i)

ykt =

{
1 for i = ot
0 ∀ i ∈ V \{ot, gt},
−1 for i = gt

(2)

ykt ≥ 0. ∀ k ∈ E (3)
Then the set of all feasible strategies of the rescuer is

Yt =
{
yt

∣∣∣Constraints (2), (3)
}
, (4)

The utility for both players is the cost of emergency relief
transporting. The rescuer aims to minimize it by selecting the
path traversed, while the attacker interdicts the relief routing.
The utility function is bi-linear and made up of their decision
variables as follows:

ut =
∑
k∈E

(ck + z′ktdk)ykt. (5)

where ck (vector form c) denotes the cost of traversing edge
k, and dk (vector form d) represents the additional cost of
passing through edge k which is controlled by the attacker
with an armed force. Let z′kt be an intermediate decision vari-
able, and z′kt = 1 if the edge k is under control of the attacker
at stage t. Specifically, we suppose that all edges directing
out of a force garrisoned node are under control, i.e.,

z′kt = zijt. ∀ k ∈ FS(j), j ∈ V, i ∈ I (6)

Denote by P = {attacker, rescuer} the set of players.
Then, the simultaneous relief routing game at each stage can
be expressed as a tuple Gt = (P,Zt,Yt, ut). The final cost
of transporting at (vector form a) in this game is defined as
the mixed Nash equilibrium of game Gt.

Additionally, if the rescuer selects an attacker-controlled
edge to traverse at one stage, the transported relief resources
wt will suffer a loss of being levied or robbed. The amount
of loss at edge k depends on the levy rate q = (qk)k∈E ∈

(0, 1)|E| of armed forces the rescuer encountered. Denote
by rt (vector form r) the left relief resources which can be
successfully transported, we have

rt = (1−
∑
k∈E

z′ktqkykt)wt. (7)

3.2 Multi-stage Offline Emergence Relief Planning
Based on results of game Gt at each stage, we construct a
multi-stage offline emergence relief planning (MoffERP) by
assuming that all data and parameters are known in advance.
In this way, MoffERP is integrated as a linear programming.

Specifically, the rescuer has to make decisions about
whether or not to meet the relief demand of a certain city
at each stage. Denote by n the number of stages of MoffERP,
and N = {1, 2 · · · , n} the set of stages. Let x = (xt)t∈N ∈
{0, 1}n represent the decision variables of the rescuer, and
xt = 1 if she decides to meet the demand wt at stage t. To
meet this demand, the rescuer has to pay a cost of at on trans-
portation and can cover a certain amount of demand rt as
a kind of revenue at this stage. Hence, as a long-term rev-
enue seeker, the rescuer aims to maximize the total amount
of demand satisfaction under the limitation on total amount
of relief resources b1 and transportation budget b2.

Supposing that all online data rt and at are known in ad-
vance, we can formulate MoffERP to a binary integer linear
programming as follows:

[P-MoffERP] max
x

rTx

s.t. [w a]
T
x ≤ b, (8)

where x ∈ {0, 1}n, vectors r, w, a ∈ Rn
+, and denote by

b the vector [b1, b2]T. In this way, MoffERP can be solved
using common binary integer linear programming techniques.
Denote by x̄∗ the optimal solution of P-MoffERP.

4 Online Multi-stage Relief Planning
In this section, we extend the MoffERP to a realistic online
version (MonERP) where key parameters are revealed in an
online manner. An online learning algorithm is then designed
to solve it with theoretical analysis on average expected re-
gret.

4.1 Online Problem Modeling
In the online version of problem, both players have to make
irrevocable decisions without observing the future inputs. At
each stage t, the parameter rt and at are revealed to the res-
cuer based on the Nash equilibrium results of the stage game
Gt. Simultaneously, the rescuer needs to decide the value of
xt in real time. Unlike the setting in MoffERP, rescuer only
knows the history information Ht = {rj , wj , aj , xj}t−1

j=1.
Hence, the online decision strategy of rescuer can be pre-
sented as a function ϕ of the history and the observed pa-
rameters at the current stage t:

[P-MonERP] xt = ϕ(rt, wt, at,Ht). (9)

To design the function ϕ, we first analyze the distribution
features of online parameters. It is assumed that the demand
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(gt, wt,f t,ht) in game Gt are generated i.i.d. from an un-
known distribution. As mentioned in Section 3, online pa-
rameters (rt, at) are generated in the process of each stage-
based game Gt. Denote by N the Nash equilibrium mapping
from the parameters (gt, wt,f t,ht) in game Gt to parameters
rt and at, i.e.,

(rt, at) = N (gt, wt,f t,ht). (10)

In Theorem 1, (rt, at) are proven to be i.i.d. sampled from
unknown distribution P .
Theorem 1. The coefficient pair (rt, at) are generated i.i.d.
from unknown distribution, if parameters (gt, wt,f t,ht) are
generated i.i.d. from unknown distribution.

Proof. From the definition of i.i.d., we can prove that rt and
at satisfy the independent condition first. As shown in Equa-
tion (7) and (10), the parameters gt, wt,f t,ht used to calcu-
late rt are independent at different stages, so that rt satisfies
the independent condition. Similarly, it can be proved that at
is independent. Hence we have{

P (r1 · · · rn) = P (r1) · · ·P (rn),

P (a1 · · · an) = P (a1) · · ·P (an).
(11)

As for proving (rt, at) are generated from identical distri-
bution, both rt and at are computed in a fixed pattern at each
stage and the parameters gt, wt,f t,ht are subject to identical
distribution, which we could prove that (rt, at) are subject to
identical distribution too. Hence we have{

P (ri = r) = P (rj = r),∀ r ∈ R
P (ai = a) = P (aj = a).∀ a ∈ A (12)

Therefore we conclude the proof.

4.2 Online Learning Approach
Before given the online learning algorithm to MonERP, we
present the linear programming relaxation of P-MoffERP as
follows:

[LP-MoffERP] max
x

rTx

s.t. [w a]
T
x ≤ b, (13)

0 ≤ x ≤ 1. (14)
Then, the dual problem of LP-MoffERP can be formulated as

[DP-MoffERP] min
p,s

bTp + 1Ts

s.t. [w a]p + s ≥ r, (15)

p ≥ 0, s ≥ 0, (16)
where the dual decision variables are p ∈ Rn and s ∈ Rn.
Denote by x∗, p∗n, and s∗ the optimal solutions of prob-
lem LP-MoffERP and DP-MoffERP. From the complemen-
tary condition, we have

x∗j =

{
1, rj > [wj aj ]p∗n
0, rj < [wj aj ]p∗n

∀j ∈ 1, 2, · · · , n (17)

Algorithm 1 Online learning algorithm for MonERP
Input: n, online revealed coefficient pair (r,w,a)
Parameter: learning rate γt = 1√

n

Output: a sequence of online decisions x
1: Let e = b

n
2: Initialize p1 = 0
3: for t = 1, 2, · · · , n do
4: Set

xt =

{
1, rt > [wt at]pt

0, rt ≤ [wt at]pt

5: Compute

pt+1 = max{pt + γt(

[
wt

at

]
xt − e),0}

6: end for
7: return x = (xt)t∈N

and when rj = [wj aj ]p∗n, the value of x∗j may be non-
integer.

Note that parameters r, w and a are i.i.d. sampled from
unknown distribution. Based on Equation (17), we can ob-
tain an online algorithm using the theoretical results of online
linear programming technique [Li et al., 2020] as shown in
Algorithm 1. The step learning rate γt is set as 1√

n
at each

stage t.
To evaluate the performance of the online learning algo-

rithm, we introduce the performance measure – regret– which
is a common metric of online learning approach. Denote by
R∗n = rTx∗ the optimal objective value of the online prob-
lem P-MonERP, and Rn = rTx the actual objective value
under the online learning strategy x. The expected optimality
gap between them is

∆Pn = E[R∗n −Rn]. (18)

Denote by Ξ the family of distribution P , then the definition
of regret is formally given as

∆n = sup
P∈Ξ

∆Pn . (19)

Corollary 1. If the step learning rate γt = 1√
n

for t ∈ N ,
then Algorithm 1 achieves O( 1√

n
) average regret of problem

MonERP.

Proof. According to the state-of-the-art general theoretical
results of online linear programming [Li et al., 2020], if the
step learning rate is set as γt = 1√

n
then the regret satisfies

∆Pn ≤ m(ā + ē)2
√
n. We then apply this result to Mon-

ERP, where m = 2 representing the rows number of [w a].
Hence, we have

∆Pn
n
≤ 2(ā+ ē)2

√
n

. (20)

where
ā = max

j∈N
max{wj , aj}, (21)
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ē = max{b1
n
,
b2
n
}. (22)

It is clear that ā and ē are both finite constants in each in-
stance of problem MonERP. Therefore, Algorithm 1 achieves
O( 1√

n
) average regret as required.

According to Corollary 1, when the number of stages n→
∞, we have the average regret ∆n

n → 0, which theoretically
illustrates the performance advantage of the proposed online
learning algorithm.

5 Experimental Evaluation
In this section, we evaluate the proposed online learning ap-
proach for emergency relief planning under intentional at-
tacks using a real case in the conflict area of DRC Congo.
The convergence and near-optimality of the online learning
algorithm are first analyzed under the real case scenario and
data. Then, the influence of attacker’s deployment budget on
the humanitarian relief operations.

5.1 Test Case and Environment
A case study of MonERP is conducted on the base of statis-
tical data of DRC Congo including road network data, Ebola
outbreak data, and conflict statistics in Nord-Kivu and Sud-
Kivu province. The rescuer plans to pass through the conflict
area in order to transport supplies to the city affected severely
by the epidemic, while the rebel group as an attacker aims to
gain payoff by controlling some routes.

(a) Road Network (b) Conflict Map (c) Ebola Outbreak

Figure 1: The Situation of Relief Routing, Ebola Epidemic and
Rebel Conflicts in Nord-Kivu and Sud-Kivu Province of DRC
Congo

The road network of Nord-Kivu and Sud-Kivu province is
shown in Figure 1(a), which includes 810 vertices (i.e., cities
and towns) and 2,188 arcs (i.e., major and other roads). The
conflict data from 31 December 2018 to 5 January 2020 in
the same area is shown in Figure 1(b), which is offered by
the Armed Conflict Location & Event Data Project [ACLED,
2020]. The Ebola outbreak data in the same period reported
by the World Health Organization is visualized as the map in
Figure 1(c) [WHO, 2020]. Supposing that the emergency re-
lief demand of a city is positively correlated with the number
of Ebola cases outbreak in the city, we obtain the statistics on
urban relief demand over time as shown in Figure 2. It is clear

that the worst Ebola-affected areas such as Beni in Nord-Kivu
have urgent and huge needs of humanitarian relief; however,
the road network from non-infected areas such as Bukavu in
Sud-Kivu province to these demand cities is in the control of
rebel groups to a large extent.

Figure 2: Statistics on Urban Relief Demand over Time in Nord-
Kivu and Sud-Kivu province of DR Congo

Specifically, the traversing cost c is set as the length of
the actual road between cities. The added cost of trans-
porting d is assumed to be uniformly distributed on [1, c̄],
where c̄ denotes the average value of c. The movement
cost f t is supposed to be uniformly distributed on [1, vc̄],
where v represents the maximum cost coefficient. Denote by
W =

∑n
t=1 wt the total demand during this period, and C

the total transporting cost of satisfying all demands over the
period. In this case, the city Bukavu is set as the base of re-
lief resources, and the demand cities include Beni, Butembo,
Katwa, Kalunguta, Mabalako and Oicha.

The proposed models and algorithms are solved using the
Gurobi 9.0.1 solvers, and tested on a Windows10 (64) com-
puter with Intel Core-i7 CPU and 16.0GB RAM.

5.2 Results on Convergence and Optimality
The first experiment presents the performance of Algorithm
1 on convergence and optimality. We run 100 instances of
MonERP on DRC Congo scenario with different d. Let the
relief resources budget b1 = 0.5W , the transportation budget
b2 = 0.4C, and the attacker’s movement cost f t ∈ [1, 3c̄]. As
shown in Figure 3, the results of average regret over stages
illustrate that the expected optimality gap between the offline
and online revenue converges to near zero as the number of
stage n increase to +∞. These experimental results numeri-
cally validates Corollary 1.

Figure 3: Experimental Results on Regret over Stages
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In the second experiment (cf. Figure 4), we compare the
time consumption T of obtaining the optimal offline and near-
optimal online solutions as the increase of stage number. Ap-
parently, the proposed online learning algorithm is more time-
efficient than the offline algorithm, which shows the advan-
tage of this work tackling the far-sighted emergency relief
planning under intentional attacks. Note that, the optimal of-
fline results cannot be obtained by the rescuer since the data
and parameters are revealed in an online manner.

Figure 4: Comparison of Time Consumption as the Increase of n

5.3 Analysis of Impact Factors on Humanitarian
Relief Planning

The third experiment focuses on the impact of relief resources
and transportation budget on the amount of demand satisfac-
tion as shown in Figure 5. We can observe a saturation critical
boundary of their impacts. For instance, if we fix the ratio of
relief resources budget at 50%, the increase of the transporta-
tion budget over 40% will not bring any growth on the amount
of demand satisfaction.

Figure 5: The Impact of Relief Resources and Transportation Budget
on Optimal Demand Satisfaction

The final experiment explores the impact of relief resources
and transportation budget on the amount of robbed relief re-
sources by the attacker as shown in Figure 6. It is clear that
the increase of transportation budget has almost no impact on
the amount of robbed relief resources by the attacker when the
ratio of relief resources budget is below than 30%. However,
when the relief resources budget is relatively sufficient (with
a ratio more than 60% in this case), the increase of trans-
portation budget first raises the amount of robbed relief re-
sources to a peak value and then decreases it. This illustrates
excessive rescue operations including inappropriate relief re-
sources providing and transport capacity using in conflict ar-
eas may breed attackers.

Figure 6: The Impact of Relief Resources and Transportation Budget
on the Amount of Robbed Resources by Attacker

6 Conclusion
To meet the realistic need of far-sighted emergency human-
itarian relief planning in conflict areas where intentional at-
tacks pose a serious risk on the security and efficiency of
rescuing operations, we propose the problem of multi-stage
online emergency relief planning and design a efficient on-
line learning approach for the first time. Specifically, we first
propose an offline multi-stage optimization problem of emer-
gency relief planning under intentional attacks, in which all
parameters in the game between the rescuer and attacker are
supposed to be known or predictable. Then, an online ver-
sion of this problem is introduced to meet the need of online
and irrevocable decision making when those parameters are
revealed in an online fashion. The modeling process is in-
tegrated with the stage-based zero-sum simultaneous game
between the rescuer and attacker. To achieve a far-sighted
emergency relief planning under attacks, we design an online
learning approach which achieves a O( 1√

n
) average regret

when those online revealed parameters are generated i.i.d.
from an unknown distribution. Finally, extensive experiments
on a real anti-Ebola relief planning case based on the data
of Ebola outbreak and armed attacks in DRC Congo show
the scalability and effectiveness of our approach. This work
might inspire more efforts in the field of AI on realistic data-
driven humanitarian operations research for the good of those
citizens suffering from both disasters and conflicts.
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