
FLS: A New Local Search Algorithm for K-means with Smaller Search Space
Junyu Huang1 , Qilong Feng1∗ , Ziyun Huang2 , Jinhui Xu3 and Jianxin Wang1,4

1School of Computer Science and Engineering, Central South University, Changsha 410083, China
2Department of Computer Science and Software Engineering, Penn State Erie, the Behrend College

3Department of Computer Science and Engineering, State University of New York at Buffalo, NY, USA
4The Hunan Provincial Key Lab of Bioinformatics, Central South University, Changsha 410083, China
junyuhuangcsu@foxmail.com, csufeng@mail.csu.edu.cn, zxh201@psu.edu, jinhui@cse.buffalo.edu,

jxwang@mail.csu.edu.cn

Abstract

The k-means problem is an extensively studied un-
supervised learning problem with various appli-
cations in decision making and data mining. In
this paper, we propose a fast and practical local
search algorithm for the k-means problem. Our
method reduces the search space of swap pairs from
O(nk) to O(k2), and applies random mutations to
find potentially better solutions when local search
falls into poor local optimum. With the assump-
tion of data distribution that each optimal cluster
has ”average” size of Ω(nk ), which is common in
many datasets and k-means benchmarks, we prove
that our proposed algorithm gives a (100 + ε)-
approximate solution in expectation. Empirical ex-
periments show that our algorithm achieves better
performance compared to existing state-of-the-art
local search methods on k-means benchmarks and
large datasets.

1 Introduction
Clustering problems have received much attention over the
past decades. The goal of clustering is to partition the given
dataset into clusters such that the points within the same clus-
ter are more similar to each other, while the points in different
clusters have less similarity. Among different objective func-
tions, k-means is one of the most widely used, which aims
to minimize the sum of the squared distances between points
and their closest clustering centers.

Since the k-means problem is NP-hard, heuristic and ap-
proximation algorithms are two of the most widely used
methods. The most popular heuristic algorithm solving this
problem is the well-known Lloyd’s algorithm [Lloyd, 1982].
Though depending on the initialization of center set selec-
tion and lacking theoretical guarantee, Lloyd’s algorithm per-
forms well in practice due to its fast speed and simplicity.
By using k-means++ seeding technique [Arthur and Vassil-
vitskii, 2007] as the initial center set, empirical performance
of Lloyd’s algorithm becomes more stable, since k-means++
provides O(log k)-approximate solution in expectation.

∗Corresponding author.

For approximation algorithms, local search is one of the
most popular methods. The current best approximation ra-
tio for the k-means problem based on local search is 9 + ε
given in [Kanungo et al., 2004]. However, the algorithm
in [Kanungo et al., 2004] needs to enumerate O(nk) swap
pairs in each round. Even with single swap strategy, it is
difficult to handle large datasets. Lattanzi and Sohler [Lat-
tanzi and Sohler, 2019] proposed LS++ algorithm that com-
bines k-means++ with local search to further improve the per-
formance of local search method. The basic idea of LS++
is to iteratively sample centers for swap using D2-sampling
method. They proved that LS++ can return a constant fac-
tor approximate solution in expectation after O(k log log k)
rounds of sampling and swap. The total running time of LS++
is O(ndk2 log log k). Choo et al. [Choo et al., 2020] proved
thatO(k) rounds of sampling and swap are enough for getting
a constant approximate solution. Although LS++ provides a
way to reduce the search space of local search, it is easy for
LS++ to fall into local optimum while there is still a con-
siderable gap between the local optimum and the minimum
clustering cost. For LS++, 100000k log log k rounds of sam-
pling and swap return a 509-approximate solution [Lattanzi
and Sohler, 2019].

In this paper, we propose a new local search algorithm for
the k-means problem, which aims to achieve good solutions
with smaller search space. Meryerson et al. [Meyerson et
al., 2004] proposed β-average data distribution assumption,
in which each optimal cluster has size at least βn

k for some
constant β ∈ (0, 1]. We observe that k-means benchmarks
[Fränti and Sieranoja, 2018] and many real-world datasets1

follow the β-average data distribution. Based on β-average
data distribution, we develop new searching strategies to re-
duce the search space. Firstly, we analyze the local struc-
ture of the current solution, and use nearest neighbor search
for local adjustment. By single swap strategy, O(k) swap
pairs are constructed for local optimization. Secondly, ran-
dom sampling is used to jump out of the local optimum of
nearest neighbor search. With β-average assumption, cluster-
ing cost can be improved with high probability using uniform
and random sampling. Thirdly, once the solution is trapped
when nearest neighbor search and random sampling both fail,
random mutation is performed to restart the searching process

1https://archive.ics.uci.edu/ml/index.php
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to find better solutions until convergence. The main contribu-
tions of this paper are summarized as follows.

• We introduce a fast and practical local search algorithm,
named FLS, which reduces the search space of swap
pairs from O(nk) to O(k2) while maintaining the clus-
tering quality using modified neighbor search techniques
and random mutation. The total running time of our al-
gorithm isO(ndk3 log 1

ε ), where ε is a parameter to con-
trol approximation ratio. Smaller search space provides
great potential for local search acceleration in practice.

• Under ”average” cluster size assumption [Meyerson et
al., 2004; Ding and Huang, 2021] that each optimal clus-
ter has size at least βn

k for some constant β ∈ (0, 1],
we prove that our algorithm has approximation ratio
(100 + ε) in expectation.

• FLS scales well on large datasets and makes improve-
ments on time and clustering cost compared with state-
of-art local search methods, especially on those ”hard
instances” defined in the k-means benchmarks [Fränti
and Sieranoja, 2018].

1.1 Other Related Works
Arya et al. [Arya et al., 2004] proposed the first local search
heuristic for the k-median problem and the facility location
problem. They proved that local search method can achieve
3 + ε approximation in polynomial time for the k-median
problem. Gupta and Tangwongsan [Gupta and Tangwongsan,
2008] gave a simpler analysis for the k-median problem. As
for the k-means problem, Kanungo et al. [Kanungo et al.,
2004] proposed the first local search algorithm with ratio
(9 + ε). Friggstad et al. [Friggstad et al., 2019] proved
that local search yields a PTAS for the k-means problem in
doubling metrics. Local search strategy can be extended to
different variants of clustering problems, including cluster-
ing with outliers, clustering with penalties, individual fair k-
clustering, capacitated clustering, etc. [Angel et al., 2015;
Zhang et al., 2019; Mahabadi and Vakilian, 2020; Gupta et
al., 2017].

2 Preliminaries
Throughout the paper, we use P = {p1, p2, ..., pn} and k to
denote the given data set and the number of clusters, respec-
tively. We use C∗ to denote an optimal clustering center set
for a given k-means instance (P, k). For two points p, q, let
d(p, q) be their squared distance. For a point p and a center
set C, we also use d(p, C) = minc∈C d(p, c) to denote the
squared distance from p to the closest center of p in C. Given
a center set C, we use ∆(P,C) =

∑
p∈P d(p, C) to denote

the clustering cost induced by C. The goal of clustering is
to find a set C of k centers such that the following objective
function is minimized: ∆(P,C) =

∑
p∈P d(p, C).

For each point ch ∈ C, we use Ph to denote the cluster
constructed by ch. For each point c∗h ∈ C∗, we use P ∗h to
denote the optimal cluster constructed by c∗h. For an optimal
center c∗h ∈ C∗, we denote sc∗h = arg minch∈C d(c∗h, ch)
as its closest point in C. For a center ch ∈ C, we denote
och = arg minc∗h∈C d(ch, c

∗
h) as its closest point in C∗.

The theoretical guarantee of our algorithm is based on
Assumption 1. We note that the proposed data distribu-
tion assumption is very reasonable in practice and has been
used for clustering analysis in [Ding and Huang, 2021;
Meyerson et al., 2004]. Given an instance (P, k) of the k-
means problem, we assume that each optimal cluster should
be large enough, i.e. the minimum optimal cluster size is
larger than βn

k for a given constant β between 0 and 1. Oth-
erwise, for any optimal cluster with cluster size smaller than
βn
k , as pointed out in [Meyerson et al., 2004], the points in

this cluster can be regarded as outliers.

Assumption 1. Given an instance (P, k) of the k-means
problem, and a constant β ∈ (0, 1], we say (P, k) is β-average
if the smallest optimal cluster has size at least βnk .

3 The Proposed FLS Algorithm
The general idea of our algorithm is as follows. For an in-
stance (P, k) of the k-means problem, initial center set C
can be constructed using LS++ seeding [Lattanzi and Sohler,
2019] with O(k) rounds of swaps. Then, we apply near-
est neighbor search to find improvements. In each round of
nearest neighbor search, we only use the nearest 10 points
of each center in C to construct candidate swap pairs and
there are only O(k) swap pairs. If one of the swap pairs
induces an O( 1

k ) reduction on current clustering cost, such
swap is conducted. If nearest neighbor search fails to make
improvements on clustering cost, it indicates that the solu-
tion reaches a local optimum around the center set. In this
case, random sampling is used to find a set Q of O(k log 1

η )

points in P for a given parameter η. Swap pairs are con-
structed betweenQ andC. If one of the swap pairs induces an
O( 1

k ) cost reduction, it means that by applying sampling, we
can jump out of the local optimum. Under Assumption 1, it
can be proved that sampling O(k log 1

η ) points for swap pairs
construction makes a swap success with probability at least
1 − η. Once nearest neighbor search and sampling methods
both fail, we conduct a random mutation, where each center
point is swapped with an arbitrary point in P\C with proba-
bility 1

k . Thus, one center is changed in expectation in a sin-
gle mutation round. Parameter R is used to control the total
rounds of swaps, and parameter T is the given execution time
(measured by seconds) such that FLS can execute at most T
seconds. The specific FLS algorithm is given in Algorithm 4.

3.1 Data Structure
In order to conduct nearest neighbor search of the FLS al-
gorithm quickly, we use the selection algorithm [Blum et
al., 1973] such that the 10-nearest neighbors of each center
in the current center set C of size k can be found in time
O(nkd). During the swap of local search, one crucial step
is to recalculate the cost after swap when replacing an orig-
inal center with a new one. For each point p ∈ P , the new
distance from p to the modified center set C should be cal-
culated. Thus, during the local search process, we always
maintain the closest and the second closest centers to each
data point p ∈ P . In this way, the cost change can be calcu-
lated more efficiently by checking whether the closest center
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Algorithm 1 LS++-Seeding
Input: An instance (P, k) of the k-means problem
Output: A center setC of size k

1: Initialize center set C using k-means++.
2: for i = 1, 2, ..., O(k) do
3: Sample a point p ∈ P according to probability d(p,C)

∆(P,C) .

4: if ∃ q ∈ C such that ∆(P,C\ {q} ∪ {p}) < (1 −
1

100k )∆(P,C) then
5: Let q ∈ C be the point such that ∆(P,C\ {q}∪{p})

is minimized.
6: C = C\ {q} ∪ {p}.
7: end if
8: end for
9: return C.

Algorithm 2 Search-Swap
Input: An instance (P, k) of the k-means problem, a center
set C of size k
Output: A center setC1 of size k

1: Set C1 = C.
2: Search for the 10-nearest neighbors for each c ∈ C. For

each center c ∈ C, let Nc denote the neighborhood of c.
3: Construct swap pairs set G = {(c, j) : c ∈ C, j ∈ Nc}.
4: if ∃ (c, j) ∈ G such that ∆(P,C\ {c} ∪ {j}) < (1 −

1
100k )∆(P,C) then

5: Let (c, j) be the swap pair such that ∆(P\ {c} ∪ {j})
is minimized.

6: C1 = C\ {c} ∪ {j}.
7: end if
8: return C1.

is swapped out. In each iteration, it takes timeO(ndk) to find
the closest and the second closest centers of each data point,
since there may exist some heavy clusters with size Ω(n).
Thus, LS++-Seeding and Search-Swap algorithms take time
O(ndk2) and O(ndk), respectively. Sampling-Swap takes
time O(ndk3 log 1

ε ), and random mutation takes time O(k).
Since λ, η, R are all constants, the total running time of our
algorithm is O(ndk3 log 1

ε ).

3.2 Analysis

Now we will give the analysis of Algorithm 4. Let
{P ∗1 , ..., P ∗k } and {c∗1, ..., c∗k} be the sets of optimal clusters
and the corresponding clustering centers, respectively. We

define R(j) =

{
p ∈ P ∗j : d(p, c∗j ) ≤ 2

∆(P∗
j ,{c∗j})
|P∗
j |

}
for each

optimal cluster P ∗j as the set of points close to its clustering
center c∗j . We show that R(j) takes a large fraction of P ∗j .

Lemma 1. Let P ∗j be an arbitrary optimal cluster and

T (j) =

{
p ∈ P ∗j : d(p, c∗j ) ≤ α

∆(P∗
j ,{c∗j})
|P∗
j |

}
be the set of

points within P ∗j that are close to the optimal center c∗j , then
it holds that |T (j)| ≥ (1− 1

α )|P ∗j |

Algorithm 3 Sampling-Swap
Input: An instance (P, k) of the k-means problem, a center
set C of size k, parameters ε, λ and η
Output: A center setC1 of size k

1: Set C1 = C.
2: for i = 1, 2, ..., O( k

1−η log 1
ε ) do

3: Randomly and uniformly sample a set S ⊆ P with
size k

λ log 1
η .

4: Construct candidate swap pairs set G =
{(c, j) : c ∈ C, j ∈ S}.

5: if ∃ (c, j) ∈ G such that ∆(P,C\ {c} ∪ {j}) < (1 −
1

100k )∆(P,C) then
6: Let (c, j) be the swap pair such that ∆(P\ {c} ∪

{j}) is minimized.
7: C1 = C\ {c} ∪ {j}.
8: return C1.
9: end if

10: end for
11: return C1.

Algorithm 4 FLS
Input: An instance (P, k) of k-means, parameters ε, λ, η, R,
T .
Output: A center setC1 of size k

1: Initialize C by calling algorithm LS++-Seeding and set
C1 = C.

2: Set r = 0.
3: while r < R or execution time does not exceed T do
4: Set r = r + 1.
5: if Search-Swap induces clustering cost reduction then
6: C = Search-Swap(P, k, C).
7: else if Sampling-Swap induces clustering cost reduc-

tion then
8: C = Sampling-Swap(P, k, C, ε, λ, η)
9: else

10: Let C1 be the center set with minimum clustering
cost between C and C1.

11: for each c ∈ C do
12: For each c ∈ C, with probability 1

k , replace cwith
an arbitrary point in P\C.

13: end for
14: end if
15: end while
16: return C1.

Proof.

∆(P ∗j ,
{
c∗j
}

) ≥ ∆(P ∗j \T (j),
{
c∗j
}

) =
∑

p∈P∗
j \T (j)

d(p, c∗j )

≥

(
1− |T (j)|

|P ∗j |

)
|P ∗j |

α∆(P ∗j ,
{
c∗j
}

)

|P ∗j |
,

which implies that T (j) ≥ (1− 1
α )|P ∗j |. �

For nearest neighbor search process in Algorithm 2, it
seeks to locally improve the solution round by round. Such
heuristic is fast and efficient in practice since the searching
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process only guarantees local optimum. In this searching
step, the algorithm focuses more on finding stable local so-
lutions instead of picking points that make clustering cost re-
duced sharply. Once nearest neighbor search gets stuck, clus-
tering structure needs to be adjusted greatly, where we move
to the random sampling part.

Assume that (P, k) is an instance of the k-means problem.
Let C denote the current center set and C∗ denote a set of
optimal centers. Follow the work of Lanttanzi and Sohler
[Lattanzi and Sohler, 2019], we give the definition of good
cluster with respect to C∗ as follows.
Definition 1. A cluster P ∗h is called good, if there exists a
pair of points (cj , c

∗
h) such that c∗h ∈ C∗ and cj ∈ C and

∆(P ∗h , C)−Γ(P,C, cj , c
∗
h)−9∆(P ∗h , {c∗h}) > 1

100k∆(P,C),
where Γ(P,C, cj , c

∗
h) = ∆(P\P ∗h , C\ {cj})−∆(P\P ∗h , C)

represents the reassignment cost after swapping cj out.
The above definition estimates the cost change of replacing

cj with a point close to c∗h. Then, we want to show that with
good probability, we can sample a point q close to c∗h for swap
to reduce the current cost by a factor of O( 1

k ). This prevents
the algorithm from getting stuck too early.

For each center c∗h ∈ C∗, let sc∗h denote its closest center
in C. For simplicity, we say that center c∗h is captured by sc∗h .
For a center cj ∈ C, let Z(cj) be the set of centers in C∗
captured by cj . If |Z(cj)| = 0, we say that cj is a lonely
center. Let c∗h be an optimal center such that sc∗h = cj . If
|Z(cj)| = 1, then (cj , c

∗
h) forms a matched swap pair. If

|Z(cj)| > 1, for each c∗h ∈ Z(cj), we find a lonely center
cq ∈ C to make (cq, c

∗
h) a matched swap pair. During the

swap pair construction, each lonely center must be used at
most twice. Hence, each optimal center c∗h ∈ C∗ is matched
with a center cj ∈ C such that each cj is used at most twice.
For a point p ∈ P , let op and sp denote its closest center in
C∗ and C, respectively. The following lemma gives an upper
bound of reassignment cost induced by a matched swap pair.
Lemma 2. Let (cj , c

∗
h) be a matched pair. Then

Γ(P,C, cj , c
∗
h) ≤ (4 + 2

λ )∆(Pj , C
∗) + 2λ∆(Pj , C).

Proof.
Γ(P,C, cj , c

∗
h) ≤

∑
p∈Pj\P∗

h

d(p, sop)− d(p, sp)

≤
∑

p∈Pj\P∗
h

(√
d(p, op) +

√
d(op, sop)

)2

− d(p, sp)

≤
∑

p∈Pj\P∗
h

(√
d(p, op) +

√
d(op, sp)

)2

− d(p, sp)

≤
∑

p∈Pj\P∗
h

4d(p, op) + 2

√
2

λ

√
2λd(p, op)d(p, sp)

≤
∑

p∈Pj\P∗
h

(4 +
2

λ
)d(p, op) + 2λd(p, sp)

≤ (4 +
2

λ
)∆(Pj , C

∗) + 2λ∆(Pj , C).

Note that the second and fourth steps follow from the trian-
gle inequality, the third step follows from the fact that sop is

the nearest point to op in C, and the fifth step follows from
Cauchy Inequality. �

In the following, we analyze that if current clustering cost
∆(P,C) is large enough, there must exist at least one good
cluster.
Lemma 3. If ∆(P,C) > 100OPT , then there must exist at
least one good cluster induced by some matched pair (cj , c

∗
h)

Proof. Assume that there is no good cluster. For each c∗h ∈
C∗, denote its matched swap pair as (cmh , c

∗
h). By the defini-

tion of good cluster and Lemma 2, it holds that

∆(P ∗h , C) ≤ Γ(P,C, cmh , c
∗
h) + 9∆(P ∗h , {c∗h})

+
1

100k
∆(P,C)

≤ (4 +
2

λ
)∆(Pmh , C

∗) + 2λ∆(Pmh , C)

+ 9∆(P ∗h , {c∗h}) +
1

100k
∆(P,C).

Thus, by summing up all matched pairs, we have∑
c∗h∈C∗

∆(P ∗h , C) = ∆(P,C)

≤
∑
c∗h∈C∗

(4 +
2

λ
)∆(Pmh , C

∗) + 2λ∆(Pmh , C)

+ 9∆(P ∗h , {c∗h}) +
1

100k
∆(P,C)

≤ (2× (4 +
2

λ
) + 9)OPT + (4λ+

1

100
)∆(P,C).

Let λ = 0.12375. Then, we have ∆(P,C) ≤ 100OPT . �

According to Lemma 3, if the local optimum after near-
est neighbor search has clustering cost larger than 100OPT ,
there exists at least one good cluster P ∗h induced by a matched
pair (cj , c

∗
h). In the following, we argue that by random sam-

pling O( kβ log 1
η ) points from P for swap pairs construction,

with probability at least 1 − η, the clustering cost can be re-
duced by a factor of O( 1

k ).
Lemma 4. With probability at least 1 − η, by sampling
O( kβ log 1

η ) points randomly from P , the sampled set contains
at least one point from R(h) for an optimal center c∗h.

Proof. For an optimal cluster P ∗h , since |P ∗h | ≥
βn
k , by

Lemma 1 and the definition of R(h), we know that |R(h)| ≥
βn
2k . Let ζ = |R(h)|

|P | . If we randomly sample a set V of
points from P , the probability that V contains at least one
point from R(h) is at least 1 − (1 − ζ)|R(h)|. If the proba-
bility that at least one point from R(h) is sampled is at least
1− η, then 1− (1− ζ)|V | ≥ 1− η. Thus, V has size at least

log 1
η

log 1
1−ζ
≤ 1

ζ log 1
η . Since ζ = |R(h)|

|P | ≥
β
2k , if |V | ≥ 2k

β log 1
η ,

V must contain at least one point from R(h) with probability
at least 1− η. �

By Lemma 4, we know that by samplingO( kβ log 1
η ) points

from P , there exists at least one point q close to the optimal
center c∗h in the sampled set, where (cj , c

∗
h) induces a good

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3095



Datasets Number of clusters Sample size Dimension β

A2 35 5250 2 0.9467

A3 50 7500 2 0.9256

Dim32 16 1024 32 1

Birch2 100 100000 2 0.997

Unbalance 8 6500 2 0.1231

Yeast 10 1048 8 0.0337

Covertype 7 581012 54 -

SUSY 10 5000000 18 -

Table 1: Datasets.

cluster. By swapping q with cj , we will show that the current
clustering cost will be reduced by a factor of O( 1

k ). Observe
that

∆(P,C ∪ {q} \ {cj}) = ∆(P,C)− (∆(P,C)

−∆(P,C ∪ {q} \ {cj}))

≤ ∆(P,C)− (
∑

p∈P\P∗
h

d(p, C) +
∑
p∈P∗

h

d(p, C)

−
∑

p∈P\P∗
h

d(p, C\ {cj})−
∑
p∈P∗

h

d(p, q))

= ∆(P,C)− (∆(P ∗h , C)− Γ(P,C, cj , c
∗
h)−∆(P ∗h , {q}))

≤ ∆(P,C)− (∆(P ∗h , C)− Γ(P,C, cj , c
∗
h)− 6∆(P ∗h , {c∗h}))

≤ (1− 1

100k
)∆(P,C),

where the second inequality follows from the fact that q ∈
R(h) is within distance 2∆(P∗

h ,{c
∗
h})

|P∗
h |

to c∗h and triangle in-
equality, and the last step follows from the definition of good
cluster. Hence, following the results in [Rozhoň, 2020], by
repeating the sampling process O(k log 1

ε ) times, clustering
cost can be reduced to (100OPT + ε) in expectation.

4 Experiments
In this section, we compare our algorithm with other local
search based methods for the k-means problem.

Datasets. We use the k-means benchmarks [Fränti and
Sieranoja, 2018] and other datasets from UCI Machine Learn-
ing Repository2 to conduct our experiments. The datasets
used in our experiments are summarized in Table 1. For any
instance of the k-means problem, the β value in Assumption
1 for an instance is defined as the ratio between the mini-
mum optimal cluster size and the average cluster size n

k us-
ing ground truth provided by benchmarks. It is easy to see
that as long as the β value of given instance is between 0
and 1, then the instance satisfies Assumption 1. If there is
no provided ground truth, we use linear programming solver
Gurobi to calculate an optimal solution. Based on those ”hard
instances” defined in [Fränti and Sieranoja, 2018], we test
whether different local search algorithms can find good solu-
tions. Fränti and Sieranoja [Fränti and Sieranoja, 2018] tested
different k-means datasets, and defined ”hard instances” as

2https://archive.ics.uci.edu/ml/index.php

those with high separation, large number of clusters or un-
balanced distribution. ”Hard instances” include the instances
in datasets A2, A3, Dim32, Birch2 and Unbalance. We also
compare the scalability of different local search algorithms on
large datasets such as Covertype and SUSY, which contains
581012 and 5000000 points, respectively.
Algorithms and Parameters. In our experiment, we con-
sider three algorithms: our algorithm described in Algo-
rithm 4, LS++ proposed in [Lattanzi and Sohler, 2019] and
LS proposed in [Kanungo et al., 2004], which are summa-
rized as follows.

• LS. This is the local search method proposed by Ka-
nungo et al. [Kanungo et al., 2004], which searches
swap pairs on whole given dataset and performs swaps
iteratively until convergence.

• LS++. This is the algorithm proposed by Lattanzi and
Sohler [Lattanzi and Sohler, 2019], which uses D2-
sampling in each round to sample a point and construct
a candidate swap pair set of size k.

• FLS. This is our algorithm described in Algorithm 4.
Parameters λ, η are set to be 0.5 and 0.5, respectively.
For the sampling process in Algorithm 3, we only repeat
the sampling for 3 times.

Experimental Setup. We run all the above algorithms on
each dataset 5 times and give the average results. All the algo-
rithms use the same initial center set obtained by 25 rounds of
LS++. During the local search process, we also study the par-
allelization of search and swap. In each round of search and
swap, the constructed swap pairs can be parallelized for cal-
culation using multiple cores and the one with the maximum
cost reduction is taken as the final swap pair. LS requires high
computing resources since it constructs O(nk) swap pairs in
each round while the upper bound of parallelization for LS++
is k cores. Our algorithm constructs O(k2) swap pairs which
can make full use of computing resources in practice. In ex-
periments, we only use k cores for parallelization for the sake
of fairness since LS++ only contains k swap pairs in each
round. For hardware, we use machines with 72 Intel Xeon
Gold 6230 CPUs.
Methodology. In our experiments, we run each algorithm
for 5 times with fixed execution time and give the gaps be-
tween costs of solutions and corresponding optimal cluster-
ing costs. Gap is defined as the clustering cost relative to the
optimal clustering cost as gap =

∑5
i=1

1
5
Si−OPT
OPT , where Si
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Dataset Method Gap(%) Time point Gap(%) Time point Gap(%) Time point Dataset Method Gap(%) Time point Gap(%) Time point Gap(%) Time point

A2
LS 89.39

60s
89.39

120s
89.39

180s Unbalance
LS 27.84

60s
27.84

120s
27.84

180sLS++ 6.35 4.87 4.03 LS++ 5.92 2.86 2.68
FLS 0.97 0.93 0.56 FLS 1.28 0.88 0.88

A3
LS 91.19

60s
91.19

120s
91.19

180s Yeast
LS 13.03

60s
13.03

120s
13.03

180sLS++ 11.74 7.56 6.64 LS++ 1.59 1.59 0.86
FLS 15.99 0.96 0.91 FLS 0 0 0

Dim32
LS 27.83

20s
27.09

40s
25.22

60s Covertype
LS 20.81

2400s
20.81

3000s
20.81

3600sLS++ 0.79 0.22 0.22 LS++ 6.11 3.82 3.82
FLS 0 0 0 FLS 4.59 1.75 0

Birch2
LS 274.97

3600s
274.12

4800s
274.12

7200s SUSY
LS 30.79

12000s
30.79

18000s
30.79

24000sLS++ 13.99 12.77 11.49 LS++ 6.23 4.52 1.98
FLS 16.62 10.74 10.46 FLS 10.94 2.76 0

Table 2: Comparisons of clustering costs with fixed execution time.

Method
A2 A3 Dim32 Birch2 Unbalance Yeast Covertype SUSY

Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)
LS

0
NA

0
NA

0
NA

0
NA

0
NA

0
NA

0
NA

0
NA

LS++ NA NA NA NA NA NA NA NA
FLS NA NA 2 NA NA 18 3517 20732
LS

1
NA

1
NA

1
NA

1
NA

1
NA

1
NA

1
NA

1
NA

LS++ NA NA 16 NA NA 128 NA NA
FLS 54 119 2 NA 111 3 3374 18975
LS

2
NA

2
NA

1
NA

2
NA

2
NA

2
NA

2
NA

2
NA

LS++ NA NA 8 NA NA 35 NA 23535
FLS 53 117 1 NA 42 1 2933 18466
LS

3
NA

3
NA

3
NA

3
NA

3
NA

3
NA

3
NA

3
NA

LS++ NA NA 4 NA 116 32 NA 23174
FLS 52 116 1 NA 13 1 2787 17636
LS

4
NA

4
NA

4
NA

4
NA

4
NA

4
NA

4
NA

4
NA

LS++ NA NA 4 NA 96 29 2598 22179
FLS 52 115 1 NA 11 1 2519 17359
LS

5
NA

5
NA

5
NA

5
NA

5
NA

5
NA

5
NA

5
NA

LS++ 101 NA 3 NA 67 28 2498 16553
FLS 51 114 1 NA 10 1 2396 16181
LS

6
NA

6
NA

6
NA

6
NA

6
NA

6
NA

6
NA

6
NA

LS++ 78 NA 3 NA 16 4 2465 12526
FLS 51 114 1 NA 9 1 2200 16097

LS
7

NA
7

NA
7

NA
7

NA
7

NA
7

NA
7

NA
7

NA
LS++ 55 159 2 NA 14 4 1154 10438
FLS 50 114 1 NA 8 1 2054 15720

Table 3: Comparisons of running time to reach fixed costs.

is the clustering cost of solutions returned by different algo-
rithms in the i-th experiment. For large datasets, since op-
timal solutions cannot be found by solver, we use the solu-
tion with the minimum cost among LS, LS++ and FLS as the
ground truth solution, and compute the differences between
the ground truth solution and other solutions. To compare the
running time, we give the time needed to reach different gaps
for each algorithm in Table 3.

4.1 Results
Table 2 compares the clustering costs of LS, LS++ and FLS at
several different time points. On small datasets, our algorithm
finds optimal solutions on two of the datasets, while LS++
fails to find any optimal solution. LS++ performs well at the
beginning. However, for larger execution time, LS++ is easy
to get stuck in local optimum. It is more and more difficult
for LS++ to find improvements as the gap between clustering
cost and optimal clustering cost narrows. As for LS, clus-
tering costs hardly change since LS constructs O(nk) swap
pairs for enumeration in each round, and it is impossible for
LS to find good solutions in fixed execution time. Solutions
returned by our algorithm are very close to the optimal clus-
tering costs on small datasets, and there is only a gap ranging
from 0% to 0.88%. On ”hard instances”, our algorithm im-
proves the performance of LS++ from 0.22% to 5.73% on
clustering costs. On large datasets, our algorithm scales well
and achieves the minimum final clustering costs, which im-
proves the performance of LS++ from 1.03% to 3.82% on

clustering costs.
Table 3 summarizes the time spent to reach a fixed cluster-

ing cost. FLS finds four datasets with gap 0% while LS++
fails to find any of them. When the quality of solution is
high, for example the gap to optimal solutions ranges from
0% to 2%, FLS can find high-quality solutions quickly. On
the contrary, LS++ fails to find high-quality solutions on most
datasets. It takes LS++ nearly forty and eight times, com-
pared to ours, to find solutions with gap 1% on datasets Yeast
and Dim32, respectively. From Table 3, we can get that our
algorithm FLS is faster to find near-optimal solutions (solu-
tions with small gaps to optimal solutions) than LS++.

5 Conclusion
In this paper, we propose a fast local search algorithm for k-
means. By developing new searching techniques and random
mutation, the search space of local search in each round is re-
duced greatly while the quality of solution is maintained. Un-
der ”average” assumption of data distribution in practice, we
prove that our algorithm returns a constant factor approximate
solution in expectation. Finally, we show experimentally that
our algorithm achieves better performance on both small and
large datasets compared with other local search methods.
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