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Abstract

Deep neural networks have achieved outstand-
ing performance in many machine learning tasks.
However, this remarkable success is achieved in
closed and static environments where the model is
trained using large training data of a single task and
deployed for testing on data with a similar distri-
bution. Once the model is deployed, it becomes
fixed and inflexible to new knowledge. This con-
tradicts real-world applications, in which agents in-
teract with open and dynamic environments and
deal with non-stationary data. This Ph.D. research
aims to propose efficient approaches that can de-
velop intelligent agents capable of accumulating
new knowledge and adapting to new environments
without forgetting the previously learned ones.

1 Introduction

To consider an agent as truly intelligent, it should be able to
continuously learn new knowledge over time, use the previ-
ously learned knowledge to help in future learning, and pre-
serve the old knowledge when learning a new one. However,
deep neural networks have a non-optimal ability to learn in
non-stationary distributions. When the model is optimized to
learn new representations, the previously learned knowledge
is overwritten. This phenomenon is well known as catas-
trophic forgetting [McCloskey and Cohen, 1989] and is con-
sidered as the main obstacle for providing intelligent agents.
In the last few years, Continual Learning (CL) becomes an
active research area that aims to overcome this limitation of
classical machine learning and provide agents that can learn
a number of tasks sequentially. The most successful methods
for mitigating forgetting rely on replaying the data of previ-
ous tasks with the current data. However, previous data is
not always available in real applications. It also requires ad-
ditional memory to store previous samples and computation
overhead to retrain them. This hinders the agent’s ability to
fast adapt to new environments and leads to a fast-growing
memory footprint. Another direction of research is to expand
the network when new tasks arrive. This increases the system
size over time which hinders its scalability to a large number
of tasks and applicability for embedded devices. The last di-
rection uses a fixed model size and constrains the change in
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the important weights of previous tasks when the agent learns
new ones. Still, these methods have not achieved a satisfac-
tory performance yet.

This research takes an alternative approach to tackle the
above-mentioned challenges and limitations by taking inspi-
ration from human-learning. People learn throughout life
and the brain is efficient in accumulating more and more
knowledge without catastrophic forgetting. Fundamental ob-
servations from neuroscience showed that brain neurons en-
code information in a sparse and distributed way [Attwell
and Laughlin, 2001] and at any point, only 1 to 4% of the
neurons are active [Lennie, 2003]. This is unlike classical
training in which all the parameters are optimized to learn
each task in the sequence and produce dense representations
which likely interfere with each other. Our second inspiration
from human-learning is that when we expose to new situa-
tions, we select the relevant knowledge only from the past to
adapt instead of using all known knowledge. This also contra-
dicts current methods in which each task uses all previously
learned knowledge regardless of its relevance for it.

Inspired by these observations, this research aims at pro-
viding efficient CL approaches with four research goals:
First, reflect the sparse brain activity in the CL paradigm to
mitigate forgetting in fixed-capacity models without exten-
sive retain of previous data or adding extra computation and
memory overhead. Second, perform a selective transfer and
study its role in the forward and backward transfer. Third, dis-
entangle from each task the generic representation that would
be useful for future tasks. Fourth, maximize the reusability of
previous knowledge without forgetting.

2 Contributions

To address our first goal, we proposed a new brain-inspired
method named SpaceNet [Sokar et al., 2021c]. In this
work, we harness the significant redundancy of deep neural
networks [Denil et al., 2013] and utilize the model capacity
efficiently instead of expanding the model with each new
task. We train each task from scratch using sparse connec-
tions. In addition, motivated by the brain sparse activity,
we encourage each task to learn sparse representations. To
fulfill this goal, we proposed a new sparse training algorithm
with dynamic sparsity to train each task. During training, the
distribution of the sparse connections is adaptively changed
and compacted in the most important neurons for the current
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task. This results in generating semi-distributed sparse
representation for each task. This representation has two key
advantages: First, it reduces the interference between tasks,
which consequently reduces forgetting. Second, it leaves free
neurons for future tasks which increases the scalability of
the model. Hence, SpaceNet accounts for both previous and
future tasks using a fixed-capacity model; avoiding adding
any extra memory or computation overhead to train new
tasks or remember old ones.

To assess SpaceNet, we evaluated and illustrated its success
in the following aspects compared with the state-of-the-art:
(1) the average accuracy across all tasks after learning the
whole sequence, (2) the backward transfer to estimates
forgetting, (3) the memory reduction, (4) the role of sparse
representation in reducing forgetting, and (5) the ability to
identify the important neurons corresponding to each task.

To address our second goal, we proposed self-attention
meta-learner for continual learning (SAM) [Sokar er al.,
2021b]. This work focuses on two requirements that are not
widely addressed in the state-of-the-art. First, the necessity
of having a good quantity of prior generic knowledge to
promote learning new tasks. Second, selective transfer of
relevant parts only from previous knowledge to learn each of
the future tasks instead of using the whole knowledge. SAM
divides the network into two parts. The first part is a shared
sub-network meta-trained to learn prior knowledge that can
generalize to out-of-domain tasks. The shared sub-network
is incorporated with a self-attention mechanism to select
the relevant representation for each input task from the
prior knowledge. The second part of the network contains
a specific branch consists of a few layers for each task to
capture the specific discriminative representation. Each task
builds this specific branch on top of the relevant selected
sparse representation from the prior knowledge.

To assess SAM, we evaluated the average accuracy across all
tasks and the forward transfer. We showed that SAM achieves
a better performance than the state-of-the-art methods. We
also analyzed the role of each of our proposed components in
decreasing forgetting and increasing positive transfer. Lastly,
we demonstrate that popular existing CL methods gain a per-
formance boost when they are combined with our framework.

To address our third goal, we present a new method, named
learning Invariant Representation for CL (IRCL) [Sokar et
al., 2021al. 1In this work, we proposed a new pseudo-
rehearsal based method in which we use a unified network
for classification and image generation. We harness the con-
ditional generative sub-network to disentangle the invariant
representation during learning each task. We showed that this
representation is less prone to forgetting which increases the
performance of the CL system and reduces the negative trans-
fer. We also illustrated the role of this representation in reduc-
ing the number of required pseudo-samples for replay.

3 Conclusion and Future Research

In this work, we have proposed some brain-inspired methods
for continual learning. We show the effectiveness of sparse
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representation in reducing catastrophic forgetting without re-
play. We also show the importance of selective transfer in
increasing forward transfer and reducing negative backward
transfer. Finally, we illustrate the effectiveness of extracting
the invariant representation which is less prone to forgetting.

In our future work, we intend to continue studying the con-
nection between neuroscience and machine learning; aiming
to closing the gap between them. In particular, our goal is
to address the following research points. First, study the re-
lation between previously learned knowledge and the current
task to reuse some of the sparse connections that are already
allocated instead of allocating new ones. This would reduce
the memory footprint and increase the scalability of the agent.
Second, allow learning using fewer training samples as the
agent become more knowledgeable. Third, maximize the us-
age of previous knowledge when learning a new relevant one
and learn only the residual specific representation. Finally,
study how the replay is occurred in the brain without using
the raw images and reflect this in the CL paradigm.

We envision that by taking these steps, we could push to-
wards providing intelligent agents capable of learning contin-
uously to address real-world problems.
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