
Improved Algorithms for Allen’s Interval Algebra: a Dynamic Programming
Approach

Leif Eriksson and Victor Lagerkvist
Department of Computer and Information Science, Linköping University, Linköping, Sweden

{leif.eriksson, victor.lagerkvist}@liu.se

Abstract
The constraint satisfaction problem (CSP) is an im-
portant framework in artificial intelligence used to
model e.g. qualitative reasoning problems such as
Allen’s interval algebra (A). There is strong practi-
cal incitement to solve CSPs as efficiently as possi-
ble, and the classical complexity of temporal CSPs,
including A, is well understood. However, the sit-
uation is more dire with respect to running time
bounds of the form O(f(n)) (where n is the num-
ber of variables) where existing results gives a best
theoretical upper bound 2O(n·logn) which leaves a
significant gap to the best (conditional) lower bound
2o(n). In this paper we narrow this gap by presenting
two novel algorithms for temporal CSPs based on
dynamic programming. The first algorithm solves
temporal CSPs limited to constraints of arity three
in O∗(3n) time, and we use this algorithm to solve
A in O∗((1.5922n)n) time. The second algorithm
tackles A directly and solves it in O∗((1.0615n)n),
implying a remarkable improvement over existing
methods since no previously published algorithm
belongs to O∗((cn)n) for any c. We also extend the
latter algorithm to higher dimensions block algebras
where we obtain the first explicit upper bound.

1 Introduction
Allen’s interval algebra is an influential formalism within
qualitative reasoning where the basic domain elements are
intervals on the real line. For example, we can say that x
precedes y, or that x overlaps y. These relationships are
typically represented by 13 pairwise disjoint and jointly ex-
haustive basic relations and one can then express more com-
plicated relationships between intervals by taking unions of
the 13 basic relations. Allen’s interval algebra has seen
numerous applications within artificial intelligence and re-
lated areas, e.g., in planning [Allen and Koomen, 1983;
Dorn, 1995; Mudrová and Hawes, 2015; Pelavin and Allen,
1987], natural language processing [Denis and Muller, 2011;
Song and Cohen, 1988], and molecular biology [Golumbic
and Shamir, 1993]. While deciding consistency of a graph
of interval constraints, the network consistency problem, over
the 13 basic relations is tractable, the problem is well-known

to be NP-complete once unions of the basic relations are al-
lowed [Allen, 1983].

Despite this, significant effort has been devoted towards
solving real-world instances of the problem, using a wide ar-
ray of different techniques [Nebel, 1997; Huang et al., 2013;
Thornton et al., 2004; Pham et al., 2008; Sioutis and Jan-
hunen, 2019]. Unfortunately, these methods are not sufficient
to guarantee improved worst-case complexity, and little is thus
known concerning fine-grained complexity. As remarked, the
consistency problem is NP-complete, but recent progress in
parameterised and fine-grained complexity suggests that NP-
hardness is a starting point, rather than the end goal. Hence, we
are interested in bounding the running time required to solve
the problem from above, by constructing improved algorithms
(upper bounds), and below, by considering size-preserving re-
ductions from problems where breaking a particular bound is
deemed unlikely (lower bounds). Thus, taking an expected su-
perpolynomial running time into account, what is the smallest
c > 1 such that the network consistency problem for Allen’s
interval algebra is solvable inO(cn) time, where n denotes the
number of intervals? Or is it even feasible to expect a single-
exponential running time, or would that contradict any existing
results or conjectures? Crucially, questions asking for sharp
upper and lower bounds cannot be answered by analysing
existing methods, which to the best of our knowledge do not
give any improved worst-case figures, but require novel and
previously unexplored algorithms.

Before attacking these questions let us first remark that the
network consistency problem for Allen’s interval algebra can
be seen as a special case of an infinite-domain constraint sat-
isfaction problem (CSP). We view a CSP instance as a set of
atomic constraints over a predetermined domain, and wants
to know whether all variables can be assigned values without
contradicting any constraint. Furthermore, it is common to
restrict the constraints that may occur by parameterising the
problem by a constraint language, and the resulting problem
is then written as CSP(Γ). Then the network consistency prob-
lem for Allen’s interval algebra is nothing else than CSP(A)
whereA is the set of relations obtained by closing the 13 basic
relations in Allen’s algebra under union. A related problem is
the temporal CSP problem where each relation is first-order
definable over (Q;<), and we write Γ

(n)
< for the set of all

temporal relations of arity n ≥ 1.
It is then known that CSP(A) is not solvable in subexponen-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1873

tial time, i.e., in 2o(n) time, unless 3-SAT is solvable in subex-
ponential time [Jonsson and Lagerkvist, 2018]. The latter
statement is in complexity theory known as the exponential-
time hypothesis (ETH) [Impagliazzo and Paturi, 2001] and
is a popular conjecture for proving superpolynomial lower
bounds. Let us also remark that CSP(A) can be brute forced
by enumerating all possible assignments from pairs of vari-
ables to the set of basic relations. This results in a 2O(n2)

algorithm, suggesting that there is plenty of room for improve-
ment. Indeed, the problem can be solved in O∗((2n)2n) (i.e.,
in 2O(n logn)) time by translating each interval constraint to a
temporal constraint in Γ

(4)
< (over the start- and endpoints of the

intervals) and the resulting problem can be solved by enumer-
ating all possible orderings among the variables [Jonsson and
Lagerkvist, 2017]. However, there is still a large gap between
this bound and 2o(n), suggesting that at least one of the bounds
can be improved further. Interestingly, CSP(Γ

(4)
<) cannot in

general be solved in 2o(n logn) time unless the (randomised)
ETH is false [Jonsson and Lagerkvist, 2018], showing that
this approach has its limits. Another optimistic development
is the recent algorithm for CSP(A) restricted to unit intervals,
which solves the problem in 2O(n log log n) time [Dabrowski
et al., 2020]. Unfortunately, generalising the unit case to the
full problem in a manner that yields an improved algorithm
appears difficult.

After properly defining the relevant fundamental notions
(Section 2) we turn to the problem of constructing improved
algorithms for CSP(A). We consider two different approaches.
First, in Section 3 we consider a novel approach of translating
interval constraints to temporal constraints of arity at most 3,
based on the idea of first fixing an order on the start points
of the intervals, and then carefully translating each interval
constraint to a constraint over a relation in Γ

(3)
< . Naturally, this

only results in an improved algorithm if CSP(Γ
(3)
<) admits an

improved algorithm, and given the aforementioned 2o(n logn)

lower bound for CSP(Γ
(4)
<), it may appear doubtful that this

is achievable. However, contrary to intuition, we manage to
construct an O∗(3n) time algorithm for CSP(Γ

(3)
<) based on

dynamic programming (here, and in the sequel, we use the
notation O∗(·) to suppress polynomial factors). Dynamic pro-
gramming is an influential design principle and has e.g. been
used to obtain improved exponential-time algorithms for the
Knapsack Problem [Andonov et al., 2000], the k-coloring
problem [Björklund et al., 2009], and for the channel assign-
ment problem with limited k channel distance [McDiarmid,
2003], but has to the best of our knowledge, not been ap-
plied to CSPs of this type before. We also give a conditional
lower bound for CSP(Γ

(3)
<) and show that it cannot be solved

in O(cn) time for any c < 2 unless k-coloring, for each
k ≥ 1, is solvable in O(cn) time. This matches the best
concrete lower bound for CSP(A) [Jonsson and Lagerkvist,
2017], making it likely that even faster algorithms should tar-
get CSP(A) directly, rather than being based on reductions to
a temporal CSP. In Section 4 we use this insight and attack the
full CSP(A) problem directly, and obtain an O∗((1.0615n)n)
time algorithm utilising dynamic programming. This algo-

rithm uses the fact that if we once know the exact relations
of one interval compared to all others and know that these
are all allowed relations, we from that point onward only
need to remember that said interval has passed. Compared
to previously mentioned O∗((cn)2n) algorithms, this is a sig-
nificant improvement, as our algorithm is the first yielding
a linear expression in the base of the exponent, compared to
a quadratic one. Interestingly, this algorithm can be adapted
to give an O∗(2dn(0.5307n)(2d−1)n) time algorithm for the
d-dimensional box algebra by reducing the dimension down
to one, and then using the improved algorithm for CSP(A). To
the best of our knowledge, this is the first explicit upper bound
for the d-dimensional box algebra, which naturally raises the
question of whether even faster algorithms can be obtained
by targeting the box algebra directly, rather than going the
route via CSP(A). We discuss this and other open questions
in Section 6.

In summary, we not only succeed in strengthening up-
per bounds for CSP(A) and related problems, but also show
that dynamic programming appears to be a generally usable
method for constructing algorithms with theoretical worst-case
guarantees for infinite-domain CSPs.

2 Preliminaries
We begin by defining the constraint satisfaction problem over
a set of relations Γ (CSP(Γ)).
Definition 1. Let Γ be a set of finitary relations defined on a
set D of values. The constraint satisfaction problem over Γ
(CSP(Γ)) is defined as follows:

INSTANCE: a tuple (V,C), where V is a set of variables
and C a set of constraints of the form R(v1, . . . , vt), where t
is the arity of R ∈ Γ and v1, . . . , vt ∈ V .

QUESTION: is there a function f : V → D such that
(f(v1), . . . , f(vt)) ∈ R for every R(v1, . . . , vt) ∈ C?

The set Γ is referred to as a constraint language, while the
function f is a function satisfying an instance I , or simply
a model for I . Observe that Γ or D may be infinite. Given
an instance I of CSP(Γ), we let ||I|| denote the number of
bits required to represent I . Our predominant way of defining
useful constraint languages is to first fix a relational structure
R = (D;R1, . . . , Rm) of basic relations and then consider
first-order reducts of R, i.e., sets of relations where each
relation is defined as the set of models of a first-order formula
overR (with equality).
Definition 2. A temporal constraint language is a first-order
reduct of (Q;<).

In addition, we write Γ
(k)
< for the set of all temporal re-

lations of arity k ≥ 1, use = in infix notation for equality,
and write > for the converse of <. It is then well-known that
CSP(Γ

(2)
<) is tractable but that CSP(Γ

(k)
<) is NP-hard for every

k ≥ 3 [Bodirsky and Kára, 2010]. Furthermore, note that an
instance (V,C) of any temporal problem CSP(Γ) can always
be solved in O∗(|V ||V |) time by enumerating functions from
V to {1, . . . , |V |}. This observation can be generalised as
follows.
Definition 3. A finite sequence of non-empty finite sets
(S1, . . . , S`) is an ordered partition of a set S if S1, . . . , S`

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1874

Relation Illustration Interpretation
X < Y XXX X precedes Y
Y > X YYY
X = Y XXXXXXX X is equal to Y

YYYYYYY
X mY XXX X meets Y
Y miX YYY
X oY XXXXX X overlaps with Y
Y oiX YYYY
X sY XXX X starts Y
Y siX YYYYYYY
X dY XXX X during Y
Y diX YYYYYYY
X f Y XXX X finishes Y
Y fiX YYYYYYY

Table 1: The 13 basic relations between two intervals on the same
line. (i denotes the inverse/converse of a relation.)

is a partitioning of S. The ranking function r is the function
r : S → {1, . . . , `} such that r(x) = i for every x ∈ Si and
every i ∈ {1, . . . , `}.

For simplicity we will denote r(x)� r(y) as x�r y when
� ∈ {<,=, >}. Given any function f : S → X , where X is
totally ordered, f defines an ordered partition on S as well as a
ranking function r such that u�r v if and only if f(u)� f(v)
for all u, v ∈ S and � ∈ {<,=, >}.

The total number of different ordered partition of a set con-
taining n elements is counted by the n’th Ordered Bell Number
(OBN(n)) (also known as the n’th Fubini number). This num-
ber OBN(n) is closely approximated by (n!/2)(log2 e)

n+1,
or roughly (0.5307n)n · poly(n) after applying Sterling’s ap-
proximation of n!.

Lemma 4. A model f to an arbitrary temporal CSP(Γ) in-
stance I = (V,C) implies the existence of an ordered partition
S = (S1, . . . , S`) over V with ranking function r, such that
x�r y if and only if x�f y for all x, y ∈ V .

Proof. Given f : V → X , take the ordered partition
(α1, . . . , α`), where αi = {xj} for every xj ∈ X . Define
r as r : V → {1, . . . , `} such that r(v) = i if and only if
f(v) ∈ αi, and define S = (S1, . . . , S`) as the ordered parti-
tion having r as ranking function. If x�f y then x�r y must
now be true, and vice versa.

We close this section by defining Allen’s interval algebra.
Here, the underlying domain consists of intervals on the real
line, and we consider the 13 binary relations as described
by Table 1. We let A be the constraint language obtained
by closing these 13 basic relations under union, and observe
that CSP(A) is a reformulation of the network consistency
problem for Allen’s interval algebra.

Strictly speaking, A is not a temporal language, but recall
from Section 1 that if we treat every interval x as a pair of start-
and end-points (x−, x+), any CSP(A) instance can trivially
be transformed to an equisatisfiable CSP(Γ(4)

<)-instance. To
simplify statements about start- and end-points we introduce
the following two sets: V − = {x− | (x−, x+) ∈ V }, and

similarly V + = {x+ | (x−, x+) ∈ V }. Note that x− < x+

trivially holds for every interval x and that Lemma 4 is also
valid with respect to ordered partitions over V − ∪ V +.

3 An O∗(3n) Algorithm for CSP(Γ
(3)
<)

We begin by constructing an improved algorithm for
CSP(Γ

(3)
<), i.e., the CSP problem with temporal constraints of

arity 3. As we will see, this algorithm can be used to obtain
an improved algorithm for CSP(A), although its running time
turns out to be worse than the specialised CSP(A) algorithm
presented in Section 4.

Note that Γ
(3)
< is a symmetric constraint language in the

following sense: for every relation R ∈ Γ
(3)
< and per-

mutation π : {1, 2, 3} → {1, 2, 3} there exists R′ ∈ Γ
(3)
<

such that a constraint R(x1, x2, x3) holds if and only if
R′(xπ(1), xπ(2), xπ(3)) holds. We will later make use of this
symmetry to simplify our notation when proving correctness.
Furthermore, recall that Lemma 4 tells us that any solution
to a CSP(Γ

(3)
<) instance (V,C) directly defines an ordered

partition over V .
We proceed by describing our dynamic programming in-

spired algorithm, using the following notion of records. To
avoid some tedious situations, we will from now on step away
from the formal definition of an ordered partition by allowing
the sequences to contain zero to three empty sets. This will
have a polynomial increase in the number of possible ordered
partitions, which we can safely ignore.

Definition 5. A record for a CSP(Γ
(3)
<) instance (V,C) is

an ordered partition (V<, V=, V>) of V , with some rank-
ing function r, such that for every u ∈ V<, every v ∈ V>,
and for all x, y, z ∈ V=, every constraint c(i, j, k) ∈ C with
i, j, k ∈ {x, y, z, u, v} evaluates to true for r.

Algorithm 1 DP algorithm for CSP(Γ
(3)
<).

1: function 3-ARITY-SOLVER(I = (V,C))
2: S ← {(∅, ∅, V)}
3: for each record (V<, ∅, V>) ∈ S do
4: if V> = ∅ then
5: return True
6: end if
7: for each V= ⊆ V> do
8: if (V<, V=, V> \ V=) is a record then
9: S = S ∪ {(V< ∪ V=, ∅, V> \ V=)}

10: end if
11: end for
12: end for
13: return False
14: end function

Our algorithm for CSP(Γ
(3)
<) is presented in Algorithm 1.

The basic idea is to inductively build records by moving sub-
sets from V> to V< via the set V=, while not contradicting any
constraints in the instance.
Theorem 6. Algorithm 1 is correct and has an upper bound
on runtime complexity of O∗(3n).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1875

Proof. Given a yes-instance I = (V,C), we know
from Lemma 4 that there exists some ordered partition
s = (S1, . . . , S`) with ranking function r, satisfying I . In this
case, the algorithm can in every iteration 1 ≤ i ≤ ` choose V=
to equal Si since this always results in a new record, and since
s = (S1, . . . , S`) is an (ordered) partition, we in the last iter-
ation reach the case when V> = ∅ and return ’True’. Hence,
Algorithm 1 answers ’True’ if I is a yes-instance.

In the other direction, if Algorithm 1 answers ’True’,
there exists a sequence of records (constructed in
line 8) (S1, . . . , S`) with Si = (V<,i, V=,i, V>,i) and
such that V<,i+1 = V<,i ∪ V=,i, ∅ 6= V=,i+1 ⊆ V>,i,
V>,i+1 = V>,i \ V=,i+1 for all 1 ≤ i < `, V>,1 = V and
V>,` = ∅. Let f be the ranking function for (V=,1, . . . , V=,`).
Now, u <f v only if u <r v for r for some Si, and u =f v
only if u =r v for r for all Si. For every triple x, y, z ∈ V
there will be a record Si such that one of the following, or a
symmetrical case, holds:
• x ∈ V<,i, y ∈ V=,i and z ∈ V>,i,
• x, y ∈ V=,i and z ∈ V>,i,
• x ∈ V<,i and y, z ∈ V=,i, or
• x, y, z ∈ V=,i.

Since Si is a record, any constraint c(x, y, z) (recall that Γ
(3)
<

is symmetric) must evaluate to true for r for Si, and hence for
f , and since this is true for all x, y, z ∈ V , every constraint
in C must evaluate to true for f . Hence, f is a model of
I , meaning that I is a ’yes’-instance whenever Algorithm 1
returns ’True’.

For the complexity, every variable in V can be placed in at
most one of the three sets V<, V= and V>, at a time, which cre-
ates 3n possible combinations. Evaluating related constraints
in C can be done in poly(||I||) time, and hence the final upper
bound is O∗(3n).

Let us now see how Algorithm 1 can be used to obtain an
improved algorithm for CSP(A). Here, the basic idea is to
enumerate partial orders over the start-points V −, and given
such an order we can then simplify the instance and solve
it as a CSP(Γ

(3)
<) instance. However, since we in Section 4

investigate a better, more direct method, we only provide a
proof sketch of the main ideas.
Theorem 7. Any arbitrary CSP(A) instance I = (V,C) is
solvable in O∗((1.5922n)n) time and space.

Proof. (Sketch) Enumerate all ordered partitions for V −. For
each ordered partition, all constraints in C can be transformed
to Γ

(3)
< constraints and this give a new instance I3 that also

enforces the ordered partition given. The exact input-output
mapping of this transform can be calculated by combining
the 13 basic relations for A with the three possible relations
between related start-points. These combinations then show
if a relation is directly false and if not, what the relations
are still needed between x+, y+ and either x− or y−, to
make the original interval relation true. Take the constraint
((x < y) ∨ (x o y) ∨ (x f y)) together with an ordered parti-
tion such that x− < y− as an example. This would yield
the constraint (x+ < y− ∨ (y− < x+ ∧ x+ < y+) ∨ false)

after the transform. Our new instance I3 can then be solved
with Algorithm 1. Due how the transform works, any ordered
partition solving I3 would now also solve I .

The complexity is given by the product of the number or-
dered partitions OBN(n) and the cost for solving I3 using
Algorithm 1. As the variables in V − must follow the same
ordering as in the ordered partition used for the transform, the
number of possible records are reduced from 3|V

−|+|V +| to
less than 3|V

+|(2|V −|+ 1), with some very minor modifica-
tions to the algorithm.

Naturally, an even faster algorithm for CSP(Γ
(3)
<) could

improve this even further, making it interesting to investi-
gate how far we could push this bound. To this aim, con-
sider the following reduction from the k-coloring problem
(kCP): given a graph (V,E) we begin by introducing k fresh
variables {c1, . . . , ck} and the constraints (c1 < c2), . . . ,
(ck−1 < ck). For every vertex xi ∈ V we then introduce
the constraints (c1 < xi ∨ c1 = xi) ∪ (ck > xi ∨ ck = xi)

and
⋃k−1
j=1 (cj > xi ∨ cj = xi ∨ cj+1 = xi ∨ ck+1 < xi), en-

suring that every xi is equal to one cj . Last, for each edge
(x, y) ∈ E we introduce a constraint (x < y ∨ x > y). It is
easy to see that this reduction is correct, and put together, an
O(cn) time algorithm for CSP(Γ

(3)
<) for c < 2 would then

imply an O(cn) time algorithm for kCP for every k > 0, and
would thus beat the currently leading O∗(2n) time algorithm
by Björklund and Husfeldt [2009].

4 Allen’s Interval Algebra
We now present an O∗((1.0615n)n) algorithm for CSP(A),
and thus beat the O∗((1.5922n)n) algorithm from Section 3
by a substantial margin. Similar to Γ

(3)
< , A is symmetric in

the following sense: for every R ∈ A there exists R′ ∈ A
such that a constraintR(x1, x2) holds if and only ifR′(x2, x1)
holds. This simplifies our notations when talking about indi-
vidual constraints, as there is no need to have different cases
for R(x1, x2) and R′(x2, x1). Recall from Lemma 4, and the
subsequent remark, that any solution to a CSP(A) instance
(V,C) directly defines an ordered partition over V − ∪ V +.
We begin by defining the analogous notion of a record.

Definition 8. A record for a CSP(A) instance (V,C) is a
tuple (Vok, V1, . . . , V`, V>) such that

1. (V1, . . . , V`, V>) is an ordered partitioning of
U ⊆ V − ∪ V + with some ranking function r,

2. x− <r x+ for all x−, x+ ∈ U ,

3. x− ∈ Vok if and only if x+ ∈ Vok, and

4. all constraints c(x, y) ∈ C such that x+ ∈ V` and
y−, y+ ∈ V1 ∪ . . . ∪ V` ∪ V> evaluate to true for r.

We will assume that if we create a tu-
ple (Vok, V1, . . . , V`, V>) where some set Vi,
1 ≤ i ≤ ` is empty, that we instead use the tuple
(Vok, V1, . . . , Vi−1, Vi+1, . . . , V`, V>), i.e. any empty
sets out of Vi, 1 ≤ i ≤ ` are simply ignored. This assumption
simplifies our discussion of tuples and records by hiding
unnecessary complications that have no impact on any results.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1876

Ignoring empty sets in this manner is often needed for
(V1, . . . , V`, V>) to be an ordered partition.

The point of records is to give us full knowledge of any
start- or end-point in Vi, 1 ≤ 1 ≤ `, while simultaneously
allowing us to maintain minimal knowledge about variables
we have already made sure are positioned such that any related
constraints are satisfied. Similarly, records also provides in-
formation about the start- and end-points we have yet to place.
Our algorithmic approach is now to build tuples inductively
from previous records, and to check if these tuples are records.
See Algorithm 2 for a full description. The main idea is that
once an interval has had both start- and end-point placed, and
we have made sure that all constraint that this interval was
part of are satisfied, it does no longer matter exactly where the
interval was placed, we can safely remove the interval from the
ordered partition, and thus reduce the amount of information
that needs to be stored. The algorithm thus keeps track of the
relations between all partially placed intervals, while ignoring
the positions of all already placed, and compared, ones. For
each end-point we are currently placing at line 8, we now
know the relation to all other unplaced, or partially placed,
intervals. For every interval placed before the ones we are
currently placing, we have already passed through the same
check, and can hence guarantee the any constraints containing
at least one of those intervals have already been satisfied.

Algorithm 2 DP algorithm for CSP(A).

1: function DP-IA-SOLVER(I = (V,C))
2: Let S ← {(∅, V − ∪ V +)}
3: for each record (Vok, V1, . . . , V`, V>) ∈ S do
4: if V> = ∅ then
5: return ’True’
6: end if
7: for each set v ⊆ V> such that either

x− ∈ v and x+ 6∈ v, or
x+ ∈ v and x− 6∈ (V> ∪ v)

do
8: if (Vok, V1, . . . , V`, v, V> \ v) is a record

then
9: Let t← {x−, x+ |x+ ∈ v ∩ V + and

x− ∈ (V1 ∪ . . . ∪ V`) ∩ V −}
10: S ← S ∪ (Vok ∪ t, V1 \ t, . . . , V` \ t,

v \ t, V> \ v)
11: end if
12: end for
13: end for
14: return ’False’
15: end function

Lemma 9. Algorithm 2 returns ’True’ if and only if a given
CSP(A) instance I = (V,C) is a yes-instance.

Proof. If I is a yes-instance, we know from Lemma 4 that
there exists some ordered partition (S1, . . . , Sγ) with ranking
function r satisfying I . Choosing v, at Line 7, such that v = Si
when we have a record (Vok, V1, . . . , Vi−1, V>) with Vj ⊆ Sj
for all 1 ≤ j ≤ i− 1 and V> = Si∪. . .∪S`, will construct the

new record (Vok, V1, . . . , Vi−1, v, V> \ v), at Line 8. Specifi-
cally the ordered partition (Vok, V1, . . . , Vi−1, v, V> \ v) with
ranking function f , will always be such that x± �f y± if
x± �r y±, for all x± ∈ v and y± ∈ (V + ∪ V −), and also for
all x± ∈ V1 ∪ . . . ∪ Vi−1 ∪ v, and y± ∈ (V + ∪ V −) \ Vok.
Hence, the ranking functions agree for all cases where at least
one variable is in V1∪ . . .∪Vi−1∪v. Since the algorithm does
not move pairs (x−, x+) to Vok until x+ ∈ v, i.e. x− ∈ Vj for
some j until x+ ∈ v occurs, x+ �f z if and only if x+ �r z
for all z ∈ (V − ∪ V +), and similarly for x−. Given the defi-
nition of r, all constraints in C evaluates to true for r, so all
constraints c(x, y) with y+, y− ∈ (V −∪V +)\Vok, will eval-
uate to true for f , too. Since all intervals in x ∈ V will have
x+ ∈ v at one point when constructing records in this manner,
every constraint in C evaluate to true for some f . Hence, a
record where V> = ∅ will be reached, and the algorithm will
return ’True’.

If Algorithm 2 returns ’True’, there exists a sequence
of records Sseq = (S1, . . . , S`), constructed at Line 8,
going from (∅, V − ∪ V +) to some (Vend, . . . , ∅). Let
vseq = (v1, . . . , v`) with ranking function r, be the sequence
of the v sets chosen at Line 7 corresponding to Sseq. For any
pair of intervals x, y ∈ V with x+ ≤r y+, we will have
a record s = (Vok, V1, . . . , v, V>) ∈ Sseq with x+ ∈ v
and y+ ∈ (v ∪ V>). Let f be the ranking function for
(V1, . . . , v, V>), any constraint c(x, y) ∈ C will evaluate to
true for f , since s is a record. For all z, w ∈ V1∪. . .∪v∪{y+}
then z �f w implies z �r w given the ordering we choose our
v sets. Since this is true for any pair x, y ∈ V , r is a model
for I . Hence, Algorithm 2 returns ’True’ if and only if I is a
yes-instance.

Lemma 10. Algorithm 2 has an upper bound on run time
complexity of O∗(2nOBN(n)) or O∗((1.0615n)n) for an n-
variable CSP(A) instance I = (V,C).

Proof. Checking whether a tuple is a record in line 8 is obvi-
ously polynomial. The size of V1 ∪ . . . ∪ V` in a record stored
in S, can never grow bigger than n, as it can only contain
subsets of V −. There are

(
n
m

)
ways to select m variables out

of V − for V1 ∪ . . .∪V`, and then OBN(m) different ordered
partitions of thosem variables. The remaining n−m variables
from V − can either be placed into Vok or into V>, in 2n−m

different ways. Similarly, the m variables in V + bound to
the m chosen variables from V −, can be placed in either v
(always at the very end of the ordered partition, so no extra
ordering cost for these), or in V>, giving another 2m. This
gives the equation

∑n
m=0

(
n
m

)
OBN(m)2m. Simplifying this,

and ignoring polynomial factors, gives
n∑

m=0

n
e
n

�
�m
e
m n−m

e

n−m
��m

�e ln 2

m

2n < n2nOBN(n)

which concludes the proof.

5 Higher Dimensions Algebra
The d-dimensional block algebra is a well-known extension of
the interval algebra where the basic objects are d-dimensional

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1877

boxes, related by interval constraints over the respective di-
mensions [Dylla et al., 2017].

Definition 11. The d-dimensional block algebra (Ad) is a
constraint language of arity two, where each variable rep-
resents a set of d independent intervals X = (X1, ..., Xd).
Each basic relation is as a set of d relations from A, one over
each dimension, such that two different dimensions are never
compared.

For example, the A2 relation X <,= Y means that X
precedes Y in the first dimension, and equals Y in the second.
While literature specifically about Ad becomes more sparse
for larger values of d, using A2 to describe relations in the
plane is not unheard of, e.g. [Papadias and Theodoridis, 1997;
Zhang and Renz, 2014; Liu et al., 2009]. Intuitively, we can
also see how A3 and A4 can be used for relations in a three-
dimensional space, or in a three-dimensional space together
with a time dimension.

Inspired by the improved algorithm for CSP(A) from Sec-
tion 4 we now turn to the problem of constructing an improved
algorithm for CSP(Ad) for every d ≥ 2. This problem can be
brute forced by enumerating all possible orderings over the
start- and end-points in the induced intervals, but to the best
of our knowledge no faster algorithm has been detailed in the
literature.

For CSP(Ad) we will treat the variables in V as tuples con-
taining one pair of start- and end-points for each dimension,
i.e. x = (x−1 , x

+
1 , ..., x

−
d , x

+
d) ∈ V . In addition, we extend

the sets V + and V − to also contain the numbering of the
dimension, i.e., let V −i = {x−i | (x

−
1 , x

+
1 , ..., x

−
d , x

+
d) ∈ V },

V +
i = {x+i | (x

−
1 , x

+
1 , ..., x

−
d , x

+
d) ∈ V }, 0 < i ≤ d. Then,

similar to how a solution to a CSP(A) instances defines an
ordered partition over V − ∪ V +, a solution to a CSP(Ad)
instance defines d ordered partitions, one for each pair
V −i ∪ V

+
i , 0 < i ≤ d. Our idea is then to enumerate all or-

dered partitions for all dimensions but one, and then solve the
remaining instance as a CSP(A) instance. If the dimensions
is d ≤ 1, this leads to a complexity of O∗(2dnOBN(n)2d−1)
using Algorithm 2 to solve the constructed CSP(A) instances.

Theorem 12. CSP(Ad) is solvable in O∗(2dnOBN(n)2d−1)
time.

Proof. While d > 1, we enumerate over each ordered parti-
tions over V −d ∪ V

+
d such that x− < x+ is true for all x ∈ V .

For each such ordered partition we can, as all relations in
that dimension are known, transform I to a new CSP(Ad−1)
instance Id−1. We then repeat this recursively until d = 1 and
then solve I1 using Algorithm 2. Hence, if Algorithm 2 returns
’True’ for some I1 we have a set of d ordered partitions that
satisfies I . Similarly, since we enumerate all possible combi-
nations of ordered partitions until we reach I1, and since we
know from Lemma 9 that Algorithm 2 is correct, it is possible
to find a combination of ordered partitions satisfying I if I is
a yes-instance.

For the complexity, there are OBN(2n)d−1 ordered par-
titions over V −i ∪ V

+
i for 1 < i ≤ d. However, only one in

2(d−1)n of these ordered partitions will obey x−i < x+i for all
xi ∈ V and 1 < i ≤ d. Since the complexity of Algorithm 2
is in O∗(2nOBN(n)) (Lemma 10) we obtain a run time of

O∗(2dnOBN(n)2d−1) or O∗(2dn(0.5307n)(2d−1)n) after a
few simplifications.

6 Discussion and Conclusion
We studied the fine-grained complexity of temporal CSPs,
with a particular focus on Allen’s interval algebra, where we
managed to obtain an O∗((1.0615n)n time algorithm. As re-
marked, this is a vast improvement over the 2O(n logn) time
algorithm by Jonsson and Lagerkvist [2017]. We also ex-
tended the algorithm to yield an improved upper bound for
the d-dimensional block algebra which is substantially faster
than the naive enumeration algorithm. Importantly, we demon-
strated that dynamic programming appears to be a generally
usable method for improved algorithms of qualitative rea-
soning problems. Let us now briefly discuss a few potential
directions for future research.
CSP(A) in single-exponential time? The holy grail in
exponential-time algorithms is to obtain single-exponential
time algorithms of the form O∗(cn) for some constant c > 1.
Thus, can CSP(A) be solved in single-exponential time? If
this appears insurmountable, might it then be possible to prove
stronger lower bounds than an expected non-subexponential
running time [Jonsson and Lagerkvist, 2018], assuming either
the exponential-time hypothesis or its stronger variant?
CSPs over partial orders. CSP(A) is a special case of a
broader class of CSPs, namely constraint languages consisting
of binary, pairwise disjoint and jointly exhaustive relations
containing a strict partial order satisfying certain additional
properties [Jonsson and Lagerkvist, 2018]. For example, the
region connection calculus is also included in this class. Can
our dynamic programming algorithms be adapted to problems
of this form, and might it even be possible to find a uniform
algorithm which solves all problems in this class faster than
the naive enumeration algorithm? Even more ambitiously,
does there exist an NP-hard problem in this class which is
solvable in single-exponential time?
The case for higher dimensions. Similar to how Algo-
rithm 2 solves CSP(A) directly, rather than via temporal
constraints, there is an extension of Algorithm 2 for solv-
ing higher dimensions directly, without having to fixate all
but one dimensions. This can be done by extending Defi-
nition 8 to contain d-ordered partitions and by not moving
variables from the partitions to the Vok set until every part of a
d-dimensional variable have been fixed in the partitions. How-
ever, this gives a O∗((d2d+

1
d (2d−1

2d)2d−1)nOBN(n)2d−1)
run time, and hence, unexpectedly, results in a worse bound
than Theorem 12. Thus, does there exist a faster, direct algo-
rithm for CSP(Ad)?

Acknowledgements
We thank Peter Jonsson for helpful discussions on the topic
of the paper, and the anonymous reviewers for several insight-
ful comments. The first author is partially supported by the
National Graduate School in Computer Science (CUGS), Swe-
den. The second author is partially supported by the Swedish
Research Council (VR) under grant 2019-03690.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1878

References
[Allen and Koomen, 1983] J. F. Allen and J. A. G. M.

Koomen. Planning using a temporal world model. In
Alan Bundy, editor, Proceedings of the 8th International
Joint Conference on Artificial Intelligence (IJCAI-1983).
Karlsruhe, FRG, August 1983, pages 741–747. William
Kaufmann, 1983.

[Allen, 1983] J. F. Allen. Maintaining knowledge about tem-
poral intervals. Communications of the ACM, 26:510–521,
01 1983.

[Andonov et al., 2000] R. Andonov, V. Poirriez, and S. Ra-
jopadhye. Unbounded knapsack problem: Dynamic pro-
gramming revisited. European Journal of Operational
Research, 123(2):394 – 407, 2000.

[Björklund et al., 2009] A. Björklund, T. Husfeldt, and
M. Koivisto. Set partitioning via inclusion-exclusion. SIAM
Journal on Computing, 39(2):546–563, 2009.

[Bodirsky and Kára, 2010] M. Bodirsky and J. Kára. The
complexity of temporal constraint satisfaction problems.
Journal of the ACM, 57(2):9:1–9:41, 2010.

[Dabrowski et al., 2020] K. K. Dabrowski, P. Jonsson, S. Or-
dyniak, and G. Osipov. Fine-grained complexity of tempo-
ral problems. In Diego Calvanese, Esra Erdem, and Michael
Thielscher, editors, Proceedings of the 17th International
Conference on Principles of Knowledge Representation and
Reasoning (KR-2020), pages 284–293, 2020.

[Denis and Muller, 2011] P. Denis and P. Muller. Predicting
globally-coherent temporal structures from texts via end-
point inference and graph decomposition. In Toby Walsh,
editor, Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence (IJCAI-2011), Barcelona,
Catalonia, Spain, July 16-22, 2011, pages 1788–1793. IJ-
CAI/AAAI, 2011.

[Dorn, 1995] J. Dorn. Dependable reactive event-oriented
planning. Data & Knowledge Engineering, 16(1):27–49,
1995.

[Dylla et al., 2017] F. Dylla, J. H. Lee, T. Mossakowski,
T. Schneider, A. Van Delden, J. Van De Ven, and D. Wolter.
A survey of qualitative spatial and temporal calculi: Al-
gebraic and computational properties. ACM Computing
Surveys (CSUR), 50(1):7:1–7:39, April 2017.

[Golumbic and Shamir, 1993] M. C. Golumbic and
R. Shamir. Complexity and algorithms for reason-
ing about time: A graph-theoretic approach. Journal of the
ACM, 40(5):1108–1133, 1993.

[Huang et al., 2013] J. Huang, J. Jingshi Li, and J. Renz. De-
composition and tractability in qualitative spatial and tem-
poral reasoning. Artificial Intelligence, 195:140–164, 2013.

[Impagliazzo and Paturi, 2001] R. Impagliazzo and R. Paturi.
On the complexity of k-SAT. Journal of Computer and
System Sciences, 62(2):367 – 375, 2001.

[Jonsson and Lagerkvist, 2017] P. Jonsson and V. Lagerkvist.
An initial study of time complexity in infinite-domain con-
straint satisfaction. Artificial Intelligence, 245:115–133,
2017.

[Jonsson and Lagerkvist, 2018] P. Jonsson and V. Lagerkvist.
Why are CSPs based on partition schemes computationally
hard? In 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS-2018), pages
43:1–43:15, 2018.

[Liu et al., 2009] W. Liu, S. Li, and J. Renz. Combining
rcc-8 with qualitative direction calculi: Algorithms and
complexity. pages 854–859, 01 2009.

[McDiarmid, 2003] C. McDiarmid. On the span in channel
assignment problems: bounds, computing and counting.
Discrete Mathematics, 266(1):387 – 397, 2003. The 18th
British Combinatorial Conference.

[Mudrová and Hawes, 2015] L. Mudrová and N. Hawes.
Task scheduling for mobile robots using interval algebra.
In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA-2015), pages 383–388.
IEEE, 2015.

[Nebel, 1997] B. Nebel. Solving hard qualitative temporal
reasoning problems: Evaluating the efficiency of using the
ord-horn class. Constraints - An International Journal,
1(3):175–190, 1997.

[Papadias and Theodoridis, 1997] D. Papadias and
Y. Theodoridis. Spatial relations, minimum bound-
ing rectangles, and spatial data structures. International
Journal of Geographical Information Science, 11(2):111–
138, 1997.

[Pelavin and Allen, 1987] R. N. Pelavin and J. F. Allen. A
model for concurrent actions having temporal extent. In
Kenneth D. Forbus and Howard E. Shrobe, editors, Pro-
ceedings of the 6th National Conference on Artificial Intel-
ligence (AAAI-1987). Seattle, WA, USA, July 1987, pages
246–250. Morgan Kaufmann, 1987.

[Pham et al., 2008] D. Nghia Pham, J. Thornton, and A. Sat-
tar. Modelling and solving temporal reasoning as proposi-
tional satisfiability. Artificial intelligence, 172(15):1752–
1782, 2008.

[Sioutis and Janhunen, 2019] M. Sioutis and T. Janhunen. To-
wards leveraging backdoors in qualitative constraint net-
works. In Proceedings of the 42nd German Conference on
AI (KI-2019), pages 308–315, 2019.

[Song and Cohen, 1988] F. Song and R. Cohen. The inter-
pretation of temporal relations in narrative. In Howard E.
Shrobe, Tom M. Mitchell, and Reid G. Smith, editors, Pro-
ceedings of the 7th National Conference on Artificial In-
telligence (AAAI-1988), St. Paul, MN, USA, August 21-26,
1988, pages 745–750. AAAI Press / The MIT Press, 1988.

[Thornton et al., 2004] J. Thornton, M. Beaumont, A. Sattar,
and M. J. Maher. A local search approach to modelling
and solving interval algebra problems. Journal of logic and
computation, 14(1):93–112, 2004.

[Zhang and Renz, 2014] P. Zhang and J. Renz. Qualitative
spatial representation and reasoning in angry birds: The
extended rectangle algebra. In Proceedings of the Four-
teenth International Conference on Principles of Knowl-
edge Representation and Reasoning, page 378387. AAAI
Press, 2014.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1879

