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Abstract
Although deep learning has demonstrated its out-
standing performance on image classification, most
well-known deep networks make efforts to opti-
mize both their structures and their node weights
for recognizing fewer (e.g., no more than 1000) ob-
ject classes. Therefore, it is attractive to extend
or mixture such well-known deep networks to sup-
port large-scale image classification. According to
our best knowledge, how to adaptively and effec-
tively fuse multiple CNNs for large-scale image
classification is still under-explored. On this ba-
sis, a deep mixture algorithm is developed to sup-
port large-scale image classification in this paper.
First, a soft spectral clustering method is devel-
oped to construct a two-layer ontology (group layer
and category layer) by assigning large numbers of
image categories into a set of groups according
to their inter-category semantic correlations, where
the semantically-related image categories under the
neighbouring group nodes may share similar learn-
ing complexities. Then, such two-layer ontology is
further used to generate the task groups, in which
each task group contains partial image categories
with similar learning complexities and one partic-
ular base deep network is learned. Finally, a gate
network is learned to combine all base deep net-
works with fewer diverse outputs to generate a mix-
ture network with larger outputs. Our experimen-
tal results on ImageNet10K have demonstrated that
our proposed deep mixture algorithm can achieve
very competitive results (top 1 accuracy: 32.13%)
on large-scale image classification tasks.

1 Introduction
As we know, by learning high-level features and a N -way
softmax in an end-to-end multi-layer manner, deep learning
[LeCun et al., 1998; Sun et al., 2014; Sun et al., 2019; Zhang
et al., 2019a; Ma et al., 2020] has adequately demonstrated
its outstanding performance on classification because of its

†Ming He and Guangyi Lv contributed equally to this work.
∗Guihua Zeng is the corresponding author.

strong ability on learning highly invariant and discrimina-
tive features. Unfortunately, most well-known deep networks
[Krizhevsky et al., 2012; Simonyan and Zisserman, 2014;
Howard et al., 2019] optimize both their structures (i.e., num-
bers of layers and units in each layer) and their node weights
for recognizing fewer (e.g.,≤ 1,000) object classes. Thus it is
very attractive to extend such deep networks (for 1,000 object
classes) to support large-scale image classification.

Since both the high-level features for image content repre-
sentation and the 1, 000-way softmax for image classification
are trained jointly in an end-to-end fashion, simply enlarg-
ing the final outputs of some well-designed deep CNNs (from
1, 000-way softmax into N -way one, N ≥ 10, 000) may not
be an optimal solution for large-scale image classification.
One potential solution is to use deep mixture [Jacobs et al.,
1991; Tang et al., 2012; Masoudnia and Ebrahimpour, 2014;
Ge et al., 2016] to combine a set of base deep CNNs. Unfor-
tunately, all the existing deep mixture techniques focus on
combining multiple deep CNNs which are trained to clas-
sify images into the same set of object classes, e.g., they just
combine multiple base deep CNNs with the same task space
(same list of outputs). Without supporting effective combi-
nation of multiple base deep CNNs with diverse outputs, we
cannot leverage the well-designed deep CNNs for 1,000 ob-
ject classes to support large-scale image classification, e.g.,
classifying images into tens of thousands of categories. Ob-
viously, it is not straightforward to combine a set of base deep
CNNs which are trained to classify images into different sub-
sets of tens of thousands of categories (i.e., their task spaces
are different and their outputs are diverse).

According to the best of our knowledge, there is only one
work [Zhao et al., 2018] focusing on combining a set of base
deep CNNs, which are originally trained to classify images
into different subsets of tens of thousands of atomic object
classes. A deep mixture of diverse experts algorithm (DMDE,
for short) is developed for seamlessly combining a set of base
deep networks (i.e., AlexNet) with diverse 1,001-D outputs
to generate a mixture network with 7,756-D outputs under
the help of a proposed stacking function. With this method,
DMDE has been proved to achieve satisfactory performance,
however, the design of the stacking function is based on sev-
eral intuitive observations, which are meaningful but may be
a little bit ad-hoc.

Inspired by these observations, in this paper, a new deep
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mixture algorithm is developed to support large-scale image
classification. To be specific, it contains the following key
components: (a) a soft spectral clustering method is devel-
oped to construct a two-layer ontology (group and category
layer) by assigning large numbers of image categories into
a set of groups (with certain degrees of inter-group overlap-
ping) according to their inter-category semantic correlations.
It is worth emphasizing that the overlapping among tasks are
adaptively generated, which could well support inter-group
message passaging among different tasks; (b) such two-layer
ontology is used to generate a set of task groups, where
each task group contains fewer image categories with similar
learning complexities and one particular base deep network
is learned; (c) a gate network is learned to combine all these
base deep networks with fewer diverse outputs to generate a
mixture network with much larger outputs.

2 Related Research
In this section, we review the most relevant researches on
deep learning and mixture of deep CNNs respectively.

2.1 Deep Learning
By learning high-level features and a N -way softmax jointly
in an end-to-end multi-layer manner, deep learning [Hinton
et al., 2006; Jarrett et al., 2009; Krizhevsky et al., 2012;
Sun et al., 2014; Borisyuk et al., 2018; Zhu et al., 2020;
Wang et al., 2020; Li et al., 2020] has demonstrated its out-
standing performance on significantly boosting the accuracy
rates for many tasks. Most well-known deep CNNs (such as
AlexNet, VGG and ResNet with 1,000-D outputs) optimize
both their network structures (numbers of layers and units in
each layer) and their node weights for classifying images into
1,000 object classes, and they cannot simply be used to sup-
port large-scale image classification (i.e., which has to rec-
ognize tens of thousands of image categories). One intuitive
solution is to simply enlarge the network structures (such as
enlarging the widths and depths of the CNNs) to configure
huge deep CNNs with tens of thousands of outputs, but it may
require huge computation cost because the choices of the op-
timal network structures have historically been relegated to
manual optimization, which relies in human intuition and do-
main knowledge in conjunction with extensive trials and er-
rors. It is worth noting that when more layers and more units
per layer are used to configure a huge deep CNNs, the num-
ber of node weights being fitted will increase dramatically,
thus the number of training samples for each image category
should be increased. In addition, the pursuit for very deep
networks (more layers) is met with a diminishing return and
increased training difficulty, and widening a network would
result in a quadratic growth in both computational cost and
memory demand. Thus there is no guarantee that learning
huge deep CNNs (with more layers and more units on each
layer) can allow us to achieve higher accuracy rates on large-
scale image classification. Obviously, simply increasing the
softmax outputs (from 1, 000-way softmax into N -way one,
N ≥ 10, 000) may not be able to achieve good results be-
cause the underlying deep CNNs (learned for 1,000 classes)
could be insufficient and inefficient to extract discriminative
representations for tens of thousands of image categories.

2.2 Mixture of Deep CNNs
To improve the accuracy rates for image classification, tra-
ditional deep mixture techniques aim to combine the predic-
tions from multiple base deep CNNs when they are trained
to classify images into the same set of object classes [Jacobs
et al., 1991; Tang et al., 2012; Masoudnia and Ebrahimpour,
2014; Ge et al., 2016; Zhao et al., 2018; Rao et al., 2018;
Zhang et al., 2019b; Nguyen et al., 2019; Ma et al., 2018;
Zhang et al., 2020]. In order to enhance the diversity of the
base deep CNNs being combined, they are usually trained
over different sample subsets, so that they may make their
errors in different ways or compensate each other. Ge et al.
[Ge et al., 2016] developed a mixture of deep CNNs (MixD-
CNN) by partitioning the training images into multiple sub-
sets and learning one particular base deep CNNs for each im-
age subset. In such MixDCNN approach, each of these base
deep CNNs concentrated on learning the subtle differences
for the same set of object classes, thus all these base deep
CNNs shared the same task space. Recently, Zhao et al [Zhao
et al., 2018] proposed a deep mixture of diverse experts al-
gorithm by seamlessly combining a set of base deep CNNs
with diverse 1,001-D outputs to generate a mixture network
with 7,756-D outputs. Unfortunately, the underlying stacking
function in DMDE was designed according to some intuitive
observations, which were meaningful but may be a little ad-
hoc. On the other hand, our deep mixture algorithm learns
a gate network for adaptively combining a set of base deep
networks with fewer diverse outputs to generate a mixture
network with much larger outputs (i.e., 10,184-D outputs for
handling ImageNet10K set with 10,184 image categories).

For the sake of emphasis, we would highlight the main
three improvements of our proposed model DeepME com-
pared with DMDE. First of all, in DMDE, each image cate-
gory is assigned to a particular task group, and the overlap-
ping percent among task groups is set manually, which is lack
of adaptive for generating task groups. However, in our pa-
per, the proposed soft spectral clustering method could as-
sign each category to several task groups according to its se-
mantic meaning. What’s more, the overlapping part among
tasks are adaptively generated, which could better support
inter-group message passaging among different task groups.
Second, in DMDE, the base deep network only introduces
the inter-category visual similarity to characterize the inter-
category visual similarities. Nevertheless, DeepME intro-
duces both inter-category visual similarity and semantic simi-
larity, which could characterize the inter-category visual sim-
ilarity and semantic similarity at the same time. Finally, the
design of the stacking function is just based on several intu-
itive observations in DMDE. In DeepME, the well-designed
gate network enables DeepME with three strengths: 1) The
gate network could depress the irrelevant base deep networks
and promote the relevant base deep networks; 2) The gate
network could address the overconfidence issue and guaran-
tee that the best-matched image category for each image has
higher probability than others in a reasonable margin; 3) The
gate network could guarantee that each base deep network is
specialized to recognize different subsets of ImageNet10K.
The above three strengths contribute to improving DeepME’s
classifying performance and robustness significantly.
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Figure 1: The flowchart of our proposed model, i.e., DeepME.

3 Deep Mixture
To support large-scale image classification, a deep mixture
model is developed and it contains the following key com-
ponents as shown in Figure 1: (a) a Soft Spectral Clustering
(SSC) method is first developed to construct a two layer on-
tology by assigning large numbers of image categories into a
set of groups according to their inter-category semantic corre-
lations; (b) such two-layer ontology is used to generate a set
of task groups, where each task group contains semantically-
related image categories with similar learning complexities;
(c) one particular base deep network is learned for each task
group and a gate network is learned for combining all base
deep networks with fewer diverse outputs to generate a mix-
ture network with much larger outputs.

3.1 Adaptive Task Assignment
We use ImageNet10K data set [Deng et al., 2009] with
10,184 image categories to evaluate our deep mixture algo-
rithm on large-scale image classification. To apply traditional
well-known deep networks with 1,000-D outputs over Ima-
geNet10K image set, we first need to partition its 10,184 im-
age categories into a set of task groups. To learn more dis-
criminative base network for each task group and enhance the
separability of the image categories in the same task group,
we do expect that the image categories with similar learning
complexities can be assigned into the same task group, thus it
is very attractive to develop new approaches for assigning the
semantically-related image categories with similar learning
complexities into the same task group. On this basis, a soft
spectral clustering method is first developed to construct a
two-layer (group layer and class layer) ontology by assigning
10,184 image categories into a set of groups according to their
inter-category semantic similarities, where the semantically-
related image categories on the neighboring group nodes of
our two-layer ontology may share similar learning complexi-
ties. Inspired by spectral clustering [Bach and Jordan, 2004]
and fuzzy C-means [Bezdek et al., 1984], we develop SSC
method, which can assign some uncertain image categories
into multiple groups to enable inter-group information shar-
ing and transmission in our deep mixture algorithm.

To support semantic clustering of image categories, we first
acquire the similarity matrix Θ for all the image categories.
As introduced in [Deng et al., 2009], 10,184 image categories

in ImageNet10K are organized by the semantic hierarchy of
WordNet [Miller, 1995]. Thus a semantic similarity matrix Θ
is calculated and its element θi,j is calculated by the Leacock-
Chodorow similarity [Leacock and Chodorow, 1998]:θi,j =

− log
di,j
D , where di,j is the shortest path length that connects

the category i and the category j over the WordNet ontology,
D is the maximum depth of the WordNet ontology in which
the category i and j occur.

When the matrix Θ is available, the devised SSC method
is utilized to partition 10,184 image categories into T clusters
(groups): if pc,t ≥ δ, the category c is assigned to cluster
(group) t, otherwise, the category is not assigned to the cluster
(group) t, where pc,t is the soft probability of the category c
respect to the cluster (group) t. It is worth noting that both
T and δ are determined experimentally via cross-validation.
Finally, we acquire 15 groups for ImageNet10K.

To exhibit the performance of our proposed SSC method
intuitively, we visualize the clustering results of Ima-
geNet10K in Figure 2, where the blue lines show that these
image categories are overlapped by no less than two clusters
(groups). From Figure 2, we can draw two main observa-
tions: (a) Majority of sub-categories belonging to the same
parent category on WordNet have been clustered in the same
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Figure 2: The visualization of ImageNet10K’ results.
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group, which means that the semantically-related image cate-
gories are assigned into the same group; (b) The overlapping
categories, which are assigned into multiple groups simul-
taneously, can establish inter-group correlations and support
inter-group message passaging among different task groups.

3.2 Learning Base Deep Networks
Given a task group with C image categories, a base deep net-
work is learned. It is worth noting that all these well-known
deep networks can be used to configure our base deep net-
work. In this paper, we directly utilize the network structure
of VGG16 [Simonyan and Zisserman, 2014] to configure the
base deep network with C outputs. Then, the objective func-
tion can be denoted as:

min
W

µ

C∑
c=1

Rc∑
l=1

`lc + λ1tr(WW T )

+
λ2

2
tr(WL(Ω)W T ) +

λ3

2
tr(WL(Θ)W T ), (1)

`lc = −I{ylc}log
exp(wT

c V GG(xlc) + b)∑C
i=1 exp(w

T
i V GG(xli) + b)

, (2)

where Rc is the number of images for the category c, tr(·)
is the matrix’s trace, W = (w1,w2, · · · ,wC) indicates the
model’s parameters for C categories, µ is the penalty param-
eter, λ1, λ2 and λ3 represent the regularization terms. `lc is
the training error rate formulated by the softmax regression.
I{ylc} is the indication function. If (xlc, y

l
c) is the positive

training sample for the category c (i.e., ylc = 1), I{ylc} is
equal to 1. Conversely, if (xlc, y

l
c) is not the positive training

sample (i.e., ylc = 0), I{ylc} is equal to 0.
Inspired by [Zhao et al., 2018], we also introduce theC×C

relevant inter-category visual similarity matrix Ω, which is
used to characterize the inter-category visual similarities for
C categories in the same task group. Except for introduc-
ing Ω to characterize the inter-category visual similarities, we
also employ a C × C relevant inter-category semantic simi-
larity matrix Θ as prior knowledge to enforce the learning of
W . The element θi,j of Θ is extracted from Θ which has
been calculated in Section 3.1. Different from the similar-
ity matrix Ω, Θ is not iteratively updated during the network
training process. And L is the Laplacian matrix of the matrix
Ω or Θ. If two image categories i and j have larger inter-
category visual or semantic similarity, their model parameters
wi and wj may share some common parts.

Finally, we fine-tune the model by optimizing the above
function, i.e., Eq. (1). Then the gradients are back-
propagated to refine the weights for the base network.

3.3 Gate Network Training
To generate the network F(x) with 10,184-D outputs and en-
hance its discrimination ability, we train: (a) τ base deep net-
works {f1(x), · · · ,ft(x), · · · ,fτ (x)} with the set of model
parameters {We,t}τt=1; and (b) a τ -D gate networkΘ = {φ1,
· · · , φt, · · · , φτ}. Such mixture network F(x) is defined as:

F(x) =
τ∑
t=1

φtft(x),

τ∑
t=1

φ2
t = 1, (3)

where φt is the confidence score for the t-th base network
ft(x). In consideration of the training/gradient’s stability,
we apply the L2-norm to φt. ft(x) =

{
f1t (x), · · · , f

j
t (x),

· · · , fMt (x)
}

denotes the t-th base network with M -D out-

puts and f jt (x) is the underlying predictor for the j-th image
category in the t-th task groupGt. Thus the τ -D gate network
Θ = {φ1, · · · , φt, · · · , φτ} is learned to determine the in-
dividual confidences and contributions of τ base network on
generating the mixture network F(x), and all the images for
N = 10, 184 categories are used to learn the gate network.

Given the training set D with R × N i.i.d images that
belong to N = 10, 184 categories in ImageNet10K, D ={
xlj , y

l
j

}
, l ∈ {1, · · · , R}, j ∈ {1, · · · , N}, the objective

function for learning the mixture network is defined as:

min
φ,We

L(D) =
τ∑
t=1

ξ(We,t,φt) +

τ∑
t=1

τ∑
h=1

`(φt,φh)

+

R∑
l=1

N∑
j=1

αmax
(
Popt(x

l
j , cj)− Popt(xlj , ylj) + β, 0

)
,

ξ(We,t, φt) =
φtF (We,t)∑τ
t=1 φ

T
t φt

,

(4)

whereWe,t is parameters of t-th base deep network, F (We,t)
is the loss function of t-th base deep network as shown in
Eq.(1), φt and φh are used to indicate the confidence scores
for the t-th and h-th base deep network ft(x) and fh(x), `(·)
is the loss function to emphasize the confidence consistency
among the predictions from two base deep networks ft(x)
and fh(x) when they share some common image categories
because of inter-group task overlapping, Popt(xlj , cj) is the
prediction probability for the training image xlj to be identi-
fied as the image category cj and it is aggregated over τ base
deep networks, β is a hyper-parameter to denote the confi-
dence margin, α is a hyper-parameter that is used to make
trade-off for the importance of the margin-based loss:

Popt(x
l
j , cj) =

τ∑
t=1

I{ylj , cj}φtf jt (x
l
j),

Popt(x
l
j , y

l
j) =

τ∑
t=1

I{ylj , 1− cj}φtf jt (x
l
j),

(5)

φjt =
1

R

R∑
l=1

I{ylj , cj}
exp(W T

g,tx
l
j + b)∑M

i=1 exp(W
T
g,ix

l
i + b)

,

φjh =
1

R

R∑
l=1

I{ylj , cj}
exp(W T

g,hx
l
j + b)∑M

k=1 exp(W
T
g,kx

l
k + b)

,

(6)

`(φt,φh) =
∑

cj∈Gt∩Gh

H(φjt , φ
j
h), (7)

where φjt is the confidence score for identifying the j-th cat-
egory in the t-th task group Gt, Wg is the parameters of the
gate network, Gt ∩ Gh is used to indicate the common set
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of the image categories that are shared in two task groups
Gt and Gh, H(φjt , φ

j
h) is the Hamming distance to measure

the dissimilarity between the confidence scores φjt and φjh for
two base deep networks ft(x) and fh(x) on predicting their
commonly-shared image category cj .

This loss function in Eq.(4) is used to learn τ base networks
and a τ -D gate network jointly for generating the network
F(x), and it has three parts:

(a) The first part aims to minimize the loss of the relevant
base deep network.

(b) The second part is the gate network loss to emphasize
that: (1) for the same training image xlj , its best-matched
category cj can be identified correctly by multiple base
network (cj is assigned into multiple task groups because
of inter-group task overlapping), thus the corresponding
base deep network should have good consistency on their
confidence scores on predicting their commonly-shared
image category cj ; (2) for τ base deep networks, their in-
dividual contributions on the mixture network largely de-
pend on their confidences. Thus the τ -D gate network is
learned to depress the irrelevant base deep networks (i.e.,
the task groups do not contain the corresponding image
category) and promote the relevant base deep networks
(i.e., the task groups contain the corresponding image cat-
egory). In the training time, when the corresponding im-
age category for a given image belongs to the current base
deep network, its confidence should be promoted, other-
wise, it should be treated as irrelevant base deep network
and its confidence should be depressed. Thus such confi-
dence scores φt can be treated as a good factor to decide
which deep networks are more reliable and have more
contributions on the mixture network F.

(c) The third part aims to address the overconfidence issue
and guarantees that the best-matched category for each
image has higher probability than others in a reasonable
margin β, e.g., Popt(xlj , y

l
j) − Popt(x

l
j , cj) ≥ β. The

idea behind our hinge loss is to depress the irrelevant base
deep networks when they make wrong predictions with
high probability. Such confident hinge loss can guarantee
that each base deep network is trained to recognize differ-
ent subsets of 10,184 image categories in ImageNet10K.

4 Experimental Results
To evaluate the performance of our deep mixture model
(DeepME, for short), a series of experiments are conducted
on the chosen image classification benchmark dataset, which
is further compared to several state-of-the-art peer baselines.

4.1 Dataset
We performed experiments on ImageNet10K, which is one of
the most well-known image datasets for visual classification,
and contains 10,184 image categories and 9M images. Fur-
thermore, we use a 85%-5%-10% train/validation/test split.
In all experiments, we compute the top-1, top-3 and top-5 ac-
curacy per class and the average accuracy, which could well
evaluate the performance on image classification.

Besides, we provide details of the training process to ex-
hibit the experimental procedure more in-depth. In DeepME,
the training process consists of two parts as follows:

1. Training of the base CNN. We utilize Stochastic Gra-
dient Descent (SGD) with momentum 0.9 to learn the
base network. The training is divided into two stages:
1) The warm-up stage and 2) The fine-tuning stage. In
the warm-up stage, the learning rate is set from 0.01 to
0.001 in a exponentially decayed manner, while in the
fine-tuning stage it is set from 0.001 to 0.00001. We use
batch size 256 and L2 regularization for the correspond-
ing parameters with weight 0.0005.

2. Training of the gate network. To initialized the pa-
rameters of the gate network, GlorotNormal initializer
is adopted as suggested in [Orr and Müller, 2003]. SGD
with momentum is also used to learn the network, and
the batch size is 256. The initial learning rate is 0.001
and then exponentially decayed to 0.0001.

4.2 Baselines
We compare our deep mixture method (DeepME) with sev-
eral state-of-the-art methods and comparing experiments aim
to exploring the effectiveness of our proposed model. Thus
the baselines are used in our experiments as follows:

• VGG16-Ext. This is a straightforward but common
manner to utilize a pre-trained model to perform a new
task. The fully connected layer of VGG16 is enlarged
from a 1,000-way to a 10,184-way softmax. The train-
ing of VGG16-Ext is similar to the base model of our
method, i.e., first update the last layer to warm up, and
then fine-tune all layers until convergence.

• DMDE. As DMDE [Zhao et al., 2018] has achieved
the best performance based on mixture of experts so far,
we can directly know the performance of our proposed
DeepME model by comparing it with DMDE. For the
sake of fairness, we also replace the base network (i.e.,
AlexNet) of DMDE with VGG16.

• DeepME-NoSSC. To better evaluate the significance of
Soft Spectral Clustering in DeepME, we devise a base-
line named as DeepME-SSC without SSC, i.e. we obtain
the 15 clusters by random.

• DeepME-NoGate. To evaluate the significance of the
gate network, we devise a baseline named as DeepME-
NoGate without the gate network. In this setting, all the
expert networks (VGG16 in our case) contribute equally.

4.3 Overall Performance
First of all, to demonstrate the effect of our model, we present
the comparisons of average accuracy on top 1, top 3 and top
5 respectively, which is exhibited in Table 1. The results
clearly indicate that DeepME has achieved the best perfor-
mance among all baselines. Particularly, our model (32.13%)
moves a big step forward compared with DMDE (29.51%),
which is the best model based on mixture of experts so far.
This significant improvement roughly validates the effective-
ness of the soft clustering model (i.e., SSC) and the sophisti-
cated gate network. Particularly, compared with VGG16-Ext,
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Model Top 1 Top 3 Top 5
VGG16-Ext 27.62% 45.71% 53.17%

DMDE 29.51% 48.75% 56.49%
DeepME-NoSSC 20.24% 40.16% 49.20%
DeepME-NoGate 7.84% 21.36% 29.85%

DeepME 32.13% 51.72% 59.79%

Table 1: Average accuracy on different models.

the performance (27.62%) in ImageNet10K is not satisfac-
tory, which validates the intuition “simply enlarging the final
outputs of some well-designed deep CNNs may not be an op-
timal solution for large-scale image classification”.

To explore the relative importance of SSC and the gate
network, we conduct a analysis on the results of DeepME-
NoSSC (20.24%) and DeepME-NoGate (7.84%). Based on
the results, we could draw several conclusions: a) Both SSC
and the gate network play important roles in classifying large-
scale images. If SSC is removed from DeepME, the accu-
racy will decrease from 32.13% to 20.24%. Similarly, when
gate network is absent, the accuracy will dramatically de-
crease from 32.13% to 7.84%, which indicates that simple fu-
sion functions hardly achieve acceptable results; b) Compar-
ing with SSC, the importance of the gate network (DeepME-
NoGate: 7.84%) is far greater than SSC (DeepME-NoSSC:
20.24%). We conjecture that the reason of the phenomenon
is the strong learning ability of the gate network. In a word,
our deep mixture algorithm with SSC and the gate network
performs well in large-scale image classification.

We did not back-propagate the gradients through the gate
network to fine-tune the importance of the base networks sub-
jected to limited computing resources. However, the per-
formance of DeepME without fine-tuning surpasses all base-
lines. Theoretically, the performance of DeepME with fine-
tuning will be superior than DeepME without fine-tuning.

4.4 Specific Performance
Table 1 has exhibited the overall performance (i.e., average
accuracy) of all methods. To better understand the effec-
tiveness of DeepME, in this section, we provide DMDE and
DeepME’s accuracy distributions (top 5) on each 10184 im-
age class in an ascending order as shown in Fig. 3. Please
note that we only provide DMDE’s results as the comparison
for simplicity, which has achieved the best performance on
baselines. Similar to Section 4.3, Fig. 3 also well demon-
strates the classifying superiority of DeepME compared with
DMDE. Especially, on some image classes, DMDE is hard
to accurately identify these classes (e.g., Dialyzer: 10.34%,
Shrimpfish: 14.29%, Seismograph: 15.79% and so on), while
our proposed model DeepME could accurately classify these
hard image classes (for example, Dialyzer: 72.41%, Shrimp-
fish: 74.29%, Seismograph: 68.42% and so on).

4.5 Hard Task vs. Easy Task
According to the designed SSC, the large-scale classification
task is divided into 15 sub-tasks. During the training of each
expert network, we find that there are significant differences
in complexity among tasks. To be specific, the average ac-

Figure 3: The specific accuracy on each 10184 class.

curacy of these 15 tasks is 45.7%, while the best one (Task
1) is 55.4% and the worst one (Task 2) is only 31.2%. It im-
plies that DeepME could effectively generate sub-tasks based
on the learning complexity. As a matter of fact, Task 2 is in-
deed harder than Task 1. The former (i.e., Task 2) focuses
on classifying trees (especially, various types of coniferous
trees), which are very similar to each other. However, the lat-
ter (i.e., Task 1) is focusing on classifying sports, which are
discrepancy to each other. In practice, if we want to improve
the performance of large-scale image classification notably,
we should pay more attention on the hard tasks (e.g., Task 2),
which have more room for improvement.

5 Conclusion
In this paper, to support large-scale image classification (i.e.,
classifying images into tens of thousands of classes), an adap-
tively deep mixture method (DeepME) was developed to
support large-scale image classification. Three main contri-
butions could be concluded as follows: (a) a soft spectral
clustering method was developed to assign large numbers
of image categories into a set of groups according to their
inter-category semantic correlations; (b) a two-layer ontol-
ogy (group layer and class layer) was constructed to organize
large numbers of image categories hierarchically, which was
further used to assign the semantically-similar image cate-
gories with similar learning complexities into the same task
group; (c) a gate network was learned to determine the im-
portances for all these base deep networks automatically and
combine their fewer diverse outputs adaptively to generate
a mixture network with much larger outputs (i.e., 10,184-
D outputs for handling ImageNet10K set with 10,184 im-
age categories). Finally, we conducted extensive experiments
on ImageNet10K image data set, and our deep mixture algo-
rithm achieved very competitive performance compared with
several baselines. In the future, we will further investigate
whether the gate network and the base CNNs could be trained
in an end-to-end fashion. In addition, more interesting fusion
methods, e.g., attention mechanism, are also worth studying.
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