
Dynamic Hypergraph Neural Networks

Jianwen Jiang1,2 , Yuxuan Wei1,2 , Yifan Feng3 , Jingxuan Cao1,2 and Yue Gao1,2∗

1Beijing National Research Center for Information Science and Technology(BNRist)
2KLISS, School of Software, Tsinghua University, Beijing, China

3School of Information Science and Engineering, Xiamen University, Xiamen, China
{jjw17, weiyx15}@mails.tsinghua.edu.cn, evanfeng97@gmail.com, jingxuac@alumni.cmu.edu,

gaoyue@tsinghua.edu.cn

Abstract
In recent years, graph/hypergraph-based deep
learning methods have attracted much attention
from researchers. These deep learning methods
take graph/hypergraph structure as prior knowl-
edge in the model. However, hidden and im-
portant relations are not directly represented in
the inherent structure. To tackle this issue, we
propose a dynamic hypergraph neural networks
framework (DHGNN), which is composed of the
stacked layers of two modules: dynamic hyper-
graph construction (DHG) and hypergrpah convo-
lution (HGC). Considering initially constructed hy-
pergraph is probably not a suitable representation
for data, the DHG module dynamically updates hy-
pergraph structure on each layer. Then hypergraph
convolution is introduced to encode high-order data
relations in a hypergraph structure. The HGC mod-
ule includes two phases: vertex convolution and
hyperedge convolution, which are designed to ag-
gregate feature among vertices and hyperedges, re-
spectively. We have evaluated our method on stan-
dard datasets, the Cora citation network and Mi-
croblog dataset. Our method outperforms state-of-
the-art methods. More experiments are conducted
to demonstrate the effectiveness and robustness of
our method to diverse data distributions.

1 Introduction
Graphs are widely used to model pair-wise relations includ-
ing paper citations, personal contacts and protein-protein in-
teractions. However, besides pair-wise relations, there exists
a large number of non-pair-wise relations that simple graphs
are unable to model, for example, the communities in social
networks and the clusters in feature embeddings. Hypergraph
is a generalized structure for relation modeling. A hypergraph
is composed of a vertex set and a hyperedge set, where a hy-
peredge contains a flexible number of vertices. Therefore,
hyperedges are able to model non-pair-wise relations men-
tioned above. The number of vertices a hyperedge contains
is defined as the degree of the hyperedge. Especially, if the

∗Corresponding author.

𝒗𝟎
𝒗𝟏

𝒗𝟐

𝒗𝟑
𝒗𝟒

𝒗𝟓

𝒗𝟔

𝒆𝒍
𝒗𝟎

𝒗𝟏
𝒗𝟐

𝒗𝟑

𝒗𝟒

𝒗𝟓

𝒗𝟔

𝒆𝒍+𝟏

𝒆𝒅𝒊𝒔𝒂𝒑𝒑𝒆𝒂𝒓
𝒍

Embedding on the
𝒍-th layer

Embedding on the
𝒍+1-th layer

Evolution

Figure 1: Dynamically constructed hyperedges. When embedding
evolves from the l-th layer to the l + 1-th layer, hyperedge el =
{v0, v1, v2, v6} disappears while hyperedge el+1 = {v2, v3, v4, v5}
comes into existence.

degree of hyperedges is restricted to 2, a hypergraph is de-
generated to a simple graph, indicating that simple graph is a
subset of the hypergraph.

Recently graph/hypergraph-based deep learning methods
have received more and more attention from researchers. In-
spired by convolutional neural network (CNN) [Krizhevsky
et al., 2012] in computer vision, researchers have designed
graph-based neural networks for semi-supervised learning,
like GCN [Kipf and Welling, 2017] and GAT [Veličković
et al., 2018]. Furthermore, HGNN [Feng et al., 2018] is
the first hypergraph neural network model. In a neural
network model, feature embedding generated from deeper
layer of the network carries higher-order relations that ini-
tial structure fails to capture. The major drawback of exist-
ing graph/hypergraph-based neural networks is that they only
employ the initial graph/hypergraph structures while neglect
the dynamic modifications of such structures from adjusted
feature embedding.

Dynamic hypergraph structure learning (DHSL) [Zhang
et al., 2018] has been proposed to deal with this problem.
DHSL uses raw input data to optimize hypergraph structure
iteratively. Nonetheless, DHSL only updates the hypergraph
structure on initial feature embedding, thus failing to exploit
high-order relations among features. Also, the iterative op-
timization in DHSL suffers from expensive cost in time and
space.

To tackle these issues, we propose a dynamic hypergraph
neural networks (DHGNN) framework, which is stacked lay-
ers of dynamic hypergraph construction (DHG) module and

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2635

New feature
embedding

Hypergraph Construction Hypergraph Convolution

Vertex
Conv

Hyperedge
Features

Vertex
Features

…

Vertex
Conv

… Hyperedge
Conv

Centroid
Vertex
Feature

…

Hyperedge

Hyperedge

…
…

Figure 2: DHGNN framework. The first frame describes the hypergraph construction process on centroid vertex (the star) and its neighbors.
For instance, two hyperedges are generated from two clusters (dashed ellipses). In the second frame, features of vertices contained in a
hyperedge are aggregated to hyperedge feature through vertex convolution and features of adjacent hyperedges are aggregated to centroid
vertex feature through hyperedge convolutoin. After performing such operations for all vertices on current layer feature embedding, we obtain
the new feature embedding where new hypergraph structure will be constructed, as is shown in the third frame.

hypergraph convolution (HGC) module. In DHG module, we
utilize k-NN method and k-means clustering method to up-
date hypergraph structure based on local and global features
respectively during a single inference process. Furthermore,
we propose a hypergraph convolution method in HGC mod-
ule by a stack of vertex convolution and hyperedge convo-
lution. For vertex convolution, we use a transform matrix
to permute and weight vertices in a hyperedge; for hyper-
edge convolution, we utilize attention mechanism to aggre-
gate adjacent hyperedge features to the centroid vertex. Com-
pared with hypergraph-based deep learning method HGNN,
our convolution module better fuses information from local
and global features provided by our DHG module.

We have applied our model to data with and without inher-
ent graph structure. For data with inherent graph structure, we
conducted an experiment on a citation network benchmark,
the Cora dataset [Sen et al., 2008], for the node classifica-
tion task. In this experiment, we used DHGNN to jointly
learn embeddings from given graph structure and a hyper-
graph structure from feature space. For data without inherent
graph structure, an experiment was conducted on a social me-
dia dataset, the Microblog dataset [Ji et al., 2019], for the sen-
timent prediction task. In this experiment, a multi-hypergrpah
was constructed to model the complex relations among mul-
timodal data.

Our contributions are summarized as follows:

1. We propose a dynamic hypergraph construction method,
which adopts k-NN method to generate basic hyperedge
and extends adjacent hyperedge set by clustering algo-
rithm, i.e., k-means clustering. By dynamic hypergraph
construction method, local and global relations will be
extracted.

2. We conducted experiments on network-based classifi-
cation and social media sentiment prediction. On the
network-based task, our method outperforms state-of-
the-art methods and shows higher robustness to different

data distributions. On social media sentiment prediction,
we observe performance improvement against state-of-
the-art methods.

The rest of the paper is organized as follows. Section 2 in-
troduces related work in graph-based deep learning and hy-
pergraph learning. Section 3 explains the proposed dynamic
hypergraph neural networks method. Applications and exper-
imental results are presented in Section 4. Finally, we draw
conclusions in Section 5.

2 Related Work
In this section, we give a brief review on graph-based deep
learning and hypergraph learning.

2.1 Graph-based Deep Learning
Semi-supervised learning on graphs has long been an active
research field in deep learning. DeepWalk [Perozzi et al.,
2014] and Planetoid [Yang et al., 2016] view sampled paths
in graphs as random sequences and learn vector embedding
from these sequences.

After the great success of convolutional neural net-
works [Krizhevsky et al., 2012] in image processing, re-
searchers have been devoted to designing convolutional meth-
ods for graph-based data. Existing graph neural network
methods can be divided in two main categories: spectral
methods and spatial methods.

Based on spectral graph theory, spectral graph convolu-
tional methods use graph Laplacian eigenvectors as graph
Fourier basis. After transforming features to spectral do-
main, a spectral convolution operation is conducted on
spectral features. To overcome the expensive computation
cost in Laplacian factorization, ChebyshevNet introduces
Chebyshev polynomials to approximate Laplacian eigenvec-
tors [Defferrard et al., 2016]. GCN further simplifies the pro-
cess and uses one-order polynomial on each layer [Kipf and
Welling, 2017].

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2636

Different from spectral methods, spatial graph convolution
methods leverage spatial sampler and aggregator to generate
neighborhood feature embedding. MoNet defines a generic
spatial convolution framework for deep learning on non-
Euclidean domains [Monti et al., 2017]. GraphSAGE defines
sampler and aggregator in graph neural network and tries
LSTM as neighborhood aggregator [Hamilton et al., 2017].
GAT introduces self-attention mechanism and computes the
attention coefficients between node pairs [Veličković et al.,
2018]. In the field of computer vision, DGCNN, a 3D point
cloud learning method, also leverages the concept of spatial
graph convolution in its model [Wang et al., 2018].

2.2 Hypergraph Learning
Hypergraph learning is first introduced by [Zhou et al., 2007]
as a label propagation method for semi-supervised learning.
This method aims to minimize the differences in labels of
vertices that share the same hyperedge. [Huang et al., 2009]
discusses the construction methods of hypergraph, including
k-NN method and search radius method. More recent works
concentrate on the learning of hyperedge weight, intending to
assign larger weight to hyperedges or sub-hypergraphs with
higher importance [Gao et al., 2012]. Besides learning label
propagation on hypergraph, dynamic hypergraph structure
learning proposes learning of hypergraph structure by a dual
optimization process [Zhang et al., 2018]. Like graph neu-
ral network, hypergraph neural network (HGNN) has been
proposed as the first deep learning method on hypergraph
structure, employing hypergraph Laplacian to represent hy-
pergraph from spectral perspective [Feng et al., 2018].

Hypergraph has many aspects of applications. In computer
vision, hypergraph is used to describe relations among visual
features for tasks like visual classification [Wang et al., 2015],
image retrieval [Huang et al., 2010] and video object seg-
mentation [Huang et al., 2009]. There are also works using
hypergraph structure for label propagation on 3D model clas-
sification [Zhang et al., 2018]. In social media, MHG [Chen
et al., 2015] and Bi-MHG [Ji et al., 2019] are proposed to
deal with multimodal data.

3 Dynamic Hypergraph Neural Networks
In this section, we introduce the dynamic hypergraph neural
networks (DHGNN) proposed in detail. As is illustrated in
Figure 2, a DHGNN layer consists of two major part: dy-
namic hypergraph construction (DHG) and hypergraph con-
volution (HGC). We will first introduce these two parts in the
following subsections and then discuss the implementation of
dynamic hypergraph neural networks in the last subsection.

3.1 Dynamic Hypergraph Construction
Given feature embedding X = [x1;x2; ...;xn] where xi(i =
1, 2, ..., n) denotes the feature of the i-th sample, we construct
hypergraph G. In hypergraph, vertex u denotes a sample and
hyperedge e denotes a sample collection containing a flexible
number of samples. Therefore, a hypergraph can be formu-
lated as G = {V, E}, where V denotes the vertex set and E
denotes the hyperedge set.

Algorithm 1 Hypergraph Construction
Input: Input embedding X; hyperedge size k; adjacent hy-
peredge set size S
Output: Hyperedge set G
Function: k-Means clustering kMeans; k-nearest neighbor-
hood selection knn; distance function dis; S − 1 smallest
distance index selection topK

1: C = kMeans(X)
2: for u in range(len(X)) do
3: eb = knn(X[u], X, k)
4: G[u].insert(eb)
5: D = dis(C.center, u)
6: D = sort(D)
7: ind = topK(D,S − 1)
8: for i in ind do
9: G[u].insert(C[i])

10: end for
11: end for

We use symbol Con(e) to denote the vertex set a hyper-
edge e contains and use symbol Adj(u) to denote the hyper-
edge set composed of all hyperedge containing the vertex u,
which is formulated as:

Con(e) = {u1, u2, ..., uke
} (1)

Adj(u) = {e1, e2, ..., eku} (2)
where ke and ku is the number of vertices in hyperedge e and
the number of hyperedges containing vertex u. Vertex u is
defined as the centroid vertex of hyperedge set Adj(u).

We combine k-NN methods and k-means clustering meth-
ods for dynamic hypergraph construction to exploit local and
global structure. On one hand, we have computed the k − 1
nearest neighbors for each vertex u. These neighborhood ver-
tices, along with the vertex u, form a hyperedge in Adj(u).
On the other hand, we have conducted k-means algorithm on
the whole feature map of each layer according to Euclidean
distance. For each vertex, the nearest S−1 clusters will be as-
signed as the adjacent hyperedges of this vertex. The detailed
procedure is described in Algorithm 1.

We perform such procedure on the feature embedding of
each layer. Especially, we initialize hypergraph structure with
the input feature embedding. Therefore, the hyperedge set is
dynamically adjusted as the feature embedding evolves with
network going deeper. In this way, we are able to obtain bet-
ter hypergraph struture for high-order data relation modeling
with deep neural network.

3.2 Hypergraph Convolution
Hypergraph convolution is composed of two submodules:
vertex convolution submodule and hyperedge convolution
submodule. Vertex convolution aggregates vertex features to
hyperedge and then hyperedge convolution aggregates adja-
cent hyperedge features to centroid vertex by hyperedge con-
volution.

Vertex Convolution
Vertex convolution aggregates vertex features to the hyper-
edge containing these vertices. A simple solution is pooling

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2637

Transform
matrix

Conv

Vertex Features

Mul
Conv

Hyperedge
Feature

Figure 3: Vertex convolution module. For k vertices, a k × k trans-
form matrix is computed by convolution. We multiply transform
matrix and input vertex feature matrix to get permuted and weighted
vertex feature matrix. Then a 1-dimension convolution is conducted
for the 1-dimension hyperedge feature.

...

wMLP

Hyperedge
Features Dot

Sum

Centroid
Vertex
Feature

...

Figure 4: Hyperedge convolution module. We use self-attention
mechanism to aggregate hyperedge features. Self-attention weight
w is computed through multi-layer perception (MLP) from hyper-
edge features. Then weighted average of hyperedge features is cal-
culated as centroid vertex feature.

method like max pooling and average pooling. State-of-the-
art methods employ a fixed, pre-computed transform matrix
generated from graph/hypergraph structure for vertex aggre-
gation. However, such methods are unable to model discrim-
inative information among vertices features well. To tackle
this issue, we learn the transform matrix T from the vertex
features for feature permutation and weighting, as is shown
in Figure 3. The transform matrix enables both inter-vertex
and inter-channel information flow. In implementation, we
use multi-layer perception (MLP) to generate transform ma-
trix T and use 1-d convolution to compact the transformed
features, as is described by equation 3.

T = MLP (Xu) (3a)
xe = conv(T ·MLP (Xu)) (3b)

Hyperedge Convolution
Hyperedge convolution aggregates hyperedge features to cen-
troid vertex feature, as is illustrated in Figure 4. Atten-
sion mechanism is employed in hyperedge convolution, us-
ing multi-layer perception (MLP) to generate weight score of
each hyperedge. The output centroid vertex feature is com-
puted as a weighted sum of input hyperedge features. The

Algorithm 2 Hypergraph Convolution
Input: Input sample xu; hypergraph structure G
Output: Output sample yu

1: xlist = Φ
2: for e in Adj(u) do
3: Xv = V ertexSample(X,G)
4: xe = V ertexConv(Xv)
5: xlist.insert(xe)
6: end for
7: Xe = stack(xlist)
8: xu = EdgeConv(Xe)
9: yu = σ(xuW + b)

procedure can be formulated as follows:

w = softmax(xeW + b) (4a)

xu =

|Adj(u)|∑
i=0

wixi
e (4b)

|Adj(u)| denotes the size of adjacent hyperedge set, xe de-
notes adjacent hyperedge features and xu denotes centroid
vertex feature. W and b are learnable parameters.

3.3 Dynamic Hypergraph Neural Networks
By combining vertex convolution and hyperedge convolu-
tion, we describe a hypergraph convolutional layer as Al-
gorithm 2. For each hyperedge e in Adj(u), we first sam-
ple k vertices in e and obtain Xu ∈ Rk×d, where d is in-
put dimension of feature. Vertex Convolution V ertexConv
transforms vertex features Xu to hyperedge feature xe ∈ Rd.
Aftering performing |Adj(u)| vertex convolution, we stack
|Adj(u)| hyperedge features to get adjacent feature matrix
Xe ∈ R|Adj(u)|×d. Then Hyperedge ConvolutionEdgeConv
aggregates adjacent hyperedge features to feature xu of ver-
tex u. At last, xu is updated to yu by a non-linear activation
function σ following a linear layer.

A DHGNN model is composed of a stack of several layers
of dynamic hypergraph construction construction module and
hypergraph convolution module. As is shown in Figure 2,
a hypergrpah convolutional layer updates vertex features for
new feature embedding, based on which a new hypergraph
structure will be constructed.

4 Applications and Experiments
In this section, we applied our dynamic hypergraph neural
network to two types of data: citation network with inherent
graph structure and social media multimodal data without in-
herent data structure. Especially, for data with inherent graph
structure, we sample k vertices in 1-order neighborhood of u
and these k vertices also form a hyperedge in Adj(u).

4.1 Experiments on Citation Network
Citation network is a typical graph-structure dataset. Since
graph is a special case of hypergraph, our model applies to
graph-structure data as well. Furthermore, by constructing

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2638

dynamic hypergraph, we are able to deploy information from
both citation relation and feature embedding relation in a uni-
form manner. To evaluate the performance of our method, se-
ries of experiments were conducted on the public benchmark
citation network dataset, Cora dataset.
Cora dataset. Cora dataset is a benchmark dataset of cita-
tion network. In Cora dataset, there are 2,708 vertices denot-
ing academic papers and 5,429 edges denoting citation rela-
tions between pairs of papers. Each vertex has a bag-of-word
feature vector and a category label indicating the subject that
the paper belongs to. There are 7 categories in total.
Experimental setup. We have conducted experiments on
different splits of the Cora dataset including standard split
described in [Yang et al., 2016]. Because the standard split
uses fixed training samples with 5.2% of dataset, it is possible
for a method to be influenced by the fixed data distribution.
Therefore, for further comparison, we randomly sampled dif-
ferent proportion of data as training set to demonstrate the
effectiveness of our method. The proportion for training set
is selected as 2%, 5.2%, 10%, 20%, 30% and 44%, respec-
tively. We compared our method with recent representative
methods like GCN [Kipf and Welling, 2017], HGNN [Feng
et al., 2018] and GAT [Veličković et al., 2018]. 10 times av-
erage accuracy was reported in Table 1 for comparison.

We used 2 layer dynamic hypergraph neural network with
a GCN-style input layer for feature dimension reduction. We
used 400 cluster centers in k-means clustering method and
chose 64 as the receptive field size. We added two dropout
layers with the dropout rate of 0.5 before two convolutional
layers.
Semi-supervised node classification. We compared
DHGNN with most recent graph/hypergraph-based neural
network methods on different dataset splits. Experimental
results are listed as Table 1, showing that our method outper-
formed state-of-the-art by 1.5%, 0.5%, 0.1%, 0.1%, 0.5%,
0.4% when 2%, 5.2%, 10%, 20%, 30%, 44% randomly sam-
pled data was used as training set, respectively. Moreover,
we observed that hypergraph structure was relatively more
competitive when training set was smaller. The reason is that
graph convolution only uses 1-order adjacent relation while
hypergraph convolution utilizes high-order relation, which
is helpful to the label propagation process on a sparsely
labelled graph.
Ablation experiments. To evaluate the effectiveness of
proposed dynamic hypergraph construction (DHG) module
and hypergraph convolution (HGC) module, we conducted
two ablation experiments on the Cora dataset, where each
module mentioned above was removed from the complete
model. We compared the ablated models against the com-
plete model and investigated the influence of hyperparameter
k, which denotes the number of sampled vertices in a hyper-
edge. Results are shown in Figure 5. From the results, we
observe that DHG module and HGC module always improve
the performance of baseline with different k. As k increases,
the gain from both modules increases, indicating the effec-
tiveness of our method. It is noted that even when k = 4
(is much smaller than the max degree in the Cora dataset,
169), our method still obtains similar performance with other

lr #train GCN HGNN GAT DHGNN

std 140 81.5% 81.6% 83.0% 82.5%
2% 54 69.6% 75.4% 74.8% 76.9%
5.2% 140 77.8% 79.7% 79.4% 80.2%
10% 270 79.9% 80.0% 81.5% 81.6%
20% 540 81.4% 80.1% 83.5% 83.6%
30% 812 81.9% 82.0% 84.5% 85.0%
44% 1200 82.0% 81.9% 85.2% 85.6%

Table 1: Performance comparisons on Cora with different splits. ”lr”
stands for label rate, ”#train” stands for number of training samples
and ”std” stands for standard split. Standard split experiment and
5.2% split experiment share the same number of training samples.
Different from the standard split setting, samples in 5.2% split is
randomly selected. 44% is the largest possible size of training set
with standard validation and test set.

Figure 5: Ablation experiment on dynamic hypergraph(DHG) mod-
ule and hypergraph convolution (HGC) module. For model without
dynamic hypergraph, we used inherent graph structure on Cora for
convolution operation. For model without hypergraph convolution,
we used average pooling for substitution of vertex convolution and
hyperedge convolution.

hypergraph-based learning method, i.e., HGNN and when
k = 128, our method outperforms HGNN by 0.9%. This
implies that our method is able to aggregate neighborhood
features better.

4.2 Microblog Sentiment Prediction
Apart from experiments on citation network, we also eval-
uated our model on a more complicated task, social media
sentiment prediction. Multi-modality is an important feature
of social media. We used hypergraph to model the high-
order relations among different modalities. Specifically, ver-
tices were used to denote a tweet. Hyperedge sets were con-
structed according to each modality feature and hyperedges
from multi-modalities jointly represent the correlation be-
tween vertices. In our experiment, we used the Microblog
dataset to evaluate our hypergraph model.

Microblog dataset. The Microblog dataset contains 5,550
tweets crawled from Sina Microblog platform 1 during Feb.
2014 to Apr. 2014. Each tweet has three modalities: text,
image and emoticon. We generated 2547-dimension bag-of-
words textual feature using Chinese auto-segmentation sys-
tem ICTCLAS [Zhang et al., 2003]. To generate visual
feature, we used SentiBank [Borth et al., 2013], a kind

1https://www.weibo.com

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2639

of ANP detector library pre-trained on Twitter images to
transform Microblog images to 1553-dimension feature vec-
tor. For emoticons, we built a emoticons dictionary with 49
frequently-used emoticons and computed bag-of-emoticons
features. Each tweet has a label indicating its emotional po-
larity (postive or negative). The task is to predict tweet emo-
tional polarity by multimodal features. There are 4196 posi-
tive tweets and 1354 negative tweets in the dataset.

Experimental setup. We followed the experimental setup
in [Ji et al.], where 4,650, 400, 500 tweets were randomly
selected as training, validation and test set, respectively. 10-
times average accuracy was reported for method evaluation.
We used 2 layer dynamic hypergraph neural network with a
multi-input fully-connected layer for feature dimension re-
duction. Dimensions of each modality feature were reduced
to 32 before hypergraph convolution. We constructed three
hyperedge sets for three modality respectively and merged
these sets as one multimoal hyperedge set. For each modal-
ity, we use 400 cluster centers in k-means clustering method
and the number of vertices contained is 8 in each clusters. We
select 2 nearest clusters from k-means clusters and one k-NN
cluster as the adjacent hyperedge set of each vertex. We use
identical activation and dropout setting with Section 4.1. We
compare our model with recent approaches for multimodal
sentiment prediction, such as Multi-kernel SVM [Zhang et
al., 2011], Cross-media Bag-of-words Model [Wang et al.,
2014], Bi-layer Multimodal Hypergraph Learning [Ji et al.,
2019], etc. Experiments were conducted on a Nvidia GeForce
GTX 1080 Ti GPU with 11G memory and 10.6 T-flops com-
puting capacity.

Microblog sentiment prediction. In this experiment, we
ran DHGNN to fuse features from mutliple modalities for
sentiment label prediction. Experimental results are shown
in Table 2, which can be summarized as:

1. In terms of prediction accuracy, DHGNN achieved
higher performance with 1.8% accuracy gains in multi-
modal sentiment prediction task compared with current
state-of-the-art method.

2. In terms of time expense, DHGNN remarkably short-
ened training time compared with current state-of-the-
art methods (2300 times as fast as Bi-MHG and 1.4
times as fast as HGNN).

Experimental results indicate that our method outper-
formed the state-of-the-art method in both prediction accu-
racy and training speed. The experiments on Microblog
dataset demonstrates the effectiveness of our method in mod-
eling the high-order relations among multimodal data.

4.3 Discussion
Discussion on accuracy. Compared with statically initial-
ized hypergraph structure, dynamic hypergraph structure can
better represent data distribution in deeper layers. Compared
with pooling and multi-layer perception, hypergraph convolu-
tion uses fixed-size, weight-shared learnable convolution ker-
nel for feature extraction, thus being better for information
aggregation. Ablation experiments demonstrate the effective-
ness of the dynamic hypergraph construction and hypergraph

Method Acc Train Time

CBM-NB [Wang et al., 2014] 71.6% -
CBM-LR [Wang et al., 2014] 79.9% -
CBM-SVM [Wang et al., 2014] 81.6% -
HGNN [Feng et al., 2018] 86.8% 2m11s
MHG noW [Chen et al., 2015] 87.3% -
MHG [Chen et al., 2015] 88.6% -
MMHG [Chen et al., 2015] 88.7% -
Bi-MHG [Ji et al., 2019] 90.0% 58.5h

DHGNN (our method) 91.8% 1m32s

Table 2: Performance comparisons on the Microblog dataset

convolution respectively. Despite of this, we also note that in
the standard split of Cora dataset, GAT performs better than
DHGNN. The main reason is that in standard split, training
set contains fixed samples, thus suffering from larger ran-
domness and bias. On the other settings, we have randomly
sampled training set for 10 times and reported the average ac-
curacy for comparison to suppress such randomness and bias.

Discussion on time complexity. Traditional hypergraph
learning models like Bi-MHG involve iterative optimization
and matrix inversion, thus suffering from larger time cost
than neural network model. When comparing HGNN and
DHGNN, we find that parameter number of both models
0.133M, indicating that it takes roughly the same time to
train a HGNN/DHGNN epoch. However, it takes 30 epochs
on average for DHGNN to converge on Microblog sentiment
dataset while it takes 200 epochs on average for HGNN to
converge. Therefore, DHGNN runs faster on Microblog sen-
timent dataset.

5 Conclusions
In this paper, we propose a dynamic hypergraph neural net-
works framework to update hypergraph structure on each
layer. The method consists of two important modules: dy-
namic hypergraph construction method and hypergraph con-
volution, where hypergraph convolution includes vertex con-
volution and hyperedge convolution for hypergraph neighbor-
hood feature aggregation. We apply our model to citation net-
work data and multimodal social media data for evaluation.
Results demonstrate that our model achieves similar of bet-
ter performance compared with state-of-the-art methods and
is more robust to different data distributions. We also inves-
tigate the effectiveness of dynamic hypergraph construction
module and hypergraph convolution module independently
by ablation experiment. In our model, k-NN method and
k-means clustering method are used in hypergraph dynamic
construction. Future work can concentrate on better and more
interpretable hypergraph construction methods.

Acknowledgments
This work was supported by National Natural Science Funds
of China (U1701262, U1801263, 61671267).

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2640

References
[Borth et al., 2013] Damian Borth, Rongrong Ji, Tao Chen,

Thomas Breuel, and Shih-Fu Chang. Large-scale visual
sentiment ontology and detectors using adjective noun
pairs. In Proceedings of the 21st ACM international con-
ference on Multimedia, pages 223–232. ACM, 2013.

[Chen et al., 2015] Fuhai Chen, Yue Gao, Donglin Cao, and
Rongrong Ji. Multimodal hypergraph learning for mi-
croblog sentiment prediction. In 2015 IEEE International
Conference on Multimedia and Expo (ICME), pages 1–6.
IEEE, 2015.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bres-
son, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In
Advances in neural information processing systems, pages
3844–3852, 2016.

[Feng et al., 2018] Yifan Feng, Haoxuan You, Zizhao
Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural net-
works. AAAI 2019, 2018.

[Gao et al., 2012] Yue Gao, Meng Wang, Dacheng Tao,
Rongrong Ji, and Qionghai Dai. 3-d object retrieval and
recognition with hypergraph analysis. IEEE Transactions
on Image Processing, 21(9):4290–4303, 2012.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing
Systems, pages 1024–1034, 2017.

[Huang et al., 2009] Yuchi Huang, Qingshan Liu, and Dim-
itris Metaxas. Video object segmentation by hypergraph
cut. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1738–1745. IEEE, 2009.

[Huang et al., 2010] Yuchi Huang, Qingshan Liu, Shaoting
Zhang, and Dimitris N Metaxas. Image retrieval via prob-
abilistic hypergraph ranking. In 2010 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recog-
nition, pages 3376–3383. IEEE, 2010.

[Ji et al., 2019] Rongrong Ji, Fuhai Chen, Liujuan Cao, and
Yue Gao. Cross-modality microblog sentiment prediction
via bi-layer multimodal hypergraph learning. IEEE Trans-
actions on Multimedia, pages 1062–1075, 2019.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Rep-
resentations (ICLR), 2017.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097–1105, 2012.

[Monti et al., 2017] Federico Monti, Davide Boscaini,
Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M Bronstein. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5115–5124, 2017.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining, pages 701–710. ACM, 2014.

[Sen et al., 2008] Prithviraj Sen, Galileo Namata, Mustafa
Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine,
29(3):93–93, 2008.

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. International
Conference on Learning Representations, 2018.

[Wang et al., 2014] Min Wang, Donglin Cao, Lingxiao Li,
Shaozi Li, and Rongrong Ji. Microblog sentiment analysis
based on cross-media bag-of-words model. In Proceedings
of international conference on internet multimedia com-
puting and service, page 76. ACM, 2014.

[Wang et al., 2015] Meng Wang, Xueliang Liu, and Xindong
Wu. Visual classification by l1-hypergraph modeling.
IEEE Transactions on Knowledge and Data Engineering,
27(9):2564–2574, 2015.

[Wang et al., 2018] Yue Wang, Yongbin Sun, Ziwei Liu,
Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds.
CoRR, abs/1801.07829, 2018.

[Yang et al., 2016] Zhilin Yang, William W Cohen, and Rus-
lan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. ICML, 2016.

[Zhang et al., 2003] Hua-Ping Zhang, Hong-Kui Yu, De-Yi
Xiong, and Qun Liu. Hhmm-based chinese lexical an-
alyzer ictclas. In Proceedings of the second SIGHAN
workshop on Chinese language processing-Volume 17,
pages 184–187. Association for Computational Linguis-
tics, 2003.

[Zhang et al., 2011] Daoqiang Zhang, Yaping Wang, Lup-
ing Zhou, Hong Yuan, Dinggang Shen, Alzheimer’s Dis-
ease Neuroimaging Initiative, et al. Multimodal classifica-
tion of alzheimer’s disease and mild cognitive impairment.
Neuroimage, 55(3):856–867, 2011.

[Zhang et al., 2018] Zizhao Zhang, Haojie Lin, Yue Gao,
and KLISS BNRist. Dynamic hypergraph structure learn-
ing. In IJCAI, pages 3162–3169, 2018.

[Zhou et al., 2007] Dengyong Zhou, Jiayuan Huang, and
Bernhard Schölkopf. Learning with hypergraphs: Cluster-
ing, classification, and embedding. In Advances in neural
information processing systems, pages 1601–1608, 2007.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2641

