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Abstract

Knowledge graph embedding, which projects the
symbolic relations and entities onto low-dimension
continuous spaces, is essential to knowledge graph
completion. Recently, translation-based embed-
ding models (e.g. TransE) have aroused increas-
ing attention for their simplicity and effectiveness.
These models attempt to translate semantics from
head entities to tail entities with the relations and
infer richer facts outside the knowledge graph. In
this paper, we propose a novel knowledge graph
embedding method named TransMS, which trans-
lates and transmits multidirectional semantics: i)
the semantics of head/tail entities and relations to
tail/head entities with nonlinear functions and ii)
the semantics from entities to relations with lin-
ear bias vectors. Our model has merely one ad-
ditional parameter α than TransE for each triplet,
which results in its better scalability in large-scale
knowledge graph. Experiments show that TransMS
achieves substantial improvements against state-of-
the-art baselines, especially the Hit@10s of head
entity prediction for N-1 relations and tail entity
prediction for 1-N relations improved by about
27.1% and 24.8% on FB15K database respectively.

1 Introduction
Knowledge graph, which is a semantic graph composed of
triplets, has become a hot topic for its wide applications in
information retrieval. As the basic unit for knowledge graph,
the triplet in the form of (head , relation, tail ) – also abbrevi-
ated as (h, r , t), consists of two entities (i.e., head and tail ) as
nodes and one relation (relation) as edge from head to tail .
Although knowledge graphs can consist of millions of enti-
ties and billions of relations for the facts of the world, they
are still far from completeness, which results in that the pre-
diction for new relations between entities according to the ex-
isting triplets in knowledge graph especially for the complex
relations is an indispensable task of knowledge completion.
Knowledge graph embedding has recently been regarded as
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an effective way of knowledge graph completion. In par-
ticular, the seminal model TransE [Bordes et al., 2013] has
triggered increasing research in translation-based models for
their simplicity and effectiveness. TransE first projects enti-
ties and relations onto low-dimension continuous spaces, for-
mally as h, r, t ∈ Rk and then translates semantics from head
to tail entities by relations, which requires h+ r ≈ t when
triplet (h, r, t) holds. However, such a constraint is too strict
to be practical in dealing with the complex relations of 1-
N, N-1 and N-N, and followup methods based on translation
have been devised as improvements to overcome the short-
coming of TransE.

Specifically, TransH [Wang et al., 2014] interprets each
relation as a translating operation on a hyperplane with a
translation vector and a norm vector, and projects the entity
vectors onto the hyperplane by the norm vector. However,
TransR [Lin et al., 2015] supports that various relations focus
on different aspects of entities which have multiple aspects.
TransR first projects entities and relations onto entity spaces
and relation spaces respectively, and then translates entities to
relation spaces by a relational projection matrix. The method
TransD [Ji et al., 2015] is based on the assumption that pro-
jection matrices of TransR should not be only related to rela-
tions but also to entities. While TranSparse [Ji et al., 2016]
focuses on the heterogenenous which means some relations
only link a few entity pairs but others not, and the unbal-
anced which means relations may link many head/tail entities
and fewer tail/head entities, so that TranSparse sets parame-
ters related the number of entities to the projection matrix.
Gtrans [Tan et al., 2018], which does not believe that Trans
(E, H, R and D) fully consider the complicacy of the entities,
represents different semantic aspects of entities and relation
respectively with two vectors.

Issues: Although these methods show improvements com-
pared with previous methods, they have difficulty in dealing
with the link prediction for complex relations, which we at-
tribute to the following reasons:

i) They transform the entities embedding only by transmit-
ting the semantics from relations to entities but not transmit-
ting the semantics from head/tail entities to tail/head enti-
ties at the same time. Take Figure 1 for example, there are
three right triplets: (tiger, eat,meat), (people, eat,meat)
and (people, eat, fruit). These methods just transmit seman-
tics from eat to people, tiger, fruit and meat while from
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Figure 1: Sketch illustration of previous translation-based models.
There are three right triplets: (people, eat, fruit), (people, eat, meat)
and (tiger, eat, meat), and a wrong triplet: (tiger , eat, fruit). The
semantic information is transmitted between entities and relation,
i.e. people and eat, tiger and eat, eat and fruit, eat and meat, but not
between head and tail entities nor from entities to relations.

the human cognition perspective, there are semantic trans-
missions between people and fruit, people and meat, tiger
and fruit, tiger and meat, which may result in a wrong in-
ference: (tiger, eat, fruit).

ii) They do not transform the relation embedding by trans-
mitting the semantics from entities to relations neither. As in
some academic, the triplets (h, r, t) could be regarded as the
grammar structure of (subject, predicate, object), i.e. relation
is the predicate owning an executor h and an enforcer t for
each triplet, which means there are semantic transmissions
from subject (h) and object (t) to predicate (r).

iii) They show poor scalability to the large-scale knowl-
edge graph for having much more parameters than TransE.
They usually have some additional vectors or matrices than
TranE for each triplet, such as TransR having a additional
projection matrix for each relation.

iv) They transmit the semantics by linear transformation,
which might be limited and shall be replaced by nonlinear
transformation for better semantics translation.

v) From the mathematical point of view, when head/tail
entity vector and relation vector are fixed, the left/right side
of h⊥+r = t⊥ is fixed, i.e. no matter how linearly transform
to get tail/head entity vector, the final tail/head entity vectors
are distributing around one center, resulting in that tail/head
entity vectors are close to each other when head/tail entity
vector and relation vector are fixed.

To address these issues, we propose a novel method named
TransMS which has merely one additional parameter α than
TransE for each triplet as illustrated in Figure 2. First, entities
are projected as ke-dimension vectors h, t ∈ Rke , relation
as kr-dimension vectors r ∈ Rkr and a one-dimension vari-
able α where ke = kr for each triplet (h, r, t) in our model.
Then, we transform the tail entity embedding by transmitting
the semantics from head entity h and relation r to tail entity
t by a nonlinear function p(h, r), while transform the head
entity embedding by transmitting the semantics from tail en-
tity t and relation r to head entity h by p(−t, r) because it

is in the opposite direction of relation. Due to the nonlin-
ear transmissions from relation to entities, we just add a bias
vector to the relation embedding r to prevent the nonlinear
transmissions from canceling each other out, where the bias
vector is α · g(h, t) related to both h and t. Therefore, our
model not only conforms to human cognition in semantics,
but also overcomes the shortcoming of one entity’s vector
learning around a center when the other entity and relation
of a triplet are fixed in previous models.

Contribution: In general, the highlights of the paper are:
i) We propose a novel model TransMS that considers the

semantic information not only from relations to entities, but
also from the entities to relations and between entities;

ii) Our model has merely one additional parameter α than
the simplest pioneered model (i.e. TransE) in contrast to peer
methods having much more parameters for each triplet, such
as TransR which has ke × kr more parameters than TransE,
so our model has better scalability than the others;

iii) Our model has notable improvement on link prediction
for complex relations against the baselines model, especially
the Hit@10 for the head entity prediction for N-1 relations
and the tail entity prediction for 1-N relations, which are im-
proved by about 27.1% and 24.8% on FB15k [Bollacker et
al., 2008], respectively.

2 Related Work
To facilitate the introduction of relate works, we briefly de-
fine notations used in this paper. We denote a triplet by (h, r,
t), which belongs to knowledge graph, and their embedding
vectors by the bold lower case letters (h, t, r); matrices by the
bold upper case letters, such as M, and tensor whose dimen-
sion is no less than three by underlining the bold upper case
letters, such as W. Score function is denoted by fr(h, t).

2.1 Translation-Based Methods
TransE [Bordes et al., 2013]. As the seminal work for
translation-based model, TransE first projects the triplets onto
the low-dimension continuous space as h, r, t ∈ Rk, and then
translates the semantics from head entities to tail entities by
relations, formally as h + r ≈ t. Hence, the score function
is fr(h, t) = ‖h+ r− t‖`1/2 . TransE is effective for simple
1-1 relations, but its strict constraint makes it less capable on
complex relations (i.e. 1-N, N-1 and N-N).

TransH [Wang et al., 2014]. In order to overcome the short-
coming of TransE, TransH projects the entity embeddings
h and t onto a relation-specific hyperplane to get h⊥ =
h − w>r hw and t⊥ = t − w>r tw where w is a hyperplane
normal vector, while the relation embedding is denoted as a
translation vector r and a norm vector w. In this way, TransH
enables every entity to have distributed embedding vectors
corresponding to different relations. Finally, the score func-
tion of TransH turns into fr(h, t) = ‖h⊥ + r− t⊥‖`1/2 .

TransR/CTransR [Lin et al., 2015]. TransE and TransH
just project the entities and relations onto the same seman-
tic space but not consider that every entity may have mul-
tiple attributes and different relations may focus on differ-
ent attributes of entities. In this connection, TransH first
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Dataset #Rel #Ent #Train #Valid #Test
FB15K 1,345 14,951 483,142 50,000 59,071

FB15K-237 237 14,541 272,115 17,535 20,466
WN18 18 40,943 141,442 5,000 5,000

WN18RR 11 40,943 86,835 3,034 3,134

Table 1: Statistics of datasets used in experiments.

projects the entities onto the entity embedding space differ-
ent from the relation space onto which the relations are pro-
jected, and then the entity embedding vectors are projected
onto the relation space by projection matrix Mr. Finally,
the score function of TransR/CTransR turns into fr(h, t) =
‖Mrh+ r−Mrt‖`1/2 .

TransD [Ji et al., 2015]. Considering the diversity of both en-
tities and relations at the same time, TransD sets vector-vector
multiplications to replace the projection matrix of TransR for-
mally as Mh = rph

>
p +Ikr×ke for the head projection matrix

where kr and ke are the dimension of relation and entity em-
bedding vectors while the rp is related to relation r and hp is
related to the head entity h, so that TranD has fewer parame-
ters and better scalability for large-scale knowledge graph.

TranSparse [Ji et al., 2016]. In consideration of the hetero-
geneity of different relations and the unbalanced quantities of
head and tail entities for each relation, TranSparse replaces
the projection matrices with adaptive sparse matrices whose
sparse degrees are determined by the number of entity pairs
or entities linked by relations. Its score function turns into
fr(h, t) = ‖Mh

r (θ
h
r )h+ r−Mt

r(θ
t
r)t‖`1/2 , where Mh

r (θ
h
r )

and Mt
r(θ

t
r) are adaptive sparse matrices for head entity h

and tail entity t going with relation r in each triplet (h, r, t)
respectively. Here θhr and θhr are their sparse degrees.

GTrans [Tan et al., 2018]. GTrans supports that Trans (E,
H, R and D) underestimate the complicacy of entities and do
not fully describe semantics of entities and that relation is
an abstraction of entity facts (h, t) as these models following
the similar score function fr(h, t) = ‖h⊥ + r − t⊥‖`1/2 .
GTrans projects each entity onto two states - eigenstate and
minesis which reflect its intrinsic and exogenous attributes re-
spectively, formally as ha,he, ta, te, ra, re ∈ Rk.

2.2 Other Methods
Structured Embedding (SE) [Bordes et al., 2011]. For each
relation r in triplet (h, r, t), SE projects head entities and tail
entities by two different matrices Mh

r and Mt
r respectively.

Its score function is fr(h, t) = ‖Mh
rh−Mt

rt‖`1/2 .

Semantic Matching Energy (SME) [Bordes et al., 2012;
Bordes et al., 2014]. SME first projects entities and re-
lations onto low-dimension spaces, and then constructs a
neural network which acquires correlations between enti-
ties and relations by matrix operations including the lin-
ear form whose score function is fr(h, t) = −(Mh1

eh +
Mh2

r + bh)
>(Mt1et + Mr2r + bt) and the bilinear form

whose score function is fr(h, t) = −[(Mh1
eh)⊗ (Mh2

r)+
bh]
>[(Mt1et)⊗ (Mt2r) + bt] and ⊗ is Hadamard product.

ℎ":$% &":$'

()*,,
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-.,/
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Figure 2: The illustration of our model. pe,r is the semantic transla-
tion function where r represents the semantics of relations, and e is
inexistent or represents the semantic information of head (or tail) en-
tities when the semantics of relations are transmitted to head (or tail)
entities in previous models, while e represents the semantics of head
(or tail) entities transmitted to tail (or head) entities in our model.
The operation between gh,t and α is the bias vectors to transmit the
semantics from head and tail entities to relations.

Latent Factor Model (LFM) [Jenatton et al., 2012]. LFM
projects entities as column vectors (h, t) and the relations
into matrices Mr. Its score function is fr(h, t) = h>Mrt.
Single Layer Model (SLM) [Socher et al., 2013]. As a base
model of Neural Tensor Network, the model SLM designs its
score function as fr(h, t) = u>r tanh(Mr1h + Mr2t + br

with a nonlinear neural network, where Mr1,Mr2, and br

are parameters related to relation r.
Neural Tensor Network (NTN) [Socher et al., 2013]. To
account for the second-order correlations, NTN extends the
SLM by using nonlinear transformation neural networks. Its
score function is fr(h, t) = u>r tanh(h>Wrt + Mr1h +
Mr2t+br, where Mr1,Mr2, and br are parameters related
to relation r besides Wr which is the 3-way tensor.

3 The Proposed Method
3.1 Motivation
As mentioned in the introduction, the head entity of the triplet
can be interpreted as subject, the relation as predicate and
the tail entity as object. Hence we can easily get that what
the head entity, tail entity and relation are to each triplet as
what subject, object and predicate are to a subject-predicate
sentence. Intuitively, there is not only semantic information
from the relation r to the entities h (or t), but also between
h and t for each triplet (h, r, t). Previous methods mainly
consider the former semantic information, which results in
their poor capability on link prediction for complex relations.
To overcome this shortcoming, our method transmits the se-
mantic information from both entities h (or t) and relations
r to entities t (or h). In addition, we believe that nonlinear
functions are more efficient than linear functions to translate
semantics, so we use nonlinear functions to replace the linear
functions p(r), formally as p(e, r) for the semantic transmis-
sion from both h and r to t and get final tail entity embedding
vectors formally as t⊥ = P(p(h, r), t). Given that the se-
mantic transmission from t to h is in the opposite direction of
r, we define the semantic transmission function from t and r
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Model Score function #Parameters

SE [Bordes et al., 2011] ‖Mh
rh−Mt

rt‖`1/2 2kene + 2k2enrh, t ∈ Rke ,Mh
r ,M

t
r ∈ Rke×ke

SME(linear) [Bordes et al., 2012] −(Mh1
eh +Mh2

r+ bh)
>(Mt1et +Mr2r+ bt) 2kene + 2k2enrh, t ∈ Rke ,M1

r ,M
2
r ∈ Rke×ke

SME(bilinear) [Bordes et al., 2012] −[(Mh1eh)⊗ (Mh2r) + bh]
>[(Mt1et)⊗ (Mt2r) + bt] 2kene + 2k2enrh, t ∈ Rke ,M1

r ,M
2
r ∈ Rke×ke

TransE [Bordes et al., 2013] ‖h+ r− t‖`1/2 , kene + krnr(∗ke = kr)
h, t ∈ Rke , r ∈ Rkr

TransH [Wang et al., 2014] ‖h(I−w>r wt) + r− t(I−w>r wt)‖`1/2 , kene + 2krnr
h, t ∈ Rk ,wr, r ∈ Rk

TransR [Lin et al., 2015] ‖hMr + r− tMr‖`1/2 , kene + (kr + k2r)nrh, t ∈ Rke , r ∈ Rkr ,Mr ∈ Rke×kr

TransD [Ji et al., 2015] ‖(rph>p + Ikr×ke )h+ r− (rpt
>
p + Ikr×ke )t‖`1/2 , 4kene + 2krnr

h, t,hp, tp ∈ Rke , r, rp ∈ Rkr

TranSparse(separate) [Ji et al., 2016] ‖M1
r(θ

1
r)h+ r−M2

r(θ
2
r)t‖`1/2 2kene + 2(1− θ)(ke + 1)krnr

h, t ∈ Rke , r ∈ Rkr ,M1
r(θ

1
r),M

2
r(θ

2
r) ∈ R∗kr×ke 0� θ1r , θ

2
r ≤ 1

GTrans-DW [Tan et al., 2018] ‖1/σ � [(αhe + βrah
>
a he) + re − (αte + βrat

>
a te)]‖`1/2 kene + 3krnr(∗ke = kr)

ha,he, ta, te ∈ Rke , ra, re ∈ Rkr , σ, α, β ∈ R

GTrans-SW [Tan et al., 2018] ‖1/σ � [(1− αh,r)he + αh,rrah
>
a he + re − (1− αt,r)te kene + 3krnr(∗ke = kr)−αt,rrat

>
a te]‖`1/2 ha,he, ta, te ∈ Rke , ra, re ∈ Rkr , σ, α, β ∈ R

TransMS ‖ − tanh(t⊗ r)⊗ h+ r− tanh(h⊗ r)⊗ t+ α · g(h⊗ t)‖`1/2 , kene + (kr + 1)nr(∗ke = kr)
h, t ∈ Rke , r ∈ Rkr , α = rkr+1 ∈ R1

Table 2: Statistics of datasets used in experiments. We mainly compare the models’ score functions and their numbers of parameters. ne and
nr represent the number of entities and relations in knowledge graph respectively. ke and kr represent the dimension of entity and relation in
the low-dimensional space, h, t ∈ Rke , r ∈ Rkr . θ1r and θ1r denote the sparse degrees of transfer matrices in TranSparse. α represents one
additional dimension for each relation vectors in our model TransMS. For TransE, GTrans and TransMS, (*ke = kr) means that ke is equal
to kr .

to h as p(−e, r) and get final head entity embedding vectors
formally as h⊥ = P(p(−t, r),h).

In addition, it is common that every predicate r always
owns its executors and enforcers, and subjects h are the ex-
ecutors of predicates while objects t are enforcers of predi-
cates, so it is significant to transmit the semantic information
from subjects h and objects t to predicates r. Although the
semantic information of r is transmitted to h and t for each
triplet respectively by the nonlinear function p(e, r), the se-
mantic information of h and t is not transmitted to r. To
carry out this transmission, we structure bias vectors which
is defined as α·g(h, t) to r, where α is the one added dimen-
sion for relation and g(h, t) is the function related to both
h and t and get final relation embedding vectors formally as
r⊥ = G(r, α · g(h, t)). Figure 2 illustrates our approach.

In line with TransE, our model follows the similar
translation-based constraint for triplet embedding vectors
(h⊥, t⊥, r⊥): h⊥ + r⊥ ≈ t⊥, and the score function should
be fr(h, t) = ‖r⊥ + h⊥ − t⊥‖`1/2 .

3.2 The Proposed TransMS
Inspired by the above motivation, we propose a novel model
named TransMS (translates and transmits multidirectional se-
mantics) to deal with link prediction for complex relations
(i.e. 1-N, N-1 and N-N relations). We first project every
head entity h as an entity embedding vector h ∈ Rke , tail
entity t as an entity embedding vector t ∈ Rke , and relation
r as a relation vector r ∈ Rkr and a variable α ∈ R1, while
we can think of α as an added one dimension for relation

embedding vectors where ke and kr + 1 are the dimension
of entity and relation embedding vectors respectively, and
ke = kr , k in our model. Then, we transmit the seman-
tic information from tail (or head) entities t (or h) and rela-
tions r to head (or tail) entities h (or t) by nonlinear functions
p(e, r) ( or p(−e, r)). In particular, tanh is empirically found
the optimal one in our experiments on function p(e, r) among
{tanh, softmax, ReLu, atan, tan, sin, cos}. Hence,
entity vectors with semantic information are specified as:

h⊥ = tanh(−t⊗ r)⊗ h

= − tanh(t⊗ r)⊗ h (1)
t⊥ = tanh(h⊗ r)⊗ t (2)

where ⊗ means the Hadamard product.
And then, we transmit the semantic information from head

entities h and tail entities t to relations r by adding a bias
vectors constructed with multiplying the Hadamard product
between head vectors h ∈ Rk and tail vectors t ∈ Rk with α:

r⊥ = r+ α · (h⊗ t) (3)

where · means the scalar multiplication.
Finally, the score function of our model is

fr(h, t) = ‖h⊥ + r⊥ − t⊥‖`1/2
= ‖ − tanh(t⊗ r)⊗ h+ r+ α · (h⊗ t)+

− tanh(h⊗ r)⊗ t‖`1/2 (4)

The score is expected to be lower for golden triplets (the
triplets from the knowledge graph) than for negative triplets
(the triplets outside the knowledge graph).
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Data sets WN18 FB15K

Metric MeanRank Hit@10 MeanRank Hit@10
Raw Filter Raw Filter Raw Filter Raw Filter

SE [Bordes et al., 2011] 1011 985 68.5 80.5 273 162 28.8 39.8
SME (linear/bilinear) [Bordes et al., 2012] 545/526 533/509 65.1/54.7 74.1/61.3 274 154/158 30.7/31.3 40.8/41.3
TransE [Bordes et al., 2013] 263 251 75.4 89.2 243 125 34.9 47.1
TransH (unif/bern) [Wang et al., 2014] 318/401 303/388 75.4/73.0 86.7/82.3 211/212 84/87 42.5/45.7 58.5/64.4
TransR (unif/bern) [Lin et al., 2015] 232/401 219/388 78.3/79.8 91.7/92.0 226/198 78/77 43.8/48.2 65.5/68.7
CTransR (unif/bern) [Lin et al., 2015] 243/231 230/218 78.9/79.4 92.3/92.3 233/199 82/75 44.0/48.4 66.3/70.2
TransD (unif/bern) [Ji et al., 2015] 242/224 229/212 79.2/79.6 92.5/92.2 211/194 67/91 49.4/53.4 74.2/77.3
TranSparse (separate, US, unif/bern) [Ji et al., 2016] 233/223 221/211 79.6/80.1 93.4/93.2 216/190 66/82 50.3/53.7 78.4/79.9
GTrans DW (unif/bern) [Tan et al., 2018] 210/180 197/166 78.4/77.1 92.2/90.3 256/235 142/126 44.1/43.1 63.4/60.5
GTrans SW (unif/bern) [Tan et al., 2018] 247/215 234/202 79.1/80.2 92.9/93.5 207/189 66/85 50.6/52.9 75.1/75.3
TransMS (unif/bern) 427/455 414/442 82.5/82.5 94.7/94.8 171/213 63/104 55.0/54.3 86.8/78.4

Table 3: Results of link prediction on WN18 and FB15K, under the settings of both ‘unif’ and ‘bern’.

Tasks Head Prediction (Hit@10) Tail Prediction (Hit@10)
Relation Type 1-to-1 1-to-N N-to-1 N-to-N 1-to-1 1-to-N N-to-1 N-to-N
SE [Bordes et al., 2011] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3
SME (linear/bilinear) [Bordes et al., 2012] 35.1/30.9 53.7/69.6 19.0/19.9 40.3/38.6 32.7/28.2 14.9/13.1 61.6/76.0 43.3/41.8
TransE [Bordes et al., 2013] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH (unif/bern) [Wang et al., 2014] 66.7/66.8 81.7/87.6 30.2/28.7 57.4/64.5 63.7/65.5 30.1/39.8 83.2/83.3 60.8/67.2
TransR (unif/bern) [Lin et al., 2015] 76.9/78.8 77.9/89.2 38.1/34.1 66.9/69.2 76.2/79.2 38.4/37.4 76.2/90.4 69.1/72.1
CTransR (unif/bern) [Lin et al., 2015] 78.6/81.5 77.8/89.0 36.4/34.7 68/71.2 77.4/80.8 37.8/38.6 78.0/90.1 70.3/73.8
TransD (unif/bern) [Ji et al., 2015] 80.7/86.1 85.8/95.5 47.1/39.9 75.6/78.5 80.0/85.4 54.5/50.4 80.7/94.4 77.9/81.2
TranSparse (separate,US,unif/bern) [Ji et al., 2016] 83.2/87.1 85.2/ 95.8 51.4/44.4 80.3/81.2 82.6/87.5 60.0/57.0 85.5/94.5 82.5/83.7
GTrans DW (unif/bern) [Tan et al., 2018] 77.4/76.3 87.1/86.0 23.4/20.3 65.6/61.2 74.3/75.6 32.3/31.7 84.4/83.5 67.2/63.9
GTrans SW (unif/bern) [Tan et al., 2018] 80.1/84.9 93.0/95.0 48.4/39.9 75.4/75.9 79.4/84.4 51.8/47.7 91.2/94.5 77.8/78.8
TransMS (unif/bern) 89.5/91.4 94.4/95.9 78.5/44.9 85.6/78.5 90.0/91.6 84.8/54.1 91.7/93.6 87.7/82.0

Table 4: Detailed results by the category of relation on FB15K, under the settings of both ‘unif’ and ‘bern’.

3.3 Learning of TransMS
Before training, it is important to obtain negative triplets and
devising the loss function. In our model, we set every triplet
(hi, ri, ti) has a label yi which equals to 1 when the triplet
is golden or −1 when the triplet is negative. And then,
we denote the golden triplet set as D = {(hi, ri, ti)|yi =
1} and negative triplet set as D′ = {(h′i, ri, ti)|yi =
−1}

⋃
{(hi, ri, t′i)|yi = −1} where h′i or t′i is corrupted (but

not both corrupted at the same time) by randomly sampling
in two means: i) uniform sampling from all entities with
the equal probability denoted as ‘unif’ as in [Bordes et al.,
2013], and ii) Bernoulli sampling from all entities with dif-
ferent probabilities which depend on the projecting property
of the relations denoted as ‘bern’ as in [Wang et al., 2014].
The embedding vector for each given entity is a uniquely pro-
jected vector whether it is head or tail entity.

We use the following margin-based ranking loss function
for our training as in [Bordes et al., 2013].

L =
∑

(h,r,t)∈D

∑
(h′,r,t′)∈D′

[fr(h, t) + γ − fr(h′, t′)]+ (5)

where [x]+ :, max(0, x) aims to get the maximum be-
tween x and 0, and γ which is the margin separating golden
and negative triplets could keep far from each other between
golden and negative candidates. As in previous models, we
enforce constraints on the normalization of vectors h, r, t.
i.e. ∀(h, r, t) ∈ D

⋃
D′, ‖h‖2 ≤ 1, ‖r1:k‖2 ≤ 1, ‖t‖2 ≤ 1.

We adopt Adam [Kingma and Ba, 2015] to minimize the
above loss with additional sparse norm regularizer on entities’

embeddings. All embedding vectors for entities and relations
are first initialized following the random procedure in [Glo-
rot and Bengio, 2010]. Then, the entity embedding vectors
e ∈ Rk and the relation embedding vectors r ∈ Rk are nor-
malized at each main iteration except the additional dimen-
sion α. The set of golden triplets are randomly traversed mul-
tiple times followed by the construction of negative triplets.

Table 2 lists the score functions and the total number of
parameters for some typical translation-based models and our
model TransMS. It can be obviously seen that for each triplet,
the number of parameters in our model is only one more than
the simplest TransE while much fewer than the others, which
indicates the cost-effectiveness of our approach.

4 Experiments and Analysis
4.1 Datasets and Protocols
We mainly evaluate our model on two typical knowledge
graphs, which are built with WordNet [Miller, 1995] and
Freebase [Bollacker et al., 2008] databases used in previous
models. WordNet regarded as sysnets which groups English
words into sets of synonyms is a lexical database for English.
In this paper, we use one subset of WordNet: WN18 [Bor-
des et al., 2014], which has 40943 entities and 18 relations.
Freebase is composed of general human knowledge. For in-
stance, the triplet (Obama,was a president of,America),
which means Obama was a president of America, is a fact in
the real world. In this paper, we employ one subset of Free-
base: FB15K [Bordes et al., 2014]. FB15K has 14951 enti-
ties and 1345 relations. WH18 and FB15K are two typical
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subsets of Knowledge graph as they have simple or complex
relations respectively. In addition, we perform comparative
experiments on the WN18RR [Dettmers et al., 2017] and
FB15K-237 [Toutanova and Chen, 2015] datasets in con-
trast with ConvE [Dettmers et al., 2017] which is a deep
learning model for knowledge graph embedding. FB15K-
237 which has 237 relations and 14541 entities is a subset of
FB15K. WN18RR which has 11 relations and 40943 entities
is a subset of WN18. The four databases consist of training,
validation and testing sets which have been well constructed
as Table 1.

We use link prediction for evaluation in line with [Bor-
des et al., 2013]. The prediction for new relations between
head and tail entities when the head and tail entities are given
is equivalent to the prediction for tail/head entities when the
head/tail entities and relations are given.In knowledge graph,
the purpose of link prediction is to predict head/tail entities
when tail/head entities and relations are given. For example,
for the triplet (Obama,was a president of,America) in
Freebase, link prediction aims to predict missing head entity
of (∗,was a president of ,America) or missing tail entity
of (Obama,was a president of, ∗). Link prediction em-
phasizes the rank of the origin golden entity in knowledge
graph but not focus on the best candidate entity as there may
be more than one suitable candidate. In particular, there are
two popular metrics: i) MeanRank. The mean rank of cor-
rect entities; ii) Hit@10. The ratio of correct entities ranked
in top 10.

The MeanRank evaluation contains two parts. One is to
evaluate the head entity prediction, the other is to evaluate
the tail entity prediction. For the head entity prediction, the
head entity for each triplet in testing set is first removed and
replaced by the entities of entity set R to construct the cor-
rupted triplets. Next, the scores of these corrupted triplets
whose relations and tail entities are the same as each other
are computed by the score function and sorted by ascending
order. Then, the ranks of the correct entities are stored. Fi-
nally, the mean rank of head entity predictions is computed
and denoted as MeanRank evaluation for the head entity pre-
diction. The whole procedure is repeated while the tail enti-
ties are replaced instead of the head entities for the tail entity
prediction. The final MeanRank is the average of the Mean-
Rank for the head and tail entity prediction among all triplets
in testing set. Generally, the better model is followed by the
lower MeanRank.

As MeanRank, the Hit@10 evaluation also has two parts:
evaluation for the head entity prediction and evaluation for the
tail entity prediction. For the head entity prediction, we count
the number of the correct head entities ranked in top 10, and
then the number is divided by the total number of triplets in
testing set. The ratio is denoted as Hit@10 evaluation for the
head entity prediction. Similarly, the Hit@10 evaluation for
the tail entity prediction is calculated with the same method,
and the final Hit@10 is the average of the Hit@10 for the
head and tail entity prediction among all triplets in testing
set. Generally, the higher Hit@10 means the better model,
the higher Hit@10 is followed by the lower MeanRank. It is
a flaw that the MeanRank evaluation will be abnormal as there
are abnormal ranks of correct triplets such that the Hit@10 is

DataSet FB15K-237
Metric MeanRank Hit@10

ConvE [Dettmers et al., 2017] 330 0.458
TransMS 249 0.445
DataSet WN18RR
Metric MeanRank Hit@10

ConvE [Dettmers et al., 2017] 7323 0.411
TransMS 6523 0.460

Table 5: Filter results of link prediction on WN18 and FB15K, under
the setting of ‘unif’.
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Figure 3: The results of different Hit metric on WN18 under the
setting of ‘unif’ is similar to the results on WN18 under the setting
of ‘bern’.

the better metric than the MeanRank.
In addition, given that some corrupted triplets ranked above

the right triplets in testing set may be golden ones in train-
ing, validation or testing sets, the MeanRank and Hit@10
should be divided into two types: One is the Filter represent-
ing statistics that the correct triplets belonged to training, val-
idation or testing sets are first filtered out from the corrupted
triplets and then the scores of another corrupted triplets are
ranked, the other is the Raw representing the original statis-
tics that scores of all corrupted triplets are ranked.

We conduct experiments on four knowledge graph subsets:
WN18, FB15k, WN18RR and FB15K-237, and compare
with methods listed in Table 2 and ConvE. We directly report
the results of those methods from the literature as in [Wang et
al., 2014; Ji et al., 2016; Zhang, 2017; Dettmers et al., 2017;
Tan et al., 2018]. We conduct 200 iterations of training on
FB15k-237 and 500 iterations of training on the other three
databases. The learning rate β for Adam is set among {0.1,
0.01, 0.001}, the margin γ among {1.0, 1.5, 2.0, 4.0}, the
dimension of vectors d among {50, 100, 150, 200}, the mini-
batch size b among{200, 1200, 4800} and additional regular-
izers among {`1, `2}. For both WN18 and FB15K, the opti-
mal configurations are: β = 0.001, γ = 2.0, d = 200, b =
4800 and L = `1 on both corrupted means: ‘unif’ and ‘bern’,
which are same as the optimal configurations of WN18RR
and FB15K-237 on ‘unif’.
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Data sets WN18

Metric MeanRank Hit@10
Raw Filter Raw Filter

α is same(unif/bern) 481/461 469/451 82.3/82.1 94.8/94.7
α is different(unif/bern) 427/455 414/442 82.5/82.5 94.7/94.8
Data sets FB15K

Metric MeanRank Hit@10
Raw Filter Raw Filter

α is same(unif/bern) 227/230 111/128 51.8/53.7 79.8/75.1
α is different(unif/bern) 171/213 63/104 55.0/54.3 86.8/78.4

Table 6: Results of link prediction on WN18 and FB15K, under the
settings of both ‘unif’ and ‘bern’. “α is same” means the parameter
α is shared by different relations.“α is different” means the parame-
ter α varies with relations.

4.2 Results and Analysis
Experimental results on both FB15K and WN18 are shown in
Table 3. On FB15K, by the means of both ‘unif’ and ‘bern’,
our model improves Hit@10 and MeanRank with both Raw
method and Filter methods, especially our model performs
better than the SE, SME and Trans(E, H, R) which are usually
used as comparison because they have better scalability than
the others, while on WN18, our model improves Hit@10 with
Raw and Filter methods.

Regarding Hit@10 for diverse relations, Table 4 lists the
results by projecting properties of relations on FB15K. We
can find that Hit@10s of the head prediction are improved
for 1-1, N-1 and N-N relations by the means of ‘unif’ while
improved for 1-1 and N-1 relations by the means of ‘bern’,
and the Hit@10s of the tail prediction are improved for 1-1,
1-N and N-N relations by the means of ‘unif’ while improved
for 1-1 relations by the means of ‘bern’. There are significant
improvements for the Hit@10 of the head prediction for N-
1 relations and the tail prediction for 1-N relations by about
27.1% and 24.8% respectively while both predictions always
are the tough nut to crack for long time.

In Table 3, TransMS outperforms the peer methods except
the MeanRank metric on WN18. We get the more Hit results
showed in Figure 3, which reveales that the results of entity
prediction are mainly distributed in Hit@20 and there are less
than 5% outside the Hit@20. Therefore, it is reasonable for
the worse MeanRank on WN18 because the MeanRank will
fluctuate abnormally as abnormal ranks of corrupted triplets.

Experimental results on both FB15K-237 and WN18RR
are shown in Table 5. It can be seen that our model performs
better than ConvE on WN18RR as MeanRank on FB15K-
237 while the Hit@10 is only slightly lower than ConvE
on FB15K-237. Given that ConvE is modelled by fully-
connected and convolutional layers, our model not only has
better scalability than ConvE but also has similar perfor-
mance to ConvE.

In addition, we also evaluate our model on FB15K and
WN18 datasets when the parameter γ changes according to
relations or is a constant for different relations. In these ex-
periments, the hyperparameters remain equal as in the part
Datasets and Protocols. As we can see from the results listed
in Table 6, the performance will be better when the parameter
γ varies with relations than when α keeps a same value for
different relations.

Dataset FB15K

Relation /tv/tv series episode/guest stars./tv/
tv guest role/actor

Similar relations

/tv/tv actor/starring roles./tv/
regular tv appearance/series

/tv/tv program/recurring writers./tv/
tv program writer relationship/writer

/tv/tv actor/guest roles./tv/
tv guest role/episodes appeared in

/film/film/produced by
/film/director/film

Relation /baseball/baseball team/team stats./
baseball/baseball team stats/season

Similar relations

/baseball/baseball team/historical ro
ster.sports/sports team roster/player
/baseball/baseball player/former te
ams./sports/sports team roster/team

/sports/pro athlete/teams./baseball/ba
seball historical roster position/team
/sports/sports team/roster./baseball/

baseball roster position/position
/baseball/baseball league/teams

Table 7: Top-5 similar relations for each relation by relation embed-
ding vectors on FB15K [Cosine similarity].

There are two relations with top-5 similar relations on co-
sine similarity metric by relation embedding vectors respec-
tively in Table 7. We can find that such candidate symbolic
relations have similar semantics to the base relations. These
results indicate that the semantic translations among head en-
tities, tail entities and relations are significant for the knowl-
edge graph representation.

5 Conclusion
We have presented a novel model named TransMS that takes
the multidirectional semantic information into account. Our
model transmits i) the semantics from the head/tail entity and
relation to the tail/head entity by a nonlinear function and ii)
the semantics from entities to relation by adding a bias vec-
tor to relation embedding vector for each triplet. TransMS
has better scalability than the peer models because it only has
one more parameter than the simplest translation-based em-
bedding model (i.e. TransE) but fewer than the others. In fu-
ture, we will explore the best methods to translate semantics
within triplets to improve the performance of link prediction
for complex relations in large-scale knowledge graphs.
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