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Abstract

When people make decisions with a number of
ideas, designs, or other kinds of objects, one at-
tempt is probably to organize them into several
groups of objects and to prioritize them according
to some preference. The grouping task is referred
to as clustering and the prioritizing task is called
as ranking. These tasks are often outsourced with
the help of human judgments in the form of pair-
wise comparisons. Two objects are compared on
whether they are similar in the clustering problem,
while the object of higher priority is determined
in the ranking problem. Our research question in
this paper is whether the pairwise comparisons for
clustering also help ranking (and vice versa). In-
stead of solving the two tasks separately, we pro-
pose a unified formulation to bridge the two types
of pairwise comparisons. Our formulation simul-
taneously estimates the object embeddings and the
preference criterion vector. The experiments using
real datasets support our hypothesis; our approach
can generate better neighbor and preference estima-
tion results than the approaches that only focus on
a single type of pairwise comparisons.

1 Introduction

When people have a number of ideas, designs, or other kinds
of objects, they may try to organize them into several groups
of objects in order to make sense of their landscape and to pri-
oritize them in order to decide the next actions. The group-
ing task is referred to as clustering and the prioritizing task
is called ranking. These tasks are often outsourced with the
judgments by the users themselves or some others such as
crowdsourcing workers, and the judgments are often in the
form of pairwise comparisons because humans are better at
comparing objects rather than investigating each single ob-
ject. Depending on the tasks, different types of pairwise com-
parisons are used: pairwise similarity comparisons and pair-
wise preference comparisons.

On one hand, in the object clustering task, two objects are
compared to determine their similarity. The labels of such

pairwise similarity comparisons are used to estimate the em-
bedding of the objects in a latent space so that the distances
among the objects in the space preserve the object similar-
ity [Hinton and Roweis, 2003; van der Maaten and Hinton,
2008; Tamuz et al., 2011; van Der Maaten and Weinberger,
2012; Agarwal et al., 2007; Gomes et al., 2011]. On the
other hand, in the object ranking task, two objects are com-
pared to determine which object is preferred. The labels
of such pairwise preference comparisons are aggregated to
a ranking list [Bradley and Terry, 1952; Chen et al., 2013;
Raman and Joachims, 2014; Chen and Joachims, 2016].

The existing approaches for these two kinds of tasks are
separated from each other. They only utilize a single type of
pairwise comparisons of the corresponding tasks. Here our
research questions in this paper arise: “Do the pairwise sim-
ilarity comparisons (primarily used for clustering) also help
object ranking?” and “Do the pairwise preference compar-
isons (primarily used for ranking) also help object cluster-
ing?”. Our expectation is that the quality of both tasks is
improved by simultaneously solving the two different tasks,
rather than solving them separately. For example, in the rank-
ing task, the objects with similar contents would probably
have close ranks (while the reverse may be not always true).
Similarly, in the clustering task, the objects with far differ-
ent ranks would probably have dissimilar contents (again, the
reverse is not always true.)

In this paper, we propose Simultaneous Clustering And
Ranking from PAirwise comparisons (SCARPA), a unified for-
mulation to bridge the two types of pairwise comparisons.
Our formulation depends on both of the object embeddings
preserving the pairwise similarity among objects and the pref-
erence criterion vector; the object embeddings projected onto
the direction of the vector represent the preference of the ob-
jects. Our approach iteratively learns the object embeddings
and the preference scores by maximizing a mixed objective
function which includes both pairwise preference and simi-
larity information.

A typical usage of our method is to organize a large num-
ber of ideas generated by a variety of people [Siangliulue et
al., 2015; Hope ef al., 2017]. Due to the scale, it becomes
challenging for users to explore a pool of the ideas and to
identify the superior ones. Our method provides users with
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an efficient way to group and prioritize the ideas to support
the decision-making process; the embedding of each idea ob-
tained by our method can be used for visualizing the idea
clusters so that users can easily see an overview of a diverse
set of ideas, and the preference scores of the ideas help users
decide priorities for investigation. Another example is to or-
ganize a large number of graphic designs obtained by a design
competition. By using our method, stakeholders are able to
group and prioritize them to decide which designs are similar
and which ones are finally selected as the winners. Further-
more, besides the proposed simultaneous clustering and rank-
ing tasks, our method can also be utilized for single cluster-
ing or ranking tasks by collecting additional labels of another
type of comparisons.

We conduct experiments using several real datasets col-
lected using crowdsourcing. These datasets include the exam-
ples of the idea and design collections that we aim to make
decisions on them. The experimental results illustrate that
our approach can generate better neighbor and preference es-
timation results than the approaches that only focus on a sin-
gle type of pairwise comparisons, by only increasing a small
number of cost on collecting additional labels.

The contributions of our work are mainly two-fold:

1. We propose the new problem of simultaneous cluster-
ing and ranking from two types of pairwise compar-
isons: the pairwise similarity comparison and the pair-
wise preference comparison.

2. We propose a unified formulation that bridges the two
different types of pairwise comparisons so that we can
utilize the information of both types of pairwise compar-
ison to improve the quality of both clustering and rank-
ing results.

2 Simultaneous Clustering and Ranking
Problem

2.1 Clustering Problem and Ranking Problem

Suppose we have a set of n objects denoted by O. We assume
that no feature vector representations of the objects are avail-
able. Our goal is to organize the objects into several groups
and to prioritize the objects. The former task is usually called
clustering, and the latter is called ranking.

In the clustering task, we assume we first seek for a repre-
sentation (or an embedding) of each object in a d-dimensional
latent feature space; we denote by x; € R? the representation
of object ¢. Those representations reflect proximity relations
among the objects, and then they can be used for clustering
the objects (by e.g. the k-means clustering algorithm).

In the ranking task, our goal is to obtain a ranking list of
the n objects. The ranking list reflects the relative preference
among the objects.

2.2 Pairwise Comparisons

In order to obtain the embeddings and the ranking list of the
set of objects O, we assume we use human judgments, es-
pecially in terms of pairwise comparison. For a given object
pair o; and o; in O, we consider two different types of pair-
wise comparison: pairwise similarity comparison and pair-
wise preference comparison.

Pairwise similarity comparison is a type of questions ask-
ing the degree of similarity between two objects. In this
paper, we consider the simplest kind of pairwise similarity
comparison which is a binary-answer question, e.g. “Are the
two objects are similar?” of which the candidate answers are
“Yes” and “No”. We can collect the answers for a number of
object pairs, e.g., by using crowdsourcing, and the answers
are aggregated to estimate their embeddings in a latent space,
and they are further used for object clustering [Gomes et al.,
2011; Yi et al., 2012; Korlakai Vinayak and Hassibi, 2016].

Pairwise preference comparison is a type of questions ask-
ing which of two given objects is of higher priority. This is
also a binary-answer question, e.g. “Which of the two ob-
jects is preferred to the other one?” Collected answers are
aggregated into a single ranking list through estimation of sta-
tistical models [Bradley and Terry, 1952; Chen et al., 2013;
Raman and Joachims, 2014].

In this paper, for the pairs of objects, we ask humans such
as crowdsourcing workers to answer two types of pairwise
comparison. Because the number of object pairs is quadratic
in the number of objects, it costs too much budget and time if
we ask all object pairs. Furthermore, if we use crowdsourc-
ing, the comparison results can be rather noisy, and therefore
multiple comparisons for the same object pairs are required
to integrate them to obtain reliable results, which further in-
crease the number of comparisons. Those facts motive us to
obtain accurate clustering and ranking results using a limited
number of comparison results.

2.3 Problem Definition

The key idea to address the present problem is to perform the
clustering task and ranking simultaneously. Our hypotheses
behind the idea is that (i) the pairwise similarity comparisons
(that are primarily used for the clustering task) also help ob-
jectranking, and at the same time, (ii) the pairwise preference
comparisons (that are primarily used for the ranking task) also
help object clustering. Our expectation is that the quality of
both tasks is improved by simultaneously solve the two dif-
ferent tasks, rather than solving them separately.

Finally, the simultaneous clustering and ranking problem
is summarized as follows:

INPUT: We are given a set of pairwise preference labels
P = {pi;}ij» where p;; € [0,1] is the result of pref-
erence comparison between objects o; and o;, which in-
dicates the ratio of votes for 0;. We also have a set of
pairwise similarity labels S = {s;;}; ;, where s;; is the
result of similarity comparison between objects o; and
04, which indicates the ratio of the “Yes” answer (i.e.,
“similar””). Both pairwise preference labels and pairwise
similarity labels have not necessarily been given for all
of the object pairs.

OUTPUT: Our goal is to output the embeddings {x;}7 ,
and the preference scores {7;}7_.

3 Our Approach

3.1 Relation of Different Pairwise Comparisons

When estimating the ranking list of the objects from the pair-
wise preference comparison labels, we estimate the compe-
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Figure 1: Relation between the competency and the object embed-
dings assumed in the proposed model. The competency of each ob-
ject (73, 74, and 7y,) is represented by the projection of its embed-
dings (x;, x;, and o) on the preference criterion vector w. Objects
o0; and o; are similar and have close competency; objects o; and oy,
have close competency but they can be dissimilar.

tency scores of the objects which are as consistent as possible
with the preference labels by the pairwise preference models
such as the Bradley-Terry model [Bradley and Terry, 1952;
Chen et al., 2013]. We also assume the standard Bradley-
Terry model which gives the probability that object o; is pre-
ferred to object 0; as

1
1+exp(—(m—15))]
where 7; denotes the competency score of object o;.

When estimating the neighborhood of the objects from the
pairwise similarity comparison labels, we learn the embed-
dings of the objects so that they are as consistent as possible
with the similarity labels by the neighbor embedding mod-
els [Hinton and Roweis, 2003; van Der Maaten and Wein-
berger, 2012]. We employ the simplest neighborhood model
that gives the probability that two objects 0; and o; are neigh-
bours of each other as

6ij = exp(— ||z — z;][*), @
where the embedding of object o; is denoted by a d-
dimensional vector x;.
Our idea is to bridge the different types of pairwise com-
parison by assuming a relation between the competency score
7; and the object embedding x;; namely, we assume

gij = PI‘(OZ‘ - Oj) = (D

7 =w'a;, 3)
where w is a d-dimensional parameter vector which repre-
sents the preference criterion. Each dimension of w indicates
the impact of the corresponding feature in the latent space on
the object competency. The competency 7; of an object o; can
be represented by the projection of its embeddings x; on the
preference criterion vector w. Figure 1 gives a graphical ex-
planation of the relation between the competency scores and
the object embeddings.

The relation given by Eq.(3) implies that (i) a similar object
pair have close competencies, while an object pair with close
competencies are not necessarily to be similar, and (ii) an ob-
ject pair with far competencies is dissimilar, while a dissim-
ilar object pair does not necessarily have far competencies.
Figure 1 illustrates the assumptions, i.e., the similar object
pair 0; and o; have close competencies, while o; and oy, have
close competencies but they are dissimilar. By using Eq. (3),
the preference model (Eq. (1)) is written as:

1
91‘]‘ =

1+exp(—w' (x; —x;)) “)

3.2 Simultaneous Clustering and Ranking

Now we formulate the simultaneous clustering and ranking
problem as an optimization problem that finds both the object
embeddings {x; }; and the preference criterion vector w. The
overall objective function F' is defined as

—n w3 —VZ le: (3, ©

where R (,-) and FE (-) are two objective functions for rank-
ing and embedding, respectively, and « and 3 are their mix-
ture constants; the last two terms are the regularization terms
with constants n > 0 and v > 0.

The objective function for ranking and embedding are de-
fined as follows, respectively:

R({@:}i,w) =y {pij log

pi; €P

1
I+ exp(—w (x; — @)

1
1—pij)l 1—- .
# =i (1= e )
(6)
E({}) = 3 {siloglexp(—|lz; — a;]2)
5i; ES (7
+ (1= si5) log(1 — exp(—||lzi — 2*)} -
By using the gradient descent method and updating {«; }; and
w iteratively, we obtain {«; }; and w that maximizes the ob-
jective function Eq. (5).

Once the embeddings {x;}; and the preference criterion
vector w are obtained, we compute the competency scores of
the objects by using Eq. (3) to make a ranking list, and the
similarity scores of two objects based on Eq. (2) to use them
for further applications such as clustering.

4 Experiments

4.1 Baselines

We compare SCARPA, the proposed approach which bridges
both two types of comparison labels, with the baseline ap-
proaches which only utilize either preference labels or simi-
larity labels:

e Preference Comparison Embeddings (PCE): it uses
the preference labels only. It is similar to the standard
Bradley-Terry model [Bradley and Terry, 1952] but it
learns both embeddings and preference criterion by ob-
jective function R (Eq. (6)) with regularization terms.

e Similarity Comparison Embeddings (SCE): it uses
the similarity labels only to estimate the embeddings by
optimizing the objective function E (Eq. (7)) with regu-
larization terms. It represents the existing work for sim-
ilarity embedding such as [Hinton and Roweis, 2003;
van Der Maaten and Weinberger, 2012].

These baselines are representative in the related topics. In-
deed, the extensions of these baselines have been proposed
with more sophisticated models. For example, PCE can be
extended by adding worker ability [Chen et al., 2013]; SCE

1556



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

s 1L LRI LR Ry PN VNN AN
R A R AR AT LY
R R ERRR Y KRN T 1T

PCE 31§

o

SCE 078

x©

Figure 2: Comparison on ranking task. The size value at the top
of each object indicates the true competency. SCE fails to correctly
rank the objects, and SCARPA has more accurate ranking than PCE.
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Figure 3: Comparison on clustering task. The shape (with spe-
cific color) of each object indicates the true cluster. Sampling rate
r = 0.2 for all approaches. SCARPA successfully categorized the
objects based on their shapes; PCE failed to generate clusters and
SCE made more incorrect assignments.

can be extended based on more robust distributions such as
the ¢-distribution [van Der Maaten and Weinberger, 2012].
However, the choice of the fundamental models of ranking or
clustering is beyond our scope, and our approach can also be
extended in the similar ways.

4.2 Experiment with a Synthetic Dataset

We first conducted an experiment with a synthetic dataset to
easily observe the characteristics of the approaches by using
the ground truth of the competencies and the embeddings.
We generated objects that are characterized by two attributes:
shape and size. There are four shape types (circle, cross, dia-
mond, and square) and a size. For each of the shape types, we
generate five objects. The sizes of circles, crosses, diamonds,
and squares are 1-5, 6-10, 11-15, and 16-20, respectively.
We then generated a preference comparison label and a sim-
ilarity preference comparison label for each object pair. The
competency of an object is determined by its size; the prefer-
ence label is p;; = 1 if o; is smaller than the o;. The similar-
ity comparison is evaluated by the shape; the similarity label
is s;; = 1 if the objects have the same shape. We sampled
20% of the object pairs and applied each method. The hyper-
parameter tuning is same with that of the experiments on the
real datasets which will be introduced in Section 4.5.

Figure 2 visualizes the results on the ranking task. It shows
that SCE failed to correctly rank the objects and SCARPA
provided more accurate ranking than PCE; for example, in
SCARPA, the objects with size 4, 2, 10 and 18 have the better
rank. Figure 3 visualizes the results on the clustering task.
SCARPA almost completely correctly distinguished the ob-
jects based on their shapes while SCE made more incorrect
assignments, and PCE failed to generate clusters. These re-
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sults demonstrate the effectiveness of SCARPA on both rank-
ing and clustering tasks.

4.3 Real Datasets

We construct five real datasets with tasks consisting of prefer-
ence comparisons and similarity comparisons. These datasets
contain the examples of idea and design collections that we
aim to group and prioritize to make decisions. The pairwise
comparison labels are collected by a commercial crowdsourc-
ing platform Lancers'. We collect the labels for all object
pairs so that we can use any object pair in the experiments.
10 labels are collected for each object pair, which are aggre-
gated by majority voting to create the ground truth labels.
Design: We can easily collect many diverse designs such as
drawings and charts from crowds. The design preference can
be used for selecting best designs and the design similarity
can be used to group the designs. To collect the pairwise
comparisons, our solution is to ask another group of crowds
to compare the pairs of designs. We focus on designed logos
used for the home pages of companies. 21 designs and 20 de-
signs are collected for the two companies respectively, which
are used as two datasets, i.e., designl (with 52 workers) and
design2 (with 65 workers).

Idea: We can ask a group of crowds to provide ideas for a
problem. Another group of crowds evaluates these ideas on
the preference and similarity. The ideas for two problems
are collected. One problem is “how to decrease the cheating
behaviors in the examination” (ideal dataset, with 40 ideas
and 189 workers). An example of the ideas is “using different
sequences of the questions for different students”. The other
problem is “how to decrease the absences and lateness for the
meetings” (idea2 dataset, with 40 ideas and 184 workers).
Dog: One useful application of our work is the subjective
evaluation of images on the issues such as aesthetics. We ask
the crowds to evaluate a set of dog images. For the preference
tasks, the question is “which dog in the images is cuter?”. For
the neighbor estimation task, the question is “whether two
dogs are similar or belong to the same breed”. We select six
dog breeds and five images for each breed (30 images in total)
from the Stanford Dogs Dataset [Khosla er al., 2011]. There
are 74 workers.

4.4 Evaluation Metrics

We evaluate the different approaches on their ability to es-
timate the pairwise comparison labels of all object pairs by
only a small number of labeled object pairs. In details, in one
experimental trial, we randomly select a subset of all object
pairs with sampling rate » = 0.1. For both two types of pair-
wise comparison, we only use five labels in the ten labels of
each object pair. We denote the subset of labels as Py and Sy,
where k is the index of the subset. We evaluate the average
performance of ten trials.

There are two different settings on the selected objects
pairs in Py and Si. One is to use the same object pairs for
both Py, and Si. It only increases a small number of budget
cost because workers do not need to judge more objects and
only need to provide an extra label. The other setting is to use

'www.lancers.jp/
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Dataset Metric SCARPA PCE SCE
Designl preference | 0.7210 £ 0.0468 0.7057 £ 0.0397  0.4519 +£ 0.0867
similarity | 0.6439 + 0.0584 0.5617 = 0.1157 0.6044 £ 0.0857
Design2 preference | 0.6159 £ 0.0635 0.6147 £ 0.0632  0.5016 % 0.0459
similarity | 0.5707 + 0.0757 0.5567 £ 0.0761 0.5136 £ 0.0718
Ideal preference | 0.6719 £ 0.0256 0.6609 £+ 0.0324  0.5173 £ 0.0537
similarity | 0.6209 + 0.0238 0.5640 + 0.0377 0.6077 £ 0.0241
Idea? preference | 0.5936 £ 0.0197 0.5921 + 0.0193  0.5032 £ 0.0422
similarity | 0.6939 + 0.0329 0.5014 £+ 0.0535 0.6869 £ 0.0319
Do preference | 0.7907 £ 0.0254 0.7848 + 0.0222  0.5191 £ 0.0866
g similarity | 0.6926 &+ 0.0410 0.6481 £+ 0.0283 0.6506 £ 0.0518

Table 1: Comparison on the real datasets. The winners are bold-faced. SCARPA outperforms the Baselines (PCE and SCE).

different object pairs. It doubles the budget cost for collecting
the same total number of labels in both P, and Sy, because the
workers need to judge different objects.

We use two performance evaluation metrics: pairwise pref-
erence accuracy and pairwise similarity accuracy. The pair-
wise preference accuracy is the accuracy of the estimated
preference. For an object pair o; and o;, if o; is preferred
to o; in the ground truth labels, the estimated competency
score 7; should be higher than 7;. The pairwise similarity ac-
curacy is the accuracy of the relations of estimated similarity
of two object pairs. Without a similar-dissimilar threshold,
we cannot assign a similarity label to the estimated similarity
§i;. Instead, for a similar object pair (0,4, 05) and a dissim-
ilar object pair (0., 04) in the ground truth, if the estimated
similarity S, is higher than 5.4, we judge the relation of the
estimated similarity of these two object pairs is correct.

4.5 Tuning Hyperparameters

Since we have no access to a subset of the ground truth labels
in our unsupervised problem setting, we cannot use them for
tuning the hyperparameters. Instead, we leverage surrogate
ground truth and the surrogate performance on them. We use
the label subsets P, and S, which are the same ones used
by our approach to learning the embeddings and preference
criterion vector as the surrogate ground truth. We tune the
parameters by the measures of the pairwise preference accu-
racy on the held out subset of P, and the pairwise similarity
accuracy on the held out subset of Sj. For the ranking (clus-
tering) task, the preference (similarity) accuracy on Py, (Si)
has higher priority in sorting the results generated by differ-
ent hyperparameter groups. In the case that there are mul-
tiple hyperparameter groups which can reach same value on
these two measures, we use the average performance on these
groups as the experimental results.

The detailed hyperparameter settings of our approach are
as follows. The dimension of embeddings d is set to 10. The
regularization terms are setto 7 = 0.1 and v = 0.1. Although
it is possible to tune d, n and ~ to improve the performance,
we mainly investigate the influence of the mixture constants
of preference information and similarity information in our
approach. The value of « is chosen from {0.25,0.5, 1,2, 4};
the value of 3 is chosen from {0.25,0.5,1,2,4}. We use R
(Eq. (6)) with regularization for the initialization of our ap-
proach because it can initialize both the embeddings and pref-
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erence criterion vector. R (Eq. (6)) with regularization uses
random initialization. The hyperparameters of the baselines
are also tuned in a similar way.

4.6 Results

Comparison of Different Approaches

Table 1 shows the results of the comparison on the perfor-
mance between our approach and other baseline approaches.
In this experiment, the settings for object pair selection is us-
ing same object pairs. PCE shows the better performance
than SCE on estimated preference labels and worse perfor-
mance than SCE on estimated similarity labels in most of the
datasets. It is because that PCE focuses on preference com-
parisons and SCE focuses on similarity comparisons.

Table 1 shows that SCARPA generates better results on
both estimated preference and similarity labels than PCE and
SCE. Our proposed approach can effectively bridge the het-
erogeneous pairwise comparisons and generate better em-
beddings and preference criterion vector than the approaches
which only utilize a single type of pairwise comparisons.

Costs and Object Pair Selection

There are at least two kinds of costs concerned in such kinds
of tasks: time cost and budget cost. Regarding the time cost of
running the approaches, SCARPA has the same order of time
complexity as the existing work like PCE and SCE. The other
is the time and budget cost of collecting the labels. The cost of
collecting the labels is more sensitive than the cost of carrying
out a ranking or clustering approach like SCARPA. We thus
discuss the increase of budget cost and profit of performance
improvement between using same and different object pairs.

For this purpose, we construct experiments with two differ-
ent settings on the selected object pairs Py and Sy, discussed
in Section 4.4. Table 2 shows the results in the ‘same object
pairs’ scenario and the ‘different object pairs’ scenario.

First, we compare the results in the columns of ‘differ-
ent object pairs’. The underline font indicates the best re-
sults in these columns. SCARPA generally performs better
on the estimated preference and similarity labels for most of
the datasets when using different object pairs.

Second, we compare the results in the column of ‘same
object pairs’ with the columns of ‘different object pairs’.
The winners in all columns are bold-faced. On one hand,
for the results between SCARPA with same object pairs and
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Same Object Pairs Different Object Pairs

Dataset Metric SCARPA SCARPA PCE SCE
Designl preference | 0.7210 £ 0.0468 | 0.7481 £ 0.0592 0.7412 £ 0.0573  0.4567 £ 0.0857
similarity | 0.6439 £ 0.0585 | 0.6216 + 0.0673  0.4965 4+ 0.0698 0.6040 £ 0.0891
Design? preference | 0.6159 £ 0.0635 | 0.6068 £+ 0.0357 0.6184 + 0.0446 0.5016 £ 0.0459
similarity | 0.5707 &+ 0.0757 | 0.5301 +0.0993  0.5442 4+ 0.0928 0.5136 £ 0.0718
Ideal preference | 0.6719 £ 0.0256 | 0.6635 £+ 0.0137 0.6577 £ 0.0177  0.5173 £ 0.0537
similarity | 0.6209 + 0.0238 | 0.6247 + 0.0238  0.5704 + 0.0310 0.6077 £ 0.0241
Idea? preference | 0.5936 £ 0.0197 | 0.5879 £ 0.0303  0.5871 £ 0.0277 0.5032 £ 0.0422
similarity | 0.6939 + 0.0329 | 0.6914 + 0.0248  0.5220 4+ 0.0366 0.6869 + 0.0319
Dog preference | 0.7907 £ 0.0254 | 0.8055 & 0.0224  0.7880 &+ 0.0237  0.5191 £ 0.0866
similarity | 0.6926 + 0.0410 | 0.7504 + 0.0384 0.6689 + 0.0508 0.6506 £ 0.0518

Table 2: Same VS. Different Object Pairs. The winners are bold-faced and the winners in the different object pair cases are underlined.
SCARPA outperforms PCE and SCE; SCARPA with same and different objects pairs win each other in different evaluations (italicized),
while SCARPA with same object pairs requires much less additional labels than that with different object pairs.

SCARPA with different object pairs, we use the italic font to
mark the better results in these two columns. The observation
is that although using different object pairs for different types
of comparisons may generate better results in some cases (3
in 10 evaluations, e.g., dog dataset), using same object pairs
for heterogeneous pairwise comparisons is also possible to
have better results in some cases (7 in 10 evaluations, e.g.,
two idea datasets). We can regard that these observations are
influenced by the object pair selection settings. On the other
hand, the results of SCARPA with same object pairs are better
on both preference and similarity estimation than that of PCE
and SCE with different object pairs in most of the cases (8 in
10 evaluations for PCE and 10 in 10 evaluations for SCE).

From the aspect of budget cost, in contrast to using differ-
ent objects pairs for different types of pairwise comparisons
which doubles the cost to collect same number of labels, us-
ing same object pairs does not increase the cost of workers
a lot, because the number of objects that a worker needs to
review for judgment does not increase. Actually, answering
one more pairwise comparison to an object pair may help the
worker to understand the objects and provide better labels.

From the aspect of performance improvement, on one
hand, from the results of idea datasets, when using same ob-
ject pairs for both two types of comparisons, the label infor-
mation from different types provide effective complementary
to each other. Overlaps between preference pairs and similar-
ity pairs can bolster each other. The same object pairs setting
can most efficiently benefit from the overlap which explains
the 7/10 stable winning rate in the experiments, but it is rather
conservative.

On the other hand, from the results of dog dataset, a dif-
ferent set of object pairs which have data about twice as
many objects are potentially advantageous with more effec-
tive information. In other words, using different object pairs
may reach better performance. However, without a rational
method to properly select the different set of object pairs, ran-
domly selection is difficult to always reach the effect ones. It
has the risk to reach the ineffective ones, which explains the
3/10 winning rate in the experiments. It may perform well
when we luckily draw moderately overlapped pairs.

In conclusion, when using same object pairs for both types

of pairwise comparisons, our approach can generate better
performance than the approach using only a single type of
comparisons, by only increasing a small number of cost on
collecting the labels. The optimal solution is probably some-
where between the settings of using same and different object
pairs, i.e., moderately overlapped cases. How to effectively
select different sets of object pairs for different types of pair-
wise comparison is one of our future work.

5 Related Work

Pairwise preference comparison and ranking had been dis-
cussed for decades [Cattelan, 2012]; a typical solution is the
Bradley-Terry model [Bradley and Terry, 1952] and its var-
ious extensions or generalizations had been proposed, e.g.,
multiple dimensions [Causeur and Husson, 2005] and intran-
sitivity [Chen and Joachims, 2016]. Recent work also dis-
cussed extensions in modern settings, e.g., modeling worker
ability in the context of crowdsourcing [Chen er al., 2013]
and peer grading in MOOCs [Raman and Joachims, 2014].
In pairwise similarity comparison and embedding, the ob-
jects were usually represented in a low-dimensional space so
that pairwise similarities were preserved [Hinton and Roweis,
2003; van der Maaten and Hinton, 2008; Xie et al., 2011]. In
contrast to embedding with absolute pairwise comparisons,
some work utilized relative comparisons with more than
two objects, e.g., triplet comparisons [Tamuz et al., 2011;
van Der Maaten and Weinberger, 2012; Wah er al., 2014] and
quadruplet comparisons [Agarwal et al., 2007; Ukkonen et
al., 2015]. Crowdsourced similarity labels were also lever-
aged for object clustering [Gomes et al., 2011] and learn-
ing similarity matrices [Tamuz ef al., 2011]. Additional con-
text information were utilized [Yi et al., 2012]. The costs of
special multiple pairwise questions were also discussed [Ko-
rlakai Vinayak and Hassibi, 2016]. In contrast to the existing
work focus only on a single type of pairwise comparisons, our
work can leverage the both types of pairwise comparisons.

6 Conclusion

We propose the new problem of simultaneous clustering and
ranking from two types of pairwise comparisons: the pairwise
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similarity and preference comparison. We propose a unified
formulation which bridges the two different types of pairwise
comparisons. The experiments illustrate that our approach
can generate better neighbor and preference estimation results
than the approaches that only focus on a single type of pair-
wise comparisons by only increasing a small number of cost
on collecting additional labels. In future work, we will focus
on how to effectively select different object pairs.
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