
Bridging the Gap between Observation and Decision Making: Goal Recognition
and Flexible Resource Allocation in Dynamic Network Interdiction∗

Kai Xu1, Kaiming Xiao2, Quanjun Yin∗,1, Yabing Zha1, Cheng Zhu2

1. The Institute of Simulation Engineering,
College of Information System and Management, NUDT, Changsha, 410073, China.

2. Science and Technology on Information Systems Engineering Laboratory,
College of Information System and Management, NUDT, Changsha, 410073, China.

*yinquanjun@nudt.edu.cn

Abstract
Goal recognition, which is the task of inferring an
agent’s goals given some or all of the agent’s ob-
served actions, is one of the important approaches
in bridging the gap between the observation and de-
cision making within an observe-orient-decide-act
cycle. Unfortunately, few research focuses on how
to improve the utilization of knowledge produced
by a goal recognition system. In this work, we pro-
pose aMarkov Decision Process-based goal recog-
nition approach tailored to a dynamic shortest-path
local network interdiction (DSPLNI) problem. We
first introduce a novel DSPLNI model and its solv-
able dual form so as to incorporate real-time knowl-
edge acquired from goal recognition system. Then
a Markov Decision Process-based goal recogni-
tion model along with its dynamic Bayesian net-
work representation and the applied goal inference
method is proposed to identify the evader’s real
goal within the DSPLNI context. Based on that, we
further propose an efficient scalable technique in
maintaining action utility map used in fast goal in-
ference, and develop a flexible resource assignment
mechanism in DSPLNI using knowledge from goal
recognition system. Experimental results show the
effectiveness and accuracy of our methods both in
goal recognition and dynamic network interdiction.

1 Introduction
The ability to recognize the plans and goals of other agents
enables humans, AI agents or command and control sys-
tems to reason about what the others are doing, why they
are doing it, and what they will do next [Sukthankar et al.,
2014]. Till now, plan or goal recognition systems work well
in many applications like human-robot interaction [Hofmann
and Williams, 2007], dialogue understanding [Litman and
Allen, 1987] and system intrusion detection [Geib and Gold-
man, 2001], still domains like game AI and Command and
Control system need more than plain recognition results. For
example in [Synnaeve and Bessiere, 2012], though having
accurate prediction of the opponent’s technology level, they
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placed only a 4th in the 2012 StarCraft AI competition due
to their inability to adapt to the prediction effectively. This
shows the great impact of information fusion level on the final
decision-making quality besides the accuracy and efficiency
of goal recognition. A motivation of our work is to provide an
application framework of using plan recognition technique to
orient observed information to decision making. According
to the Observe-Orient-Decide-Act (OODA) theory developed
by [Boyd, 1987]:

“The second O, orientation — as the repository of
our genetic heritage, cultural tradition, and previ-
ous experiences — is the most important part of the
OODA loop since it shapes the way we observe, de-
cide and act.”

Because of its importance, the orientation has been re-
searched on for several decades in forms of intelligence pro-
cessing [Ahlberg et al., 2007] and situational awareness [End-
sley and Garland, 2000].
Network interdiction is one of classic decision-making

problems applied in domains involving critical infrastructure
protection [Scaparra and Church, 2008], public transporta-
tion [Laporte et al., 2010] and public security [Cappanera and
Scaparra, 2011]. Traditionally, the act of network interdic-
tion is most often modeled in the form of a static two-player,
two-stage, master-slave game with perfect information (i.e., a
Stackelberg game), in which an interdictor allocates interdic-
tion resources, followed by the subsequent decisions made
by an evader to move through the network from a source
to a terminus [Lunday and Sherali, 2010]. However, the
above-mentioned assumptions are not valid in real-life sce-
narios where the evader’s possible termini are neither single
nor static. In this work, we seek to orient the knowledge gen-
erated by goal recognition system into the decision-making
process of the indicator, and thus allow a dynamic shortest-
path local network interdiction.
Our first contribution is to introduce a novel Dynamic

Shortest-Path Local Network Interdiction (DSPLNI) model
so as to incorporate useful real-time knowledge acquired from
goal recognition system. As the problem is a typical bilevel
mixed-integer program (BLMIP), a BLMIP solvable dual
form is then proposed as the DSPLNI’s reformulation. The
second contribution is to introduce a Markov Decision Pro-
cess-based goal recognition model, its dynamic Bayesian net-
work representation and the applied goal inference method.
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Further, we propose a scalable technique in maintaining ac-
tion utility map for fast goal inference. This is mainly de-
signed to get and update action utilities more efficiently un-
der the dynamic changing network environment. Lastly, a
flexible resource assignment mechanism in DSPLNI using
knowledge from goal recognition results is developed, where
a heuristic named Subjective Confidence is introduced to al-
locate the interdiction resource more effectively at each net-
work confrontation stage.

2 Background and Related Work
2.1 Model-based Goal Recognition
The goal recognition problem has been formulated and ad-
dressed in many ways, as a matching problem over a suitable
AND/OR graph [Avrahami-Zilberbrand and Kaminka, 2005],
a parsing problem over grammar [Pynadath and Wellman,
1998], a probabilistic inference task over a dynamic Bayesian
network [Bui et al., 2002; Liao et al., 2007] and an inverse
planning problem over planning models [Baker et al., 2009;
Ramırez and Geffner, 2011].
Among those approaches, two formulations solve the goal

recognition or plan recognition problem from different per-
spectives. One focuses on constructing a suitable library
of plans or policies, while another one replaces that by an
agent action model and a set of possible goals [Ramırez and
Geffner, 2011]. The advantages of the latter formulation are
twofold: one is that plenty of existing model-based plan-
ners could be leveraged on; the other one lies in the fact
that the model itself reflects people’s understanding of be-
havior patterns of the recognizing target. This is especially
helpful when people have little knowledge to construct a full
library of plans or policies needed by the first formulation,
while still capturing some facts or patterns of agent behaviors
from daily observation or common solutions. HiddenMarkov
Models (HMMs) are widely used in goal recognition. [Bui
et al., 2002] proposed an Abstract Hidden Markov Model
(AHMM) to recognize an agent’s behavior in dynamic, noisy,
uncertain domains, and across multiple levels of abstraction.
Comparing to the HMM, Markov Decision Process (MDP)
can describe agent actions and interactions between agents
and the environment. [Baker et al., 2009] consider the goal
recognition problem over a MDP setting where actions are as-
sumed to be stochastic and states fully observable. [Ramırez
and Geffner, 2011] extend their work to Partially Observable
MDP settings where states are partially observable. [Yin et
al., 2016; Yue et al., 2016] further extend to a Semi-MDP
setting where durative actions break the Markov property and
a Decentralized POMDP setting in multi-agent problem do-
main.

2.2 Shortest Path Network Interdiction
The network interdiction problem has been examined for sev-
eral decades within the context of a variety of modeling ap-
proaches, optimization objectives, and solution techniques.
The network interdiction problem that we focus on is Max-
imizing the Shortest Path (MXSP) [Fulkerson and Harding,
1977]. It is also frequently referred to as the Shortest Path

Network Interdiction (SPNI) problem. SPNI is the inter-
dictor’s problem: subject to a limited interdiction budget,
interdict arcs in a network to maximize the shortest path
length between specified nodes s and t [Israeli and Wood,
2002]. It could be viewed as a bilevel mixed-integer program
(BLMIP), which is a special case of a static Stackelberg game
[Simaan and Cruz, 1973].

3 Dynamic Shortest-Path Local Network
Interdiction

In order to make reliable and high-quality decisions in the
real-life network interdiction game, real-time knowledge ac-
quired through goal recognition should be properly used in
the decision-making process. The usage of goal recogni-
tion in network interdiction are twofold: one is that the ob-
jective function of game players is defined as the expecta-
tion of the shortest path length, which overcomes the barrier
that evader’s real goal is usually uncertain for interdictor; the
other one is embodied in the local resource allocation strategy
which allows interdictor to allocate resources in both tempo-
ral and geographical dimension.

3.1 Model Formulation
In previous studies, interdictor is assumed to know the ex-
act location of the source and terminus of evader [Israeli and
Wood, 2002; Bayrak and Bailey, 2008; Xiao et al., 2014].
Thus he/she can first allocate resources in the road network,
after which evader select the shortest path to traverse; hence,
interdictor can make a once-for-all decision to gain an opti-
mal reward.
Unfortunately, this assumption is invalid in real-life sce-

narios where evader’s goals and actions are subtle, deceptive
and even confusing for interdictor. Before introducing novel
model, we first claim assumptions which are different from
those in previous MXSP model [Israeli and Wood, 2002]:
1. Evader’s current location (i.e., current source) is observ-

able, while the information of its goal (i.e., final termi-
nus) is uncertain for interdictor. Meanwhile, evader may
change its final terminus midway for deception or other
possible purpose.

2. The confrontation between evader and interdictor is as-
sumed as a multi-stage process. In each stage, interdic-
tor assigns some resources and allocates them to the lo-
cal area of evader’s current location based on the knowl-
edge of recognition results and subjective confidence,
and accordingly evader re-plan the shortest path.

These assumptions are closer to the reality, and
the mathematical-programming formulation of Dynamic
Shortest-Path Local Network Interdiction (DSPLNI) is mod-
ified as follows:

Problem: Maximize the expectation shortest s − g path
length in a directed network by interdicting
arcs,

Indices: i ∈ N , nodes inG (s is the current source node,
g1, . . . , gm are the potential termini),
k = (i, j) ∈ A, arcs in G,
k ∈ FS(i)(k ∈ RS(i)), arcs directed out of
(into) node i,
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τ = 1, 2, . . . , T , stages of the confrontation
process,

Data: 0 ≤ ck < ∞, nominal length of arc k (vector
form c),
0 ≤ dk < ∞, added integer delay if arc k is
interdicted (vector form d),
rk > 0, resource required to interdict arc k
(vector form r),
R, total amount of interdiction resource,
Rτ , total amount of interdiction resource as-
signed to stage τ ,
0 ≤ p(gj) < 1,

∑
j=1,···,m p(gj) = 1, the

probabilistic distribution over the possible goals
g1, · · · , gm,

Variables: xk = 1 if arc k is interdicted by the interdictor;
else xk = 0,
yk = 1 if arc k is traversed by the evader; else
yk = 0.

The formulations is:

[DSPLNI-P] max
x∈X

min
y

∑
k∈A

(ck + xkdk)yk

∑
k∈FS(i)

yk−
∑

k∈RS(i)

yk=

{
1 for i = s
0 ∀i ∈ N\{s, g1, · · · , gm}

−p(gj) ∀i = gj , j ∈ {1, · · · ,m}
(1)

xk ∈ {0, 1}, ∀k ∈ FS(s) (2)

xk = 0, ∀k /∈ FS(s) (3)

yk ≥ 0, ∀k ∈ A (4)

where X = {x ∈ {0, 1}|A||rTx ≤ Rτ}. Additional com-
ments are as follows:

• In each stage τ , the goal of interdictor is to maximize the
expectation length of the shortest path of evader from s
to potential termini g1, · · · , gm.

• Eq. (1) is the flow-balance constraint when the proba-
bilistic distribution over potential termini g1, · · · , gm is
obtained from goal recognition.

• Interdictor assigns a certain amount of resource Rτ , and
then selects a set of arcs in FS(s) to interdict guaranteed
by constraints in Eq. (2) and Eq. (3), after which evader
re-plan the path to traverse.

3.2 Reformulation and Algorithm
The problem of DSPLNI is a typical BLMIP, which cannot
be solved directly using MIP approaches; thus a proper re-
formulation is necessary for the optimal solution. Here we
propose a dual reformulation of DSPLNI. We first reformu-
late [DSPLNI-P] as follows:

[DSPLNI-P1] max
x∈X

min
y

∑
k∈A

(c+Dx)Ty

s.t. Ky = b (5)

xk ∈ {0, 1}, ∀k ∈ FS(s) (6)

xk = 0, ∀k /∈ FS(s) (7)

y ≥ 0 (8)

where D = diag(d1, · · · , d|A|), Eq. (5) is the vector-
form of flow-balance constraint of Eq. (1), b =
(1, 0, · · · , 0,−p(g1), · · · ,−p(gm))T .
Since the inner minimization of DSPLNI is a standard

shortest-path model, linear dual theory can be used to get the
dual of it. We first fix the outer variable x, and then take the
dual of the inner minimization in [DSPLNI-P1], after which
release x and make some simple modifications. The final re-
formulated MIP results:

[DSPLNI-D] max
x∈X,π⃗

bT π⃗

s.t. KT π⃗ ≤ c+Dx (9)

πs = 0 (10)

xk ∈ {0, 1}, ∀k ∈ FS(s) (11)

xk = 0, ∀k /∈ FS(s) (12)

where X = {x ∈ {0, 1}|A||rTx ≤ Rτ}, π⃗ is the vector form
of dual variables. Hence, [DSPLNI-D], a simple MIP, can be
solved directly using a standard LP-based branch-and-bound
algorithm.

4 MDP-based Goal Recognition
4.1 Model Formalization and Goal Inference
In standard definition of MDP, there is no concept of goal
or joint goal. The MDP defines the states which consist of
all information needed for making decisions. When formal-
izing a model for goal recognition, the original definition of
states should be further decomposed into inner and external
states, corresponding to the agent goal and outside environ-
ment respectively. Thus, the action selection is determined
by all inner and external states. Besides, it should also sat-
isfy situations when goal is terminated as goal achievement
or halfway interruption. Thus, the model is a combination of
three parts: a) the standard MDP; b) the agent goal and c) the
goal termination variable. Thus our MDP-based model is a
tuple < s0, S,G, e,A, Pa(s

′|s), O > given by

• an initial state s0,

• a non-empty state space S,

• a non-empty set of goal states G ⊆ S,

• a goal termination variable e for e = {0, 1},
• a set of actions A,

• probabilities Pa(s
′|s) for a ∈ A, s, s′ ∈ S, and

• a non-empty observation set O.

Essentially, the model is a dynamic Bayesian network, in
which all causalities could be depicted. We introduce a full
DBN structure depicting two time slices is presented in Fig-
ure 1. The behaviors of system evolution are described using
functions or parameters.

• state transition function T :S×A×S→ [0, 1] is Psτ =
p(sτ |sτ−1, aτ ),

• observation function S×O→ [0, 1] is Poτ = p(oτ |sτ ),
• agent action policy Paτ = p(aτ |sτ−1, gτ ),
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Figure 1: The DBN structure of the model

• goal transition probability Pgτ = p(gτ |eτ−1, gτ−1),
• goal termination probability Peτ = p(eτ |gτ , sτ ).
Recognizing the evader’s goal is an inference problem try-

ing to find the real goal behind agent actions based on obser-
vations online. In essence, the task is to compute the posterior
distribution P (gτ |oτ ) of goal gτ given observation oτ . This
could be achieved either by accurate inference or by approx-
imate methods. Accurate inference, however, is not scalable
when state space of the domain problem becomes large, nor
can it tackle partially missing or noisy data. Widely applied in
sequential state estimation, particle filter is a kind of approx-
imate inference methods designed to handle non-Gaussian,
nonlinear and high-dimensional problems [Chen and others,
2003]. In this work, the MDP or agent action model is as-
sumed to be known by both the evader and the indicator, ex-
cept for the current goal gτ of the evader. Instead, the set
of possible goals is given along with the priors P (G). Sim-
ilar assumptions also exist in [Ramırez and Geffner, 2011]
in which the posterior goal probabilities P (G|O) is obtained
from Bayes rule P (G|O) = αP (O|G)P (G) where α is a
normalizing constant. In particle filter however, a posterior
distribution is empirically represented using a weighted sum
of Np samples [Chen and others, 2003] drawn from the pro-
posal distribution:

p(gτ |oτ ) ≈
Np∑
i=1

W (i)
τ δ(gτ − g(i)τ ) (13)

where g(i)τ are assumed to be i.i.d drawn from q(gτ |oi). The
importance weights W (i)

τ should be updated recursively

W (i)
τ ≈ W

(i)
τ−1

p(oτ |g(i)τ )p(g
(i)
τ |g(i)τ−1)

q(g
(i)
τ |g(i)0:τ−1, oτ )

(14)

As we use simplest sampling, the q(g
(i)
τ |g(i)0:τ−1, oτ ) is set

to be p(g
(i)
τ |g(i)τ−1), which could be computed directly using

the agent action model:

p(g(i)τ |g(i)τ−1)=

∫
a
(i)
τ−1

∫
s
(i)
τ−1

∫
e
(i)
τ−1

p
g
(i)
τ
p
e
(i)
τ−1

p
s
(i)
τ−1

p
a
(i)
τ−1

(15)

Thus the gτ in Eq. (13) would be sampled from
p(g

(i)
τ |g(i)τ−1). As the observation oτ only depends on sτ , the

importance weightsW (i)
τ can be updated by

W (i)
τ = W

(i)
τ−1 · p(oτ |s(i)τ ). (16)

4.2 Action Utility Map Maintenance
Many model-based goal recognition [Baker et al., 2009;
Ramırez and Geffner, 2011; Yin et al., 2016] share a key as-
sumption, that if the agent is pursuing the goal G, the proba-
bility P (a|b,G) of choosing action a in the state b is given
by the Boltzmann policy P (a|b,G) = α′exp{βQG(a, b)}
where α′ is a normalizing constant, β captures a ’soft rational-
ity’ assumption. In this work, we formulate this assumption
as p(vi|vτ , gτ ) = α′exp(βugτ (vτ , vi)) where ugτ (vτ , vi) is
the utility of agent in the vertex vτ choosing vi under the
goal gτ at the confrontation stage τ . In SPNI, we define
ugτ (vτ , vi) = 1/(rvτ ,vi+rvi,gτ ), where the rvτ ,vi is the nom-
inal integer length of arc ck where k = (τ, i) and rvi,gτ is the
shortest path length from vi to the target gτ computed by the
Dijkstra algorithm. However, this value has to be recomputed
continuously as we interdict the network. In this section, we
prove that only a small portion of vτ whose utilities need to
be updated.
Theorem 1. Given the network G and a fixed target g, let
T<s,g>(Ns, As) be the shortest path trace of a source-target
pair < s, g >, where Ns = {1, 2, . . . , ns} and As = {(i, i+
1)|i ∈ Ns/ns}. For any v ∈ Ns, there exists at least one
T<v,g>(Nv, Av) in the v−g shortest path set S, in which the
Av satisfies Av ⊆ As.

Proof. Assuming there is no T<v,g>(Nv, Av) in the v − g
shortest path set S where Av ⊆ As, then any element T ′

<v,g>

from vertex v to g in S satisfies T ′
<v,g> ≤ T<v,g>. According

to the properties of shortest path network, T<s,v>+T ′
<v,g> ≤

T<s,g> . Thus the T<v,g>(Nv, Av) is not the shortest path of
the pair < v, g >.

Based on Theorem 1, we propose a dynamic action util-
ity map maintenance algorithm and improve the scalability
of our goal inference method. Four basic steps are shown
as follows. It should be noted that, Step 3 not only updates
elements v in updateSet, but also updates those vertexes lo-
cating along the way from v to the entering vertex of the cor-
responding interdicted arc.

Input: Evader possible terminus set Ter, action
trace map Mapτ−1, the network adjacent
matrix NetAdjτ−1, the interdiction result
XGτ and the filtering result particleτ ,

Output: Mapτ ,
Step 1: Find all unique agent positions of parti-

cles: PosSet; Update NetAdjτ−1 to get
NetAdjτ using XGτ ;

Step 2: Check all positions in PosSet, find those
whose traces in Mapτ−1 containing inter-
dicted arcs in XGτ to get the updateSet;

Step 3: Get updated trace map Mapτ using
Mapτ−1, NetAdjτ , Ter and updateSet.
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4.3 Resource Assignment

Now, we introduce the flexible resource assignment in each
confrontation stage. It is assumed that a total amount of re-
sourceR is available during the whole process of interdiction.
Therefore, the resource needs to be dynamically assigned to
each stage for the purpose of high utilization levels. For goal
recognizer, we refer to the level of certainty of some specific
facts as the agent’s subjective confidence (SC) of those facts.
In this paper, we use SC to compute the Rτ . In particle sys-
tem, the SC could be represented using the weighted variance
of estimated distribution of goals,

V arτ =
n∑

i=1

ωi
τ (g

i
τ − ĝτ )(g

i
τ − ĝτ )

T (17)

where ωi
τ is the weight of particle xi

τ and ĝτ is the estimated
goal distribution. This benchmark was frequently used to
evaluate the performance of two goal inference algorithms
[Chen and others, 2003].
According to the definition of SC, its value would be at the

maximum before any observation comes in. In particle sys-
tem, this happens just after all particles are initialized accord-
ing to goal priors. For example, when the particles are sam-
pled randomly with three possible termini, the upper bound
of the SC V arupper = 2/3. Based on that, we compute Rτ

linearly at each confrontation stage τ using

Rτ =
V arupper − V arτ

V arupper
· (R−

τ∑
t=1

Rt)/H (18)

where H is estimated as the remaining number of arcs that
the evader needs to traverse to the estimated terminus.

5 Experiments
We conducted extensive experiments on the basis of a syn-
thetic evader action data upon a real road network. The em-
pirical test results show the effectiveness of our goal recog-
nition method, and also verify the practical implications of
those methods for solving scalable multi-terminus SPNI.
The experiment settings are as follows. The program was

written in Matlab script and is run in a computer with an In-
tel i7 CPU (3.40 GHz) and 8 GB memory. The road net-
work we select is Chicago Sketch Road Network [Lunday
and Sherali, 2010], as in Figure 2 (d), consisting 933 vertexes
and 2950 edges. The evader has one starting point and three
predefined possible destination which would be selected with
equal probability at the beginning. We simplify the goal ter-
mination function as follows: if evader reaches its terminus,
then the goal is achieved, otherwise it changes the goal with
a probability of 0.01 for every state. The observation, con-
taining the evader’s current position, of the recognizer would
be missing with a probability of 0.2. The computation of the
SPNI is formulated into a BLMIP and solved using the MIP
solvers of CPLEX 11.5 and YALMIP toolbox of MATLAB
[Lofberg, 2005]. The Np of the particle system is set to 300.
We omit the nontrivial details due to lack of space.

5.1 Tests on Goal Recognition
We run the agent decision model repeatedly and collect a test
dataset consisting of 100 labeled traces with each trace pos-
sessing an average of 41.12 steps. There are approximately
44% traces where the evader’s goal is changed at least once
during half way. To show the details of the recognition re-
sults, we randomly select two specific traces (No.1, No.5)
from the test dataset.

Table 1: The details of two traces

Trace No. Duration Targets Goal Interrupted

1 τ ∈ [1, 26] Target 2 Yes
τ ∈ [27, 49] Target 1 No

5 τ ∈ [1, 55] Target 3 No
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Figure 2: Experimental results for Goal Recognition

As shown in Table 1, the evader in trace No.1 selected Tar-
get 2 to be its first terminus before changed it to Target 1 at
τ = 27 and eventually achieved the goal at τ = 49, while the
evader in trace No.5 kept its initial goal (Target 3) till the end.
Recognition results are shown in Figure 2. In Figure 2 (a), the
probability of the real goal (Target 2) increases quickly during
the initial period. When the goal is changed at τ = 27, our
method responds very fast and the correct estimate maintains
except for a misleading observation at τ = 32. In Figure 2
(b), the estimate of the real terminus keeps its dominance till
the end. Our inference method is further evaluated in Figure
2 (c) by statistic metrics of precision, recall and F-measure,
which are frequently used to measure overall accuracy of the
recognizer [Sukthankar et al., 2014]. As to evaluate traces
with different lengths, the paper applies the method in [Yue
et al., 2016], and partitions the traces into k stages. All three
metrics proved the effectiveness of our method.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4481



5.2 Comparison of MXSP and DSPLNI
In this section, we further compare the interdiction results
of our DSPLNI and the MXSP model in [Israeli and Wood,
2002]. Parameters, including the initial terminus of evader,
the arcs’ nominal length c, added integer delays d and the
total interdiction resource R, remain the same between each
two comparative cases. We also control the evader changing
its initial terminus to a predefined one at a fixed time step.
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Figure 3: Experimental results for SPNI model tests

In our first test, there are three possible termini for evader
and the initial target is set to be Target 3 and be changed to
Target 2 when τ = 20. The detailed network interdiction
in two SPNI models is shown in Figure 3, where the inter-
dicted arcs are labeled in the middle by a solid square and the
actual paths evaders selected are depicted by the bold lines.
As is illustrated in Figure 3 (a), MXSP only deploys its re-
source according to the initial distribution of all possible ter-
mini once and for all. While using goal estimation in Figure 3
(c) and subjective confidence in Figure 3 (d), the behavior of
the dynamic DSPLNI is much more concentrated and effec-
tive as in Figure 3 (b). It also shows the relationship between
the resource allocation per step and the subjective confidence.
During the early prediction when τ < 4 and the goal changes
by approximately τ = 20, the subjective confidence is at a
high position accompanied with low resource allocation as in
Figure 3 (d).
The models are also tested under different resource con-

straints in two scenarios. In this test, we exclude the ran-
domness within the agent action model. In both scenarios,
the evader chose the first goal as Target 2, while in the sec-
ond scenario, goals were changed from Target 2 to Target 3
at τ = 10. The base lengths of the maximum shortest path
under no network interdiction in two scenarios are 1335 and
2525 respectively. Uncertainty still exists in DSPLNI model
because of approximate goal inference. As shown in Figure
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Figure 4: The maximum SP under different R.(G1=Target 2,
G2=Target 3, tchange=10, dk ∼ U(1, 10))

4, our method shows its uniqueness in tackling the multi-goal
situations. This superiority is further consolidated when the
evader changes its goal dynamically.

Table 2: The maximum SP with action randomness.(R=100,
G1=Target 2, G2=Target 3, tchange=10, dk ∼ U(1, 10), paction =
0.98)

Goal Unchanged Goal Changed Once
Model Exp L v.s.% Exp L v.s.%

base length 1383.8 / 2628.5 /
DSPLNI 1677.7 92.0 2903.6 95.0MXSP 1521.8 2741.6

We further compare the performance of two models with
action randomness. Compared to R=100 case in Figure 4,
the expected length increases as we add in randomness. The
tests are conducted for 100 times under two goal settings.
When goals stay unchanged, approximately 92% of results
in DSPLNI are better than the corresponding ones in MXSP.
This number further increases to 95% under goal-changing
situations. Besides, the expectations of the maximum short-
est path of DSPLNI are larger than those of MXSP under both
situations.

6 Conclusion
We have tested the ability of goal recognition in bridging
the gap between observation and decision making in the
shortest-path network interdiction problem. Experimental re-
sults show the effectiveness and accuracy of our methods both
in goal recognition and dynamic network interdiction. The
framework above from the goal recognition to decision mak-
ing is simple but inspiring, especially in many real-time de-
cision making tasks where little amount of historical data is
available.

Acknowledgments
The work is sponsored by the National Natural Sci-
ence Foundation of China under Grants No.61473300 and
No.71571186.

References
[Ahlberg et al., 2007] Simon Ahlberg, Pontus Hörling, Kata-
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