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Abstract

When it comes to robotic agents operating in an uncer-
tain world, a major concern in knowledge representation
is to better relate high-level logical accounts of belief and
action to the low-level probabilistic sensorimotor data.
Perhaps the most general formalism for dealing with de-
grees of belief and, in particular, how such beliefs should
evolve in the presence of noisy sensing and acting is the
account by Bacchus, Halpern, and Levesque.

In this paper, we reconsider that model of belief, and pro-
pose a new logical variant that has much of the expres-
sive power of the original, but goes beyond it in novel
ways. In particular, by moving to a semantical account
of a modal variant of the situation calculus based on pos-
sible worlds with unbounded domains and probabilistic
distributions over them, we are able to capture the beliefs
of a fully introspective knowledge base with uncertainty
by way of an only-believing operator. The paper intro-
duces the new logic and discusses key properties as well
as examples that demonstrate how the beliefs of a knowl-
edge base change as a result of noisy actions.

1

When it comes to robotic agents operating in an uncertain
world, a major concern in knowledge representation is to bet-
ter relate high-level logical accounts of beliefs and action to
the low-level probabilistic sensorimotor data. In these and
other applications, it is often not sufficient to say that a for-
mula ¢ is unknown: we may need to say which of ¢ or —¢ is
more likely, and by how much. Motivated by such concerns,
the unification of logic and probability has received much at-
tention in the recent years [Russell, 2015].

Perhaps the most general formalism for dealing with de-
grees of belief in formulas, and in particular, with how that
should evolve in the presence of noisy sensing and acting
is the first-order logical account by Bacchus, Halpern, and
Levesque (BHL) [1999]. The main advantage of a logical ac-
count like BHL is that it allows a specification of belief that
can be partial or incomplete, in keeping with whatever infor-
mation is available about the domain, making it particularly
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attractive for general-purpose high-level programming [Lake-
meyer and Levesque, 2007].

The BHL account is an extension to Reiter’s reworking of
the situation calculus [Reiter, 2001]. (For space reasons, we
will assume some familiarity with the language.) A mod-
eler is taken to provide the initial beliefs of the agent using
a special binary functional fluent p: p(s’, s) is understood as
the weight accorded to s* when the agent is at s. A basic ac-
tion theory is taken to include axioms about the preconditions
of actions and its effects via successor state axioms as usual,
the latter embodying Reiter’s monotonic solution to the frame
problem. But additionally, a special predicate oi(a, a’) denot-
ing observational indistinguishability is used to say that exe-
cuting a may result in a’ occurring instead (unbeknownst to
the agent), and a special function I(a, s) is used to define the
likelihood of the action a at 5. A (fixed) successor state axiom
for p determines the weight accorded to successors, resulting
from oi-related actions:

p(s’,do(a,s) =u =
Ad’, 5" [oi(a,a’) A s’ =do(d’, s”) A poss(a’, s”) A
u=p(s”’,s)xIld,s")]
Vv =3d’, s” [oi(a,a’) A s’ = do(a’, s"") A poss(a’, s”) Au= 0]

Belief in ¢, then, is defined in terms of the sum of the weights
of accessible situations where ¢ holds. (A simple initial con-
straint requiring that the belief in True be a number ensures
that the summation is well-defined.)

Since the situation calculus is defined axiomatically, no
special semantics is needed. However, as argued in [Lake-
meyer and Levesque, 2004], when we wish to consider theo-
retical questions that are not direct entailments of basic action
theories, involved arguments based on Tarskian structures or
considerable proof-theoretic machinery is needed. In the non-
probabilistic epistemic situation calculus alone, elementary
questions about knowledge — from Ka D (KB V Ky), does
it follow that Ko > KB or Ka > Ky, for example — re-
quire multi-page proofs. This situation is clearly much worse
if we are arguing about degrees of beliefs. Moreover, when
we think about modeling a partially specified domain, our in-
tuition is that a quantitative account subsumes a qualitative
specification, and an account with actions subsumes a non-
dynamic specification. No such relation has been established
for BHL, and we believe deriving such a result would be very
involved for the above reasons. Finally, despite being a model
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of belief, BHL do not really consider any meta-belief prop-
erties: for example, what does introspection look like with
degrees of belief?

Outside of these three concerns, from a knowledge repre-
sentation point of view, a key question is this: how do we
specify a knowledge base in a probabilistic setting? What we
have in mind is a logical theory from which all of the beliefs
and non-beliefs can be inferred.

In this paper, we reconsider the BHL model of belief, and
propose a new logical variant that has much of the expressive
power of the original. Our starting point is the logic OB8L
[Belle et al., 2016] for reasoning about degrees of belief and
only knowing, the latter modality allowing a succinct char-
acterization for the beliefs of a knowledge base. The thrust
of the semantical apparatus for OBL is a modal realization of
BHL’s conceptually simple definition for belief in a first-order
setting. Basing our intuitions on the BHL formalism, we now
investigate how OBL can be extended for acting and sensing
over noise, yielding our proposal DS. The semantics we pro-
pose not only brings to attention key constructions missing
in the BHL framework for enabling things like introspection,
it is also shown to capture a family of only knowing logics
[Levesque and Lakemeyer, 2001; Lakemeyer and Levesque,
2004], roughly the non-probabilistic and non-dynamic coun-
terparts. The resulting picture is a first-order model of belief
for both qualitative and quantitative specifications in dynam-
ical systems.

2 The Logic DS

The language is built so as to reason about probabilistic be-
liefs and meta-beliefs over actions in a first-order setting.
Quantification, in particular, is understood substitutionally
wrt a fixed countably infinite set of rigid designators that ex-
ist in all possible worlds [Levesque and Lakemeyer, 2001].

2.1 Syntax

Formally, the non-modal fragment of DS (= degrees of belief
in the situation calculus) consists of standard first-order logic
with = (that is, connectives {A, Y, =}, syntactic abbreviations
{4, =, D}). In particular, we assume:

e an infinite supply of variables {x,y,...,u,v,...};

e rigid function symbols of every arity, such as obj5 and
move(x,y);

e fluent predicates of every arity, such as Broken(x),
NextTo(x,y), including the following special symbols:

— a unary predicate poss to denote the executability
of an action;

— a binary predicate oi to denote that two actions are
indistinguishable from the agent’s viewpoint; and

— a binary predicate [ that takes an action as its first
argument and the action’s likelihood as its second
argument.

For simplicity, we do not include rigid (non-fluent) predicates
or fluent (non-rigid) functions. The terms of the language are
the least set of expressions such that:

e every variable is a term;
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e ift),...,# areterms and f is k-ary function symbol, then
f(t1,..., 1) 1s a term.

We let R denote the set of all ground rigid terms. R is con-
sidered to be isomorphic to the domain of discourse. This is
similar to [Levesque and Lakemeyer, 20011, where standard
names are used as the domain of discourse. We also assume
that the rationals are a subsort of R, and we reserve the vari-
ables u and v to range over the rationals.'

If all the variables in an atom are substituted by terms from
R, then we call it a ground atom. Let P be the set of ground
atoms in DS. DS has two epistemic operators: B(a: r) is
to be read as “a is believed with a probability »,” where r is
a rational number. Next, the modality O(a;: ry,...,a;: 1),
where «; does not mention {O, B}, and r; is a rational, is to
be read as “all that is believed is: @; with probability 7, ...,
and o with probability r;.” We also use Ka, to be read as
“a is known,” as an abbreviation for B(a: 1). We write Oa,
to be read as “a is all that is known,” to mean O(«: 1).

DS has two action modalities [a¢] and O, in that if « is
a formula, then so are [a]a (read: “a holds after a”) and
Oa (read:“a holds after any sequence of actions.”) For z =
ay - - - ag, we write [z]a to mean [a;] - - - [ax]a. We use TRUE to
denote truth, which is taken as abbreviation for a sentence
such as Vx(x = x), and raLse for its negation.

2.2 Semantics

The semantics is given in terms of possible worlds. In a
dynamic setting, such worlds are defined to interpret not
only the current state of affairs, but also how that changes
over actions. There are three key complications over non-
probabilistic accounts with deterministic acting and sensing
[Lakemeyer and Levesque, 2004]:

e we need to be able to specify probabilities over uncount-
ably many possible worlds in a well-defined manner;

to allow for qualitative uncertainty in an inherently
quantitative account, beliefs may not be characterizable
in terms of a single distribution;

the effects of actions are nondeterministic, and the
changes to the state of affairs thereof are (possibly) not
observable by the agent.

To begin with, let Z be all possible sequences of R, including
(), the empty sequence. Letting  denote the set of ground
atoms as before, let ‘W be the set of all mappings P X Z +—
{0, 1}, which are the set of all possible worlds.

We will require that at every world w € ‘W,

e [ behaves like a function, that is, for all a, z, there is ex-
actly one rational n > 0 such that w[l(a,n),z] = 1 and
for all ' # n, w[l(a,n’),z] = 0;

"For simplicity, instead of having variables of the action sort dis-
tinct from those of the object sort, we lump both of these together
and allow ourselves to use any term as an action or as an object, as
in [Lakemeyer and Levesque, 2004]. While this does allow one to
construct meaningless atoms, such as Broken(pickup(rabbit)), this is
purely for the ease of the technical treatment. A general account can
be developed along the lines of [Lakemeyer and Levesque, 2011].
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e 0i is an equivalence relation (reflexive, symmetric, and
transitive) for all z.2

By a distribution d we mean a mapping from W to R0
(the set of non-negative reals) and an epistemic state e is any
set of distributions.

To prepare for the semantics, we will need four notational
devices. First, we extend the application of / to sequences:

Definition 1: We define I*: W x Z — R0 as follows:
o [*(w,()) = 1 for every w € ‘W,
e *(w,z-r)=10"(w,z) X n where w[l(r,n),z] = 1.

Second, after intending to execute a sequence of actions, the
agent needs to also consider those sequences that are possi-
bly the actual outcomes. For this, we define action sequence
observational indistinguishability as follows:

Definition 2: Given any world w, we define z ~,, 7’:

o (O~ iff 2 = ()

e z-r~,7Ziff7 =z -r", z~, 2" and wloi(r,r*),z] = 1.
Since oi is an equivalence relation, we immediately obtain:
Proposition 3: ~,, is an equivalence relation.

Third, after actions, we will restrict ourselves to compatible
worlds that agree on observational indistinguishability:

Definition 4 We write w ~,; w’ iff:
e forall a,d’,z, wloi(a,a’),z] = w'[oi(a,d’), z].

Fourth, to extend the applicability of poss for action se-
quences, we proceed as follows:

Definition 5: Define exec(z) for any z € Z inductively:
e for z = (), exec(z) denotes TRUE;
e forz =a- 7, exec(z) denotes poss(a) A [alexec(Z’).

We are finally ready for the semantics where, analogous to
OBL, to obtain a well-defined sum over uncountably many
worlds, we will introduce some conditions for distributions
used for evaluating epistemic operators:

Definition 6: We define Norwm, Eq, BNp for any d and any set
V ={(wy,z21), W2, 22), ...} as follows:

1. for any U C V, Norm(d, U,V,r) iff 3b # 0 such that
Eo(d, U, b x r) and Eq(d, V, b).

Eo(d, V, r) iff BNp(d, V, r) and there is no ' < r such
that BNn(d, V, ¥’) holds.

Bno(d, V, r) ift =3k, (Wi, z1), ..., (Wi, 2k) € V such that

k
Z dw;) X I(w;, z;) > .
i=1

2We do not think oi being an equivalence relation is controver-
sial, and our sample basic action theories will show that the con-
straint is also natural and intuitive. As we shall see, it is needed
for enabling introspection. Not surprisingly, as BHL are not partic-
ularly concerned with meta-beliefs, there is no mention of such a
constraint.

3Compatibility, it turns out, is needed for enabling introspection,
discussions of which also do not appear in BHL.
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Intuitively, given Norm(d, U,V, r), r can be seen as the nor-
malization of the weights of worlds in U in relation to the set
of worlds V as accorded by d. Here, Eo(d, V, b) expresses
that the weight accorded to the worlds in V is b, and finally
Bnp(d, V, b) ensures the weight of worlds in V is bounded
by b. In essence, although W is uncountable, the conditions
Bnp and Eq admit a well-defined summation of the weights
on worlds. See [Belle et al., 2016] for a formal justification
of this claim.

Truth in DS is defined wrt triples (e, w, 7) as follows:
e ¢,w,z F piff pisanatom and wp,z] = I;

e ¢,w,z En; = ny iff ny and n, are identical;

e ew,zEanBiffew,zEeande,w,z ES;

o e,w,zF ~aiffe,w,z F a;

o e,w,zEVxaiffe,w,z E @ foralln e R;

e e,w,zE [rlaiffe,w,z-rE a;

e eewzEDOaiffe,w,z-Z Eaforall7 € Z.

For the epistemic operators, let W™ = (W, 2') | 7~y
W =5 w, and e, w', ) E [Z']a A exec(z')}. (We drop the
superscript when the context is clear.) That is, these are the
pairs of worlds and executable action sequences that agree on
oi with w, and where « holds. Then:

e e.w,z E B(a: r)iff Yd € e, Norm(d, W, Wirug, 1);

e e,w,z E O(ay: ry,...,ap: 1) iff for all d, d € e iff
Norm(d, Wa, , Wirugs 1), - - ., NorM(d, (Wa/k»(WTRUE ).

For any sentence a, we write e, w = « instead of e, w, () E «a.
When X is a set of sentences and « is a sentence, we write
2 E a (read: “Z logically entails @”’) to mean that for every e
and w, if e,w | @ for every @’ € Z, then e,w | «@. Finally,
we write | « (read: “a is valid”) to mean {} F a.

3 Properties

We have the following objectives for this section. First, we
would like to argue that the properties of belief proved for
OBL also hold for DS. Second, we would like to study
in which sense DS is downward compatible with OBL,
&S [Lakemeyer and Levesque, 2004] and OL [Levesque and
Lakemeyer, 2001]. Roughly speaking, DS should be seen as
a dynamic extension to O8.L, a probabilistic extension to ES,
and a probabilistic dynamic extension to O.L.

A brief review of the non-dynamic and non-probabilistic
counterparts of DS is found in the appendix. Readers may
want to consult this supplementary material prior to perusing
the compatibility results.

3.1 Belief and Only Knowing

We begin by listing some properties of B, which one would
expect from any reasonable probabilistic account of belief
and which generalize similar properties found in OBL.

Proposition 7:

1. IfE O(a = B) then E O(B(a: r) = B(B: r));
2. Fo(B@AB:r)ANB(@A-B:7)D B(a: r+r));
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3. FoBa: r)ANB@B: )ANAB@AB: ")
DB(aVvp:r+r —r")).

Note the O in front of formulas, which indicates that the prop-
erties hold after any sequence of actions.

Let us now consider the case of believing with certainty,
that is, Ka = B(a: 1). The following properties show that
K behaves essentially like the K -operator in ES.

Theorem 8:
1. Eo(Ka A K(a>p) > KB),
2. Fo(VxKa > KVYxa),
3. Eo@xKa > K3xa).

Proof: Here we only prove the first item. Let e,w,z
Ka A Ko D B) and let d € e. Let w be any world
and 7’ a sequence of actions such that 7/ ~,, z, w =, W,
e,w, () E exec(Z), and dw') x IF(w',z7’) # 0. We will
show that (w’,z") € “Wj. Since Norm(d, W,, Wrgrye, 1)
and Norm(d, Wy-p, Wrgres, 1), (W', 2') € W, and (W', 2) €
W,-p (because otherwise Norm would not be 1). Thus
e,w',7 E aAa D B and, therefore, e, w’, 7’ = 8. Hence, given
the assumptions and the definition of Wy, (W',2') € Wi,
Since this holds for any world compatible with w and any
executable action sequence, Norm(d, Wg, Wrgye, 1), that is,
e,w,zE KB. 1

We remark that the converse of the Barcan Formula (2.)
holds as well. Note, however, that O(Kdxa > dxKa) is
not valid in general, that is, knowing that a formula is true
for some individual does not imply that there is a particular
individual for which the formula is known to be true.

In the static case of OBL, knowledge is fully introspective
(under one proviso). We can show that these properties carry
over to the dynamic case as well. The following lemma is
needed for the proof.

Lemma9: Let e,w,z be given and let (w',z) € W9
Then for all @, W™ = W,

The proof makes use of the fact that w and w” agree on the ex-
tension of oi for all action sequences and that ~,, is an equiv-
alence relation.
Theorem 10:

1. Ea(B(a: r) > KB(a: r);,

2. EO(Ktrue D (=B(a: r) > K=B(a: r))).
Proof: Here we only prove the first item. Let e,w,z |
B(a: r). We need to show e,w,z E B(B(a: r): 1),
that is, for all d € e, Norm(d, WB(: r) Wrrue, 1) with
WBa@:n = (W, )W =o w,2 ~, z, and e,w',{) E
[Z']B(a: r) A exec(?')}. It suffices to show that W, =
Wirve: WBe:n S Wirue holds trivially. Conversely,
let W,7) € Wrrug. Then w' w, 7 ~, 2%
and e,w,{) E [Z]mrue A exec(z’). It suffices to show
that e,w’,{) kE [Z]B(a: r), that is, for all d € e,
Norm(d, W™, Wew ) ). By Lemma 9, W) =
W and (W(T‘;{SE” = ‘W(TeR'{Jé) Since, by assumption, for

all d € e, Norm(d, W9, W2 1), we are done. I

~ .
~oi

Given the definition of K, we immediately obtain
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Corollary 11:
I. Eo0(Ka> KKa)
2. Eo(Ktue D> (wKa > K-Ka))

Let us now briefly turn to the notion of only believing.
While it is well defined for arbitrary epistemic states and af-
ter any number of actions have occurred, in this paper we will
only consider the case of only believing in the initial situation,
that is, before any actions have occurred.*

By the definition of only believing we immediately obtain:

EO(:r,...,ar: r: k) D /\B(a,-: ),

that is, whatever is only believed is also believed, as it should
be. To see how non-beliefs follow from only believing, con-
sider the case of distinct atomic propositions p and g. Then:

EO(p:r)D>-B(g: r')forall r.

This is because for any r’ the epistemic state sat-
isfying  O(p: r) contains distributions d  where
Norm(d, Wy, Wirue, r’’) for some r’” # 1.

These properties are all inherited from OB.L. In Section 4,
we will consider the more interesting case of beliefs evolving
from only believing an initial KB after actions have occurred.

3.2 OBLis part of DS

The main result we prove is:
Theorem 12: For « € OBL N DS, Eoss a iff Eps a.

Here, we understand Ey « to mean that « is valid in the
logic X. Similar to the proof relating ES and OL [Lake-
meyer and Levesque, 2004], there are two key complications
in mapping the static and dynamic logics. First, the domain
of quantification N (nullary function symbols) in OB.L is a
proper subset of R. This is addressed by means of a bijec-
tion between these domains in the proofs. Second, for every
O8B.L world w, which is a mapping from ground atoms P to
{0, 1}, there are infinitely many DS worlds that agree with w
initially. This is addressed by mapping models between the
logics so that they agree on the satisfaction of OBL formulas.
However, unlike in &S, a further complication in the proba-
bilistic context is that we will need to think carefully about
how to map distributions between the logics so that they re-
main well-defined.

The proof is long, so we go over the ideas and intermediate
lemmas below. First, we will map a OBL model to a DS
model.

Lemma 13: Suppose « is as above, and o a bijection from N
to R. Then for any OBL model (e, w), there is a DS model,
which we denote (e°,w®), such that e,w | a iff e°,w° E a°.

We construct (e°, w°) as follows:

e Letw® be a DS world such that for all OBL atoms p and
all z, w°[p°, z] = 1 iff w[p] = 1. (Moreover, poss, oi and [
need to be additionally fixed to chosen values, which can
be arbitrary; e.g., for all a,a’,u,z: w°[poss(a),z] = 1,
wloi(a,a’),z] = 1iffa =d’, w°[l(a,u),z] = 1iffu=1.)

4To handle only knowing after actions, an account of progression
is needed [Lin and Reiter, 1997; Lakemeyer and Levesque, 20091, a
topic we leave for the future.
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e For any d € e, let d° be a DS distribution such that
for all OBL worlds w, d°(w°) = d(w), and for all w’ ¢
{w® | wisaOBL world}, d°(w’) = 0.

o Lete°={d°|dee}.

The proof for Lemma 13 is then by an easy induction on a.
In Lemma 13, since each OBL world maps to
infinitely many DS worlds, mapping distributions 1is
somewhat straightforward because all worlds outside of
{w° | wisaOBL world} are set to 0. In the converse direc-
tion, it is not obvious how to map distributions in DS to OBL
distributions, because weights on infinitely many DS worlds
may need to be assigned to a single OBL world. So, we con-
sider a special class of models where this mapping is obvious.

Definition 14:  Suppose w is a DS world. We call it a
static world if for all z # (), for every DS atom p, w(p,z] =
wlp, ().] Let W~ C W be the set of static DS worlds. We
call a distribution d static iff for every w ¢ W~,d(w) = 0.
We call e static if it is a set of static distributions. A model
(e, w, z) is called static if both e and w are static.

The key consideration here is that there is no loss in terms
of entailment for OBL sentences. Let Euic ps denote the
restriction of the satisfaction relation to static models.

Theorem 15: For any @ € OBLNDS, Eps @ iff Esaiic Ds .

Lemma 16: Suppose « is as above and o is any bijection from
R to N. Suppose (e,w) is any static model, there is a OBL
model, denoted (e°,w®), such that e,w | a iff e°,w° E a.

Here, let w° be a OB L world such that for every DS atom p,
wlp, ()] = 1iff w°[p°] = 1. Then,

e For any d € e, let d° be a OBL distribution such that for
all static DS worlds w, d°(w°) = d(w).

o Lete°={d°|dee}.

By an induction on @, Lemma 16 can be shown. Finally, the
proof for Theorem 12 is argued using Lemmas 13 and 16.

3.3 &Sis part of DS

&S worlds are precisely DS worlds, and an epistemic state in
&S is defined as any set of worlds.

Truth is defined inductively as usual wrt a model (e, w, 2),
where, for example:

e e,w,zE Kaliffforallw ~, w,if w €e,e,w,zF a;

where w’ ~, w is defined inductively on z to posit that, after
an action, a world is compatible with the real world provided
the action is executable, and they agree on the sensing out-
comes of the action, axiomatized using a special fluent SF.
When relating ES to DS, observe that actions are im-
plicitly assumed to be deterministic in &S, which is simple
enough to axiomatize using OVa, a’ (oi(a,a’) = a = a’) and
OVa,u (l(a,u) = u 1) that we lump together as Q. The
point of serious divergence, then, is that knowledge in ES
is defined in terms of the sensing results at the real world.
Clearly, there is no analogue to this feature in the seman-
tics of DS. So, we restrict ourselves to trivial sensing results
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I’ = {OVa (SF(a) = true)} . Then, we can show:>

Theorem 17: Forany a € ES N DS, I Egs a iff Q Eps
oK TrRUE D a.

The proof rests on two lemmas, the first of which maps an ES
model (e, w, 7) to a DS model (¢*, w, z) where

e* = {d | Norm(d, U,V, 1)}

where U = {(w,{)) |[we e} and V = {(w,{)) | w € W}, and
the second of which maps a DS model (e, w, z) to a ES model
(e*,w,z) where ¢* = {w' | Ad € e,d(w’) > 0}.

34 OZLispartof DS
It was shown in [Belle et al., 2016] that OL is part of OB.L:

Theorem 18 Fora € OLNOBL, Eos a iff Eoss Ktrue D a.

By means of Theorem 12, we obtain:
Corollary 19: Fora € OLNDS, Eoys a iff Eps KTruE D a.

4 Basic Action Theories

Let us now consider the equivalent of basic action theories of
the situation calculus. Since there is no explicit notion of situ-
ations in DS and the uniqueness of names is built into the se-
mantics, our basic action theories do not require foundational
axioms. Our basic action theories will include the usual in-
gredients on the executability of actions and their effects as in
&S, but will additionally include axioms about observational
indistinguishability and action likelihoods.

Figure 1: robot moving towards a wall

The first-order nature of the logic allows us to capture do-
mains quite beyond standard probabilistic formalisms — see
[Bacchus er al., 1999; Belle and Levesque, 2015], for exam-
ple — but to illustrate the features of the language, we will
focus on two variants using a simple 1-dimensional robot.
Imagine a robot to the right of a wall as in Figure 1. Let &
be the fluent representing the distance to the wall. A noisy
effector move(x,y) brings the robot closer to the wall, with
the understanding that x is how much the robot intends to
move, but y is what actually happens. (A negative argument
is understood as moving away from the wall.) A noisy sen-
sor sonar(z) provides a reading z that is taken as an estimate
for h. The idea is that repeated sensing increases the robot’s
confidence about A.

Throughout, we have the following in common:

>We suspect it is possible to extend the result to non-trivial SF
values, but only by means of an explicit axiomatization of the sens-
ing outcomes as seen in the real world, similar to nbiGoLoG [Sardina
et al., 2004], a discussion of which we leave for an extended version
of the paper.
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We assume the sensor action is always executable, and
the move action is executable provided the argument
does not cause the robot the hit the wall:®

Oposs(a) = Ax, y, u(a = move(x,y) Nh(u) ANy <u) vV
dz(a = sonar(z) A TRUE).

Similar to BHL, noisy actions are retrofitted in successor
state axioms by postulating that the effects of an action
are against the actual argument:
Olalh(u) = Ax, y(a = move(x,y) A h(u + y)) V
Vx,y (a # move(x,y) A h(u)).

Clearly, all instances of move with an intended argu-
ment of x are observationally indistinguishable from
each other. A sonar action is only observationally in-
distinguishable to itself, as the agent sees the actual ar-
gument corresponding to the reading on the sensor:
Doi(a,a’) = Ax,y,z(a = move(x,y) A @’ = move(x, z))
V (a = sonar(z) Ad’ = a).

We assume the noise model of a sensor to depend on the

true value of /, and that for the effector to depend on how

much the actual argument diverges from the intended ar-

gument:

ol(a,u) = Ax,y, z(a = sonar(z) ANu=0(,z.8,.1) v

(a = move(x,y) ANu = O(x,y,.6,.2)) V
(a # sonar(z) A a # move(x,y) A u = 0)

where,

c ifu=v

d iflu-v|=1

0 otherwise

Ou,v,c,d) =

So, observing a value z on the sonar means that it is very
likely the true value, and at most it is off by a unit.” Anal-
ogously, for the move action.

We lump these axioms together as X.

Example 20: We begin by assuming a standard discrete uni-
form distribution on A, say, on the range {2, 3,4} . In particu-
lar, we will consider the entailments of the following theory:

O(h(2): 1/3;h(3): 1/3;h(4): 1/3;Z: 1). €Y

The following are entailments of (1):
1. B(h(5): 0)
By means of defining a probability distribution over 3
possible values for A, other values are impossible.
[sonar(2)1B(h(4): 0) A [sonar(2)]|B(h(2): 8/9)
Obtaining a reading of 2 on the sensor means that being
4 units away is no longer possible, whereas the agent’s
confidence in being 2 units away from the wall increases.
. [sonar(2)][move(1, 1)]|B(h(2): 8/45)

Consider that, in case of an exact move, the probability

of being 2 units away would have been 0. See Figure 2
for the degrees of belief in other values of h.

®Free variables are assumed to be implicitly quantified from the
outside.

"It is also possible to handle discrete approximations of Gaus-
sians, for example.
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h values 2 3 4 5

initially 1/3 | 1/3 1/3 0
after sonar(2) 89 | 1/9 0 0
after move(1,1) | 8/45 | 5/9 | 11/45 | 1/45

Figure 2: distribution on 4 values in Example 20

Example 21: We now assume the same dynamic axioms
as above (given by X), but imagine the agent to only have
qualitative uncertainty about /’s value. Consider:3

O@u(hw)yAu>1)AZ: 1)
So, the agent considers infinitely many / values possible.
The following are entailed by (2):
1. B(h(1): 0) A =B(h(4): 0)

Values for 2 > 1 cannot be ruled out. Here, only know-
ing allows us to infer non-beliefs.

. [sonar(2)1B(h(4): 0)
The nature of the likelihood axioms for the sensor is such

that obtaining a reading of 2 eliminates infinitely many
possibilities.

2

The following is not entailed by (2):

3. [sonar(2)]13u,v B(h(2): u) A B(h(3): v) Au>v
A sensor reading of 2 means that the robot is either 2
or 3 units away from the wall, as the prior on being 1
unit away is 0. Despite the reading favoring the case for
the robot being two units away from the wall, qualitative
uncertainty about 4’s value means there are distributions
where 2(2) has a low or even O prior probability, and
therefore, it does not follow that the degree of belief in
h(2) necessarily trumps that in /4(3).

5 Related Work

Reasoning about probabilities is widely studied in the logical
literature — see, for example, [Gaifman, 1964; Nilsson, 1986;
Halpern, 2003]; we briefly survey the major camps below. At
the outset, we remark that a key feature of our work is only
knowing,” which has not been considered for probabilistic
specifications, except for OBL that we build on.

The inspiration for our work, and perhaps the one closest in
spirit, is the work of BHL on degrees of belief in the situation
calculus. It is an axiomatic proposal with a conceptually at-
tractive definition of belief in a first-order setting. The thrust
of our work is in providing a semantic basis for that proposal,
and as we noted, without constructions like ~,, and =,;, meta-
beliefs do not work right away in the BHL framework. BHL
also do not consider only knowing.

In less restrictive settings than full first-order O£, Gabal-
don and Lakemeyer [2007] consider a logic of only know-
ing and probability by meta-linguistically enforcing finitely

8For expressions such as u > 1, it is implicitly assumed that we
are quantifying over the rationals, which can be accomplished by
adding sorts to the language. This is left out of the semantics for
simplicity.

90Only knowing is related to notions such as minimal knowledge
[Halpern and Moses, 1984] and rotal knowledge [Pratt-Hartmann,
2000]. See [Levesque and Lakemeyer, 2001] for discussions.
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many equivalence classes for possible worlds. Consequently,
quantification also ranges over a finite set. In a game theory
context, Halpern and Pass [2009] have considered a (proposi-
tional) version of only knowing with probability distributions.

Reasoning about knowledge and probability has appeared
in a number of works prior to BHL, of course, in computer
science [Nilsson, 1986; Fagin and Halpern, 1994], game
theory [Monderer and Samet, 1989; Heifetz and Mongin,
2001], among others [Halpern, 2003]. Properties discussed
in this paper, such as introspection and additivity, are also
well studied [Aumann, 1999]. Notably, the work of Fa-
gin and Halpern [1994] can be seen to be at the heart of
BHL (and our work). The Fagin-Halpern scheme is a gen-
eral one formulated for Kripke frames [Fagin ef al., 1995],
but it is propositional. We also consider the simple case
where a set of global distributions apply to ‘W as seen
at every world; in theirs, the probability spaces can differ
arbitrarily across the worlds. The Fagin-Halpern scheme
shares some similarity with probabilistic logics for programs
[Kozen, 1981] and variants thereof [Halpern and Tuttle, 1993;
Van Benthem et al., 2009].

There are many previous first-order accounts of proba-
bilities, such as [Bacchus, 1990] and [Halpern, 1990]; see
[Ognjanovic and Raskovic, 2000] for a comprehensive list.
Limited versions of probabilistic logics have also become
popular in the machine learning literature [Poole, 2003;
Domingos and Webb, 2012; Getoor and Taskar, 2007], with
things like a finite domain assumption built-in. In these lat-
ter formalisms, the logical syntax is mostly used to succinctly
represent large probabilistic graphical models with many in-
teracting random variables over classes and hierarchies, and
as such, the knowledge base is assumed to be equivalent to a
single joint distribution over these variables. First-order ac-
counts such as [Halpern, 1990] allow logical connectives over
beliefs, as a result of which, like in BHL and DS, beliefs may
not correspond to any single distribution. However, our em-
phasis on a first-order theory of actions and only knowing
distinguishes us from much of this work.

6 Conclusions

We proposed a first-order modal logic of subjective probabil-
ities, noisy acting and sensing, and explored its formal prop-
erties. The language allows us to express BHL-style basic
action theories, albeit in a crisp semantical framework, with
introspection and only knowing. Bridging logical represen-
tations and probabilistic data is becoming a central problem
in cognitive robotics and much of artificial intelligence; so,
having a general specification language for analyzing systems
and high-level programs is vital.

For the future, we think the following directions seem
promising. From a reasoning viewpoint, it would be interest-
ing to consider how to implement a possibly restricted (per-
haps, even propositional) version of DS as a reasoning ser-
vice. For starters, this would undoubtedly need an automated
way to reason about actions, so that queries after actions
can be reduced to purely static ones. Our sense is that ear-
lier results for the BHL scheme [Belle and Levesque, 2013b;
2014] can be reformulated for DS with some effort.
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From the representational viewpoint, the most immediate
extension would be to allow both discrete and continuous
probabilities, similar to [Belle and Levesque, 2013a]. This
would allow the logic to capture the sorts of realistic sen-
sor models seen in practice [Thrun er al., 2005]. But even
when limited to discrete probabilistic variables, there is an
important limitation with the current syntax. Our belief oper-
ators were inherited from OB.L, which take the form B(a, r),
where r is a rational. But suppose we are interested in charac-
terizing discrete probabilistic variables taking values from in-
finite sets. A simple case is a geometric distribution: imagine
that the probabilistic variable 4 from our examples can take
values from N, and the probability of taking the value u € N
is (1 — 8)* x 0 for a given 8 € [0, 1]. For example, if 6 = .5,
then the value 0 is accorded a probability of .5, the value 1 a
probability of .25, and so on. Although we could use an infi-
nite theory such as {B(h(0): .5), B(h(1): .25),...}, it would
be nice to be able to represent the distribution as a formula,
perhaps in the context of O. At first glance, this would require
the second argument of B to possibly taking on variables of
the rational sort rather than just rational constants, but how
to design such a language and specify a semantics for it is an
open question.

Appendix

We briefly review the non-dynamic and non-probabilistic
counterparts of DS: the logics OL [Levesque and Lake-
meyer, 20011, OBL [Belle et al., 2016], and ES [Lakemeyer
and Levesque, 2004].

The Logic O.L

The non-modal fragment of OL consists of standard first-
order logic with = (that is, connectives {A, Y, =} and a count-
ably infinite set of standard names N, which, as usual, in-
cludes the set of rationals as a subsort. (Unlike DS, where
we needed to consider k-ary rigid function symbols for build-
ing action terms, QL can be limited to nullary rigid terms,
making the account simpler.) As before, we let # be the set
of ground atoms. Finally, as one would surmise, O.L has two
epistemic operators: K and O.

The semantics of OL, given using possible worlds, is de-
fined over the set of mappings from the ground atoms in # to
{0, 1}. By an epistemic state e, we mean any set of worlds. By
a model, we mean a pair (e, w).

Given @ € OL and a model (e, w), the definition of truth
is defined inductively. We omit the logical connectives, and
discuss the case for atoms and modalities:'”

e,wkE piff wlp] =1;
e,wkE Kaiffforallw’ € e, e,w E «a;

e,wE Ociff forallw’,w’ eceiffe,w E a.

10Readers familiar with the generic approach of accessibility re-
lations between worlds in Kripke frames [Hughes and Cresswell,
1972] will realize that our notion of an epistemic state offers a sim-
plified account, essentially corresponding to weak S5.
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That is, knowing @ amounts to @ being true in all worlds in
e, and only-knowing @ amounts to e being precisely those
worlds where @ holds. A definition for entailment is given as
we would for DS.

The K modality in OL exhibits the usual properties of in-
trospection, as well as the universal and existential versions
of the Barcan formula; for example:

e EKa>KKa;
o EdxKa > Kdxabut f Kdxa D dxKa.

The new modality here in comparison to classical epis-
temic logic is O, and in that regard, only knowing implies
knowing, but also not believing what does not logically fol-
low from the knowledge base:

e EOa> Ka
e EFO¢pD KyiffE¢pDy
e = Op > =K for distinct atoms p and g.

Clearly, the last property is not true in classical epistemic
logic, because knowing p does not preclude knowing p A gq.

The Logic OBL

From a syntax point of view, OBL is essentially iden-
tical to OL except for including modalities B(«a: r) and
O(ay: ri,...,a;: ry), with Ka and Oa serving as abbrevia-
tions as in DS.

Given the set of ground atoms # and the set of worlds W,
which are mappings from P to {0, 1}, a distribution d is under-
stood as a function from ‘W to the set of non-negative reals
R2%. An epistemic state e is defined as a set of distributions.
By a model, we mean a pair (e, w).

For the epistemic operators to be well-defined, we define
conditions BNp, Eq and Norwm as in DS, but these conditions
now take the signature (d,V, r) where V C ‘W. (That is, we
are not considering world and action pairs, since there are no
actions in the language.) For example: Bno(d, V, r) iff there
isno k,wy,...,wr € V such that

Zk: dw;) >r.
i=1

With that, the semantic rules can be defined using (once
again, omitting the connectives):

e e,wE piffwlpl =1;

e e,wkE B(a: r)iff
for all d € e, Norm(d, (W' | e,w" E a},1);

e e wkEO(ar:r,...,ax: 1) iff
for all d, d € e iff Norm(d, {w’ | e,w’ E a1}, 11),
..., NorM(d, {W | e,w E ar}, ).

Incidentally, — K truk is satisfiable, which means that while

positive introspection holds unconditionally, negative intro-
spection needs to be predicated on believing Trug:'!

1Since B(TrUE: 1) is not valid, the authors in [Belle et al., 2016]
consider the notion of measurable epistemic states, which are pre-
cisely those that satisfy B(Trug: 1). All of this carries over to DS,
but for space reasons we will not pursue the topic here.

835

e = B(a: r) > KB(a: r) for arbitrary r;
e 50, F Ka > KK is then a special case;
e Krrue E - B(a: r) D K-B(a: r) for arbitrary r.

Moreover, B admits additivity and equivalence properties;
for example:

o = B(a//\ﬂl I‘)/\B(a/\ﬁﬂ: r') ) B(O,’Z r+r’);
e if = a=p,thenkE B(a: r) = B(B: r).

Finally, regarding O, the properties already discussed in the
context of OL also hold in OBL.

The Logic £ES

The logic ES semantically reconstructs the situation calculus
in a logic of only knowing. To allow for action terms, as we
have in DS, one assumes k-ary rigid function terms. The set
of atoms % are then obtained by applying all ground terms R
to the predicates in the language.

Worlds in &S are no longer static entities that understand
the (current) state of affairs. That is, a world maps  and Z
to {0, 1}, where the set of action sequences Z is defined as
we have for DS. By a model, we mean a triple (e, w, z) where
zeZ.

To account for how knowledge changes after (noise-free)
sensing, one defines w’ ~, w, which is to be read as saying
“w’ and w agree on the sensing for z”, as follows:

o if z=(),w ~, wforevery w’;

1 and

e w ~., wiff w ~,
w'[SF(a),z] = wlSF(a), z].

w, wlposs(a), z]

The truth rules are (omitting connectives, as usual):

e ¢,w,zE piff pisanatomand w[p,z] = 1;

e e,w,zE Kaiffforallw ~, w,ifw €e,e,w',z F a;
e e,w,zE Ocliffforallw’ ~, w,w eeiffe,w,z F a.

Properties of knowledge and only-knowing take on the
same form as in OL, with the addition that introspection holds
for all action sequences; for example:

o EF0(Ka> KKa),
e E0(Oa > Ka).

Action theories for ES are similar to DS, except that acting
and sensing is assumed to be noise-free. Among other things,
there are no likelihood and observational indistinguishability
axioms, and noise-free sensing is axiomatized by means of a
distinguished predicate SF. In the context of moving towards
a wall, for example, we might have:

OSF(a) = du(a = isClose A (Wu) Au <5)V a # isClose)

which says that SF is true on executing isClose only when
the robot is within 5 units of the wall, and is false otherwise.
Semantically, then, given worlds w’ and w, we would have
W ~isclose W only when the robot is within 5 units from the
wall in both worlds.
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