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Abstract

Clustering ensemble has emerged as an important
extension of the classical clustering problem. It
provides a framework for combining multiple base
clusterings of a data set to generate a final consen-
sus result. Most existing clustering methods sim-
ply combine clustering results without taking into
account the noises, which may degrade the cluster-
ing performance. In this paper, we propose a novel
robust clustering ensemble method. To improve the
robustness, we capture the sparse and symmetric er-
rors and integrate them into our robust and consen-
sus framework to learn a low-rank matrix. Since
the optimization of the objective function is diffi-
cult to solve, we develop a block coordinate descent
algorithm which is theoretically guaranteed to con-
verge. Experimental results on real world data sets
demonstrate the effectiveness of our method.

1 Introduction

Clustering is a fundamental problem in machine learning.
According to [Wang et al., 2009], traditional single cluster-
ing algorithms usually suffer from the robustness problems,
because: (1) different clustering methods may discover very
different structure in a given data set due to their different ob-
jective functions; (2) for a single clustering method, since no
ground truth is available, we can hardly validate the cluster-
ing results; (3) some methods (such as K-means) are highly
depend on their initializations. To improve the quality of clus-
tering, the idea of ensemble has been proposed.

Clustering ensemble provides a framework for combining
multiple base clusterings of a data set to generate a consen-
sus clustering [Topchy et al., 2004]. In past decades, many
clustering ensemble methods have been proposed. [Strehl
and Ghosh, 2003] formalized clustering ensemble as a com-
binatorial optimization problem in terms of shared mutual
information. [Topchy et al., 2003] also used information
theoretic method to combine clusterings. [Fern and Brod-
ley, 2004] proposed a graph cut method. [Li er al., 2007;
Li and Ding, 2008] and [Du et al., 2011] applied non-negative
matrix factorization (NMF) to clustering ensemble. [Wang et
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al., 2009] learned the consensus clustering results by min-
imizing the Bregman divergence over all input clusterings.
[Wang et al., 2011] applied a Bayesian method to clustering
ensemble. [Du ez al., 2013] proposed a self-supervised frame-
work for clustering ensemble. These methods try to learn
the consensus clustering results by taking advantage of diver-
sity between base clusterings and reducing the redundance in
clustering ensemble. In this paper we treat clustering ensem-
ble with a new perspective. The inputs of clustering ensemble
task are several weak base clustering results. Since the clus-
ters identified by these base clusterings are often imperfect,
these base clustering results may not be fully reliable. Thus
these imperfect base clusterings can be regarded as intrinsic
clustering corrupted with “noises” and “outliers”. As a re-
sult, it is necessary to recover these contaminated results for
consensus clustering.

Most existing clustering ensemble methods blindly com-
bine multiple base clusterings of data sets without taking
into account noises and outliers, thus incurring the robustness
problem, i.e., their performance would be severely degraded
by noises and outliers. In this paper, we propose a novel
Robust Clustering Ensemble (RCE) method, which explicitly
characterizes the noises in each clustering, and uses them to
get a robust and consensus clustering. In detail, given a set
of input clusterings for ensemble we first construct the con-
nective matrices, where each entry indicates the probability
of two instances belonging to the same class. Since the input
clusterings may contain noises and outliers, these connective
matrices may also be contaminated. We introduce a sparse
and symmetric error matrix for each connective matrix to ex-
plicitly identify the noises, and integrate the error matrices
and connective matrices into ensemble framework. Consider-
ing that the connective matrices have a clear probabilistic in-
terpretation, we use the Kullback-Leibler divergence for con-
sensus measuring. We further impose a low-rank constraint
on the final consensus matrix to obtain a more clear cluster
structure. The resulting optimization problem turns out to be
hard to solve due to the involvement of the noise matrices,
divergence function and the low-rank constraint. To solve the
objective function, we develop a block coordinate descent al-
gorithm which can be theoretically guaranteed to converge.

Main contributions of our work are summarized as follows

e To improve the robustness of clustering ensemble, we in-
troduce the sparse and symmetric error matrices to char-



acterize the noises in each input clustering. To learn the
final robust, low-rank consensus matrix, we minimize
the disagreements among the connective matrices using
the Kullback-Leibler divergence.

We propose a block coordinate descent algorithm to
solve the complex objective function which involves
Kullback-Leibler divergence, sparse term and low-rank
term.

The experiments on several benchmark data sets show
that our method outperforms other compared algorithms,
which indicates the importance of robustness for cluster-
ing ensemble.

2  Clustering Ensemble

Let X = {z1,22,..., 2, } be a set of n data points. Suppose
we are given a set of m clusterings C = {C!,C?,...,C™}
of the data in X, each clustering C* consisting of a set of
clusters {m}, 7%, ..., i}, where k is the number of clusters
and X = Uleﬂ;. Note that the number of clusters &k could
be different for different clusterings.

From C, we can construct symmetric connective matrix
A for partition C* as:

A;()Z) _ { 1, if z, and x, belong to the same cluster,

0, otherwise.

More generally, sometimes we can also get a soft connective

matrix A, where A() denotes the possibility that z,, and

x4 belong to the same cluster. Thus A,(fq) € [0, 1] for 4 from 1
to m. The task of clustering ensemble is to learn a consensus
matrix A from A, A" where A, denotes the consen-
sus probability that =, and =, belong to the same cluster.

3 Robust Clustering Ensemble

In this section, we present the framework of our RCE method
and then discuss how to solve it.

3.1 Formulation

Since A .. A(™) may be contaminated by noises and out-
liers, we denote E(*) as the sparse error matrix of the i-th
connective matrix. The error matrix E(*) should be symmet-
ric because the connective matrix is symmetric. Given E(*),
we obtain a cleaned connective matrix A(Y) — E(*)_ To learn
the consensus matrix, we minimize the average disagreement
over the cleaned connective matrices. Since both A,, and
A](f;z) EI()Z) have a probabilistic interpretation, we minimize
the Kullback-Leibler divergence between A, and A(Z) EZ()Zq)
instead of the Euclidean distance. Thus, we obtain the follow-
ing optimization problem:

m n

gun 2 30 KL Ay = B + Z B,
(H
st. Vipg 0< A<l 0<AD-EW <1,
E® — gOT
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where KL(+) is Kullback-Leibler divergence and A, is a bal-
ancing parameter. || - ||; is the £;-norm, which makes E(?)
sparse as [Du and Shen, 2013; He et al., 2014] did. The con-
straints on qu and A,(,iq) (l) ensure that the cleaned con-
nective matrices and consensus matrix have a probabilistic
interpretation. The constraint on E(*) makes it symmetric.
Additionally, to make the final consensus matrix A have
a clear structure for clustering, we further require A to be
low-rank. Here we use the nuclear norm of A to approximate

the rank of A inspired by [Liu et al., 2010; Luo et al., 2012;
Liu et al., 2013]:

i KL(Apq, AJ) — E{)
a3 5 g -
’ =1 p,q=1
+ A1) By + Al |AlL,
i=1
st. Vipg 0<A,<1, 0<AD-El <1,
2
E® — gOT
where A, is another balancing parameter, and || - ||. is the

nuclear norm.
Since A,, and Az(fq Eéq are the poss1b111ty of z, and z,

belonging to the same cluster, A, and qu — E,(,q) follow
the Bernoulli distribution. Thus we can expand the KL(-)
and rewrite Eq.(2) to the following objective function (here
0log0 = 0):

min Ay log——PL
. 1-A
+ (1 — Apg)log P >
1- (43 - Eg))
+ A1 Y IED Y+ Ao Al
=1
st. Vipg, 0<Ay,<1, 0<AD-El <1,

O — gOT 3)

Observe that due to the explicit characterization (E()) of
sparse, symmetric and bounded noises in clusterings, the
above framework of clustering ensemble is robust. Moreover,
to be more suitable for clustering ensemble task, we also in-
troduce the Kullback-Leibler divergence and low-rank term
in our approach.

3.2 Optimization

Eq.(3) involves two groups variables (A and E), thus we
present a block coordinate descent scheme to optimize it. In
particular, we optimize the objective with respect to one vari-
able while fixing the other variables. This procedure repeats
until convergence.

To handle the nuclear norm term || A ||, we borrow the fol-
lowing result from [Grave ef al., 2011]:



Lemma 1. Let M € R"™*™. The nuclear norm of M is equal
to:

1
M|, = 3 <§r;f0tr(MTslM) + tr(S))

and the infimum is attained for S = (MM™)/2, where tr(-)
is the trace of a matrix, and S > 0 means S is positive semi-

definite.
According to Lemma 1, we rewrite Eq.(3) as:

A
min Z Z ( »q ogwpqi)

ARG (
AE®.S i=1 p,q=1 qu

1- Ay, )
1 (Ab) — Ef)

+ 20 Y IO+ 2 (r(ATSTIA) + 1x(S) ),

+(1- /ipq)log

i=1
st Vp,qi, 0< A, <1, 0<AD-ED <1,
E® =EOT S+ 0. 4)
Optimize S by fixing A and E()
When fixing A and E®), Eq.(4) is re-written as:
min tr(ATSTIA) + tr(S), 5)

st. S>0.

As suggested by [Grave et al., 2011], we need to add a term
utr(S~1). Otherwise, the infimum over S could be attained
at a non-invertible S, leading to a non-convergent algorithm.
Here p is a small parameter and fixed to 0.001 for simplicity.
According to Lemma 1, the infimum over S is then attained
for:

S = (AAT 4+ u1)t/2, (6)

where I is an identity matrix. Considering that when updating
other variables, we just need S~! instead of S, we calculate
S—! directly. More specifically, we compute VDzag(ok)VT

as the eigenvalue decomposition of AAT and then calculate
S~lasS™! = VDiag(1/\/or, + p)VT.

Optimize A by fixing S and E(*)
By fixing E®) and S, Eq.(4) can be simplified as:

A
mln Z Z (qulogA Ez(f)

i=1 p,q=1 q

1- Ay,
— (AS) — ENY)
+ Aotr(ATS™ 1A),

0< A, <1 (7

+(1- /ipq)log

s.t. Vp,q,

For the constraint 0 < flpq < 1, we cannot get the closed-

form of A. To solve Eq.(7), we use the auxiliary function
approach [Lee and Seung, 2000]. We first introduce the defi-
nition and lemma of auxiliary function.

Definition 1. [Lee and Seung, 2000] Z(h, 1) is an auxiliary
Sunction for F(h) if the conditions

Z(h 1) = F(h), Z(h,h) = F(h),
are satisfied.

Lemma 2. [Lee and Seung, 2000] If Z is an auxiliary func-
tion for F, the F' is non-increasing under the update

R = argmin Z(h, b)) (8)
h
To find an auxiliary function for Eq.(7), we first denote

ilo 1- qu) + B

— B
D= /\QS L
C is a matrix whose (p,q)-th element is Cp,,. We fur-
ther introduce C* = (|C| + C)/2, C~ = (|C| — C)/2,

Df = (|D|+D)/2and D~ = (|D| — D)/2. Then follow-
ing Theorem defines an auxiliary function of Eq.(7).

Theorem 1. Ler J (A) be the objective function of Eq.(7),
then the following function

Z(A,A) )
" A2 .
=Y m (Af’q +Apglog Al +(1 — Apg)log(1 — A, ) —
p,q=1
“‘A””) e 3)
+ ] - C. A 1+ log
1- A p;l Pgipg AL
Z A+ A a z": (D*A")p A7,
2A’ Al
p,q=1 p,q=1 pq
AyA,
Z D, Al AL (1 + 1ogA/pA/p>
p,q,r=1 qp*irp

is an auxiliary function of J(A).
Proof. See Appendix A in the supplementary material. [

According to Lemma 2, we minimize Z(A, A’) instead of
J(A). Let %A’A/) = 0. We get the updating rule of A:

t t)2 t t
—BY) + /B + 16 Y
t
26

Al (10)

where fl,(fqﬂ) expresses the value of A, in the (¢ 4 1)-th
iteration, and

) — 2n | Gy 2ADTAY),
WA A
(t) = A _ m___ — A®
B, = mlogAy, qu) mlog(l— A,))

H) =c At + 2D~ AW),, Al

P‘I
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Itis obvious that qu > 0 always holds when updating Ay
by Eq.(10). When A pq 18 greater than 1, since Z(A Al is
convex w.r.t. A, Z(A, A’) is a monotone decreasing function
in interval [0, 1]. Thus the optima of A, is at A,, = 1. To
sum up, we update A, as follows:

BY) +/BYW? + 4G 1)
2GY!)

Lo (D)

- )
A;q) < min

Theorem 2. Updating A by Eq.(11) will monotonically de-
crease the value of the objective of Eq.(7); hence it converges.

Proof. By Lemma 2 and Theorem 1, we can get that
JAW) = Z(AW AW > Z(A®,AM) > J(A®) >

.. So J(A) is monotonically decreasing. Since J(A.) is ob-
viously bounded below, we prove this theorem. 0

Optimize E() by fixing S and A

When S and A are fixed, the remaining problem can be fur-
ther decomposed into n X n X m sub-problems, where only
E}(,fz) is involved. Considering the symmetry of A(?) and E(%),
there are two cases, i.e. off-diagonal and diagonal. For the
i-th connective matrix, the sub-problem of the off-diagonal

element E (P # q) is:
min — Apqlog (A ~ Eji)) = (1= Ayy)log(1- A+ Ef))
Prq

—;lqplog(A( i
+ 2)‘1| pq |a
St AD —1< BD < AD).

EWD)—(1 = Agy)log(1— AW+ EG))
12)

The sub-problem of the diagonal element EJ(;) is similar:
in —A;;log(A%Y — )~ (1 — A;;)log(1-AV) +EY
%1(11)1 jalog( JJ JJ )= ( 3i)log( g5 T )
3

+ MBS

Ak (13)
(1)
s.t.Ajj -

(@) < 40
1< EBjj < 4;f.

Since Eq.(13) can be regarded as half of Eq.(12), we only
need to solve Eq.(12); and the solution of Eq.(13) is similar.
(4)

pq and

For simplicity, we denote a = flpq, b= qu, c=A
Tr = E(i)
= Lp

¢ - Theorem 3 gives the solution to Eq.(12).
Theorem 3. Eq.(12) is equivalent to

min f(z) = —alog(c —z) — (1 — a)log(l — c+ x)
—blog(c — x) — (1 — b)log(1 — ¢+ z) + 2\ ||,
st. c—1<z<ec (14)

and the solution of Eq.(14) is
v = argmin{ f(z1), f(z2)}.

x1,T2
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where

2
x1:min{ Al(a+b),0}7

xgzmax{ ,0}.

Proof. It is obvious that Eq.(14) is equal to Eq.(12). Now we
solve Eq.(14). Since there is an absolute value function in
Eq.(14), we consider two cases: < 0 and x > 0.

When z < 0, setting the derivative of Eq.(14) w.r.t. z to
zero, we get:

2/\16—)\1—1+\/()\1+1)2—
2\

A =2 c—1+/(1=X1)2+2X1(a + b)
—2)\;

a 1—a b 1-b
c—x 1—c+x+c—x_ 1—c+x_2>\120 (15)
Solve x from Eq.(15):
2Xc— A1 — 14+ /(A +1)2 —2)\(a +b)
- 2A1 (16)
To handle the constraint in Eq.(14), we introduce Lemma 3:
Lemma 3.
2A1c— A1 — 1= /(A1 + 1)2 = 2X\;(a + b) el
21 -
and

2A1¢— A1 — 14+ /(A + 1)2
21
satisfies at any value of A1 > 0 when a,b € [0, 1].

_2/\1(a+b) <e

c—1<

Proof. See Appendix B in the supplementary material. [

According to Lemma 3, to satisfy the constraint in Eq.(14),
we can only take the second solution. Although the first solu-
tion sometimes can reach the boundary value c—1, it is easy to
verify that when x = c—1, the objective function becomes in-

2\1c—A 1+\//\+12 2X (a+b)
finitely large. Moreover, if ="'~ el e

0, which means the objective function i 1s monotomcally de-
creasing in [c — 1, 0], thus the optima is 0. To sum up, if
x < 0, then the optima is:

2 1c— M\ —1 A+1)2—
Jc:min{ 17 +\/( 1+)

2X\1(a+b) O} -

21
(17)
Similarly, when = > 0, the optima is:
Ay — _ )2
I — max 1 2)\10 1+\/(1 )\1) +2)\1(a—|—b)70 .
—2)\
(18)

Therefore, to optimize x, we compute two candidate values
according to Eq.(17) and Eq.(18), then we choose the one
which makes objective function of Eq.(14) smaller. ]

Algorithm 1 summarizes the whole optimization process.
After getting A, we set W = (A+AT)/2, and apply spectral
clustering [Ng et al., 2001] on W to get the final clustering.



Algorithm 1 Robust Clustering Ensemble

Input: multiple connective matrices A", ..., A(™) param-
eters A1, Ao and p.
Output: consensus matrix A, error matrices E() .
. o, e g0 e _ 1 ;
1 Initialize A = =377 A,
2: while not converge do

3:  Compute E() according to Theorem 3.

4:  Compute VDiag(oy)VT as the eigenvalue decompo-
sition of AAT

5. SetS~!' = VDiag(1/\/or + p)VT.

6: Update A by Eq.(11).

7: end while

3.3 Convergence and Complexity Analysis

According to Theorem 2, when updating A, the objective
function decreases monotonically. When updating E(), we
find the global solution of this sub-problem which also makes
the objective function decrease. In addition, the objective
function has a lower bound. Thus Algorithm 1 converges.

In each iteration, when updating S~!, the time complex-
ity is O(n?) due to the eigenvalue decomposition, where 7 is
the number of instances. When updating A, since there is a
matrix multiplication of two n X n matrices (D*A), the com-
plexity is O(n?). When computing E(*), which only contains
element-wise operation, the complexity is O(n?m), where m
is the number of connective matrices. Thus the overall com-
plexity is O((n®+n?m)l), where [ is the number of iterations.

4 Experiments

In this section, we evaluate the effectiveness of the proposed
RCE method by comparing with several state-of-the-art clus-
tering ensemble methods on benchmark data sets.

4.1 Data Sets

We use totally 11 data sets to evaluate the effectiveness of our
proposed RCE, including images, texts, and UCI data sets.
Data sets from different areas serve as a good test bed for
a comprehensive evaluation. The basic information of these
data sets are summarized in Table 1.

4.2 Compared Methods
we compare RCE with the following algorithms:

e K-means, which is randomly initialized and the results
are averaged over 200 independent runs.

KC, which represents the results of applying K-means
to a consensus similarity matrix, which is often used as
a baseline in clustering ensemble methods such as [Li
and Ding, 2008].

Cluster-based Similarity Partitioning Algorithm
(CSPA)[Strehl and Ghosh, 2003], which signifies a rela-
tionship between objects in the same cluster and can thus
be used to establish a measure of pairwise similarity.

HyperGraph Partitioning Algorithm (HGPA)[Strehl
and Ghosh, 2003], which approximates the maximum
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Table 1: Description of the data sets.

#instances | #features | #classes
Yale 165 1024 15
Tr23 204 5832 6
JAFFE 213 676 10
Glass 214 9 6
ORL 400 1024 40
Medical 706 1449 17
Coil20 1440 1024 20
Wap 1560 8460 20
Hitech 2301 22498 6
K1b 2340 21839 6
MNIST 4000 784 10

mutual information objective with a constrained mini-
mum cut objective.

Meta-CLustering Algorithm (MCLA)[Strehl and
Ghosh, 2003], the objective of integration is viewed as a
cluster correspondence problem.

Nonnegative Matrix Factorization based Consensus
clustering (NMFC)[Li and Ding, 2008], which uses
NMF to aggregate clustering results.

Generalized  Weighted Cluster  Aggregation
(GWCA)[Wang et al., 2009], which learns the con-
sensus clustering results by minimizing the Bregman
divergence over all the input clusterings.

Bayesian Clustering Ensemble (BCE)[Wang ef al.,
2011], which is a Bayesian model for ensemble.

Robust Multiview Spectral Clustering (RMSC)[Xia
et al., 2014]. Although it is not designed for cluster-
ing ensemble task, it also contains mechanism to handle
noises and can be easily adopted to deal with clustering
ensemble. We conduct the probabilistic transition matri-
ces with the connective matrices, and then apply RMSC
on them to obtain final clustering results.

4.3 Experiment Setup

Following the similar experimental protocol in [Wang et al.,
2011], we run k-means 200 times with different initializa-
tions to obtain 200 base clustering results, which are divided
evenly into 10 subsets, with 20 base results in each of them.
Clustering ensemble methods are then applied on each subset.

The number of clusters is set to be the true number of
classes for all data sets and algorithms. We fix the parame-
ter 4 to 0.001 when updating S and tune both the parameters
A1 and Ay from [107%,10%] by grid search. We tune the pa-
rameters in compared methods as suggested in their papers.
To measure the performance of clustering, the average clus-
tering Accuracy (ACC) and Normalized Mutual Information
(NMI) on the 10 subsets are reported. To validate the statistic
significance of results, we also calculate the p-value of ¢-test.

4.4 Experimental Results

Table 2 shows the clustering results. Bold font expresses that
the difference is statistically significant (p-value of t-test is



Table 2: Clustering Ensemble Results

Dataset | Metric || K-means KC CSPA | HGPA | MCLA | NMFC | GWCA | BCE | RMSC RCE
Yale ACC 0.3673 0.3836 | 0.4079 | 0.3952 | 0.4121 | 0.3897 | 0.3836 | 0.4121 | 0.4186 | 0.4332
NMI 0.4175 0.4254 | 0.4591 | 0.4522 | 0.4439 | 0.4411 | 0.4237 | 0.4505 | 0.4623 | 0.4807
T3 ACC 0.3904 | 0.3588 | 0.2946 | 0.3289 | 0.3363 | 0.3770 | 0.4113 | 0.3843 | 0.3786 | 0.4163
NMI 0.1351 0.1394 | 0.0991 | 0.1357 | 0.1196 | 0.1393 | 0.1357 | 0.1554 | 0.1580 | 0.1718
JAFFE ACC 0.7235 0.7117 | 0.8291 | 0.8601 | 0.8854 | 0.7127 | 0.7930 | 0.8042 | 0.7642 | 0.9115
NMI 0.8098 | 0.8092 | 0.8351 | 0.8628 | 0.8979 | 0.8064 | 0.8561 | 0.8645 | 0.8365 | 0.9221
Glass ACC 0.5086 | 0.4804 | 0.4164 | 0.3762 | 0.4967 | 0.4636 | 0.5308 | 0.4799 | 0.4848 | 0.5292
NMI 0.3572 | 0.3456 | 0.2789 | 0.2102 | 0.3456 | 0.3427 | 0.3755 | 0.3435 | 0.3434 | 0.3880
ORL ACC 0.5243 0.5528 | 0.6050 | 0.6203 | 0.6130 | 0.5760 | 0.5703 | 0.4285 | 0.5594 | 0.6456
NMI 0.7278 | 0.7492 | 0.7728 | 0.7838 | 0.7740 | 0.7661 | 0.7558 | 0.5409 | 0.7499 | 0.7922
Medical ACC 0.3959 | 0.3703 | 0.3504 | 0.3181 | 0.4021 | 0.3739 | 0.3950 | 0.3929 | 0.3831 | 0.4220
NMI 0.4128 | 0.4161 | 0.3971 | 0.3844 | 0.4209 | 0.4278 | 0.4172 | 0.4436 | 0.4383 | 0.4611
Coil20 ACC 0.5931 0.6260 | 0.6744 | 0.5653 | 0.7166 | 0.6167 | 0.6354 | 0.6630 | 0.6180 | 0.7263
NMI 0.7390 | 0.7530 | 0.7538 | 0.6915 | 0.7945 | 0.7503 | 0.7637 | 0.7757 | 0.7446 | 0.8090
Wap ACC 0.3621 0.3404 | 0.2502 | 0.2473 | 0.2255 | 0.3601 | 0.3695 | 0.3654 | 0.3529 | 0.4214
NMI 0.2866 | 0.3731 | 0.3300 | 0.2409 | 0.0274 | 0.3747 | 0.3107 | 0.3432 | 0.4003 | 0.4251
Hitech ACC 0.3158 | 0.3157 | 0.3018 | 0.2402 | 0.3094 | 0.3130 | 0.3212 | 0.3299 | 0.3161 | 0.3363
NMI 0.0967 | 0.1248 | 0.1226 | 0.0318 | 0.1035 | 0.1158 | 0.0942 | 0.1319 | 0.1495 | 0.1656
Kib ACC 0.6794 | 0.6904 | 0.4267 | 0.3209 | 0.5302 | 0.6822 | 0.7241 | 0.7429 | 0.6526 | 0.7524
NMI 0.2440 | 0.4266 | 0.3126 | 0.1161 | 0.2716 | 0.4152 | 0.2862 | 0.4235 | 0.4343 | 0.4887
MNIST ACC 0.4948 | 0.5159 | 0.5097 | 0.4027 | 0.5252 | 0.4792 | 0.5161 | 0.5162 | 0.5136 | 0.5302
NMI 0.4586 | 0.4555 | 0.4392 | 0.3909 | 0.4659 | 0.4485 | 0.4485 | 0.4709 | 0.4618 | 0.4876

less than 0.05). From Table 2, it can be seen that most clus-
tering ensemble methods perform better than K-means, which
indicates the benefit of ensemble methods. It can also be seen
that, our proposed method RCE shows superior performance
gains over the baselines w.r.t. ACC and NMI on most of the
11 data sets, which demonstrates that our robust ensemble can
improve the performance of clustering.

RMSC was introduced for multivew spectral clustering. It
has a mechanism to handle noises in multiple views, but dif-
fers significantly from ours. First, it is based on probabilistic
transition matrix instead of connective matrix; second, it con-
siders only a sparse error matrix, while we consider a sym-
metric, sparse and bounded matrix; it seems that our charac-
terization of noises is more suitable for ensemble clustering
tasks, as demonstrated in our experiments.

4.5 Parameter Study

We explore the effect of the parameters on clustering perfor-
mance. There are two parameters in our method: A\; and As.
We tune these two parameters from [10~%,10%]. We show
the ACC and NMI on JAFFE and ORL data sets and the re-
sults are similar on other data sets. Figure 1 shows the results,
from which we see that the performance of our method is sta-
ble across a wide range of the parameters.

5 Conclusion

In this paper we proposed a unified framework for robust
clustering ensemble. We introduced symmetric and sparse
error matrices to characterize noises and integrated them into
a robust framework to learn a low-rank consensus matrix. We
presented a block coordinate descent algorithm to solve the

4117

(a) ACC on JAFFE

(b) NMI on JAFFE
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(d) NMI on ORL

(c) ACC on ORL

Figure 1: ACC and NMI w.r.t A1, Ay on JAFFE and ORL.

induced hard optimization problem and proved its conver-
gence. Finally, experiments on benchmark data sets demon-
strated the effectiveness of our method.

As ongoing work we are considering methods for handling
connective matrices with missing values.
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