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Abstract

In this paper, we propose a stratified topic model
(STM). Instead of directly modeling and inferring
flat topics or hierarchically structured topics, we
use the stratified relationships in topic hierarchies
to regularize the flat topics. The topic structures are
captured by a hierarchical clustering method and
play as constraints during the learning process. We
propose two theoretically sound and practical in-
ference methods to solve the model. Experimental
results with two real world data sets and various
evaluation metrics demonstrate the effectiveness of
the proposed model.

1 Introduction

Probabilistic topic models, such as PLSA [Hofmann, 1999]
and LDA [Blei et al., 2003b], have been widely used to au-
tomatically uncover the latent topics in unlabeled data sets,
especially in text corpora. In general, a topic model is to de-
scribe documents as mixtures over a small number of “flat”
hidden topics, each of which is independent and represented
as a distribution over words. But the “flat” topics tend to
be fused or junky, especially when the topic number be-
comes large [Chuang ef al., 2013]. To address the relation-
ships among topics, in the literature of topic modeling, a
lot of attempts have been made to incorporate the relation-
ship information into topic modeling process [Andrzejewski
et al., 2009; Blei and Lafferty, 2006; Li and McCallum, 2006;
Blei et al., 2003al.

One way is to model and infer the pairwise relationships
among topics [Blei and Lafferty, 2006; He er al., 2012]. For
instance, CTM [Blei and Lafferty, 2006] uses logistic nor-
mal distribution with a covariance matrix to model the pair-
wise relationships between topics. Similarly SLFA [He ef al.,
2012] tries to discover the pairwise relationships between la-
tent topics through Sparse Gaussian Graphical Model’s pre-
cision matrix. Another way is to directly model and infer
the optimal hierarchically structured topics, such as hierar-
chical LDA (hLDA) [Blei et al., 2003a] and pachinko allo-
cation model (PAM) [Li and McCallum, 2006]. In hLDA,
topics are organized over a tree. Each document is assigned
a path through the tree, and each word of the document is
sampled from a mixture over topics in the path. PAM uses
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directed acyclic graph (DAG) to represent topic hierarchies.
Each node in the inner layer is a distribution over all nodes
on the next level and each of nodes in the leaf layer is a dis-
tribution over words.

In this paper, instead of directly modeling the pairwise rela-
tionships or hierarchical structures among topics, we use the
stratified relationships in topics to regularize the flat topics
after capturing the topic structures with a hierarchical clus-
tering method. The hierarchical structure of topics does rep-
resent more natural relationships among topics than the pair-
wise one. By incorporating the stratified relationships that
exist among topics into the modeling process, we would be
able to uncover more cohesive and meaningful topics. To this
end, we develop a stratified topic model (STM), where the hi-
erarchical structure of topics is captured by a tree. Each layer
of the tree forms a mixture over different numbers of topics
to generate all tokens in a corpus and hierarchical relation-
ships play as constraints during the overall learning process.
Along this line, two theoretically sound and practical infer-
ence methods are proposed to solve the conceptually non-
conjugate model and a heuristic algorithm is developed to
construct the tree structure of topics. Finally, we conduct ex-
tensive experiments with two real-world data sets. Results
based on different evaluation metrics demonstrate that our
model could outperform classical topic model methods.

2 Related Work

Traditional probabilistic topic models such as PLSA [Hof-
mann, 1999] and LDA [Blei et al., 2003b] aim to auto-
matically reduce unlabeled data sets into linear combina-
tions of “flat” latent topics, which are essentially indepen-
dent from each other. These models have been widely used
in many research and applied domains such as natural lan-
guage processing, information retrieval and computer vision
[Foulds and Smyth, 2013; Tang et al., 2013; Gao et al., 2011,
Berg er al., 2004]. Moreover, many more extensions and
adjustments have been proposed to take into account exter-
nal information or aspects for better modeling different data
sets, such as author-topic model [Rosen-Zvi et al., 2004],
DiscLDA [Lacoste-Julien et al., 2008], MG-LDA [Titov and
McDonald, 2008], et al. For instance, in addition to the re-
lationships among documents, topics and words, author-topic
model [Rosen-Zvi et al., 2004] explores the relationship be-
tween authors and them as well.



Many works have attempted to directly model the pairwise
relationships among topics, such as CTM[Blei and Lafferty,
2006], SLFA[He er al., 2012]. By capturing the correlation
between two topics, this type of models usually lead to better
fitting on many data sets. Meanwhile, hierarchical topic mod-
eling techniques aim to directly uncover hierarchical struc-
tures that exist in topics. These techniques such as hLDA[Blei
et al., 2003al], PAM [Li and McCallum, 2006], HDP [Teh et
al., 2006], and hPAM [Mimno et al., 2007] focus on infer-
ring the optimal hierarchical topic structures. Different from
all the above approaches, our new model STM uses a hierar-
chical clustering method to capture hierarchial structures of
topics and leverage the stratified relationships among original
“flat” topics to regularize flat variables during the learning
process.

3 Stratified Topic Model

Our stratified topic model (STM) essentially consists of three-
step modeling. First, we train the initial model by assuming
no hierarchical structure exists and learn a group of topics.
Then a heuristic hierarchical clustering method is applied to
construct a stratified topic tree based on topic-word samples.
Finally, we refit data by regularizing the initial topics with
the built topic tree and learn more cohesive and meaningful
topics.

3.1 Notations and Definitions

Given a corpus with M documents and V' unique words,
probabilistic topic modeling techniques aim to uncover the
K latent topics, each of which is represented as a distribution
¢, over all words. Each document d; with N; words is as-
sociated with a latent topic distribution 6;, which often has a
prior distribution with parameters « in Bayesian models. And
each word w;; is considered to be drawn from a mixture over
all latent topics.
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Figure 1: An example of three-level STT.

In STM, the flat topics are organized into a Lp-level strati-
fied topic tree (STT) 7T, which can be defined as a rose (non-
binary) tree associated with a set of tree-consistent partitions
over the observed words [Blundell et al., 2010]. Different
from the tree structures in hLDA and PAM, each layer [ of T
forms a mixture over the K latent topics to generate all the
words in the document d;. And this stratified topic tree de-
fines the hierarchical relationships among topic distributions
at different layers. The topic proportion of topic k at layer
1, 0'[k] equals to the sum over the topic proportions of all its
leaves. Figure 1 shows an example of the hierarchical rela-
tionships of topic distributions defined by a three-level STT.
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To describe the hierarchical structure, we use Par(l, k)
to denote the parent topic at layer [ for leaf topic k& and
Leaf(l,k) to denote the leaf topic set for topic k at layer
. For example, in the three-level STT shown at Figure 1,
Par(1,5) = 2and Leaf(2,2) = {7,8,9,10}.

3.2 Graphical Model and Generative Process

With the fixed hidden Stratified Topic Tree 7 and the initial
model hyper-parameters, o and 3, as shown in Figure 2, the
Stratified Topic Model try to maximize the joint generating
likelihood of all the words in document d; in different tree
layers. In other words, each word is sampled L times.

Pw,..,w " Vo, 5,T)

The dependency and model assumptions are illustrated in fol-
lowing generative process:
A. For each tree layer [ € {0, ..., Lr — 1}
a. For each topic k € {1,..., K'}
draw the topic-word distribution:¢}, ~ Dir(.|3!)
B. For each document i € {1,..., M}
draw the topic distribution: 6; ~ Dir(.|a)
b. For each tree layer [ € {0,..., L — 1}
- For each position j € {1, ..., N;}
draw a topic assignment: z/; ~ Mult(6})
draw a word: wq; ~ Mult(¢!, )

In the above process, 6! [k] = YteLearr biltl-

-
. AR ]
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Figure 2: Graphical representation of STM.

We would like to emphasize that the ¢"*9" at high layer is
similar but still different than the combination of the ¢'°* at
low level due to the constraints of Stratified Topic Tree. Each
layer of the model forms a separate “perspective” of the ob-
served words. By integrating the information from different
perspectives, words can be better explained and predicted.

3.3 Inference Methods

The stratified topic model is not a conventional conjugate
probabilistic model. The posterior distribution of 6; condi-
tional on the stratified samples is not tractable due to the no-
close-form integration over sum of multi variables. In the
following paragraphs, we will introduce two methods to in-
fer the parameters of our model: EM for MAP and Relaxed
Variational Inference Approximation.



EM for MAP
In the standard EM framework, the object function is maxi-
mized iteratively with respect to hidden variables and model
parameters. As for STM, in E step, the posterior probabil-
ity of hidden variable z;; for each term w;; in layer [ can be
calculated as:

p(zéj|9ia¢l,wij) x p(zéjwi)p(wij‘d)lzﬁj) (D

In M step, the parameters (¢, #) are updated using the MAP
estimation (@ap, Omap). Specifically, We define

l

Nk

i =Fk)

N;
= Z I(wij = v)p(2 2
j=1

where I(.) is the indicator function. Also, for simplicity,
we use the dot to denote sum over an index, e.g. nt

)
l
wa Zf n!,.,. Then the MAP estimation of ¢! is:

n%k'u + 65)
n%k. + Zv 611)

To formulize the MAP estimation of 8;, we define a statistic:

i
map,

ko] = 3

nd. + oy ifl=0
A/il) — Zlfl'fl) . 4)
F Niw 7+ né{Par(l,k)}. ifl>0
where k € {1,..., K°}. And 7, is defined as:
N
ik ik (5)

- =)
ZtELeaf(l,Par(l,k:)) '/\[it

which is the coefficient of allocating the statistic ni (Par(,k)}.
at layer [ to the kyj, leaf layer node.
We show in Appendix A that the MAP estimation of 6; is:

) (Lr—1)
Omap,ik o< N,

(6)

As a classic probabilistic topic model, PLSA is considered
to be the MAP-estimated LDA model under a uniform dirich-
let prior [Girolami and Kabén, 2003]. Similarly, it is easy to
find that our STM with MAP estimation is exactly the strati-
fied extension of PLSA.

Relaxed Variational Inference Approximation

The key idea underlying variational inference is to approx-
imate the posterior distributions of hidden variables using a
family of distributions with free parameters via minimizing
the Kullback-Leibler divergence[Jordan et al., 1999]. In this
paper, as shown in Figure 3, we introduce the factorized vari-
ational distribution for hidden variables (6;,z.) in each doc-
ument d; as

Q(%Zﬂ%, 775) = q(0i]vi) HHQ(ZZ%)
'

J

(N

where 6; subjects to K°-dimensional Dirichlet distribution

Dir(.|;) and z!; subjects to K'-dimensional multinomial

distribution Mult(n! )
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Figure 3: Graphical representation of the variational distribu-
tion to approximate the posterior in STM.

In variational inference, minizing the KL divergence be-
tween the variational posterior distribution and the true pos-
terior distribution is equivalent to maxmizing the lower bound
with respect to free parameters. By applying the Jensen’s in-
equality, the log-likelihood is bounded as

log p(W|a, 8) > E,(log p(W4, 0;, z:|a, B)) — Eq(log q(0:,2:))

In variational EM approach, The lower bound is maximized

iteratively with respect to variational parameters {v,n} (E
step) and model parameters {«, 5} (M step). In E step, simi-
lar to derivation in [Blei et al., 2003b], we obtain the updating
equation for n};:

M, ¢§mij exp(¥ (7)) (®)

By approximating the trigamma function by ¥'(x) ~ £, the
updating rule for ;, is:
(LT—1)

%‘k:N-k

K2

(©))

where j\/f,f 71 s the statistic defined at Equation (4). In
other words, the posterior distribution is approximated by the
Dirichlet distribution whose expectation equals to the MAP
estimation. In M step, the model parameters {«, 3} have ex-
actly the same updating rules as those of LDA.

3.4 Stratified Topic Tree

Instead of inferring the tree structure, parameters and hid-
den variables simultaneously, in STM, the hierarchical topic
structure is obtained separately after the initial model is
learned. Then the problem to construct a proper topic tree
can be regarded as a hierarchical clustering problem over a
group of topic-word samples. Although many existing hier-
archical clustering techniques can be applied, in this paper,
we propose to construct the stratified topic tree using Com-
mon Alpha Similarity.

Considering a set of samples of word v over K topics
{n.1v,N .20, -, N Kv}, We can define the generative process
for these samples. Samples come from a K-dimensional
multinomial distribution parameterized on 6 and 6 comes
from Dirichlet prior with parameter common «. Then the
joint probability of these samples is:

N T(Ka) [, T(nge + @)
B Hk n.kv! F(Nv + KOé) Hk: F(O{)
where Ny = >, 1 k.

By assuming the samples of the words are independent, the
joint probability of all the samples is the product of probabil-

ity of per-word samples. Then to measure the similarity be-
tween topics, we use the Common Alpha Similarity defined

P(n,)

(10)



Topic 1 Topic 2 Topic 3
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Figure 4: An example of the Common Alpha Similarity be-
tween each pair of the above 3 topics with 10 words.

as:
G = arg max P(n, 11
ga |v| (n,) an

It is not hard to find that topics with more similar samples
would result in a larger common alpha (as shown in Figure 4).
To figure the maximum-likelihood estimation of parameters
in Dirichlet-multinomial (Polya) distribution, [Minka, 2000]
came up with a fix point iteration for the K-dimensional pa-
rameter. As for the common alpha, by using the same bounds,
we can derive the similar fix point iteration:

e D0 Sy (B + ) = W)
Yo EK(¥(N, + Ka) — ¥(Ka))

where W(.) is the digamma function. We use
Alpha({k1, ..., ks }) to denote the Common Alpha Similarity
of topic set {k1, ..., kn }.

We define a ratio and use it as a criterion for our hierarchi-
cal clustering as:

_ Alpha({Leaves(T;) U Leaves(Tj)})
B Alpha({Roots(T)})

To construct a stratified topic tree, we set a series of ratio
A expectations, one for each layer of the tree. Then fol-
lowing the typical hierarchical clustering scheme, we merge
two clusters with the largest Common Alpha Similarity score

Alpha({Leaves(T;) U Leaves(T;)}) into a new cluster until
the ratio A is smaller than the expected value for each layer.

3.5 Algorithm

As discussed before, the algorithm consists of 3 steps of mod-
eling:

12)

A 13)

1. Training the initial STM by assuming that no hierarchi-
cal structure exists. Evidently, STM actually degrades
into LDA based on this assumption.

2. Building the Stratified Topic Tree using the topic-word
samples obtained in the first step. Although we use the
Common Alpha Similarity in this paper, a variety of sim-
ilarity metrics can be utilized to explore the hierarchical
structure, which make our STM extensible and flexible
in different scenarios.

3. Retraining STM with the constructed stratified topic tree
in the second step. Since we build the STT based on
topic-word samples, to make sure the consistent model
is built, we use the topic-word samples to estimate the
initial model parameters {¢'} (Equation 14) before the
EM optimization iterations as:

oL[v] = Dterear i) Mty + By
Dtereafp) Mt + 20 Bh

4 Experimental Results

(14)

4.1 Experimental Setup

Two real-world data sets are used to evaluate the performance
of different algorithms: 20 Newsgroups' and Encyclopedia
Articles?. The 20 Newsgroups data set has be manually la-
belled in a hierarchical way. All documents are almost evenly
partitioned into 20 different groups, each corresponding to a
different topic. These 20 different groups have been further
organized into 6 different larger clusters. Thus there is a two-
layer hierarchy among all documents. The Encyclopedia Ar-
ticles include a small subset of Grolier encyclopedia articles.
There are approximately 3, 1000 articles. But there is no la-
belling information available for this data set.

Typical preprocessing steps are taken for both data sets:
1) remove punctuations, stopwords and words that have oc-
curred less than 10 times in the whole corpus; 2) stem the
words; 3) remove those documents containing less than 10
terms; 4) 40% of documents are selected and used as the test-
ing set. As for 20 Newsgroups data set, it has been already
partitioned into training set (60% of documents) and testing
set (40% of documents) based on the time. For Encyclopedia
Articles data set, we randomly select 40% of documents for
testing and use the rest for training. Some statistical charac-
teristics of these data sets are summarized in Table 1.

Name \\4 Dt'r'ain Nt'r'ain Dtest
News 15,546 | 11,269 | 1,206,449 | 7,505
Articles | 9,557 16,594 | 1,962,392 | 11,062

Table 1: Statistics of data sets

While STM explores and leverages hierarchical structures,
the outputs of STM are still “flat” yet regularized topics.
Thus, in our experiments, we compare STM model with LDA
via MAP estimation (PLSA), and LDA via VB estimation.
We also compare STM with CTM and HDP?, which have
the same output as STM. As for MAP algorithms, including
LDA ap and ST My 4 p, the hyper parameters are fixed as
a = 1.1 and 8 = 1.01 as many previous works did. And
we set 200 EM iterations with random initialization for each
model. As for HDP, we set up 10000 iterations to train the
model and extra 1000 iterations to estimate the topic distri-
bution. As for Variational algorithms, including LD Ay g,

"http://qwone.com/~jason/20Newsgroups/

Zhttp://www.cs.nyu.edu/~roweis/data.html

SWe use the available implementation at
http://www.cs.columbia.edu/~blei/topicmodeling.html



ST My p and C'T'M, all models are fitted using initial hyper
parameters « = 0.1 and # = 0.01 with random initializa-
tion. And we exhaustively run 100 variational EM iterations
or until the relative change of lower bound being less than
107" to ensure the convergence. We find that 2-level STM is
sufficient enough to model both data sets, thus in the follow-
ing experiments the number of layers of stratified topic tree is
fixed as L = 2. Finally, the stratified topic tree is built by
empirically setting the parameter A as A = 1.3.

4.2 Predictive Perplexity

Perplexity, which is equivalent to the inverse of the geometric
mean per-word likelihood in algebra, is a conventional metric
for evaluating the performance of topic models. Different cal-
culation strategies have been proposed [Wallach et al., 2009].
In this paper, we follow the testing framework of [Wang and
Blei, 2013], [Asuncion et al., 2009] and [Blei and Lafferty,
20071, which splits each held-out document into two halves
(w1, wg), estimates the document topic distribution with the
first half and measures the predictive perplexity using the sec-
ond half. Also words in each document are randomly shuffled
before splitting to get rid of the sequential dependence among
tokens. The predictive perplexity is measured using the sec-
ond half of words as

Zi Zweww log p(lU\W“ )
> Niz

where ;5 is the word count of the second half of document.

Per(D) = exp(— )s (15)
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Figure 5: Predictive Perplexity on the 20 Newsgroups
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Figure 6: Predictive perplexity on the Encyclopedia Articles

In Figure 5 and Figure 6, we show the comparisons of
predictive perplexity among four algorithms with 20 News-
groups data set and Encyclopedia data set. As can be seen,
STM via MAP or Variational Inference could outperform
LDA via MAP or variational inference over different num-
bers of topics. In other words, STM could better predict
the remaining words in documents than LDA, which empiri-
cally testifies that using stratified relationships to regularize
flat topics is effective for modeling a corpus. In fact, we
also got the results of CTM on both data sets. It turns out
that CTM consistently underperforms LDA with respect to
the predictive perplexity. For instance, the predictive perplex-
ity of CTM is 2274.03 when the topic number is 100 on 20
Newsgroups data set. In addition, as shown in Figure 6 and
Figure 6, STM with variational inference leads to better per-
formance than STM with MAP because MAP estimation may
lead to the typical overfitting. And we can observe the simi-
lar comparison trend between two inference methods of LDA
from Figures 5 and 6.

4.3 Classification

As a way of dimension reduction, each document could be
represented by a lower-dimensional feature vector p(6;|w;)
after topic modelling. An interesting and practical task is to
conduct classification based on the learned topics. Specif-
ically, after we train all topic models with the training set
of 20 Newsgroups data, the trained models are used to in-
fer the topic distribution of documents in both training and
testing set. To make the comparison fair, in STM, we only
use the inferred topic distributions at the leaf layer to train a
classifier. Thus all topic models transfer each document to a
feature vector (i.e., a distribution over topics) with the same
dimension. We train two widely used classifier, i.e., logistic
regression and SVM in the software LIBLINEAR*, with the
lower-dimensional feature vectors of training set and evaluate
the classification accuracy with the lower-dimensional feature
vectors of testing set.
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76
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——STM_VB
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CCl

71

70
50 75 100 125 150 175 200

Number of Topics

Figure 7: Logistic Regression Classification Performance on
the 20 Newsgroups

As shown in Figure 7, we can see that STM could outper-
form LDA for classification, especially when the topic num-
ber becomes larger. The results suggest that STM can better

*“http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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preserve the latent feature information for classification than
LDA. We also conduct the classification task with CTM and
HDP in a similar way. But the classification performance via
CTM and HDP is worse than that of LDA on 20 Newsgroups
data. For instance, CTM leads to 69.40% accuracy on the
testing set when the topic number is 100 and HDP leads to
only 67.59% with 174 topics. In addition, we observe similar
comparison trends among these algorithms with SVM classi-
fier, but we omit the results due to the limit of space.

4.4 Clustering

As we described in the classification task, each document
in the training and testing sets is represented by a lower-
dimensional feature vector with the same dimension via in-
dividual topic model. Since we do not really need a testing
set for clustering task, we merge the training and testing sets
together and then conduct clustering over the whole data set.
Particularly we use the CLUTO’ to cluster the merged set
into 20 clusters. Figure 8 shows the clustering performance
using vcluster in CLUTO with cosine similarity and parti-
tional clustering algorithm. From the results we can find that
compared to other models, STM leads to better purity score,
which means STM can effectively preserve the feature infor-
mation that is useful for clustering task.

-x--LDA_ MAP —- STM_MAP - -LDA VB
—+STM_VB HDP

—_— 0 —

100 125

Number of Topics

Figure 8: Clustering performance on the 20 Newsgroups

4.5 Additional Experiments

One interesting question about STM is how to set the num-
ber of middle-layer topics. In this experiment, we fix the leaf
topic number as 100, retrain the 2-level STM with a series
of middle topic numbers, and measure the perplexity of each
learned model on the 20 Newsgroups data set. From the re-
sults shown in Figure 9 we can find that there are generally
two local minimums: one locating around 8 and the other
one locating around 23. The result is very consistent with the
known two-level hierarchical labeling (i.e., 20 small groups
and 6 big clusters) of 20 Newsgroups data. The results indi-
cates that our model can effectively capture the useful hierar-
chical structure information.

5 Conclusions

In this paper, we investigated the problem of leveraging hi-
erarchical structures for better topic modeling. Instead of

>http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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Figure 9: Inner topic number sensibility of 2-level STM with
100 leaf topics on 20 Newsgroups

directly modeling and inferring hierarchical structured top-
ics, we applied a hierarchical clustering method to capture
the stratified relationships among flat topics. These relation-
ships were incorporated into the learning process, which is
essentially to regularize flat latent variables. We developed
two inference methods, i.e., EM for MAP and relaxed varia-
tional inference approximation, to solve our model. As shown
in our experiments, in addition to better model fitting, STM
could also uncover more cohesive and meaningful topics that
can help us better explore the semantics of a large corpus and
get more robust clustering and classification results.
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A MAP Estimation of 6,
}(0
Z ag log 0, +
k=1

0
with the constraint Z,[le ;1. = 1. To solve the problem, we
add the Lagrange multipliers. Then the gradient with respect
to 6, is:
L0, _ ax+nfy
o , l
Our Our = Oiparany
Set the derivatives to zero and we get a group of equations.
Considering that {k1, ..., k,,} share the same parent node at
layer 1, we can derive proportion equation:

Nik., _ O,
SN, 2t Ok,
where N}, is defined at Equation 4. Then the equations can
be simplified as:
ﬁ[ei] _ 11k
- 1
O O 15 Oigparany
By recursively applying this process, we finally get the MAP
estimation for 6;: 6, ./\/iiT_l

Lr—1 K!

D> nhloghy (16)

=0 k=1

f; = arg max

i

= Migpar).

+ +A 17

Vse{l,..,n} (18)

Lr—1 1
. 1ni{Par(l,k)}.

+A=0 (19)
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