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Abstract
The investigation and development of new methods
from diverse perspectives to shed light on portfolio
choice problems has never stagnated in financial re-
search. Recently, multi-armed bandits have drawn
intensive attention in various machine learning ap-
plications in online settings. The tradeoff between
exploration and exploitation to maximize rewards
in bandit algorithms naturally establishes a connec-
tion to portfolio choice problems. In this paper,
we present a bandit algorithm for conducting online
portfolio choices by effectually exploiting correla-
tions among multiple arms. Through constructing
orthogonal portfolios from multiple assets and in-
tegrating with the upper confidence bound bandit
framework, we derive the optimal portfolio strat-
egy that represents the combination of passive and
active investments according to a risk-adjusted re-
ward function. Compared with oft-quoted trading
strategies in finance and machine learning fields
across representative real-world market datasets,
the proposed algorithm demonstrates superiority in
both risk-adjusted return and cumulative wealth.

1 Introduction
Portfolio choice problems have had a profound influence on
the finance industry ranging from pension fund to mutual
fund management and from insurance to corporate risk man-
agement [Brandt, 2010]. Modern portfolio theory and analy-
sis build upon the seminal work of Markowitz [Markowitz,
1952]. However, motivated by its noticeably poor perfor-
mance in out-of-sample settings [Broadie, 1993], researchers
have expended unremitting efforts of investigating novel ap-
proaches to attack portfolio choice problems, such as numer-
ous variants of the Markowitz framework [DeMiguel et al.,
2009a], the optimal growth portfolio based on the Kelly cri-
terion [Thorp, 1971], and the linear programming based port-
folio optimization [Konno and Yamazaki, 1991].

Meanwhile, the globalization and the rapid growth of mar-
ket integration yield massive amounts of data in the finance
industry, which promotes the study of advanced data anal-
ysis tools. In particular, as leading-edge analytical tech-
niques, machine learning algorithms emphasize on on-line

building, updating and applying models based on its effi-
cient automated processing of large datasets. Accordingly,
machine learning researchers have paid significant efforts to
design real time data stream based trading strategies [Helm-
bold et al., 1998; Blum and Kalai, 1999; Borodin et al., 2004;
Agarwal et al., 2006; Györfi et al., 2006; Li and Hoi, 2012].
Among them, the Kelly criterion purporting to achieve opti-
mal return growth shows a popular choice. For example, one
representative work captures and utilizes the moving average
reversion phenomena of the stock market to maximize the re-
turn growth on investment [Li and Hoi, 2012]. A comprehen-
sive survey about on-line portfolio strategies can be referred
to [Li and Hoi, 2014], and the extensive references therein.

As a potent tool for designing on-line sequential decision
strategies, the multi-armed bandit problem has been studied
since the early 1950’s [Robbins, 1952]. The pivotal idea of
bandit learning is to acquire new information while optimiz-
ing rewards based on existing knowledge, which is known
as the tradeoff between exploitation and exploration in re-
inforcement learning. Such a tradeoff naturally establishes
a connection to the sequential decision process in portfolio
choice problems. The illuminating paper by [Hoffman et
al., 2011] adopts a multi-armed bandit strategy to design the
portfolio of acquisition functions in Bayesian optimization.
However, standard multi-armed bandits assume the rewards
of each arm are drawn from i.i.d. (independent and identi-
cally distributed) random variables, whereas in practice fi-
nancial asset returns are generally correlated. Moreover, stan-
dard bandit learning attempts to choose the best arm for ac-
tion, while in portfolio choice problems investors tend to se-
lect multiple assets for investment. Although combinatorial
multi-armed bandit algorithms have been proposed to select
multiple arms, it makes binary decisions of selecting arms
and equally distributes investments among them [Chen et al.,
2013]. In contrast, the crux of portfolio choice problems lies
in determining the optimal distributing weights among assets.

To grapple with those challenges in applying conventional
bandit algorithms to portfolio choice problems, in this paper,
we provide an orthogonal bandit learning algorithm to effec-
tively make portfolio choices. In particular, we take advan-
tage of the principal component decomposition to orthogo-
nalize correlated assets, choose the Sharpe ratio as the risk-
adjusted reward function in the upper confidence bound ban-
dit framework to make investment decisions, and combine the
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generated passive and active portfolio weights to construct a
low-risk portfolio. Further, to validate the proposed strategy,
we evaluate the performance from both risk-adjusted return
and cumulative wealth. Our extensive empirical studies and
comparisons over several market datasets lucidly illustrate the
superiority of the proposed strategy. We believe this work is a
step in the development of leveraging on-line machine learn-
ing algorithms for portfolio choice problems.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly reviews the background of bandit learning. In
Section 3 we propose our portfolio strategy based on orthog-
onal bandit learning. Section 4 covers our experiments and
comparative studies, including the discussion of the datasets,
the evaluation metrics and the performance demonstration.
Finally, Section 5 concludes.

2 Background
In this section, we first review the problem setting and the
solution of the standard multi-armed bandit. Then we discuss
major difficulties of applying the standard bandit learning to
portfolio choice problems.

Given n arms that represent n actions or assets and time
steps tk, k = 1, . . . ,m, at time tk each arm receives a
bounded real-valued reward ri(tk), i = 1, . . . , n. In prac-
tice, each arm may receive a fixed reward of the value 1
with certain probability, or otherwise a reward of 0, which
is called the Bernoulli multi-armed bandit. Further, the ob-
jective of bandit learning is to choose a series of arms, one
for each time, to maximize the total rewards or minimize
the regret. For stochastic bandits, denote by νi the expec-
tation of the reward from the i-th arm. The largest reward is
ν∗ = maxi=1,...,n νi and the maximum reward after m plays
is mν∗. Thus, the pseudo regret after m plays is defined by

mν∗ −
m∑
k=1

E[rik(tk)], (1)

where ik is the index of selected arm at time tk and rik(tk) is
the corresponding reward [Lai and Robbins, 1985]. Besides
this standard bandit setting, various variants have been stud-
ied, such as non-stochastic bandits [Auer et al., 2002], bandits
in an adversarial environment [Auer et al., 1995], and bandits
in a contextual setting [Langford and Zhang, 2008]. Analyses
of the reward and regret over numerous types of bandits can
be found in the survey by [Bubeck and Cesa-Bianchi, 2012].

Further, to solve the multi-armed bandit problem, one
straightforward policy is called the ε-greedy approach. At
each time tk, the player chooses the arm with the highest
reward with a probability 1 − εtk , or randomly chooses an
arm with a probability of εtk , where the two parts are cor-
responding to “exploitation” and “exploration”, respectively.
If we set εtk = 12/(d2k) with 0 < d < ∆∗, the accumu-
lated regret until the m-th step of the ε-greedy strategy is
bounded by O(∆∗n ln(m)/k), where4∗ is the gap between
the best expected reward and the expected reward [Auer et al.,
2002]. On the other hand, different from the randomized pol-
icy as the ε-greedy approach, the upper confidence bounds
(UCB) strategy has emerged as another popular choice for
multi-armed bandit problems [Lai and Robbins, 1985]. After

playing each arm once, at each time tk the best arm i∗(tk) is
selected according to the following objective:

i∗(tk) = arg max
i=1,...,n

r̄i(tk) +

√
2 ln(k)

ki
, (2)

where r̄i(tk) is the mean reward of the i-th arm and ki is the
number of times that the i-th arm has been played so far. The
second part of the above selection rule relates to the one-sided
confidence interval for the average reward. It has been shown
that the total regret at time tm of the UCB policy is bounded
by the following quantity [Auer et al., 2002]:

8n

4∗
ln(m) + 5n. (3)

Further, Thompson Sampling and its variants have been an-
other popular approach [Scott, 2010; Graepel et al., 2010]. A
recent empirical study shows that Thompson sampling out-
performs other peer methods in several real-world bench-
marks [Chapelle and Li, 2011]. The empirical success sparks
the great use of bandit learning algorithms in a wide range
of applications, such as clinic trials [Press, 2009], web ana-
lytics [Graepel et al., 2010], algorithm selections [Gagliolo
and Schmidhuber, 2011], and news recommendations [Li et
al., 2010]. In addition, the role of risk in bandit and on-line
learning has started to be acknowledged and studied [Even-
Dar et al., 2006; Sani et al., 2012; Maillard, 2013].

Given those successful examples, however, how to apply
bandit learning to portfolio choice problems is less investi-
gated. The intrinsic distinctions of financial assets and in-
vestment conventions call for a novel approach of altering
and morphing the standard bandits. First, the standard multi-
armed bandits assume i.i.d. rewards for each arm, which in
principle does not hold for financial asset returns. Second,
the standard multi-armed bandits tend to select the best arm,
while the portfolio choices often aim to select a set of as-
sets for investment. Third, the standard multi-armed bandits
rest on the reward mean as the objective function, whereas
in finance investors focus on the risk-adjusted return. Fourth,
the standard multi-armed bandits assume no available histori-
cal data, whereas public traded financial assets generally have
sufficient amounts of data. As such, we present a new bandit
learning algorithm in the UCB framework to address those
challenges in on-line portfolio choices.

3 Methodology
In this section, we first introduce the notations and financial
terms in this paper. Then we will derive the proposed orthog-
onal bandit algorithm to make portfolio choices.

3.1 Notation
We consider a frictionless, self-financing, discrete-time and
finite horizon investment environment. The trading periods
consist of tk = k∆t, k = 0, . . . ,m. In particular, ∆t could
represent one week or one month in our study. We use k for
short as the time step index to indicate the trading period at
time tk hereafter. We assume that investors have access to
n risky assets with the gross return from time tk−1 to tk as
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Rk = (Rk,1, . . . , Rk,i, . . . , Rk,n)>. The gross return Rk,i
for the i-th asset is computed by Rk,i = Sk,i/Sk−1,i, where
Sk,i and Sk−1,i represent the prices of the i-th asset at time
steps tk and tk−1, respectively. In time, investors decide how
to invest in those assets. The investment decision over a set
of assets at time tk is determined by a column vector repre-
senting portfolio weights ωk = (ωk,1, . . . , ωk,i, . . . , ωk,n)>,
where the portfolio weight ωk,i specifies the invested percent-
age of wealth in the i-th asset. The sum of all the portfolio
weights always equals one, i.e.,

ω>k 1 =
n∑
i=1

ωk,i = 1, (4)

where 1 denotes a column vector with ones as its entities. In
addition, ωk,i > 0 indicates that investors take a long position
of the i-th asset, and ωk,i < 0 represents that investors take a
short sale position of the i-th asset. In particular, a short sale
position means that investors first borrow an asset for sale and
then invest its liquidation in other assets. The negative sign of
the short sale weight reveals that investors will confront with
a loss if the price of this asset starts to mount.

3.2 Bandit with Orthogonal Portfolio
We denote by Σk the positive definite covariance matrix of
the n asset returns Rk at time tk. The principal component
decomposition of the covariance matrix Σk derives:

Σk = HkΛkH
>
k , (5)

where the diagonal matrix Λk contains the eigenvalues of
Σk in decreasing order, i.e., λk,1 > λk,2 > . . . λk,n >
0 and the columns of the orthogonal matrix Hk =
(Hk,1, . . . ,Hk,i, . . . ,Hk,n) are the corresponding eigenvec-
tors of Σk. In particular, the principal eigenvectors define a
set of n uncorrelated portfolios with the return H>k Rk; the
eigenvalues that are all nonnegative represent the variances
of those uncorrelated portfolios; the orthonormal property of
the matrix Hk implies:

H>k,iHk,j = δi,j (6)

where δi,j is the Kronecker delta function.
Further, to convert the principal eigenvectors into the

portfolio weights satisfying the condition (4), we nor-
malize each eigenvector by its sum and define H̃k =
(H̃k,1, . . . , H̃k,i, . . . , H̃k,n) as the normalized matrix with
each column computed by1:

H̃k,i =
Hk,i

H>k,i1
. (7)

Therefore, the new set of n uncorrelated portfolios has the
return H̃>k Rk and the covariance matrix of the returns:

Σ̃k = H̃kΣkH̃
>
k = Λ̃k, (8)

where the diagonal matrix Λ̃k with the i-th diagonal entity as
λ̃k,i = λk,i/(H

>
k,i1)2 characterizes the variances. For ease of

1The denominator generally is non-zero, or it leads to a potential
arbitrage chance by investing in the dollar-neutral portfolio Hk,i.

Algorithm 1 Orthogonal Bandit Portfolio
Inputs: m, n, l, ∆t, Rk, τ
for k = 1→ m do

Estimate the average return E[Rk] and covariance ma-
trix of asset returns Σk by {R−τ+k, . . . ,Rk−1};
Implement the principal component decomposition as
equation (5): Σk = HkΛkH

>
k ;

Compute the renormalized similarity matrices and
eigenvalues (8): Σ̃k = H̃kΣkH̃

>
k = Λ̃k;

Compute the Sharpe ratio of each arm (10);
Compute the adjusted reward function of each arm (11);
Select the optimal arms according to (11) from the first
l and the next n− l orthogonal portfolios, respectively;
Compute the optimal mixture weight θ∗k by (12);
Compute the optimal portfolio weight ωk by (13);

Output:
The portfolio weight vectors ωk and the portfolio returns
µk for k = 1, . . . ,m.

presentation, we call the new set of portfolios the orthogonal
portfolios. The orthogonal portfolios represent the risk fac-
tors in the market. Market fluctuations can be characterized
as moves along the eigenvector directions [Meucci, 2009]. At
time tk the return and the variance of the i-th orthogonal port-
folio are estimated as H̃k,iRk,i and λ̃k,i, respectively.

In addition, numerous empirical studies in finance show the
covariance matrix of asset returns consists of a few significant
factors and other relatively unimportant factors [Bai and Ng,
2002; Meucci, 2009]. In other words, the covariance matrix
can be decomposed as the sum of n rank-one matrices:

Σ̃k =
l∑
i=1

λ̃k,iH̃k,iH̃
>
k,i︸ ︷︷ ︸

significant, passive

+
n∑

i=l+1

λ̃k,iH̃k,iH̃
>
k,i︸ ︷︷ ︸

insignificant, active

, (9)

where the first l factors are viewed as the systematic move-
ment in market, industry and sector that investors should fol-
low, and the next n− l factors are considered as the idiosyn-
cratic risks that investors may explore to generate extra return.
Current research shows no consensus on the cutoff number l
across different markets or asset classes. Three to five sig-
nificant factors are commonly observed in empirical research
and for specific market main factors are relatively stable along
with time period [Fama and French, 1993]. In our empiri-
cal study, the cutoff l chosen for different markets accord-
ing to the critical point where we observe a dramatic drop
in the descending eigenvalues agrees with the above observa-
tion. Thus, we choose one portfolio from the first l orthogonal
portfolios as a passive investment and another from the next
n − l orthogonal portfolios as an active investment. The for-
mer attempts to follow the market trend and enjoy the passive
return; the latter represents the endeavor of adding potential
extra returns from small factors [Grinold and Kahn, 2000].

Furthermore, to determine how to invest in those two sub-
sets, we apply the UCB algorithm to the multi-armed bandit
setting with l arms and n − l arms, respectively [Auer et al.,
2002]. While standard multi-armed bandit algorithms hinge
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Table 1: Summary of the tested datasets
Dataset Frequency Time Period m n

FF48 Monthly 07/01/1963 - 12/31/2004 498 48

FF100 Monthly 07/01/1963 - 12/31/2004 498 100

ETF139 Weekly 01/01/2008 - 10/30/2012 252 139

EQ181 Weekly 01/01/2008 - 10/30/2012 252 181

on the expected return of each arm as the proxy of reward, we
capture the tradeoff between risk and return by adopting the
Sharpe ratio as our proxy of reward r̄i(tk) [Sharpe, 1966].
Unlike the general utility function that needs some subjec-
tive parameters quantifying the risk-averse degree [Sani et al.,
2012], the Sharpe ratio takes into account the return per risk
unit directly. Specifically, at time tk the Sharpe ratio of the
i-th arm, i.e., the i-th orthogonal portfolio, is computed by:

r̄i(tk) ≡ SRk,i =
E[H̃k,iRk,i]√

λ̃k,i

=
Hk,iE[Rk,i]√

λk,i
. (10)

Next, by incorporating the one-sided confidence bound into
the reward function, we determine the optimal arm for each
subset by the objective function:

i∗k = arg max
i=1,...,n

r̄i(tk) +

√
2 ln(k + τ)

τ + ki
, (11)

where ki stands for the number of times the i-th orthogonal
portfolio has been chosen so far and τ represents the size of
training data. As the historical information of assets is avail-
able, we incorporate it into the one-sided confidence bound
through the length τ [Shivaswamy and Joachims, 2012].

Furthermore, after obtaining the optimal arms from the two
subsets, we take the weighted average of them such that the
total variance of the selected portfolio, i.e., λk,p, is mini-
mized. Specifically, assume the i-th and j-th arms are se-
lected from the two subsets, respectively. H̃k,i∗k

and H̃k,j∗k
are the corresponding uncorrelated portfolios. Thus, the port-
folio mixture weight θ∗k is computed by minimizing the total
variance λk,p = θ2kλ̃k,j∗k + (1− θk)2λ̃k,i∗k :

θ∗k = arg min
θk

λk,p =
λ̃k,i∗k

λ̃k,i∗k + λ̃k,j∗k
. (12)

Therefore, we attain the portfolio mixed by the passive and
active investment as:

ωk = (1− θ∗k)H̃k,i∗k
+ θ∗kH̃k,j∗k

. (13)

Accordingly, the realized portfolio net return µk from time
tk−1 to tk will be µk = ω>k Rk−1. In the above formulation,
we estimate the covariance matrix Σk by a factor model [Fan
et al., 2008] and estimate the average return E[Rk] by the
James-Stein shrinkage estimator [Meucci, 2009]. They both
rest on the historical data in sliding windows with the size of
τ training data. Algorithm 1 succinctly summarizes the steps
of constructing the proposed orthogonal bandit portfolio.

4 Experiments
In this section, we describe the experimental settings and re-
port the out-of-sample performance. We conduct the exper-
iments on several empirical datasets and compare with rep-
resentative portfolio choice methods in both finance and ma-
chine learning communities.

4.1 Data
In our experiments, we follow [Shen et al., 2014] to choose
two types of datasets for performance validation and com-
parison. The first benchmarks are the Fama and French (FF)
datasets [Fama and French, 1992]. With the raw data from
the US stock market, the FF benchmarks construct the port-
folios for different financial segments. Specifically, the FF48
dataset contains monthly returns of 48 portfolios represent-
ing different industrial sectors, and the FF100 dataset in-
cludes monthly returns of 100 portfolios on the basis of size
and book-to-market ratio. By virtue of the extensive cover-
age to asset classes and lengthy periods, the FF datasets are
recognized as standard evaluation protocols and oft-adopted
testbeds in the finance community. The second type bench-
marks contain two datasets of actively traded assets, i.e.,
ETF139 and EQ181, which are crawled from Yahoo! Finance
on a weekly base from 2008 to 2012. The ETF139 dataset
consists of typical accessible asset classes for investors, i.e.,
exchange-traded funds, which have the advantages over con-
ventional mutual funds of low costs, tax efficiency, and stock-
like features. The EQ181 dataset represents the selection of
the individual equities sampled from the large-cap segment of
the Russell 200 index, covering 63% of total market capital-
ization. To avoid selection bias, we remove those stocks with
missing historical data during our testing periods, thereby
having a total of 181 stocks in the EQ181 dataset.

As summarized in Table 1, these two types of datasets em-
body different perspectives for performance assessment. The
FF datasets essentially underscore the long-term performance
of the proposed strategy. The period range contains highly
volatile times in the stock market, such as “Black Monday”
in 1987, the Internet bubble burst and September 11 terrorist
attacks in 2001. Such long historical datasets would introduce
limited selection bias and performance manipulation. On the
other hand, the ETF and equity datasets underline the robust-
ness of the proposed portfolio with respect to the higher trad-
ing frequency and the special market environment after the
recent financial crisis that began in 2007 with the default of
subprime mortgage loans.

4.2 Experimental Settings
Following the “rolling-horizon” settings in [Shen et al.,
2014], we use sliding windows with the size of τ = 120
months/weeks of training data to construct portfolios for the
subsequent month/week. For our comparative study, we con-
sider the following competing methods: a) equally-weighted
portfolio (EW); b) value-weighted portfolio (VW); c) conven-
tional minimum-variance portfolio (MVP); d) on-line mov-
ing average reversion (MAR) based portfolio; e) naive ban-
dit portfolio (NBP); f) the proposed orthogonal bandit port-
folio (OBP). The first three portfolio strategies are typical
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Table 2: Portfolio Sharpe ratios (%) with the significance level measured by p-values with respect to EW.
Dataset OBP NBP EW VW MVP MAR

FF48 26.15 25.68 24.30 23.37 22.38 24.48
(0.64) (0.80) (1.00) (0.22) (0.72) (0.93)

FF100 34.89 26.09 26.97 29.76 18.01 23.60
(0.01) (0.82) (1.00) (0.00) (0.19) (0.22)

ETF139 25.47 15.45 6.01 5.85 6.82 7.61
(0.05) (0.04) (1.00) (0.22) (0.94) (0.44)

EQ181 18.10 11.62 9.03 8.95 13.62 12.15
(0.19) (0.74) (1.00) (0.86) (0.66) (0.27)

Table 3: Portfolio terminal cumulative wealth ($).
Dataset OBP NBP EW VW MVP MAR

FF48 61.75 35.23 54.77 48.06 25.10 42.34
FF100 626.04 76.91 123.92 198.32 74.73 57.74
ETF139 1.42 1.35 1.20 1.19 1.05 1.21
EQ181 1.69 1.28 1.30 1.29 1.42 1.34

baselines circulated in the finance community. For exam-
ple, the EW portfolio is a naive approach yet has been em-
pirically shown to mostly outperform 14 models across seven
empirical datasets [DeMiguel et al., 2009b]. The VW port-
folio mimics a market portfolio by weighing individual mar-
ket components according to their market capitalization. The
MVP portfolio has shown significant performance improve-
ment over the Markowitz mean-variance portfolio [Jagan-
nathan and Ma, 2003]. On the other hand, the MAR portfo-
lio represents a more data-driven approach developed by ma-
chine learning researchers and outperforms 12 different port-
folio strategies across five datasets [Li and Hoi, 2012]. The
NBP portfolio implements the UCB bandit algorithm under
the standard assumption of i.i.d. rewards without considering
the correlations between assets. Specifically, it selects one
asset at a time for investment.

4.3 Performance Metrics
We compare the out-of-sample performance of the portfo-
lios by the standard criteria in finance [Brandt, 2010]: (i)
Sharpe ratios; and (ii) cumulative wealth. The Sharpe ratio
(SR) measures the reward-to-risk ratio of a portfolio strategy,
which is computed as the portfolio return normalized by its
standard deviation:

SR =
µ̂

σ̂
(14)

where the mean of portfolio net returns µ̂ and the correspond-
ing standard deviation σ̂ are computed as

µ̂ =
1

m

m∑
k=1

µk, σ̂ =

√√√√ 1

m− 1

m∑
k=1

(µk − µ̂)2. (15)

Since SR is a summary statistic of returns, we supplement
this commonly used measure of investment performance with
the time series plot of cumulative wealth (CW). While CW
measures the total profit yield from the portfolio strategy
across investment periods without considering any risks and

costs, investors are commonly concerned about the growth
of their investment. Starting the investment period with one
dollar, CW is computed by

CW =
m∏
k=1

ω>k Rk. (16)

To further quantify the statistical significance of the dif-
ference in SR between two comparing portfolios, we also
report the p-values under the corresponding SR results. To
compute the p-values for the case of non-i.i.d. returns, we
adopt the studentized circular block bootstrapping methodol-
ogy in [Ledoit and Wolf, 2008]. In particular, we set the EW
portfolio as the benchmark with 1000 bootstrap resamples,
95% significance level, and a block with the size of 5.

4.4 Results
Table 2 reports the SR values with the p-values over the entire
investment period, where the best performance is highlighted
in bold. Apparently, the proposed orthogonal bandit portfo-
lio has achieved the highest risk-adjusted returns, i.e., Sharpe
ratios, in all the four datasets. Since NBP has only achieved
comparable performance with OBP in the FF48 dataset, it re-
veals that asset correlations play a crucial role in portfolio
choice problems. In particular, in the ETF139 and the EQ181
datasets, the proposed OBP method has generated the highest
SR with significant margins. In addition, we can gain confir-
mation from the p-values that the OBP method is statistically
distinguishable from the simple yet powerful EW strategy in
FF100 and ETF139. NBP works relatively better in ETF139
and EQ181. This observation likely indicates that the on-line
bandit strategy is more efficacious for short-term investment.

Table 3 summarizes the terminal cumulative wealth of dif-
ferent portfolios in all the datasets. Echoing with its supe-
rior performance in risk-adjusted return, OBP has generated
the greatest increase in wealth among all the competing ap-
proaches. For the long investment periods such as the FF48
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Figure 1: The curves of cumulative wealth across the investment periods for different portfolios yield from a) FF48, b) FF100,
c) ETF139, and d) EQ181.

and FF100 datasets, the OBP method has produced signifi-
cantly more wealth than the market itself, increasing the final
wealth by 28.5% and 215.7%, respectively.

Figure 1 shows the time series curves of the cumulative
wealth over the investment periods. OBP has demonstrated
the highest wealth level in most of time. In particular, the
illustration of its wealth cumulative trends that are generally
disparate from others implicitly implies the distinction of its
design principles. Our approach may perform even better if
investors inject domain knowledge into the OBP framework
that we illustrate here.

5 Conclusion
In this paper, we tackle the portfolio choice problems by
an orthogonal bandit algorithm. Our novel algorithm has
addressed the conundrum of making portfolio choices via
multi-armed bandits with orthogonal portfolios. In partic-
ular, we orthogonalize generally correlated financial assets
to create orthogonal portfolios through the principal compo-
nent decomposition for the standard bandit learning frame-
work; we incorporate the Sharpe ratio from the finance field
as a risk-adjusted reward function into the UCB algorithm
to direct investment; we further synergistically combine the
generated passive and active investments to construct a low-
risk portfolio suitable to normal investors. Our future work
not only includes appropriately generalizing and enriching
the current framework to encompass more practical con-
cerns in portfolio choice problems, such as position con-
straints, transaction costs and taxes [Shen and Wang, 2015;
Dammon and Spatt, 2012], but also contains studying theo-
retical underpinning of the bandit problems they may bring.
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