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Abstract

Presolving is a preprocessing step performed by op-
timisation solvers to improve performance. How-
ever, these solvers cannot easily exploit high-level
model structure as available in modelling languages
such as MiniZinc or Essence.

We present an integrated approach that performs
presolving as a separate pass during the compila-
tion from high-level optimisation models to solver-
level programs. The compiler produces a represen-
tation of the model that is suitable for presolving by
retaining some of the high-level structure. It then
uses information learned during presolving to gen-
erate the final solver-level representation.

Our approach introduces the novel concept of vari-
able paths that identify variables which are com-
mon across multiple compilation passes, increasing
the amount of shared information. We show that
this approach can lead to both faster compilation
and more efficient solver-level programs.

1 Introduction

Presolving is commonly used in linear and mixed-integer lin-
ear programming (LP/MIP) solvers and Boolean satisfiability
(SAT) solvers to improve performance. A presolver analyses
and improves a problem instance before the actual solving
process starts, inferring tighter variable domains, simplifying
constraints, and removing variables and constraints that are
guaranteed not to contribute to a solution.

A compiler for a high-level constraint modelling language
performs similar optimisations when it translates a constraint
model to a solver-level program. It will try to compute tight
variable bounds, select the most suitable variant of each con-
straint, and generate a compact model that does not contain
unused variables or constraints.

The main difference between a presolver and an optimising
compiler for a modelling language is the level of detail avail-
able for analysis. A presolver can analyse the entire problem
instance, with all variables and constraints present and ac-
cessible. In traditional compiler terminology, this would be
called whole program optimisation. A compiler for a mod-
elling language, on the other hand, typically performs anal-
ysis and compilation simultaneously, while it is constructing
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the solver-level program. The compiler’s knowledge of the
whole generated program is therefore, inevitably, only partial
until it is finished compiling. However, it can use the high-
level structure available in the input model, such as global
constraints, functional dependencies, and a rich expression
language, to perform more powerful inference.

This paper presents techniques for integrating whole-
program optimisation into compilers for constraint mod-
elling languages. The resulting system combines the advan-
tages of analysing the entire model with the additional infer-
ence strength possible due to the high level model structure
being available. This is achieved by compiling in multiple
passes: The initial passes translate the input model into vari-
ous representations suitable for whole-program analysis. The
final pass uses information gained from the earlier analysis, in
the form of tightened variable domains and learned variable
aliases, to produce a better solver-level program.

Contributions The main technical contribution of this pa-
per is an architecture for multi-pass presolving during com-
pilation of high-level constraint models. Information is com-
municated from one pass to the next by computing unique
variable identifiers called variable paths that are stable across
different compilations. This enables the compiler to generate
one version of a constraint model suitable for presolving, and
another version suitable for the target solver. Presolving then
takes advantage of the high-level model structure, for instance
using strong inference methods such as constraint propaga-
tion, even if the target is not a propagation-based solver.

Our experiments show that two-pass, propagation based
presolving, can produce significantly better solver-level pro-
grams, reduce the numbers of variables and constraints,
tighten variable bounds, and lead to improved solve times.

2 Background

This section introduces some concepts used in later sections.

2.1 Constraint Models and Programs

We are concerned with the compilation of high-level con-
straint models to concrete solver-level programs. A model is a
parametric specification of a constrained problem. It contains
declarations of parameters and decision variables, as well as
constraints expressed in terms of nested expressions, loop
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Figure 1: Typical compilation chain

constructs (such as forall and exists quantifiers, array/set
comprehensions), and function and predicate definitions and
calls. In addition, models for optimisation problems specify
an objective function to be minimised or maximised.

A program is a lower-level problem specification that is
understood directly by the target solver. It contains variable
declarations and constraints, where each constraint is a simple
call to a builtin, a constraint supported natively by the solver.

Different solvers support different types of variables and
constraints. Constraint Programming (CP) solvers typically
provide many high-level constraints over variable types such
as Booleans, integers, floats, and sets, ranging from simple
binary relations to complex global constraints that describe
entire sub-problems. This allows a CP solver to operate on a
reasonably high-level, compact representation of a problem.
CP solvers intersperse constraint propagation and search.
Propagation uses dedicated algorithms for each constraint in
a program that remove inconsistent values from variable do-
mains. In this paper, we use constraint propagation as a pre-
solving algorithm.

Solving approaches other than CP often require programs
that are more restrictive in their use of variable and constraint
types. The language of mixed-integer linear programming
(MIP) solvers requires variable domains to take either inte-
ger or continuous values from contiguous ranges, while con-
straints must be linear (in)equalities. Programs for Boolean
satisfiability (SAT) solvers are expressed in a similarly re-
strictive language with only Boolean variables and clause
(disjunction of literals) constraints.

2.2 Compiling Models to Programs

Constraint modelling languages aim to provide high-level
specification languages for constraint problems. Modern lan-
guages such as Zinc [Marriott er al., 2008], Essence [Frisch
et al., 2008] and MiniZinc [Nethercote et al., 2007] also aim
to be solver-independent, i.e., they allow the user to specify
the problem without committing to a particular solving tech-
nology. The challenge is to compile these solver-independent
models into efficient solver-level programs.

Fig. 1 shows the typical compilation process, which is
common to all modern modelling languages. In this paper
we use the MiniZinc [Nethercote er al., 2007] language and
tool chain. Solver-level programs created by the MiniZinc
compiler are expressed in a language called FlatZinc.

Instantiating a model’s parameters with input data yields
an instance. In order to solve a MiniZinc instance, it must
be translated into the solver-dependent, flat representation of
a FlatZinc program. This translation, called flattening, un-
rolls all loops and reduces expressions to sets of individ-
ual, flat constraints. The FlatZinc language is a subset of
MiniZinc comprising only variable and constant declarations
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along with simple constraints. Each constraint in a FlatZinc
program is a predicate call.

If one predicate or function call expression is nested as an
argument of another, it is decomposed into a separate con-
straint, and the argument is replaced with an auxiliary vari-
able holding the result of the call. For Boolean predicates
that are not in a top-level conjunction, a reified version of
the expression will be constructed and bound to an auxiliary
Boolean variable.

The MiniZinc compiler includes predicate definitions from
a constraint library. A predicate can be declared with a body
of MiniZinc code that defines it in terms of simpler con-
straints, implementing it by decomposition. Alternatively,
a predicate can be declared without a body marking it as a
builtin. For each target solver, the MiniZinc system therefore
contains a specialised library that defines all its builtins and
provides solver specific decompositions for other constraints.

After translating all arguments of a call, the compiler looks
for a predicate or function declaration with the same type sig-
nature. If it is defined as a builtin, the compiler inserts it into
the FlatZinc as is. Otherwise, a copy of its body is instanti-
ated with the actual arguments of the call and then flattened.
Further optimisations performed by the MiniZinc compiler
are detailed in Sect. 4.1.

2.3 Presolving

The concept of presolving was introduced by the mathemati-
cal programming community. Constructing a good MIP for-
mulation can be quite difficult. Even small instances can re-
quire a large number of constraints and variables to be de-
scribed correctly as a MIP program. These large programs
can pose a difficulty for MIP solvers, due to either their
combinatorial complexity, or simply because they require a
large amount of memory to process. Presolving performs
a whole program analysis that tightens the formulation of a
problem. The regular, simple constraints in a MIP program
allow for highly specialised and efficient analysis, with tech-
niques ranging from simple bounds propagation, which tight-
ens bounds on variables and constraints, to more advanced
techniques such as probing.

The situation is similar for modern SAT solvers, which also
try to improve the program by inferring information about the
variables and by simplifying the constraints. Several presolv-
ing approaches also exist for CP solvers. Sect. 6 discusses
these approaches in more detail.

3 Multi-Pass Presolving

This section presents our main contribution, an approach for
communicating the results between different passes.
Traditional presolving as discussed above works at the pro-
gram level, where all variables and constraints are known
to the solver. Compared to this, a compiler for high-level
modelling languages faces a challenge: it needs to make de-
cisions during flattening that depend on its current knowl-
edge of variable domains. For example, it can simplify a
quadratic constraint x«y into a linear constraint if the value
of x is known at compile time; it can turn a reified constraint
b <-> c into a non-reified constraint c if b is known to be



true; or it can avoid generating unnecessary code in loops
such as forall (i in 1b(x)..ub(x)) (c(i)) if it can
shrink the bounds of x.

More precise knowledge about variable domains can thus
lead to shorter, more efficient FlatZinc, and potentially faster
compilation and solving. However, when the compiler needs
to make each individual decision, it has only partial knowl-
edge about the whole program, because it has not yet com-
piled or analysed the entire model.

The solution is to compile at least twice: the initial passes
collect information about the whole program, and subsequent
passes use this information to produce better programs. The
main novelty of our approach is that the different passes do
not need to compile for the same target. As an example, the
first pass may produce a program for a hypothetical ideal
solver where all global constraints are built-ins. This pass
would be quick, but could still reveal additional information.
Alternatively, the first pass could target a presolver based on
constraint propagation to infer new bounds. The second pass
could then target a completely different solving technology,
e.g. translating the problem for a MIP or SAT solver.

The design of MiniZinc, with its solver-specific libraries
of constraint definitions, is ideal for this approach. Different
passes can use different libraries. Multi-pass, multi-library
presolving however poses a significant technical challenge:
the different passes create different programs, with differ-
ent variables, domains, and constraint decompositions. The
compiler therefore needs to identify corresponding variables
across passes, and communicate the information gathered
about those variables from one pass to the next.

3.1 Multi-Pass Examples

The following examples show how additional information
from multi-pass presolving can lead to better FlatZinc.

Listings 1-5 demonstrate the benefits of stronger presolv-
ing for models containing reified constraints. The model
has three variables x, y, and z with domains {2,4}, {2,4}
and {2,4,5} respectively. The first constraint is a typical
all_different constraint while the second constraint in-
troduces an implication between two MiniZinc expressions.
Listing 5 shows the ideal FlatZinc that we would like the com-
piler to produce for this model.

Listing 2 is a simplified form of the FlatZinc re-
sulting from compiling this model without any presolv-
ing. The first constraint is added directly to the FlatZinc
as is. The implication is transformed to the disjunc-
tion —( x+y+z:12) Vy max ([x,y,z1). The negation is
pushed inside the linear expression and Boolean control vari-
ables are introduced for both sides of the disjunction.

Listing 3 shows what happens when the compiler learns
bounds for the top-level variable z by propagating the
all_different constraint. The resulting FlatZinc is not
very different. The variable z has been removed from some
constraints since it is fixed but the resulting FlatZinc still con-
tains two reified constraints and a redundant global constraint.

By running constraint propagation on the program given
in Listing 2 the compiler can get bounds for all of the intro-
duced variables. Listing 4 demonstrates what can be achieved
by taking these new bounds into account while flattening. The
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var {2,4}: x; var {2,4}: y; var {2,4,5}: z;
constraint all_different ([x,v,z]);
constraint x+y+z=12 -> y=max([x,y,z]);
Listing 1: Original MiniZinc
var {2,4}: x; var {2,4}: y; var {2,4,5}: z;
constraint all_different ([x,v,z]);
var 2..5: 10 = max([x,vy,z])
var bool: b0 = (y = 10)
var bool: bl = (xty+z != 12)
constraint or (b0,bl);
Listing 2: Standard FlatZinc

var {2,4}: x; var {2,4}: y; var {5}: z;
constraint x != y;
var 2..5: i0 = max([x,vy,5])
var bool: b0 = (y = 10)
var bool: bl = (x+y != 7)
constraint or (b0,bl);

Listing 3: Tightened top-level bounds
var {2,4}: x; wvar {2,4}: y; wvar {5}: z;
constraint x != y;
var {5}: 10 = max([x,v,5]) % remove (unused)
var {false}: b0 = (y = 5) % remove (entailed)
var {true}: bl = (x+y !'= 7)% drop reification

constraint or (b0,bl); remove (entailed)

Listing 4: Tightened intermediate bounds

var {2,4}: x; var {2,4}:
constraint x != y;
constraint x+ty != 7;

Listing 5: Desired FlatZinc

y; var {5}: z;

assignment to i0 allows the compiler to remove the max con-
straint. With a value of 5 for 10 the value of bo is trivially
false leaving the disjunction with only one non-false disjunct.
This forces the control variable b1 to be true, allowing a non-
reified version of the linear constraint to be used in place of
the disjunction over the reified variable. With this additional
information, the compiler will produce the desired FlatZinc
shown in Listing 5. Note that the constraint x+y != 7 is
logically redundant, but the compiler only employs bounds
reasoning and therefore cannot detect this currently.
Compiling this model for a MIP solver, presolving would
result in a roughly 60% smaller FlatZinc program due to the
complexity introduced by linearising the reified constraints.

3.2 Variable Synchronisation

In the example above, the set of variables generated in the
first pass is the same as the set generated in the second pass.
If this were guaranteed in general the compiler could update
the domains of variables simply by matching variable names.
In practise, bounds can be easily communicated for top-level
variables that are common between different FlatZinc pro-
grams. However, the compiler cannot rely on the temporary
variables introduced during flattening having the same names



1 |% file a.mzn

2 |predicate f(int: k) = let { var int: x } in h(x,k);

1 |¢ file b.mzn

2 |include "a.mzn";

3

4 |predicate g(int: j) = £(J) /\ f(3+1);

5 / i=3

6 | constraint g(4); A

7 |var 1..3: z;

8 |constraint forall (i in 1b(z)..ub(z)) (£(i));

1 |% file b.fzn 1 | % file b.fzn with path identifiers

2 |var int: x_1; 2 |var int: b_6_12_15 b 4 _23_26_a_2_38_39;

3 |var int: x_2; 3 |var int: b_6_12_15_b_4_31_36_a_2_38_39;

4 |var int: x_3; 4 |var int: b_8 20_21_1 b 8 34_37_a_2_38_39;
5 |var int: x_4; 5 |var int: b_8_20_21_2 b_8_34_37_a_2 38_39;
6 |var int: x_5; 6 |var int: b_8_20_21_3_b_8_34_37_a_2_38_39;
7 |var 1..3: z; 7 |var 1..3: z;

8 | constraint 8 |constraint

9 h(x_1,4) 9 h(b_6_12_15_b_4_23_26_a_2_38_39,4)
10 | /\ h(x_2,5) 10 | /\ h(b_6_12_15_b_4_31_36_a_2_38_39,5)
11 | /\ h(x_3,1) 11 |/\ h(b_8_20_21_1 b_8_34_37_a_2_38_39,1)
12 | /\ h(x_4,2) 12 | /\ h(b_8_20_21_2 b 8_34_37_a_2_38_39,2)
13 | /\ h(x_5,3); 13 | /\ h(b_8_20_21_3 b 8 34_37_a_2_38_39,3);

Figure 2: Variable paths

across compilations. The code in Fig. 2 exemplifies the prob-
lem of identifying variables across compilation passes.

The first MiniZinc file, a.mzn, defines a predicate £ that
introduces an integer variable x. The second file, b.mzn,
includes a .mzn and defines a predicate g that calls £ twice,
as well as two constraints that call g and £, respectively.

Flattening will introduce five different instances of the vari-
able x. The MiniZinc compiler will simply number them in
the order they are generated. The first two, x_1 and x_2,
come from the call to g in line 6, and the remaining three
are generated while iterating over the integers in the cur-
rent bounds 1. .3 of the variable z, in line 8. The resulting
FlatZinc file b . £zn appears in the bottom left of Fig. 2.

Let us now have a look at the variable names generated
in different compilation passes. Assume that the first pass
narrowed the domain of z to the set 2. . 3. In the second pass,
iteration now starts at i=2, and only four instances of x are
generated. Crucially, the names of the variables will change,
too: the name x_3 will now refer to the variable from iteration
i=2, whereas in the first pass it referred to iteration i=1. Of
course it would be wrong to transfer any information inferred
about x_ 3 during first pass presolving to the new second-pass
variable x_3. Instead, information about first-pass x_4 now
corresponds to second-pass x_3.

3.3 Variable Paths

The example above makes it obvious that a multi-pass, multi-
target presolving algorithm needs to identify variables that
arise from the same sub-expressions across passes.

The algorithmic solution to this problem is to generate vari-
able identifiers that are unique and that do not depend on the
order of flattening. To satisfy these conditions it is sufficient
that identifiers capture (1) the call stack leading to the intro-
duction of the variable. In the example, x_2 was generated
from the call to g on line 6, and further the call £ (3+1) on
line 4. (2) Any loop iteration values. For x_4, the identifier
was generated when i had the value 2.

We call an identifier that captures this information a vari-
able path. The paths are represented graphically in Fig. 2,
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with lines connecting each predicate call through to the loca-
tion where the variable is introduced.

Path representation. A textual representation can use the
location in the source code to represent call sites and variable
declarations, together with the value of loop variables to iden-
tify the iteration. For example, a path for x_2 would include
the location of the call g (4) in file b.mzn on line 6, column
12-15, the location of the call £ (j+1) on line 4, column 31—
36, and the location of x in a .mzn, line 2, column 38-39, re-
sulting in the path b:6.12-15,b:4.31-36,a:2.38-39.
For x_4 we need to add the loop iteration value:
p:8.20-21,1=2,0:8.34-37,a:2.38-39. The bottom
right of Fig. 2 shows the paths (converted into valid MiniZinc
identifiers).

Note how the identifiers are independent of the order in
which the constraints are flattened or the concrete bounds of
the variables at the time of flattening. For instance, the vari-
able in line 5 now refers to the iteration i=2, independent of
whether the loop started at 1 or at 2.

3.4 Presolving Phases

During and after a first compilation pass, the compiler can use
several types of inference to compute stronger variable do-
mains and discover variable aliases, which can then be com-
municated to the following pass using the path-based scheme
introduced above.

Simplifications during flattening. Compilers for constraint
modelling languages typically perform certain optimisations
during flattening in order to produce tighter solver-level pro-
grams. In particular, compilers will perform constant prop-
agation, alias analysis, and various methods of aggregation
and simplification for particular constraints.

Post-flattening code optimisation. After completing the
flattening, the compiler will again perform constant propaga-
tion, unify variables that have been found to be equal, and re-
move variables and constraints that are not used. For instance,
a variable may have been introduced but all constraints that
referenced it have been found to be entailed. Or a reified con-
straint may appear in a disjunction for which one disjunct has
already been shown to be always true.

Constraint propagation. In addition to the optimisations
performed during and after flattening, the compiler can run
the propagation engine of a generic constraint solver, whose
specialised propagation algorithms for various global con-
straints can produce tighter variable bounds or even assign
variables. Furthermore, the solver can detect when con-
straints are entailed, leading to their removal from the model.
One example of such an integration is the Savile Row com-
piler for Essence’ [Nightingale et al., 2014], which uses the
Minion constraint solver to perform strong bounds propaga-
tion, resulting in more common subexpressions being de-
tected and hence a better flat program. However, this ap-
proach only deals with top-level variables and cannot record
bounds for introduced auxiliary variables.

4 Implementation in MiniZinc

This section discusses the implementation aspects and
challenges of integrating multi-pass presolving into the
MiniZinc 2.0 compiler [MiniZinc Team, 2015].



4.1 Compilation in MiniZinc

Compiling partial functions. For each sub-expression e, the
compiler conceptually introduces two auxiliary variables, v,
for the value of ¢, and a Boolean b, representing whether e
is defined [Stuckey and Tack, 2013]. Consider e.g. the ex-
pression e =x + (y div z) <= 10. The relational seman-
tics [Frisch and Stuckey, 2009] dictate that this constraint
holds if and only if the division is defined (i.e. z!=0) and the
condition is satisfied. Advantage: If b, is true, later passes
can compile the constraint as a total function.

Common Sub-expression Elimination (CSE). The compiler
records every sub-expression in a map, so that when an
identical expression is encountered again, the original result
can be re-used. CSE has been described in the context of
Essence [Rendl, 2010; Nightingale et al., 2014]. Advan-
tage: If two variables are fixed to the same value or found
to be equal to each other, more sub-expressions can become
identical and shared. Since the detection of common sub-
expressions depends on the order of compilation, a single
pass compiler may miss this.

Overloading Resolution. An important feature of MiniZinc
is its support for overloading functions and predicates based
on the types of their arguments. For example, an array access
x[y] is compiled as an element constraint if y is a variable,
but evaluated if fixed. When translating a function or predi-
cate call, the compiler uses the types of the actual arguments
to determine which version to use. Advantage: Fixing vari-
ables results in more specialised functions being applicable.

Linear Simplification. The linear parts of arithmetic ex-
pressions are aggregated into linear expressions. Advantage:
Fixing variables and tightening their bounds will result in
shorter linear constraints.

Boolean Simplification. Any complex Boolean expres-
sion needs to be decomposed into simple constraints under-
stood by the target solver, such as conjunctions, disjunctions,
clauses, xor, or negations. Before decomposing, the com-
piler normalises Boolean expressions by pushing negations
inwards, and aggregates individual Boolean expressions into
longer clauses and conjunctions. The compiler delays the de-
composition of reified constraints as long as possible to avoid
reification altogether if it can be inferred that the constraint
must be globally true. Advantage: Fixing Boolean variables
enables simplification of Boolean expressions, fewer disjunc-
tions, and constraints being pushed into the top-level conjunc-
tion instead of being reified.

4.2 Implementing Variable Paths

Sect. 3.3 presented variable paths as identifiers, capturing the
call stack and loop variables that lead to the variable being
introduced. When generating large programs, e.g. when lin-
earising for MIP solvers, often tens of thousands of variables
are introduced. An actual implementation must therefore
make both the generation and lookup of paths very efficient.

Instead of encoding the path into the variable identifier, the
implementation keeps a separate path map from paths to vari-
ables. The initial compilation passes populate the map and
each pass can check if the path of a newly introduced vari-
able already exists in the map, in which case it can access the
previous information.
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The call stack is represented explicitly inside the compiler.
It includes information about the recursive structure of the ex-
pression that is being compiled, including all comprehensions
that introduce loop variables, in order to generate error mes-
sages. We re-use this data to construct variable paths, which
are represented as strings stored in a simple hash map.

Optimised path generation. Since constructing and com-
paring paths as strings can be costly, the implementation em-
ploys two simple optimisations to reduce the number of paths
generated. Firstly, we remember the maximum call stack
depth from previous passes. Any time a variable is introduced
deeper in the call stack, we know that it cannot be present in
the map. Similarly, if a variable is introduced from a file that
was not used in earlier passes, we also know that no presolv-
ing information can exist about it. In both cases, we save
the overhead of constructing the path and looking it up in the
map. These optimisations are critical for large models.

4.3 Presolving by Constraint Propagation

In addition to the simplifications performed by the MiniZinc
compiler (as discussed in Sect. 3.4), we invoke the prop-
agation engine of the Gecode [Gecode Team, 2006] con-
straint solver in the first compilation pass, taking advantage
of Gecode’s dedicated propagation algorithms for most of the
MiniZinc global constraints to find tighter domains that are
stored for use in further compilation passes.

S Experiments

The experiments summarised in this section measure the im-
pact of the new approach on compile-time overhead, program
size and solving performance. We present results of two pass
compilation where Gecode is used in the first pass. The ex-
periments used machines with dual 2.00GHz Intel Quad Core
Xeon E5405 processors with 16GB of RAM.

300 instances from the previous three years of MiniZinc
Challenge problems were selected, covering 49 MiniZinc
models. Each instance was compiled using the MiniZinc 2.0
compiler both with and without presolving. Compilation and
solving both had an 8 Gb memory limit.

Fig. 3 and 4 show summaries of the experimental results
for two experiments, compiling for CP and MIP respectively.
The CP solver in the experiments is Chuffed [Chu, 2011], a
lazy clause generation solver that has often performed well
in the MiniZinc challenge. We used CPLEX version 12.6 for
the MIP experiments.

The tables show median (Med%) and geometric mean
(Geo%) of the relative sizes and runtimes of presolved ver-
sus non-presolved programs. We report three subsets of in-
stances for each experiment: the set of instances that compile
without exceeding the memory limit; the set where presolv-
ing has changed the number of variables or constraints; and
finally the set where solve times for both presolved and non-
presolved programs are above one second and less than the
time limit of 1800 seconds and so, can be compared.

Column N shows the number of instances in each group.
Columns Var, Con, and Dm show the size of presolved pro-
grams relative to the non-presolved ones, measured in num-
ber of variables, constraints, and the product of domain sizes.
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Figure 4: MIP Results (using CPLEX)

The columns Cmp, Pre, Sol, and Tot denote the duration of
compilation, CPLEX’s own presolve, solving and the total
compile and solve time. The accompanying plots show the
sorted individual ratios of total time for changed instances.
The plateau mostly comprises timeouts. The vertical dashed
line indicates the median.

Compiling Constraint Programs For Chuffed, some re-
duction in program size and solving time was expected. A
large increase in relative compilation time is also expected,
since each instance is flattened twice with similar libraries.

Fig. 3 shows that on the full set of 271 instances we often
have a reduction in problem size with a typical compilation
time increase of 70%. The compile time increases with the
impact of presolving, with an increase of 87% in the group of
comparable instances. Solve time is often reduced but does
not pay for the compilation time in many cases.

Further analysis of the results suggests that we can iden-
tify two classes of problems where presolving hurts perfor-
mance. First, when the total time is dominated by compilation
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time. In this case, compiling twice adds a significant over-
head. We can address this issue by limiting the time avail-
able for presolving. In the second case, solving the presolved
model takes much longer than the non-presolved. Here the
presolving appears to have some negative effect on the search
strategy and the nogoods learned by during search. We will
have to further investigate how to detect these cases.

Compiling Mixed-Integer Linear Programs Linearising
a constraint model for a MIP solver often requires decompo-
sitions that can introduce many variables. Compared to the
CP experiments above, we therefore expect the strength of
multi-pass presolving to be much more pronounced.

To control for the erratic behaviour of heuristics in MIP
solvers [Fischetti and Monaci, 2014] we ran each instance
six times with different random seeds. To narrow the set of
250 instances we looked at the results of running CPLEX’s
presolver on each program and kept the 130 instances where
multi-pass presolving resulted in a change to the number of
variables or constraints after MIP presolving.

As expected we see a much larger impact of multi-pass
compilation when applied to MIP, where total time improves
by 39% (geometric mean) in the 67 comparable instances.
This improvement is due to the solve time being almost
halved on average. Due to how comparatively cheap it is to
compile for CP first the presolving has a small cost of around
6% for the whole set of instances, and actually speeds up
compilation in many cases, most likely due to a reduction
in the amount of decomposition required. Detailed examina-
tion of the results suggested that the biggest improvements
are gained where presolving can reduce the number of ele-
ment and reified linear constraints. The results show that our
presolving technique is very effective for a MIP target.

6 Related Work

Presolving originated in the field of Linear Programming, and
has been a core part of any LP solver for decades. Most of
these methods aim at tightening variable bounds and remov-
ing redundant constraints. For a survey of presolving methods
in LP see [Andersen and Andersen, 1995].

A number of dedicated presolving algorithms are in use
that target the discrete variables in a MIP model [Maha-
jan, 2010]. An important technique is probing [Savelsbergh,
19941, which tentatively assigns 0/1 variables and observes
the effects of the assignment.

SAT solvers face a similar challenge as LP and MIP
solvers, in that their input programs can be huge. This has led
to the development of presolvingechniques for SAT [Eén and
Biere, 2005], which also aim at fixing variables and removing
redundant clauses. Equi-propagation [Metodi et al., 2013] is
a high-level approach that starts with a model that includes
integer variables and constraints, resulting in SAT encodings
that are much more efficient than the direct encoding with-
out integer-level propagation. For problems that have a large
Boolean component, these techniques may be interesting as a
multi-pass presolving step.

The use of constraint programming to preprocess combi-
natorial optimisation problems before solving using another



technology has been explored in the past [Hooker, 2006;
Achterberg, 2009]. The Savile Row compiler for Essence’
performs multi-pass presolving using Minion as a constraint
propagation engine [Nightingale er al., 2014]. The Essence’
language does not support user-defined predicates and func-
tions, and solver-specific translation routines are hard-coded
into the compiler. To the best of our knowledge, the compiler
can only communicate presolving results through top-level
model variables. In contrast, our approach is compatible with
the high-level problem structure as expressed in predicate and
function definitions and calls, by enabling presolving on in-
troduced auxiliary variables.

7 Conclusion and Future Work

We introduced an improved compilation framework that inte-
grates whole program optimisation with a novel variable syn-
chronisation method, allowing tighter domains and variable
aliases to be communicated between several distinct repre-
sentations of the same instance. Further, we presented evalu-
ations of the approach when applied to two different targets.
For a CP solver, we found that in many cases compilation
is too slow to justify using multi-pass presolving in all cases.
With a MIP target we see very little compilation overhead and
a reduction in program size and solving times. In conclusion,
multi-pass presolving can make the compilation of constraint
models more robust, with a low average time overhead, and
the potential to improve performance significantly.

There are several applications of the new variable synchro-
nisation method that we would like to explore in future. One
example is the automatic construction of hybrid solvers that
communicate on more than just top-level variables. It may
also be interesting to explore the benefits of presolving it-
eratively until a fixed-point is reached and of synchronising
additional information such as constraint entailment. We also
hope to use other inference approaches, for instance support-
ing arbitrary precision integers and infinities.
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