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Abstract
Change-point detection is the problem of finding
abrupt changes in time-series, and it is attracting a
lot of attention in the artificial intelligence and data
mining communities. In this paper, we present a su-
pervised learning based change-point detection ap-
proach in which we use the separability of past and
future data at time t (they are labeled as +1 and
�1) as plausibility of change-points. Based on this
framework, we propose a detection measure called
the additive Hilbert-Schmidt Independence Crite-
rion (aHSIC), which is defined as the weighted sum
of the HSIC scores between features and its corre-
sponding binary labels. Here, the HSIC is a kernel-
based independence measure. A novel aspect of the
aHSIC score is that it can incorporate feature selec-
tion during its detection measure estimation. More
specifically, we first select features that are respon-
sible for an abrupt change by using a supervised ap-
proach, and then compute the aHSIC score by em-
ploying the selected features. Thus, compared with
traditional detection measures, our approach tends
to be robust as regards noise features, and so the
aHSIC is suitable for a use with high-dimensional
time-series change-point detection problems. We
demonstrate that the proposed change-point detec-
tion method is promising through extensive exper-
iments on synthetic data sets and a real-world hu-
man activity data set.

1 Introduction
Change-point detection, which is the problem of detecting
abrupt changes in time-series data, is attracting a lot of atten-
tion in the artificial intelligence and data mining communi-
ties [Basseville et al., 1993; Brodsky and Darkhovsky, 1993;
Kifer et al., 2004], and there are various types of real-world
applications such as fraud detection in cellular systems [Mu-
rad and Pinkas, 1999], intrusion detection in computer net-
works [Yamanishi et al., 2000], irregular-motion detection in
vision systems [Ke et al., 2007], music segmentation [Des-
obry et al., 2005], and sentiment analysis from Twitter data
[Liu et al., 2013]. Recently, the problem of change-point de-
tection from high-dimensional time-series data such as music

and multi-sensor data has been attracting increasing attention
[Desobry et al., 2005; Liu et al., 2013]. Compared with tra-
ditional change-point detection problems, the number of fea-
tures d tends to be larger than the number of data points n, and
it includes a large number of noise features. This makes the
change-point detection problem from high-dimensional time-
series data challenging.

An effective change-point detection approach would be
to use the divergence between probability distributions of
data in the past and data in the future at time t. Specif-
ically, we regard the time t point as a change-point if the
divergence between two distribution is significantly large.
Various change-point detection methods have been proposed
based on this concept including generalized likelihood ratio
(GLR) and cumulative sum approaches [Gustafsson, 1996;
Basseville et al., 1993]. In these approaches, the loga-
rithm of the likelihood ratio between two probability dis-
tributions is used as a measure of change-point detection,
where each probability density is estimated independently
by density estimation. However, since density estimation
is known to be a difficult problem [Härdle et al., 2004;
Huang et al., 2007], density estimation based approaches tend
to perform poorly. Moreover, since high-dimensional time-
series data includes a large number of noise features, the den-
sity estimation accuracy tends to be degraded by noise.

To avoid using density estimation, direct density-ratio
based change-point detection approaches have been proposed
[Kawahara and Sugiyama, 2009; Liu et al., 2013]. These
approaches estimate the ratio of probability distributions di-
rectly without using density estimation. Direct density-ratio
estimation has been actively studied by the machine learn-
ing community and techniques include kernel mean match-
ing (KMM) [Huang et al., 2007], the Kullback-Leibler im-
portance estimation procedure (KLIEP) [Sugiyama et al.,
2008], WKV [Nguyen et al., 2010], and unconstrained least-
squares importance fitting (uLSIF) and its robust extension
called relative uLSIF (RuLSIF) [Kanamori et al., 2009;
Yamada et al., 2011]. These direct density-ratio estimation
methods have exhibited the optimal convergence rate for non-
parametric density-ratio estimation. However, as with density
estimation based methods, the accuracy of the density-ratio
estimation is likely to be degraded by noise features.

Change-point detection with stationary subspace analy-
sis (SSA), which is a dimensionality reduction method, is
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a promising change-point detection method for multivariate
time-series data [Blythe et al., 2012]. SSA factorizes a mul-
tivariate time-series data into stationary and non-stationary
sources, and the change-points can be detected in a non-
stationary subspace. Since SSA can reduce the dimension-
ality of data without losing the abrupt change characteristic,
it can significantly improve change-point detection perfor-
mance. However, since SSA needs to compute the log of a
covariance matrix which is singular when (d < n), it needs a
large number of training samples (n � d) to accurately fac-
torize stationary and non-stationary sources. Therefore, an
SSA based change-point detection algorithm is not applica-
ble to high-dimensional change-point detection problems.

In this paper to deal with high-dimensional time-series
data, we integrate feature selection into change-point detec-
tion measure estimation. More specifically, we present a su-
pervised learning based change-point detection approach in
which we use the separability of past and future data at time t
(they are labeled as +1 and �1) as a plausibility of a change-
points [Desobry et al., 2005; Hido et al., 2008]. If we can
separate the past and future data sets easily, we regard them as
having different probability distributions. On the other hand,
if two data sets are not separable, we regard them as having
the same probability distribution. Using this framework as
a basis, we propose a detection measure called the additive
Hilbert-Schmidt independence criterion (aHSIC), which is
given as the weighted sum of the HSIC scores where HSIC is
a kernel-based independence measure [Gretton et al., 2005].
Here, each HSIC score is computed from samples of a feature
and its corresponding pseudo binary labels. An advantage of
the aHSIC score over existing detection measures is that it can
incorporate feature selection during detection measure esti-
mation. That is, we first select features that are responsible
for an abrupt change in a supervised manner, and then com-
pute an aHSIC score by using those selected features. Thus,
compared with traditional detection measures, aHSIC is more
robust as regards noise features than existing measures and it
is suited for high-dimensional time-series data. Experiments
on synthetic and real-world human activity data showed that
the proposed methods are promising.

2 Problem Formulation
In this section, we formulate our change-point detection prob-
lem based on supervised learning framework [Desobry et al.,
2005; Hido et al., 2008].

Let x(t) 2 Rd be a d-dimensional sample at time t and

X (t) := {x(t� i+ 1)}ni=1

are samples with length n extracted from time series data in a
sliding-window manner at time t.

Let us consider two non-overlapped sequences X (t) and
X (t+ n), and we annotate the samples in X (t) as y = 1 and
the samples in X (t+n) as y = �1. We denote the augmented
sequences as

Z(t) := {(x(t+ n� i+ 1), yi)}2ni=1

,

where yi 2 {+1, �1} is a pseudo binary label. See Figure 1
for an illustrative example of two intervals X (t) and X (t +

Figure 1: Illustrative example of two intervals X (t) and
X (t+ n) for 1D time series.

n). Note, in high-dimensional time-series data, the number of
dimensions d is usually bigger than that of samples 2n (i.e.,
d > 2n).

Then, our change-point detection strategy is to compute a
dependency score between input x and output y from data
Z(t), and use it as the change-point plausibility:

⇢
D(Z(t)) < ⌧ (No abrupt change occurs)
D(Z(t)) � ⌧ (An abrupt change occurs),

where D(Z(t)) is a dependency measure that takes a large
value if x and y are dependent and ⌧ is a threshold that con-
trols the sensibility/robustness tradeoff. Note, since y can
be regarded as a step function like sequence that exhibits a
change at time t, a large dependency value means that X (t)
and X (t+ 1) are separable. That is, we can regard X (t) and
X (t+ n) as samples from different distributions. In contrast,
if the dependency score is small, then we can regard X (t) and
X (t+ n) as samples from the same distribution.

3 Proposed Change-Point Detection Method
The detection performance depends strongly on the depen-
dency measure. In particular, since high-dimensional data
tends to include a large number of noise features, a key issue
is to compute a detection measure for an abrupt change using
only important features. Thus, we incorporate feature selec-
tion into our change-point detection measure. To the best of
our knowledge, this is the first work to perform feature selec-
tion in change-point detection for high-dimensional data.

In this section, we first propose our dependency measure,
and then show a way to estimate it.

3.1 Additive Hilbert-Schmidt Independence
Criterion

We propose an additive HSIC (aHSIC) score as a dependency
measure D(Z(t)):

aHSIC(Z(t)) :=
dX

k=1

↵kHSIC(uk(t),y),
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where uk(t) = [xk(t � n + 1), xk(t � n + 2), . . . , xk(t +
n � 1)]

> 2 R2n is the k-th feature for all samples, > is
the matrix transpose, y = [1, . . . , 1,�1, . . . ,�1]> 2 R2n

is the pseudo binary label vector, HSIC(uk,y) = tr( ¯K(k)
¯

L)

is a kernel-based independence measure called the (empir-
ical) Hilbert-Schmidt independence criterion (HSIC) [Gret-
ton et al., 2005], tr(·) denotes the trace, ↵

1

, . . . ,↵d � 0,P
k=1

↵k = 1, ¯

K

(k)
= �K(k)� and ¯

L = �L� are centered
and normalized Gram matrices, K(k)

i,j = K(xk,i, xk,j) and
Li,j = L(yi, yj) are Gram matrices, K(x, x0

) and L(y, y0)
are kernel functions, � = In � 1

n1n1>
n is the centering ma-

trix, In is the n-dimensional identity matrix, and 1n is the
n-dimensional vector with all ones.

Note, HSIC always takes a non-negative value, and is zero
if and only if two random variables are statistically indepen-
dent when a universal reproducing kernel [Steinwart, 2001]
such as a Gaussian kernel is used. That is, if the k-th feature
uk is independent of y (i.e., the k-th feature is not important
for an abrupt change), HSIC(uk,y) takes a small value.

A novelty of the aHSIC score is that it is possible to mea-
sure dependency based solely on features that are related to an
output y if we set ↵ appropriately. That is, if we can select
features that are responsible for abrupt changes, the aHSIC
score is independent of noise features.

3.2 HSIC Lasso
In aHSIC, the choice of ↵ parameter is a key issue. A simple
heuristic is to set 1

n for all ↵. However, for high-dimensional
time series data, a few features are important and rest are
noise. That is, equal weighting of the HSIC scores is not a
suitable choice for high-dimensional time-series.

In this paper, we propose using HSIC Lasso for estimating
the ↵ parameter [Yamada et al., 2012]:

min

↵2Rd
k ¯L�

dX

k=1

↵k
¯

K

(k)k2Frob + �k↵k
1

,

s.t. ↵
1

, . . . ,↵d � 0, (1)

where k ·kFrob is the Frobenius norm and k ·k
1

is the `
1

norm.
The first term in Eq.(1) means that we are regressing the

output kernel matrix ¯

L by a linear combination of feature-
wise input kernel matrices { ¯

K

(k)}dk=1

. After estimating ↵,
we normalize each element of ↵ as ↵k  ↵k/

Pd
k=1

↵k.
The first term in Eq.(1) can be rewritten as

k ¯L�
dX

k=1

↵k
¯

K

(k)k2Frob=HSIC(y,y)� 2

dX

k=1

↵kHSIC(uk,y)

+

dX

k,l=1

↵k↵lHSIC(uk,ul). (2)

Thus, if all features uk are mutually independent (i.e.,
HSIC(uk,ul) = 0, 8 k, l), we can rewrite Eq.(2) as

k ¯L�
dX

k=1

↵k
¯

K

(k)k2Frob / �aHSIC(Z).

This means that, minimizing the objective function of HSIC
Lasso corresponds to maximizing the aHSIC(Z) score. Thus,
using HSIC Lasso to estimate ↵ is a natural choice.

Statistical Interpretation of HSIC Lasso: From Eq.(2),
if the k-th feature uk has high dependence on output y,
HSIC(uk,y) takes a large value and thus ↵k should also
be large. On the other hand, if uk and y are independent,
HSIC(uk,y) is close to zero and thus such ↵k tends to be
removed by the `

1

-regularizer. That is, relevant features that
have strong dependence on output y tends to be selected by
the HSIC Lasso. That is, features that are important for an
abrupt change are selected.

Furthermore, if uk and ul are strongly dependent (i.e., re-
dundant features), HSIC(uk,ul) is large and thus either ↵k

or ↵l tends to be zero. Thus, redundant features tend to be
removed by HSIC Lasso.

Overall, HSIC Lasso tends to find non-redundant features
with strong dependence on output y, which is a preferable
property for a change-point detection measure.

Computational Property: An important computational
property of HSIC Lasso is that the first term in Eq.(1) can
be rewritten as

1

2

kvec( ¯L)� [vec( ¯K(1)

), . . . , vec( ¯K(d)
)]↵k2

2

,

where vec(·) is the vectorization operator. This is the same
form as plain Lasso with n2 and d are the numbers of samples
and optimization parameters, respectively.

To solve this Lasso problem, a technique called the dual
augmented Lagrangian (DAL) was shown to be computation-
ally highly efficient [Tomioka et al., 2011]. Because DAL can
also incorporate the non-negativity constraint without losing
its computational advantages, we can directly use DAL to
solve our HSIC Lasso problem.

A MATLAB R� implementation of the HSIC Lasso
is available from http://www.kecl.ntt.co.jp/icl/ls/members/
myamada/hsiclasso.html.

3.3 Group HSIC Lasso
If we have a prior knowledge of the features, we can utilize
this knowledge to select features in HSIC Lasso. For example
when detecting a change in human activity from sensors at-
tached to the hands and legs, it is reasonable to select a group
of features (i.e., sensors) that are important in relation to an
abrupt change.

To this end, we propose using the group-type lasso regular-
izer [Meier et al., 2008; Zou and Hastie, 2005] for estimating
↵ as

min

↵2Rd

1

2

k ¯L�
dX

k=1

↵k
¯

K

(k)k2Frob + �

GX

g=1

k↵gk2,

s.t. ↵
1

, . . . ,↵d � 0,

where ↵ = [↵

>
1

, . . . ,↵>
G]

>, ↵g is the gth group of variables,
and G is the number of groups. This group-type lasso prob-
lem can also be efficiently solved by the DAL package with
the non-negativity constraint.
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3.4 Kernel Selection
HSIC is a kernel based independence measure; the indepen-
dence criterion changes with respect to a kernel parameter
and/or kernel types. That is, the input kernel parameters
should be fixed for all features. Thus, we first normalize the
input features with a standard deviation at 1 and then use the
same kernel parameters for all kernels.

For input x, we use the Gaussian kernel,

K(x, x0
) = exp

✓
� (x� x0

)

2

2�2

x

◆
,

where we set �
x

= 1. For output y, we use the delta kernel,

L(y, y0) =

⇢
1 if y = y0,
0 otherwise.

4 Related Methods
Here, we review related change-point detection measures.

4.1 KLIEP
Let us assume that samples in X (t) are drawn i.i.d. from a
distribution with a density p(x) and samples in X (t+ n) are
drawn i.i.d. from a distribution with density p0(x). Then, we
can use divergence as the plausibility of the change-points.
More specifically, if the divergence D(p(x)||p0(x)) is larger
than the threshold ⌧ , we can regard the point as the change-
point.

A popular choice for the divergence function is Kullback-
Leibler (KL) divergence:

KL[p(x)||p0(x)] = �
Z

p0(x) log
p(x)

p0(x)
dx.

A naive approach for estimating the KL-divergence is to es-
timate the probability densities p(x) and p0(x) separately
using a kernel density estimation [Härdle et al., 2004] and
then take the ratio. However, density estimation is known
to be a hard problem, and the KL-divergence estimation can
be poor. To mitigate this, an alternative KL divergence esti-
mation method is proposed, where the density-ratio p(x)

p0
(x)

is
directly estimated without going through the density estima-
tions by using the Kullback-Leibler Importance Estimation
Procedure (KLIEP), which has been proved to achieve the
optimal non-parametric convergence rate in a mini-max sense
[Sugiyama et al., 2008].

In [Kawahara and Sugiyama, 2009], a KLIEP based KL-
divergence estimator was used for change-point detection,
and it outperformed existing density estimation based meth-
ods. However, since KLIEP uses all the features to compute
the divergence, the KL-divergence estimator tends to perform
poorly when there are many noise features.

4.2 uLSIF/RuLSIF
Recently, computationally efficient density-ratio estimation
method called relative unconstrained Least-Squares Impor-
tance Fitting (RuLSIF) has been proposed for estimating rel-
ative Pearson-divergence[Yamada et al., 2011]:
PE↵[p(x)||q↵(x)] := PE[p(x)||↵p(x) + (1� ↵)p0(x)]

=

Z ✓
p(x)

q↵(x)
� 1

◆
2

q↵(x)dx,

where q↵(x) = ↵p(x) + (1 � ↵)p0(x) is called ↵-mixed
density and r↵ is the relative density ratio:

r↵(x) =
p(x)

↵p(x) + (1� ↵)p0(x)
.

The novelty of the relative density-ratio is that it is always
bounded above by 1

↵ , and it has been shown that the conver-
gence rate for estimating relative density ratio is faster than
that of the standard density-ratio p(x)

p0
(x)

[Yamada et al., 2011].
This is a favorable property in practice. Note, when ↵ = 0, it
is reduced to p(x)

p0
(x)

(uLSIF) [Kanamori et al., 2009].
It has been shown that the relative PE divergence estimator

is suited to change-point detection [Liu et al., 2013]. How-
ever, as with the KL-divergence estimator, estimation of rel-
ative PE divergence tends to be poor when there are many
noise features and a small number of training samples.

4.3 Kernel Change Detection
Kernel change detection (KCD) is also a detection method
that does not require density estimations [Desobry et al.,
2005].

Let �t,1 and �t,2 be coefficients of a one-class support vec-
tor machine (OSVM) computed from X (t) and X (t + 1) re-
spectively, Kt,12 is the Gram matrix computed from support
vectors obtained from X (t) and X (t+ 1), Kt,11 is the Gram
matrix computed from support vectors obtained from X (t),
and Kt,22 is the Gram matrix computed from support vectors
obtained from X (t+1). Then, the dissimilarity measure used
in KCD is given as

D(X (t),X (t+ 1)) =

�

>
t,1Kt,12�t,2q

�

>
t,1Kt,11�t,1

q
�

>
t,2Kt,22�t,2

.

This dissimilarity measure is shown to be asymptotically
equivalent to the Fisher ratio in the Gaussian case.

KCD is robust to outliers, since outliers are removed by
OSVM. However, since KCD uses all the features for detect-
ing change-points, it can perform poorly when there are many
noisy features.

4.4 Change-Point Detection using SSA
Change-point detection using stationary subspace analysis
(SSA) is a promising method for multivariate time-series data
[Blythe et al., 2012].

Let us divide the entire time series X into X
1

, . . . ,XN sets
and define the hypothesis of testing non-stationarity as

H
0

:X
1

, . . . ,XN ⇠ N(0, I)

H
1

:X
1

⇠ N(µ

1

,⌃
1

), . . . ,XN ⇠ N(µN ,⌃N ).

where N(µ,⌃) is the Gaussian distribution with mean µ and
variance ⌃.

Then, the goal of the SSA based change-point detection is
to test whether time-series data are stationary. More specif-
ically, if we can reject the null hypothesis H

0

, we can con-
sider that there is a change-point. On the other hand, if we
cannot reject the null hypothesis H

0

, we consider there to be
no change-point.
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The test statistics based on SSA can be written as

⇤(X ) = �ds
2

N +

1

2

NX

i=1

Ni

⇣
� log det

b⌃ b
B

i + (

b
µ

b
B

i )

>b
µ

b
B

i

⌘

where b
µ

b
B

i =

b
B

b
µi and b⌃ b

B

i =

b
B

b⌃i
b
B

>, b
µi =

1

|Xi|
P

t2Xi
x(t), b⌃i =

P
t2Xi

(x(t)� b
µi)(x(t)� b

µi)
>, and

b
B 2 Rm⇥d

(m < d) is given as the solution of the following
optimization problem:

b
B = argmax

BB

>
=I

NX

i=1

⇣
� log det

b
⌃

B

i + (

b
µ

B

i )

>b
µ

B

i

⌘
.

It has been shown that SSA-based change-point detection
performs well on multivariate time-series data. However, the
SSA based change-point detection algorithm needs a large
number of training samples (i.e., n� d), since it includes the
log of the covariance matrix which is singular when (d < n).
In addition, SSA needs several non-overlapped time-series.
Thus, the SSA-based change-point detection algorithm is not
applicable to high-dimensional change-point detection prob-
lems.

5 Experiments
In this section, we investigate experimentally the perfor-
mance of the proposed and existing feature selection methods
using synthetic and real-world human activity datasets.

5.1 Setup
We compare the performance of the proposed methods with
that of RuLSIF, KLIEP, and KCD. With RuLSIF and KLIEP,
we use publicly available codes. For KCD, we use LIBSVM
[Chang and Lin, 2011] to compute OSVM, where we use a
Gaussian kernel with � =

p
d/2 and the regularization pa-

rameter of OSVM ⌫ = 0.5. We experimentally fix � at 0.01
for HSIC Lasso and � at 10.0 for Group HSIC Lasso. For all
the methods, we fix the window size at 2n = 40.

In this paper, we compare the performance of change-point
detection methods objectively in terms of the receiver op-
erating characteristic (ROC) curves and the area under the
ROC curve (AUC) values. Note that, detection at t is re-
garded as correct if there exists a true alarm at step t⇤ such
that t 2 [t⇤ � 10, t⇤ + 10].

5.2 Synthetic Datasets
In this section, we illustrate the behavior of the proposed ad-
ditive HSIC based change-point detection method using syn-
thetic datasets. We generate time-series data so that one fea-
ture includes abrupt changes and the remaining features are
noise.

We use the following two synthetic multivariate time-series
datasets, which contain manually inserted change-points:
(a) Data1 (Jumping mean): The following 1-dimensional

auto-regressive model borrowed from [Yamanishi and
Takeuchi, 2002] is used to generate 1000 samples

x
1

(t) = 0.6x
1

(t� 1)� 0.5x
1

(t� 2) + µM + ✏t,

where ✏t ⇠ N(0, 1). The initial values are set as
x
1

(1) = x
1

(2) = 0. A change-point is inserted at every
100 times steps by setting the noise mean µ at time t as

µM =

⇢
0 M = 1

µM�1

+ 3 M = 2, . . . , 49,

where M is a change-point index such that 100(M �
1) + 1  t  100M .
Then, we generate a noise vector
(x

2

(t), . . . , x
50

(t))> ⇠ N(0
49

, I
49

) and concate-
nate it to x

1

(t) as x(t) = [x
1

(t), x
2

(t), ..., x
50

(t)]>.
(b) Data2 (Scaling variance): The same auto-regressive

model is used as with Data1, but a change-point is
inserted at every 100 time steps by setting the noise
standard deviation � at time t as

� =

⇢
1 M = 1, 3, . . . , 49
5 M = 2, 4, . . . , 48,

Then, we generate a noise vector
(x

2

(t), . . . , x
50

(t))> ⇠ N(0
49

, I
49

) and concate-
nate it to x

1

(t) as x(t) = [x
1

(t), x
2

(t), ..., x
50

(t)]>.
Figure 2-(a),(c),(e),(g) show part of x

1

(t) and the corre-
sponding aHSIC score for each data set. The vertical dot-
ted red lines in those figures denote the true change-points.
As can be seen, the proposed approach can correctly detect
change-points in both cases. Figure 2-(b),(d) show the esti-
mated ↵

1

values. It is clear that the true feature is success-
fully selected by HSIC Lasso. Figure 2-(f),(h) show the ROC
curves. The experimental results show that proposed method
compares favorably with existing methods.

Table 1 shows the mean computational time of the pro-
posed method over the Data1 data set. As can be ob-
served, the computational time of aHSIC score is reasonable.
Note that OSVM is implemented with C, while the proposed
method is implemented with Matlab. Thus, by implementing
the proposed method with C/C++, we can boost the compu-
tational speed of the proposed method.

Table 1: Mean computational time of proposed method over
Data1 data set.

Method aHSIC RuLSIF KLIEP KCD
Time (sec) 0.040 0.048 1.584 0.001

5.3 Real-World Human Activity Dataset
The proposed feature selection based approach is very use-
ful for human activity change detection problems. For exam-
ple when detecting the change from ”Standing” to ”Brushing
teeth”, it is reasonable to only use right/left hand information
for detection.

In this section, we report the change-point detection of hu-
man activity data set [Maekawa and Watanabe, 2011]. The
data set contains 14 actions from 61 subjects, where each sub-
ject wore three-axis acceleration sensors on the both hands,
the waist, and the right thigh. Then, we computed the mean,
energy, entropy, and main frequency component (F0) for each
axis (12 features for a sensor and 48 features in total). For
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Figure 2: Results for synthetic data sets. (a),(c): aHSIC-based change score in Data1 and Data2. (b),(d): Estimated ↵
1

from
Data1 and Data2. (e),(g): aHSIC-based change score in Data1 and Data2. (f),(h): ROC curves in data2. The vertical dotted red
lines in (e) and (g) denote the true change points. The AUC values of the proposed, RuLSIF, KLIEP, and KCD in Data1 are
0.999, 0.990, 0.954, and 0.994, and those of in Data2 are 0.913, 0.863 0.882, and 0.789, respectively.
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Figure 3: ROC curve of human activity data (averaged over
10 runs). The AUC values of aHSIC, aHSIC (Group), RuL-
SIF, KLIEP and KCD are 0.896, 0.907, 0.853, 0.820, and
0.869, respectively.

Group HSIC Lasso, we use four groups namely the right/left
hands, waist, and right thigh.

In this experiment, we first randomly concatenate all the
motion sequences and check whether the change-point is
correctly detected. Figure 3 shows the ROC curves (aver-
aged over 10 runs). The AUC values of the aHSIC, aHSIC
(Group), RuLSIF, KLIEP, and KCD were 0.896, 0.907, 0.853,
0.820, and 0.869, respectively. Moreover, paired t-tests were
conducted, and we observe that aHSIC and its group version
outperform existing methods at p = 0.01(1%). The experi-
mental results show that the proposed method compares fa-
vorably with existing methods.

6 Conclusion
In this paper, we proposed a change-point detection method
with feature selection for high-dimensional time-series data.
We adopted the supervised change-point detection approach
[Hido et al., 2008] in which we use the separability of the past
and current data sets (they are labeled +1 and �1, respec-
tively) as the change-point detection measure. Based on this
framework, we proposed a new change-point detection mea-
sure called the additive Hilbert-Schmidt Independence Crite-
rion (aHSIC), which is defined as the weighted sum of HSIC
values between each feature and its corresponding pseudo bi-
nary labels. An advantage of the proposed method over ex-
isting methods is that it is estimated by using features that
are important for an abrupt change. That is, the proposed ap-
proach is more robust to noisy features than existing methods.
Through extensive experiments on synthetic and real-world
human-activity dataset, we demonstrated the promise of the
proposed change-point detection method.

Following the current line of research, there are several is-
sues to be pursued if we are to further improve the change
point detection performance. For example, in this paper, we
assume that separable features are useful for detecting an
abrupt change. Thus, if there is a feature that is independent
of an abrupt change and has high separability, false positives
of the proposed method can be increased. We have already
verified experimentally that the proposed method performs
well, but the issue definitely constitutes interesting future
work. Moreover, investigating the performance of the pro-
posed method over other real datasets such as music change
detection is also a challenging future work.
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