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Abstract
Road traffic prediction is a critical component in
modern smart transportation systems. It provides
the basis for traffic management agencies to gener-
ate proactive traffic operation strategies for allevi-
ating congestion. Existing work on near-term traf-
fic prediction (forecasting horizons in the range of
5 minutes to 1 hour) relies on the past and current
traffic conditions. However, once the forecasting
horizon is beyond 1 hour, i.e., in longer-term traffic
prediction, these techniques do not work well since
additional factors other than the past and current
traffic conditions start to play important roles.
To address this problem, in this paper, for the first
time, we examine whether it is possible to use
the rich information in online social media to im-
prove longer-term traffic prediction. To this end,
we first analyze the correlation between traffic vol-
ume and tweet counts with various granularities.
Then we propose an optimization framework to ex-
tract traffic indicators based on tweet semantics us-
ing a transformation matrix, and incorporate them
into traffic prediction via linear regression. Exper-
imental results using traffic and Twitter data origi-
nated from the San Francisco Bay area of Califor-
nia demonstrate the effectiveness of our proposed
framework.

1 Introduction
With the steadily increasing number of motor vehicles in
the United States, road traffic prediction becomes a critical
component in modern smart transportation systems. Accu-
rate prediction of both near-term and longer-term traffic con-
ditions can greatly help traffic management agencies gener-
ate proactive strategies to alleviate congestion. It can also
help road users better plan their trips by avoiding road seg-
ments expected to be congested soon. Existing work on road
traffic prediction largely focuses on forecasting horizons in
the range of 5 minutes to 1 hour by using past and current
traffic conditions [Al-Deek et al., 2001; Smith et al., 2002;
Kamarianakis and Prastacos, 2003; Min and Wynter, 2011].
The proposed techniques do not generalize well to fore-
casting horizons beyond 1 hour due to the impact of addi-

tional factors, such as scheduled events [Maze et al., 2006;
Mahmassani et al., 2009].

With the rapid growth of online social media, more and
more people are using Twitter, Facebook, etc to communicate
their mood, activities, plans, as well as to exchange news and
ideas, which creates a huge repository containing information
not accessible from conventional media. In particular, a lot of
people are using their mobile devices to access the social me-
dia web sites via web applications, hence generating a large
number of messages on the go. Many of the messages are re-
lated to the current traffic conditions, such as ’Traffic jam on
new preedy street, near Parking Plaza Saddar, cars unmoved
for last 20 mins’, ’Big road block intersection of Rondebult
and Commissioner street Boksburg’, etc. It is also common
for people to announce their travel plans in the near future,
such as ’This SUNDAY !!!! We will be playing at Di Piazzas
in Long Beach’, ’good night! getting up early tomorrow to
pack and then off to the airport for our flight @ 5PM’, etc.

Motivated by the uniqueness of the information contained
in online social media, and the close relationship between
traffic and tweets, In this paper, we answer the following
question: can we extract tweet-based semantics to help im-
prove longer-term traffic prediction? To answer this ques-
tion, we first establish the correlation between traffic mea-
surements and tweet counts at various granularity. Then we
directly extract semantics from tweets via a sparse matrix,
and incorporate the semantics into the auto-regression model
used in traffic prediction. Finally, the sparse matrix is ob-
tained by solving an optimization framework, whose goal is
to minimize the prediction error in the traffic measurements.

The rest of the paper is organized as follows. In Section
2, we briefly review existing work on traffic prediction and
social media aided analysis. Then we study the correlation
between traffic measurements and tweet counts in Section 3.
It leads to the optimization framework for systematically in-
corporating tweet semantics in traffic prediction and an iter-
ative algorithm for solving it in Section 4. The experimental
results are presented in Section 5. Finally, we conclude the
paper in Section 6.

2 Related Work
In this section, we review the existing work from two per-
spectives, namely traffic prediction and social media aided
analysis.
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2.1 Traffic Prediction
Road traffic prediction is a critical component in modern
smart transportation systems. With an accurate prediction of
traffic conditions, traffic management agencies can generate
proactive traffic operation strategies to alleviate congestion,
and road users can plan their trips accordingly ahead of time.

The modeling approaches of traffic prediction can be clas-
sified into parametric methods and non-parametric methods.
The former category relies primarily on statistical techniques,
including historical average and smoothing techniques [Smith
and Demetsky, 1997; Williams et al., 1998], auto-regressive
moving average models [Ahmed and Cook, 1979; Levin and
Tsao, 1980; Al-Deek et al., 2001; Smith et al., 2002; Ka-
marianakis and Prastacos, 2003; Min and Wynter, 2011], and
Kalman filter algorithms [Okutani and Stephanedes, 1984;
Guo and Williams, 2010]. The main non-parametric ap-
proaches published to date include non-parametric regres-
sion [Smith and Demetsky, 1996; Clark, 2003; Huang and
Sadek, 2009] and artificial neural networks (ANN) [Clark et
al., 1993; Vythoulkas, 1993; Yun et al., 1998; van Lint et al.,
2005; Vlahogianni et al., 2005; Khosravi et al., 2011]. These
studies rely primarily on traffic data collected from sensors
such as loop detectors, GPS devices, cell phones, etc., with
forecasting horizons in the range of 5 minutes to 1 hour. Stud-
ies on longer-term traffic prediction are rather limited, pri-
marily because additional factors other than the past and cur-
rent traffic conditions start to play important roles once the
forecasting horizon is beyond 1 hour. Only a few researchers
and private companies have attempted to analyze and utilize
the correlation between traffic data and those external fac-
tors such as weather and event schedules [Maze et al., 2006;
Mahmassani et al., 2009].

The main focus in this paper is on investigating how Twit-
ter data can be used as an external data source for improving
near-term traffic prediction beyond the forecasting horizon of
1 hour. To the best of our knowledge, our study is the first
to leverage the rich information in social media to help with
traffic prediction.

2.2 Social Media Aided Analysis
As mentioned in the previous section, nowadays, many re-
searchers are trying to exploit the rich information in social
media for various purposes. For example, there is a lot of in-
terest in using social media to detect emerging news or events:
in [Petrovic et al., 2010], the authors address the problem of
detecting new events from a stream of Twitter posts using an
algorithm based on locality-sensitive hashing; in [Sankara-
narayanan et al., 2009], the authors propose a news process-
ing system called TwitterStand to capture tweets that corre-
spond to late breaking news; in [Sakaki et al., 2010], the au-
thors investigate the real-time interaction of events such as
earthquakes in Twitter, and propose a probabilistic spatiotem-
poral model for the target event that can find the center and
the trajectory of the event location, etc.

Another line of research is tweet classification for the pur-
pose of information filtering. For example, in [Go et al.,
2011], the authors test various algorithms for classifying the
sentiment of tweets, such as SVM, Naive Bayes, etc; in [Sri-
ram et al., 2010], the authors use a small set of domain-

specific features in addition to the bag-of-word features to
classify tweets into a predefined set of classes; etc.

Furthermore, some researchers are extracting informa-
tion from tweets which might be useful in another domain.
In [Bollen et al., 2010], the authors try to answer the ques-
tion: is the public mood correlated or even predictive of eco-
nomic indicators? To this end, they first derive from large
scale Twitter feeds the collective mood states, and then per-
form the correlation analysis with the Dow Jones Industrial
Average (DJIA) over time. Finally, they show that the accu-
racy of DJIA predictions can be significantly improved by the
inclusion of specific public mood dimensions, such as Calm.
In [Eisenstein et al., 2010], based on the geo-tagged social
media, the authors propose a multi-level generative model
that reasons jointly about latent topics and geographical re-
gions. Our proposed work belongs to this direction, and we
try to build the correlation between Twitter and a new domain,
namely traffic prediction. This is motivated by the presence
of a large number of tweets related to traffic conditions.

3 Correlation Study
In this section, we study the correlation between traffic mea-
surements and tweet counts by first introducing the data sets
used in this paper, and then presenting the correlation analy-
sis.

3.1 Data Description
To accommodate the correlation analysis, we need two data
sets: one containing traffic measurements, and the other con-
taining tweet information. We generate the traffic data set
by collecting measurements from 943 loop detectors cover-
ing the San Francisco Bay area between August 3, 2011 and
September 30, 2011 using the California Performance Mea-
surement System (PeMS, 1). This data set contains 1,380,552
entries, each of which records an hourly traffic volume mea-
sured at one detector location. We also collected tweet data
for the same area during the same time period. The tweets
were obtained using the Twitter streaming API with a geo-
location filter defining the lat/long bounding box of (-122.75,
36.934, -121.75, 38.369). To avoid spam, we filter out tweets
that contain the regular expressions of “http:” or “www.”.
For each tweet, we collect information of user account, time
stamp, content, and the geo-location. This results in a total
number of 212,145 tweets from 19,435 distinct users. Note
that due to an unexpected data center outage, Twitter data
during Sept 2 to Sept 12 were not collected.

3.2 Data Processing
For traffic data, let v ∈ RT denote the time series of regional
level traffic intensity, where T is the total number of time
stamps, and its tth element vt is the traffic volume (the total
number of vehicles passing each detector) averaged over all
943 detectors in time stamp t.

Due to the recurrent nature of traffic, v typically exhibits
periodic fluctuations, as can be seen in Figure 1(a). In traf-
fic prediction, it is common practice to exclude such fluctu-
ations in the prediction models. Therefore, we first estimate

1http://pems.dot.ca.gov
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(a) Hourly traffic intensity
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(b) Hourly social activity in-
tensity
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(c) De-trended hourly traffic
intensity
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(d) De-trended hourly social
activity intensity

Figure 1: Data de-trending

the seasonal variation component and then subtract it from
v to get the de-trended version. More specifically, for each
(hour of day, day of week) pair (τ, d) where τ = 0, . . . , 23
and d = 0, . . . , 6, we define the seasonal variation component
ετ,d as follows

ετ,d =

∑
{t|g(t)=(τ,d)} v

t

|{t|g(t) = (τ, d)}|

where g(·) is an operator retrieving both the hour of day and
day of week indices for a given time stamp t, and |{·}| de-
notes the number of elements in the set.

The de-trended version of regional level traffic intensity is
now defined as δv ∈ RT , where its tth element δvt is set as
follows.

δvt = vt − ε(τ, d), s.t. g(t) = (τ, d)

For Twitter data, let c ∈ RT denote the time series of so-
cial activity intensity measure, whose tth component ct is the
total number of tweets for time stamp t. Similar to the traf-
fic intensity measure v, c also exhibits periodic fluctuations.
Therefore, we define the de-trended version δc in a similar
way as δv.

Figure 1 compares the time series of traffic and social me-
dia intensities before and after de-trending. Each line in the
plot corresponds to the data from one day in the studied time
period, and each time stamp corresponds to an hour. The
daily recurrent patterns in both the raw traffic and Twitter data
can be clearly observed.

3.3 Correlation Analysis
As a first step towards predicting traffic intensity using Twit-
ter data, we test if social activity intensity measure has any
correlation with the traffic intensity measure in the same re-
gion. Figure 2 shows the cross-correlation results between
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Figure 2: Cross correlation between de-trended traffic inten-
sity and de-trended social activity intensity

the current de-trended traffic intensity δv and the de-trended
social activity intensity δc in the past 48 hours with time res-
olutions of 1, 2, 12, and 24 hours respectively. The height of
the green bar at time lag −∆t represents the correlation be-
tween δvt and δct−∆t. The two blue dashed lines mark the
95% confidence intervals of the correlation values.

As can be seen from this figure, the current de-trended
traffic intensity and the de-trended social activity intensity in
the past 48 hours exhibit statistically significant correlation.
Quite interestingly, the correlation seems to be negative for
all four time resolutions tested, which implies that when the
social activity is less intense than the average level, the traffic
activity on the road network is usually more intense than the
average level in the near future. In terms of correlation levels,
larger time resolutions such as 12 hours and 24 hours tend to
have higher absolute values of correlation than smaller ones
such as 1 hour and 2 hours. For the data with 12-hour reso-
lution, the correlation for only even time lags is statistically
significant.

Furthermore, we test the significance of the correlation be-
tween the two time series by adding lagged δc to the original
auto-regression model used for traffic prediction [Smith and
Demetsky, 1997]. To be specific, we predict δv using the
following linear regression model.

δvt = α+ β1δv
t−1 + β2δv

t−2 + γ1δc
t−1 + γ2δc

t−2 (1)

where α is the offset, β1, β2, γ1, and γ2 are coefficients asso-
ciated with traffic and Twitter data with various lags. We ap-
ply this model with time resolutions of 1, 2, 12, and 24 hours
respectively, and identify the covariates that are statistically
significant. The results are summarized in Table 1.

In this table, the second column shows the estimated value
of the coefficients; the third column shows the standard error;
the fourth column is the t statistics; and the last column is
the p-value. For the time resolutions of 1, 2, 12 hours, there
exists at least one lag of δc that is statistically significant.
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Furthermore, the coefficients of such covariates are negative,
which is consistent with the cross-correlation results shown in
Figure 2. For the time resolution of 24 hours, the regression
model does not include any statistically significant lags of δc.

Table 1: Results of Multiple Linear Regressions
(a) 1-hour time resolution

Coefficients Value Std. Err. t p-value
α 0.341 1.550 0.220 0.826
β1 1.142 0.029 39.674 0.000 ∗
β2 -0.235 0.029 -8.227 0.000 ∗
γ1 -0.161 0.050 -3.233 0.001 ∗
γ2 0.046 0.057 0.804 0.421

(b) 2-hour time resolution

Coefficients Value Std. Err. t p-value
α 0.529 2.873 0.184 0.854
β1 1.073 0.041 26.246 0.000 ∗
β2 -0.246 0.040 -6.097 0.000 ∗
γ1 -0.163 0.051 -3.187 0.002 ∗
γ2 0.069 0.055 1.244 0.214

(c) 12-hour time resolution

Coefficients Value Std. Err. t p-value
α -2.398 8.557 -0.280 0.780
β1 0.258 0.086 2.985 0.004 ∗
β2 0.538 0.086 6.231 0.000 ∗
γ1 0.036 0.042 0.854 0.396
γ2 -0.109 0.041 -2.633 0.010 ∗

(d) 24-hour time resolution

Coefficients Value Std. Err. t p-value
α -1.919 12.470 -0.154 0.878
β1 0.698 0.160 4.363 0.000 ∗
β2 -0.035 0.164 -0.215 0.831
γ1 -0.048 0.043 -1.120 0.269
γ2 -0.019 0.039 -0.502 0.619

(Note: ∗ means p-value < 0.05)

4 Optimization Framework for Incorporating
Tweet Semantics

In the previous section, we established the correlation be-
tween de-trended traffic intensity and de-tended social activ-
ity intensity. In this section, we propose a general optimiza-
tion framework, which extends our analysis beyond the so-
cial activity intensity, and extracts traffic indicators based on
tweet semantics to better predict traffic conditions.

4.1 Traffic Indicators based on Tweet Semantics
During time stamp t, we first map each tweet to the space
of stemmed words (stop words removed), which generates
a non-negative sparse vector. Putting all such vectors to-
gether, and appending an additional column of all 1s, we
have the sparse feature matrix Ft ∈ Rn

t×(d+1)
+ , where nt

is the total number of tweets in time stamp t, and d is the
number of stemmed words. Its element Fti,j (i = 1, . . . , nt,
j = 1, . . . , d) in the ith row and jth column is positive if and
only if the jth word appears in the ith tweet.

Furthermore, let M ∈ R(d+1)×m denote the transforma-
tion matrix, where m is the number of traffic indicators
based on tweet semantics. Its element Mj,k (j = 1, . . . , d,
k = 1, . . . ,m) in the jth row and kth column corresponds to
the weight of the jth word in the kth traffic indicator, and its el-
ements in the last row correspond to the offsets of each traffic
indicator. For example, suppose that the first traffic indicator
only has a large weight for word today, then it mainly col-
lects information from tweets related to the activities happen-
ing today; suppose that the second traffic indicator only has
a large weight for word airport, then it focuses on the con-
ditions around the airport, etc. Various traffic indicators are
used to depict different aspects of traffic, e.g., according to
time, location, etc. Therefore, it is easy to understand that M
is sparse column-wise, which corresponds to each traffic in-
dicator. However, it may not be sparse row-wise, since some
words may have positive weights in many traffic indicators,
e.g., traffic.

Finally, the matrix St ∈ Rn×m that consists of the
semantic-based traffic indicators for all the tweets in time
stamp t is obtained by St = Ft ×M. Its element Sti,k in the
ith row and kth column measures the strength of the kth traffic
indicator in the ith tweet. Using the previous example, if a
tweet mentions the activities around the beach today, then the
strength of the first traffic indicator according to the seman-
tics of this tweet is large, whereas the strength of the second
traffic indicator (which is related to the conditions around the
airport) is small.

4.2 Optimization Problem
Next, we introduce the optimization problem, which finds the
optimal transformation matrix M that minimizes the traffic
prediction error. To be specific, we solve the following objec-
tive function with respect to M.

min
M,α,βl,γl

T∑
t=max (r1,r2)+1

(δvt − α−
r1∑
l=1

βlδvt−l

−
r2∑
l=1

γl

m∑
k=1

11×nt−lSt−l:,k )2 + λ
m∑
k=1

|M:,k|1 (2)

where λ is a positive parameter that balances between the
two terms, r1 is the maximum time lag associated with traffic
data, r2 is the maximum time lag associated with traffic indi-
cators based on tweet semantics, 11×nt−l is a row vector of
1s, | · |1 is the l1 norm, St−1

:,k and M:,k denotes the kth column
of St−1 and M respectively.

From Equation 2, we can see that the objective function
consists of two terms: the first term measures the prediction
error of δvt using the linear regression model with lags up to
r1 for traffic data and lags up to r2 for traffic indicators based
on tweet semantics; and the second term imposes sparsity on
each column of M.
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Furthermore, regarding the number of traffic indicators
based on tweet semantics, i.e., the number of columns of M,
we have the following lemma.

Lemma. ∀m > 1, the optimal solution to Equation 2 is
equivalent to the optimal solution with m = 1.

Proof sketch. For any matrix M with m columns, we can
generate a vector m by adding all the columns of M together.
The value of the objective function in Equation 2 is the same
with M and m.�

Based on the above lemma, Equation 2 can be simplified
as follows.

min
m,α,βl,γl

T∑
t=max (r1,r2)+1

(δvt − α−
r1∑
l=1

βlδvt−l

−
r2∑
l=1

γl11×nt−lFt−lm)2 + λ|m|1 (3)

Equation 3 can be solved using the following iterative algo-
rithm. It works as follows. We first initialize m to be a vector
of all zeros, which indicates that no tweet semantics are used.
Then, in each iteration, we solve for α, βl (l = 1, . . . , r1), γl
(l = 1, . . . , r2), and m in an alternating way.

Algorithm 1 Iterative Algorithm for solving Equation 3

Require: Ft, δvt (t = 1, . . . , T ), r1, r2, λ, niter
Ensure: α, βl (l = 1, . . . , r1), γl (l = 1, . . . , r2), m

1: Initialize m to be a vector of all zeros.
2: for n = 1 to niter do
3: Fix m, and solve for α, βl (l = 1, . . . , r1), and γl (l =

1, . . . , r2) via linear regression.
4: Fix α, βl (l = 1, . . . , r1), and γl (l = 1, . . . , r2),

and solve for the transformation vector using glm-
net [Friedman et al., 2010].

5: end for

Furthermore, solving the original traffic prediction model
based on auto-regression and the model in Equation 1 can be
seen as special cases of Equation 3. To see this, if we set
m to be a zero vector, we get the original traffic prediction
model without tweet information; on the other hand, if we set
m to be a zero vector except for the last element, which is set
to 1, and set r1 = r2 = 2, we get the model in Equation 1.
Therefore, the value of the objective function with the optimal
vector m is at least as good as the original traffic prediction
model and the model in Equation 1.

5 Experimental Results
In this section, we test the performance of the proposed
framework, and compare with the models based on traffic in-
tensity only, and both traffic intensity and social activity in-
tensity. To be specific, throughout our experiments, we apply
the following three models:

1. Model 1: traffic intensity only;

2. Model 2: traffic intensity and social activity intensity
(based on the model in Equation 1);

3. Model 3: traffic intensity and tweet semantics (based on
the model in Equation 3) using Algorithm 1.

In the third model, we test its performance using two ver-
sions of the feature matrix Ft: one with binary values, and
the other with tf-idf values. For both versions, the number
of columns (e.g., the number of stemmed words) is 161,914,
and the number of rows depends on the time stamp.

In Equation 3, ideally, the maximum time lag r1 for traf-
fic data and r2 for Twitter data in each of the three models
should be tuned by cross-validation. Empirical studies in
traffic prediction practice typically suggest optimal values for
r1 ranging from 2 to 6 [Kamarianakis and Prastacos, 2003;
Min and Wynter, 2011]. For r2, the results in Table 1 suggest
that the most recent or the second most recent covariate as-
sociated with social activity tend to be statistically significant
for predicting traffic. Therefore, for the purpose of concept
demonstration, in our experiments, each model incorporates
exactly the two most recent time lags for both traffic data and
Twitter data. In other words, for the first model, δvt−1 and
δvt−2 are used to predict δvt; for the second model, δvt−1,
δvt−2, δct−1, and δct−2 are used; for the third model, δvt−1,
δvt−2, Ft−1, Ft−2 are used.

The entire data set consisting of both traffic data and Twit-
ter data are partitioned into two parts, with the beginning
(s − 1)/s (s = 3, 4, 5, 6, 7) as the training set and the re-
maining as the test set. Model estimation and prediction are
performed with various time resolutions. For the training data
set, the models are estimated through 5-fold cross-validation.

The prediction performance is evaluated by two measures,
namely Mean Absolute Percentage Error (MAPE) and Root
Mean Square Error (RMSE), which are calculated as follows

MAPE =
1

T −max (r1, r2)

T∑
t=r+1

(
|δvt − δv̂t|

vt
)

RMSE =

√√√√ 1

T −max (r1, r2)

T∑
t=r+1

(δvt − δv̂t)2

where δv̂t denotes the estimated value of δvt.
Figure 3 shows the comparison results of the three mod-

els in terms of both MAPE and RMSE for time resolution
of 12 hours. The results for other time resolutions are sim-
ilar and hence omitted for brevity. From this figure, we can
see that the information in social media indeed helps improve
the performance of traffic prediction. To be specific, by in-
cluding the tweet counts as the covariates, the second model
performs better than the first one, which is only using traf-
fic information; by leveraging the traffic indicators based on
tweet semantics, the third model further improves the perfor-
mance in terms of both MAPE and RMSE. Furthermore, the
difference between using binary valued and tf-idf valued fea-
ture matrices is not significant in most cases. This might be
explained by the fact that the presence of certain keywords
(instead of the frequency) is enough to characterize the traffic
condition.

For illustration purpose, we also show in Figure 4 the pro-
file of predicted values vs. the true values for a sample par-
tition where the last 1/7 of the data is used as the test data.

1391



6.02
5.83

6.23

7.00

5.18

5.87
5.59

6.12

6.81

5.005.07 5.18

6.12

6.78

4.52
4.78

5.18

6.16

6.78

4.51

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1/7 1/6 1/5 1/4 1/3

M
AP

E 
(%

)

Frac!on of test data

model 1 model 2 model 3 - binary model 3 - "idf

(a) MAPE

191
185

209
226

187181 183

207
223

183

159
173

204

221

171

157

173

204

221

172

0

50

100

150

200

250

1/7 1/6 1/5 1/4 1/3

RM
SE

Frac!on of test data

model 1 model 2 model 3 - binary model 3 - "idf

(b) RMSE

Figure 3: Comparison of different models

From this figure, we can see that our proposed model (model
3) tracks the fluctuation in the traffic volume better model 1
(using traffic information only) and model 2 (using both traf-
fic information and tweet counts): in the first 3 intervals, the
predicted values using model 3 are closer to the true values
than the other two models; and in the remaining 8 intervals,
the predicted values using model 3 well approximate the true
values.
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Figure 4: Prediction profile of different models (unit time
stamp = 12 hours)

Furthermore, by including the l1 norm in the objective
function, our proposed framework generates a sparse trans-
formation vector m, which helps us understand the way social
media affects traffic. In other words, the non-zero elements in
m correspond to the key words in tweets that indicate traffic
conditions, such as ucberkeley, albany (which is a city close

to Berkeley in the Bay Area), Friday, giants, etc. Interest-
ingly, the word giants is the name for San Francisco baseball
team, which indicates that sports-related activities are a key
factor in traffic prediction.

6 Conclusion
In this paper, motivated by the fact that people tend to post
traffic-related content in social media, we answer the fol-
lowing question: can we leverage such information to im-
prove traffic prediction. To this end, we first perform correla-
tion analysis between traffic measurements and tweet counts,
and then propose a general optimization framework to extract
traffic indicators based on tweet semantics. Experimental re-
sults on traffic data and Twitter data collected from the San
Francisco Bay area between August 3, 2011 and Septem-
ber 30, 2011 demonstrate the improved performance of our
model over the existing traffic prediction model based on
auto-regression.
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