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In this paper, analytical solutions are presented for temperature and thermal behavior of a thermosensitive 
multilayered annular disc due to point heat source. Convective heating is applied to both the innermost and 
outermost layers. The nonlinearity of the thermal diffusivity Eq.is dealt using Kirchhoff’s transformation technique. 
A finite integral transform in the form of Bessel’s function is used to deal with the radial variable r. Fourier 
transform and angular eigen functions are also used to solve the thermal diffusivity equation. Deflection, resultant 
forces, shearing forces, resultant moments and thermal stresses are obtained. A mathematical representation is 
formulated for a 3-layered disc, with the inner, middle and outer layers composed of copper, zinc and aluminum 
respectively. The results are depicted graphically. 

 
Key words: multilayered annular disc, thermosensitive, heat conduction, instantaneous point heat source, 

deflection, stresses. 
 

1. Introduction 
 

 Multilayered configurations like composite and sandwich plates, circular discs, comprise multiple 
layers that offer superior structural and thermal characteristics. These structures find extensive applications in 
aviation, civil and offshore engineering. The careful consideration of mechanical performance under 
temperature variations is crucial in the production of multiple layered structures. Temperature changes cannot 
just cause significant inner pressures but may impact the characteristics of the materials within these structures. 
Due to increase in the use of mechanical structures in high temperature environment in the last three decades, 
the study of thermo-mechanical behavior of different materials with properties that vary with temperature has 
received attention. 
 Noda [1] discussed the influence of physical characteristics affected by temperature on thermal behavior 
of different solids. Olcer [2] presented a thorough examination of temperature profile by considering finite-length 
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circular-cylinder. Gorman [3] investigated how temperature gradient in a radial parabolic manner affects lateral 
oscillations in orthotropic-circular-plates. Popovich et al. [4, 5] studied the heat conduction problems on various 
solids. Malzbender and Jülich [6], Kayhani et al. [7] derived thermal solutions for multilayered structures. Singh 
[8], Singh et al. [9], Kayhani et al. [10] obtained analytical solutions of heat transfer in different cylindrical and 
multiple layered structures. Norouzi [11] obtained explicit solution of thermoelastic profile for composite 
laminated structures with multiple spherical fiber-layers. Dalir and Nourazar [12] studied unsteady-state heat 
transfer of cylindrical structures having multiple concentric layers and obtained solutions for a 3-dimensional 
problem. Popovich and Kalynyak [13] developed an analytical framework and studied static thermal profile of 
multilayered thermally sensitive cylinder. Torabi and Zhang [14] found solutions for unsteady-state heat 
conduction with asymmetry, determined stresses of multiple layered solids. Manthena et al. [15] considered a 
thermally sensitive functionally graded rectangular plate and studied the effect of stress resultants on thermal 
stresses. Bhad et al. [16] studied the thermoelastic problem in multilayered elliptical composite plate with internal 
heat generation. Manthena et al. [17-22] studied the temperature and stress profile of various solids subjected to 
temperature dependent and independent material properties.  
 Jangid and Mukhopadhyay [23] presented an alternative solution for a initial-value and boundary-
value problem. Etkin [24] elucidated the thermal-impulse's physical significance through the concept of 
entropy. Srinivas et al. [25] carried out thermoelastic analysis by taking rectangular-parallelepiped subjected 
to convection and temperature dependent characteristics. Razavi et al. [26], Balci and Akpinar [27], Bikram 
and Kedar [28], Etkin [29], Su et al. [30] solved various problems of steady state and un-steady state 
temperature profile and analyzed the corresponding thermal stresses. In order to ascertain the expression of 
temperature and stresses, Lamba [31] examined the behaviour of fractional time derivative in temperature-
sensitive FG cylinders. Recently, in a thermo-diffusive medium, Yadav et al. [32] successfully established a 
significant memory response. Also the related work is reflected in [33, 34]. 
 In this work the authors try to investigate the influence of point heating on temperature and thermal 
profile of a thermally sensitive multilayered annular circular disc. The k layered disc is defined over 

, ,i 1 ir r r 0 2 0 z h− < < < θ < π < < . Heat conduction equation (HCE) is solved by integral-transform method 
and thermoelastic behavior is analyzed. Graphical analysis is carried out for a 3-layered disc. 
 
2. Heat conduction equation and its solution 
 
 Figure 1 gives the depiction of the layered circular disc in a geometric form.  
 

 
 

Fig.1. Multilayered disc. 
 
The unsteady HCE with internal heat generation of a multilayered annular circular disc is [9]: 
 

  ( ) ( ) ( ) ( , , , ) ( )i i i i
i i i i i i i i i2

T T T T1 1r T T T Q r z t C T
r r r z z tr

     ∂ ∂ ∂ ∂∂ ∂ ∂λ + λ + λ + θ = ρ     ∂ ∂ ∂θ ∂θ ∂ ∂ ∂     
 (2.1) 
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where ( ) , ( )i i i iT C Tλ  are respectively, the temperature dependent thermal conductivity, specific heat capacity 
of the ith layer, iρ  is the density of the ith layer, ( , , , )Q r z tθ  is the internal heat generation and , , ,..., .i 1 2 3 k=  
Following [9], the initial, boundary, inner and outer surface, interface, periodic boundary conditions are given 
in Eqs (2.2) to (2.7). 
 
  , at ,iT 0 t 0= =  (2.2) 
 

  ( ) , at ,1
1 1 0 1 0

TT h T 0 r r
r

∂λ + = =
∂

 (2.3) 

 

  ( ) ( , , ), at ,k
k k k k k k

TT h T f z t r r
r

∂
λ + = θ =

∂
 (2.4) 

 

  
( , , , ) ( , , , ),

( ) ( ) ,
i 1 i 1

i i 1 i 1 i 1

i i 1
i i i 1 i 1

r r r r

T r z t T r z t

T TT T
r r

− −

− − −

−
− −

= =

θ = θ

∂ ∂
λ = λ

∂ ∂

 (2.5) 

 

  , ( ) ( ) ,i i
i i i i i i0 2

0 2

T TT T T Tθ= θ = π
θ= θ = π

∂ ∂
= λ = λ

∂ θ ∂ θ
 (2.6) 

 
  , at , .iT 0 z 0 h= =  (2.7) 
  
We use following dimensionless parameters. 
 

  

( ) *

* , * , * , * , * , * ,

( , )*, * , * , * , , , ,

i i1
i i2

0 1

22
ji i

i i j
1 1 1

T tr zT r z t
T h 2 h h

hr h E a hr h E a j 1 2
h E

ρκθ= = θ = = = ρ =
π ρ

ϖ
= = = ϖ = =

κ κ

 (2.8) 

 
where 0T  is the ambient temperature, h is the thickness of the disc, ( )/ ,1 1 1 1Cκ = λ ρ  is the thermal diffusivity 
of the inner layer, , ,1 1 1Cλ ρ  are heat transfer properties, density, Ei is the Young’s modulus, , ja ϖ  are the 
frequency. 
The temperature dependent material properties ( ) ( ),i i i iT C Tλ , and heat flow ( , , )kf z tθ  are taken as [4, 5, 13] 
 

  
( ) * ( *), ( ) * ( *),

( , , ) *( *, *, *), ( , , , ) *( *, *, *, *),

i i 1 i i i i 1 i i

k 0 k 0

T T C T C C T

f z t f f z t Q r z t Q Q r z t

λ = λ λ =

θ = θ θ = θ
 (2.9) 

 
where ,1 1Cλ  have dimensions, ,0 0f Q  are the strength of the heat flow having relevant dimensions, and 

( ) ( )* * , * *i i i iT C Tλ  are the dimensionless quantities, which are functions that describe the dependence of 
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these characteristics on dimensionless temperature, ( )* *, *, *kf z tθ , ( )* *, *, *, *Q r z tθ  are the dimensionless 
functions which describe the space distribution of the heat flow. 
Using Eqs (2.8-2.9), Eqs (2.1-2.7) reduces to the following dimensionless form (ignoring asterisks for 
convenience). 
 

  
( ) ( ) ( ) ( , , , )

( ) .

i i i
i i i i i i 02 2

i
i i i

T T T1 1r T T T P Q r z t
r r r z z4 r

TC T
t

     ∂ ∂ ∂∂ ∂ ∂λ + λ + λ + θ =     ∂ ∂ ∂θ ∂θ ∂ ∂π     
∂

= ρ
∂

  (2.10) 

 
The initial, boundary, inner and outer surface, interface, periodic boundary conditions are given in Eqs (2.11) 
to (2.16) 
 
  , at ,iT 0 t 0= =   (2.11) 
 

  ( ) , at ,1
1 1 1 1 1

TT Bi T 0 r
r

∂λ + = =Φ
∂

 (2.12) 

 

  ( ) ( , , ), at ,k
k k 2 k k 2

TT Bi T Ki f z t r
r

∂
λ + = θ =Φ

∂
 (2.13)  

  

  
( , , , ) ( , , , ),

( ) ( ) ,
i 1 i 1

i i 1 i 1 i 1

i i 1
i i i 1 i 1

r r r r

T r z t T r z t

T TT T
r r

− −

− − −

−
− −

= =

θ = θ

∂ ∂
λ = λ

∂ ∂

 (2.14)  

   

  

,

( ) ( ) ,

i i0 1

i i
i i i i

0 1

T T

T TT T

θ = θ=

θ= θ=

=

∂ ∂
λ = λ

∂ θ ∂ θ

 (2.15) 

 
  , at , .iT 0 z 0 h= =  (2.16) 
 

Here 
2

0
0

1 0

Q hP
T

=
λ

 and 0

1 0

f hKi
T

=
λ

 are respectively the dimensionless Pomerantsev reference number and 

dimensionless Kirpichev reference number, ,0 k
1 2

1 1

h h h hBi Bi= =
λ λ

are the Biot criteria and 

( / ), ( / )1 0 2 kr h r hΦ = Φ = . 
Introducing Kirchhoff’s variable transformation [4, 5, 13]  
 

  ( ) ( ) ,i

o

T
i i i i iT T d TΘ = λ  (2.17)  
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and considering the material with simple thermal nonlinearity (that is [ ( ) / ( )]i i i iC T T 1λ ≈ ), Eqs (2.10) to (2.16) 
become: 
  

  ( , , , ) .
2 2 2

i i i i i
0 i2 2 2 2 2

1 1 P Q r z t
r r tr 4 r z

∂ Θ ∂Θ ∂ Θ ∂ Θ ∂Θ
+ + + + θ = ρ

∂ ∂∂ π ∂θ ∂
 (2.18) 

 
The initial, boundary, inner and outer surface, interface, periodic boundary conditions are given in Eqs (2.19)-
(2.24).  
 
  , at ,i 0 t 0Θ = =  (2.19) 
 

  , at ,1
1 1 1Bi 0 r

r
∂Θ + Θ = =Φ
∂

 (2.20) 

 

  ( , , ), at ,k
2 k k 2Bi Ki f z t r

r
∂Θ

+ Θ = θ =Φ
∂

 (2.21) 

 

  
( , , , ) ( , , , ),

,
i 1 i 1

i i 1 i 1 i 1

i i 1

r r r r

r z t r z t

r r
− −

− − −

−

= =

Θ θ = Θ θ

∂Θ ∂Θ
=

∂ ∂

 (2.22) 

 

  

,

,

i i0 1

i i

0 1

θ = θ =

θ = θ=

Θ = Θ

∂Θ ∂Θ
=

∂ θ ∂ θ

 (2.23) 

 
  , at , .i 0 z 0 hΘ = =  (2.24) 
 
To solve HCE (2.18), let: 
 

  
( , , ) ( ) ( ) exp( ),

( , , , ) ( ) ( ) ( ) ( ).

k 0 0

a 0 0

f z t z z at

Q r z t r r z z t

θ =δ θ − θ δ −

θ = δ − δ θ − θ δ − δ
 

 
Using Fourier transform on Eqs (2.18) and (2.24), we get: 
 

  ( , , , ) .
2 2

2i i i i
n i n i2 2 2 2

1 1 Q r t
r r tr 4 r

∂ Θ ∂Θ ∂ Θ ∂Θ
+ + − ψ Θ + θ ψ = ρ

∂ ∂∂ π ∂θ
 (2.25) 

 
The conditions (2.19-2.23) become; 
 
  , at ,i 0 t 0Θ = =   (2.26) 
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  , at ,1
1 1 1Bi 0 r

r
∂Θ + Θ = =Φ
∂

 (2.27) 

 

  ( , , ), at ,k
2 k k n 2Bi f t r

r
∂Θ

+ Θ = ψ θ =Φ
∂

 (2.28) 

 

  
( , , , ) ( , , , ),

,
i 1 i 1

i i 1 n i 1 i 1 n

i i 1

r r r r

r t r t

r r
− −

− − −

−

= =

Θ θ ψ = Θ θ ψ

∂Θ ∂Θ
=

∂ ∂

  (2.29) 

 

  

,i i0 1

i i

0 1

θ= θ=

θ= θ=

Θ = Θ

∂Θ ∂Θ
=

∂ θ ∂ θ

  (2.30) 

where 
 

  
/ , ( , , ) sin( / ) ( )exp( ),

( , , , ) ( / )sin( / ) ( ) ( ) ( ).

n k n 0 0 0

0 0 0 a 0

n h f t Ki z n z h at

Q r z t z P n z h r r t

ψ = π ψ θ = π δ θ − θ

θ = π δ − δ θ − θ δ
  

 
Considering periodic conditions, ( , , )i r tΘ θ  is expanded as: 
 

  ( ) ( )( , , ) ( , ) ( , )cos ( , )sin .i i0 imc ims
m 1 m 1

r t r t r t m r t m
∞ ∞

= =
Θ θ = Θ + Θ θ + Θ θ   (2.31) 

 
Similarly, the expression for heat supply is taken as: 
 

  ( ) ( )( , ) ( , ) ( , )cos ( , )sin .k k 0 kmc kms
m 1 m 1

f t f t f t m f t m
∞ ∞

= =
θ = θ + θ θ + θ θ    (2.32) 

 
Using the orthogonality conditions along axial direction, the coefficients in Eq.(2.32) are obtained as: 
 

  

( , ) ( , , ) ,

( , , ) ( , , )cos( ) ,

( , , ) ( , , )sin( ) .

1

i0 i
0

1

imc i
0
1

ims i
0

f r t f r t d

f r t f r t m d

f r t f r t m d

= θ θ

θ = θ θ θ

θ = θ θ θ







  (2.33) 
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Using Eqs (2.31) and (2.32) in Eqs (2.25) and (2.30), we get; 
 

  ( , ) .
2 2

2im im im
im n im m i2 2 2

1 m Q r t
r r tr 4 r

 ∂ Θ ∂Θ ∂Θ
+ − Θ − ψ Θ + = ρ  ∂ ∂∂ π 

  (2.34) 

 
The conditions (2.26-2.29) become 
 
  , at ,im 0 t 0Θ = =  (2.35) 
 

  , at ,1m
1 1m 1Bi 0 r

r
∂Θ

+ Θ = =Φ
∂

 (2.36) 

 

  ( ), at ,km
2 km km 2Bi f t r

r
∂Θ

+ Θ = =Φ
∂

 (2.37) 

 

  
,

,

( , ) ( , ),

i 1 i 1

im i 1 i 1 m i 1

i 1 mim

r r r r

r t r t

r r
− −

− − −

−

= =

Θ = Θ

∂Θ∂Θ
=

∂ ∂

 (2.38) 

 
where  
 

  
( ) exp( ), sin( / )sin( / ),

( , , ) ( ) ( ), ( / )sin( / )sin( / ).

km 1 1 0 0 0 0

n 2 a 2 0 0 0 0 0

f t A at A Ki z m 2 n z h

Q r t A r r t A z P n z h m 2

= = θ θ π

ψ = δ − δ = θ π θ

 

 

Using integration and operating eqn. (2.34) by ( )
i

i 1

r

im
r

r S r dr
−

 , we get [9] 

  

( ) ( ) ( ) ( )

( )( ) ( ( , )) ( ) ( ) .

i 2

2
i 1

i i i

i 1 i 1i 1

r 2
2im im

im n im im2 2
r

r r r
im im im

im im m im i im
r rr

S r S r1 m S r S r r dr
r rr 4 r

S rr S r r Q r t r S r dr r S r dr
r r t

−

− −−

 ∂ ∂
+ − − ψ Θ +  ∂∂ π 

   ∂Θ ∂ ∂Θ
+ − Θ + = ρ    ∂ ∂ ∂    



 
 (2.39) 

 
( )imS r  in Eq.(2.39) is chosen so that it satisfies the following differential equation 

 

  ( ) ( ) ( ) .
2

2 2
2 2im im
n im im2 2

S r S r m1 S r 0
r rr 4 r

 ∂ ∂
+ + − − ψ + α =  ∂∂ π 

 (2.40) 

 
Subject to inner and outer surface, interface conditions 



V.B. Srinivas et al.  125 

 

  ,1m
1 1m

dS Bi S 0
d r

+ =   (2.41) 

 

  ,km
2 km

dS Bi S 0
d r

+ =   (2.42) 

 

  
,

,

( ) ( ),

.
i 1 i 1

im i 1 i 1 m i 1

i 1 mim

r r r r

S r S r

dSdS
d r d r

− −

− − −

−

= =

=

=

  (2.43) 

 
Solution of these eqns. in terms of Bessel’s function is expressed as: 
 
  ( ) ( ) ( ).imp imp imp 0 imp imp 0 impS r a J r b Y rα = α + α  
 
Orthogonality condition 
 

  
; ,

( ) ( ) ( ) ; ,

i

i 1

rk

imp imp imp imq
imp impi 1 r

0 p q
r S r S r dr

S p q
−=

≠
α α =

α =    (2.44) 

 
  2 2

i imp 1 1mpκ α = κ α   (2.45) 
 
Using Eq.(2.40), Eq.(2.39) becomes: 
 

  

( )
( ) ( ( , ) ) ( )

( ) .

r riS r iimpimr S r r Q r t r S r drimp im m impr r rr i 1i 1
ri 2im r S r dri imp im imptri 1

 ∂∂ Θ
 − Θ + =∂ ∂   −−

 ∂ Θ
 = ρ + α Θ
 ∂
 −

 (2.46) 

 
Using Eq.(2.45), Eq.(2.46) becomes: 
 

  

( )
( ) ( ( , ) ) ( )

( / ) ( ) .

i i

i 1i 1

i

i 1

r r
impim

imp im m imp
rr

r
2im

i 1 i 1mp im imp
r

S r
r S r r Q r t r S r dr

r r

r S r dr
t

−−

−

 ∂∂ Θ
− Θ + = 

∂ ∂  

 ∂ Θ
= ρ + κ κ α Θ  ∂ 




  (2.47) 

 
After simplification, we get: 
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( )
( ) ( , ) ( )

( / ) ( ) .

i i

i 1i 1

i

i 1

r rk k
impim

i imp im i m imp
i 1 i 1 rr

rk
2im

i i 1 i 1mp im imp
i 1 r

S r
r S r r Q r t r S r dr

r r

r S r dr
t

−−

−

= =

=

 ∂∂ Θ
λ − Θ + λ = 

∂ ∂  

 ∂ Θ
= λ ρ + κ κ α Θ  ∂ 

  

 
  (2.48) 

 
We define 
 

  

( ) ,

( , ) ( ) .

i

i 1

i

i 1

rk

mp i imp im
i 1 r

rk

mp i im imp
i 1 r

r S r dr

Q Q r t r R r dr

−

−

ϕ

=

ϕ

=

Θ = λ Θ

= λ

 

 

  (2.49) 

 
Hence Eq.(2.48) becomes: 
 

  
( )

( / ) ( ) .
i

i 1

rk
mp imp2 im

i 1 i 1mp mp i imp im mp
i 1 r

d S r
r S r r Q

d t r r
−

ϕ
ϕ ϕ

=

 Θ ∂∂Θ
ρ + κ κ α Θ = λ − Θ + 

∂ ∂  
   (2.50) 

 
Applying the interface conditions (2.38) and (2.43), yields 
 

  exp( ) ( )mp
3 mp 4 5

d
A A at A t

d t

ϕ
ϕΘ

+ Θ = + δ   (2.51) 

 
where 

  
( / ) , ( / ),

( , ), ( , ) [ ( ) ( ) ]
i

i 1

2
3 1 i i 1mp 4 1 k k k

r

5 2 i i 1 i i 1 a i
r

A A A r

A A F r r F r r r r r S r dr
−

− −

= κ ρ κ α = λ ρ

= = δ −

 

 
and 
  , at .mp 0 t 0ϕΘ = =   (2.52) 
 
Using Laplace transform (LT), LT inversion on Eqs (2.51), (2.52), we get: 
 
  [exp( ) exp( )] exp( ).mp 1 3 5 3E at A t A A tϕΘ = − − + −   (2.53) 
 
Here ( / )1 4 3E A A a= + . 

The generalized Fourier series expansion of ( , )im r tΘ  is  
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  ( , ) ( ) ( ),im mp imp
p 1

r t c t S r
∞

=
Θ =   (2.54) 

 

where  ( ) [ ( ) ] / [ ( )].
i

i 1

rk

mp i imp im imp imp
i 1 r

c t r S r dr S
−=

= λ Θ α    

 
Now using Eq.(2.49), we get 
 
  ( ) [ ] / [ ( )].mp mp imp impc t Sϕ= Θ α  
 
Using Eq.(2.54) in Eq.(2.31), we get 
 

  ( , , ) ( ) ( )cos( ) ( )sin( )i 2 i0 p 3 imp 4 imp
p 1 m 1 p 1 m 1 p 1

r t S r S r m S r m
∞ ∞ ∞ ∞ ∞

= = = = =
Θ θ = Ψ + Ψ θ + Ψ θ   ,  (2.55) 

 
where  
 
  [ ] / [ ( )], [ ] / [ ( )], [ ] / [ ( )]2 i0 p i0 p 3 mpc imp imp 4 mps imp imp0 p S S Sϕ ϕ ϕΨ = Θ α Ψ = Θ α Ψ = Θ α . 
 
Applying inverse Fourier Sine transform on the above Eq.(2.55), yields 
 

  

( , , , ) ( ) ( )cos( )

( )sin( ) sin( / ).

i 2 i0 p 3 imp
n 1 p 1 m 1 p 1

4 imp
m 1 p 1

r z t S r S r m

S r m n z h

∞ ∞ ∞ ∞

= = = =

∞ ∞

= =

Θ θ = Ψ + Ψ θ +


+ Ψ θ π


  


  (2.56) 

 
Heat conductivity is taken as [1]: 
 
  ( ) exp( ),i i i0 1 i 1T T 0λ = λ ϖ ϖ ≤ .  (2.57) 
 
Here i0λ  is the dimensionless reference value of thermal conductivity defined by, 
 

  
( )

* i0
i0

i 1 0−

λ
λ =

λ
. 

 
Substituting Eq.(2.57) in Eq.(2.17), yields 
 
  ( / )[exp( ) ].i i0 1 1 iT 1Θ = λ ϖ ϖ −  (2.58) 
 
Using Eq.(2.58) in Eq.(2.56), yields 
 
  ( , , , ) ( / ) log [ ( , , , ) ]i 1 eT r z t 1 g r z t 1θ = ϖ θ +  (2.59)  
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where 

  

( , , , ) ( / ) ( ) ( )cos( )

( )sin( ) sin( / ).

1 i0 2 i0 p 3 imp
n 1 p 1 m 1 p 1

4 imp
m 1 p 1

g r z t S r S r m

S r m n z h

∞ ∞ ∞ ∞

= = = =

∞ ∞

= =

θ = ϖ λ Ψ + Ψ θ +

+ Ψ θ π


  


 

 
We use the following logarithmic expansion 
 
  log [ ( , , , ) ] [ ( , , , )] ( / ) [ ( , , , )] ( / ) [ ( , , , )] ...2 3

e g r z t 1 g r z t 1 2 g r z t 1 3 g r z tθ + = θ + θ + θ +   (2.60) 
 
Ignoring terms with order greater than one, we get: 
 
  ( )log ( , , , ) ] ( , , , ).e g r z t 1 g r z tθ + = θ  
 
Hence Eq.(2.59) becomes 
 

  

( , , , ) ( / ) ( ) ( )cos( )

( )sin( ) sin( / ).

i i0 2 i0 p 3 imp
n 1 p 1 m 1 p 1

4 imp
m 1 p 1

T r z t 1 S r S r m
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∞ ∞ ∞ ∞

= = = =

∞ ∞
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θ = λ Ψ + Ψ θ +


+ Ψ θ π


  

 
  (2.61) 

 
3. Thermoelastic analysis 
 
 In the cylindrical coordinate system, the boundary conditions for thin disc with support at both ends 
are [35]: 
 

  ( )( )

( )
i2 2 i 2

T
i i

1w M
1 D

−∇ ∇ = ∇
− ν

  (3.1) 

 
where  
 

  ( ), .
32 2

2 i
i2 2 2 2

i

E h1 1 D
r rr r 12 1

∂ ∂ ∂∇ = + + =
∂∂ ∂ θ − ν

  (3.2)  

 
Subject to conditions  
 

  
( )

( ) , at .
i

i ww 0 t 0
t

∂= = =
∂

  (3.3) 

 
The problem is restricted under thermal load by an elastic reaction along the boundaries ,0 kr r r r= = , [16, 22] 
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i i 1
i 1

i i 1

i 1

w w 0 r r
r

w w 0 r r
r

w w r r

w w r r
r r

−
−

−

−

∂ + = =
∂

∂ + = =
∂
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∂ ∂= =
∂ ∂

  (3.4) 

 
It is assumed that the constants of proportionality specified as per Hooke's law are one. 
Resultant and shearing forces, moments are [35]: 
 
  ( ) ( )( ) ,i ii

rr rN N N 0θθ θ= = =   (3.5) 
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i i

i i T2
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  (3.7) 

 
Here ( )i

rrM  satisfies the condition 
 
  ( ) ,

0

i
rr r r

M 0
=

=      .0 1< θ <   (3.8) 

 
Stress components are 
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  ( ) ( )( ) , ( ) .
h h

i i
i i i i i i i iT T

0 0

M E T T z dz N E T T dz= α = α    (3.10) 

 
Here ( )i iTα  is the temperature dependent coefficient of linear thermal expansion assumed as: 
 
  ( ) exp( ),i i i0 2 i 2T T 0α = α ϖ ϖ ≥ .  (3.11) 
 
Here i0α is the dimensionless reference value of coefficient of linear thermal expansion defined by, 
 

  
( )

* i0
i0

i 1 0−

α
α =

α
. 

 
Using Eqs (2.61) and (3.11), in Eq.(3.10), we get ( )i

TM  and ( )i
TN  as: 
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where 

  
[( / )][( ( )cos( ) ( cos( ) cos( ))],

[( / )][ ( )cos( ) cos( )].

2 2 2 2 2 2
5 2 2 2

2 2 2
6 2 2 2 2
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h 24n 24 12n 8 3 8 3 n 3n
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Using Eq.(3.12), the deflection ( )iw  of the ith layer from Eq.(3.1) is obtained as: 
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where  , cos( ), sin( ).1 2 2 3 3 4
p 1 m 1 p 1 m 1 p 1

m m
∞ ∞ ∞ ∞ ∞

= = = = =
Φ = Ψ Φ = Ψ θ Φ = Ψ θ    

 
Using Eqs (3.12) and (3.14), Eqs (3.7), (3.9) are solved with the help of Mathematica software.  
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4. Numerical analysis 
 
 For numerical analysis, a mathematical model is formulated for a 3-layered disc, with the inner, middle 
and outer layers composed of copper, zinc and aluminum, respectively [22].  
Let ambient temperature 0T 20= , , , , ,0 1 2 3r 1 r 2 r 3 r 4= = = =  inner layer 0 1r r r< < , middle layer 

,1 2r r r< <  outer layer .2 3r r r< <  
 Figures 2(a), 2(b), 2(c) shows temperature along , ,z rθ  respectively. Here temperature distribution 
follows a sinusoidal nature. Along axial direction, its magnitude suddenly increases and reaches to zero 
towards the end. Along radial direction, the temperature slowly increases and attains peak and reduces towards 
the inner-layer. 
 

 
   

Fig.2a. Plot of temperature along θ  Fig.2b. Plot of temperature along z Fig.2c. Plot of temperature along r
 
 The following Figs (3-7) on left represent homogeneous case, while on right represent 
nonhomogeneous case. 
 Figures 3(a), 3(b) show the dimensionless deflection along , rθ  respectively. Due to the application 
of heat, the deflection is more in outer-layer as compared to other layers. Its magnitude is more in the 
temperature dependent case as compared to the temperature independent case.  
 Figures 4(a), 4(b), 5(a), 5(b) show the dimensionless resultant moments along , rθ . The moment .Mθθ  

is tensile in nature, while rrM  is seen to be tensile and compressive in different regions. 

 Figures 6(a), 6(b), 6(c) show ,θθσ while Figs 7(a), 7(b), 7(c) show rrσ  along , ,z rθ . θθσ  is tensile 

along , zθ , while radially its nature changes in both cases. Magnitude of rrσ  gradually increases with increase 
in , zθ , while along r direction it becomes compressive and attains tensile nature towards the inner-layer. 
 

 
 

Fig.3(a). Plot of deflection along .θ  
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Fig.3(b). Plot of deflection along r. 
 

 
 

Fig.4(a). Plot of Mθθ  along .θ  
 

 
 

Fig.4(b). Plot of Mθθ along r. 
 

 
 

Fig.5(a). Plot of rrM along .θ  
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Fig.5(b). Plot of rrM along r. 
 

 
 

Fig.6(a). Plot of θθσ along .θ  
 

 
 

Fig.6(b). Plot of θθσ along z. 
 

 
 

Fig.6(c). Plot of θθσ along r. 
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Fig.7(a). Plot of rrσ along .θ  
 

 
 

Fig.7(b). Plot of rrσ along z. 
 

 
 

Fig.7(c). Plot of rrσ along r. 
 

5. Validation of the results 
 
 This paper presents a mathematical model for a multilayered thin annular circular disc. The asymmetric 
heat conduction problem with time-dependent boundary conditions and heat source is solved using the finite 
integral transform approach. The temperature distribution, along with its corresponding deflection, resultant 
moments, and thermal stress distributions, has been derived. As a limiting case, if we consider homogeneous 
material properties, the results agree with [22]. 
 
6. Conclusion 
 
 Thermal behavior of a multiple layered annular circular disc due to instantaneous point heating is 
investigated in this paper by taking thermally sensitive material properties. The HCE is solved using 
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Kirchhoff’s method and finite integral transform method. In the temperature independent case, the radial stress 
suddenly changes to compressive nature as the heat passes from middle layer to inner layer, whereas it is tensile 
in nature for all regions in the temperature dependent case. The point heat source generates heat in the annular 
disc in the middle layer. This heat source causes the temperature rise in the middle layer, while heat propagates 
accordingly in the inner and outer layers. The annular disc experiences notable variations in thermoelastic 
properties due to the introduction of point heat source. 
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Nomenclature 
 
 ( )i iC T  – specific heat capacity of the ith layer 
 Di – bending rigidity of the ith layer 
 Ei – Young’s modulus of the ith layer 
 h – thickness of the disc 
 h0, hK – surface coefficients  

 ( ) ( ), ii
rrM Mθθ  – resultant moments 

 ( ) ( ),i i
T TM N  – thermally induced resultant moments of the ith layer 

 ( ) ( ) ( ), ,i ii
rr rN N Nθθ θ  – resultant forces 

 ( , , , )Q r z tθ  – internal heat generation 

 ( ) ( ), ii
rrQ Qθθ  – shearing forces 

 iT  – temperature of the ith layer 
 T0 – ambient temperature  
 w(i) – deflection of the ith layer 
 ( )i iTα  – temperature dependent coefficient of linear thermal expansion 
 ( )i iTλ  – thermal conductivity of the ith layer 
 iv  – Poisson’s ratio of the ith layer 
 iρ  – density of the ith layer 
 ,rr θθσ σ  – components of stress functions 
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