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ABSTRACT
We study the NP-hard Fair Connected Districting problem:
Partition a vertex-colored graph into 𝑘 connected components (sub-
sequently referred to as districts) so that in every district the most
frequent color occurs at most a given number of times more often
than the second most frequent color. Fair Connected Districting
is motivated by various real-world scenarios, such as district-based
elections, where agents of different types, which are one-to-one rep-
resented by nodes in a network, have to be partitioned into disjoint
districts. We conduct a fine-grained analysis of the (parameterized)
computational complexity of Fair Connected Districting: We
study its parameterized complexity with respect to various graph
parameters, including treewidth, and problem-specific parameters,
including the numbers of colors and districts, and its complexity
on graphs from different classes (such as paths, stars, and trees).
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1 INTRODUCTION
Stoica et al. [18] recently introduced graph-based problems on fair
(re)districting, employing “margin of victory” as the measure of fair
representation. They performed theoretical and empirical studies;
the latter clearly supporting the practical relevance of these prob-
lems. In our paper, we focus on the theoretical aspects, significantly
extending their findings in this direction.

Dividing agents into groups is a ubiquitous task. Electoral dis-
tricting is one of the prime examples: All voters are assigned to
political districts, in which their own representatives are chosen.
Another example emerges in education; in many countries, children
are assigned to schools based on their residency. In such scenarios,
the agents (in the settings above, voters or school children) are
often placed on a (social or geographical) network.

In districting, there are various objectives. What we study here
can be interpreted as a “benevolent” counterpart of gerrymander-
ing, which is well-studied in voting theory. For gerrymandering,
every voter is characterized by their projected vote in the upcom-
ing election. The goal is then to find a partition of the voters into
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connected districts such that some designated alternative gains the
majority in as many districts as possible. Following Stoica et al.
[18], we consider an opposite objective. That is, we assume that
some central authority wishes to partition the agents, which are of
different types, into connected districts that are fair, where a district
is deemed fair if the margin of victory in the district is smaller than
a given bound. The margin of victory of a district is the minimum
number of agents whose deletion results in a tie between the two
most frequent types in the district: In electoral districting where
agents’ types represents their projected vote, a low margin of vic-
tory may foster competition among politicians, thereby motivating
elected officials to do a great job. When partitioning children into
school districts, types may model sociodemographic attributes such
as race and gender, and a low margin of victory could be beneficial
to prevent the existence of schools where one trait is in a clear
majority and which may thus be only associated with this single
trait (see Stoica et al. [18] for a more extensive discussion).

In our work, we search for tractable special cases of fair district-
ing over graphs focusing on Fair Connected Districting:

Fair Connected Districting (FCD)
Input: An undirected graph 𝐺 = (𝑉 , 𝐸), a set 𝐶 of colors, a
function col : 𝑉 → 𝐶 assigning each vertex one color from 𝐶 ,
a number 𝑘 ≤ |𝑉 | of districts, a maximum margin of victory
ℓ , and two integers 𝑠max ≥ 𝑠min ≥ 1.
Question: Does there exist a partition of the vertices into
𝑘 districts (𝑉1, . . . ,𝑉𝑘 ) such that, for all 𝑖 ∈ [𝑘], 𝑉𝑖 is ℓ-fair,
|𝑉𝑖 | ∈ [𝑠min, 𝑠max], and the graph 𝐺 induced by the vertices
from 𝑉𝑖 is connected?

A set of vertices 𝑉 ′ is ℓ-fair if the difference between the occur-
rences of the most and second-most frequent color in𝑉 ′ is at most ℓ .

2 CONTRIBUTION
It is easy to see that FCD generalizes the NP-hard Perfectly Bal-
anced Connected Partition problem [4, 6], which asks for a
partition of an undirected graph into two connected components
of the same size. This motivates a parameterized complexity analy-
sis and the study of restrictions of the underlying graph in order
to identify tractable special cases. We investigate the influence of
problem-specific parameters (the number |𝐶 | of colors, the num-
ber 𝑘 of districts, and the margin of victory ℓ) and the structure of
the underlying graph on the computational complexity of FCD.

We show that FCD is NP-hard even if |𝐶 | = 𝑘 = 2 and ℓ = 0 but
polynomial-time solvable on paths, cycles, stars, and caterpillars
(for stars, our algorithm even runs in linear time).1 Subsequently,

1While in real-world applications these simple graphs may occur not often, they are
the building blocks of more complex graphs. This also motivated a study of these graph
classes for gerrymandering over graphs [2, 9, 11]. Moreover, initially, it is not at all clear
that FCD is polynomial-time solvable on these graphs, as, for instance, gerrymandering
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we extend our polynomial-time algorithms for paths and cycles to a
polynomial-time algorithm for all graphs with a constant max leaf
number (mln), which are basically graphs that consist of a constant
number of paths and cycles (where the two endpoints of each path
and one point from each cycle can be arbitrarily connected).

Remarkably, in our most involved hardness reduction, we show
that FCD already becomes NP-hard and even W[1]-hard with re-
spect to |𝐶 | +𝑘 on trees. However, when the number of colors or the
number of districts is constant, FCD on trees becomes polynomial-
time solvable. In fact, we show that these results hold for some
tree-like graphs as well. Herein, the tree-likeness of a graph is
measured by one of three parameters, namely, the treewidth (tw),
the feedback edge number (fen), and the feedback vertex number
(fvn). More precisely, as our most involved algorithmic results, we
establish polynomial-time solvability of FCD when the number
of colors and the treewidth are constant. We achieve this with a
dynamic programming approach on the tree decomposition of the
given graph empowered by some structural observations on FCD.
Moreover, we observe that there is a simple polynomial-time al-
gorithm on graphs with a constant feedback edge number when
there are a constant number of districts. On the other hand, we
prove that FCD is NP-hard for two districts even on graphs with
fvn = 1 (and tw = 2). Lastly, we show that FCD is polynomial-time
solvable on graphs with a constant vertex cover number (vcn) and
fixed-parameter tractable with respect to the vertex cover number
and the number of colors. A summary of our parameterized results
can be found in Figure 1. Notably, all our hardness results also hold
without size constraints.

In our studies, we identify several sharp complexity dichotomies.
For instance, FCD is polynomial-time solvable on trees with diame-
ter at most three but NP-hard and W[1]-hard with respect to |𝐶 | +𝑘
on trees with diameter four. Similarly, FCD is NP-hard and W[1]-
hard with respect to |𝐶 | + 𝑘 on graphs with pathwidth at least two
but polynomial-time solvable on pathwidth-one graphs.

To summarize, we show that FCD without size constraints is NP-
hard even in very restricted settings, e.g., on trees or if |𝐶 | = 𝑘 = 2
and ℓ = 0. To make the problem tractable, one possibility is to
significantly restrict the input graph, e.g., to consist of a constant
number of paths and cycles, or to combine structural parameters
of the given graph with the number |𝐶 | of colors or the number 𝑘
of districts 2. For small |𝐶 | and 𝑘 , the tractability of FCD extends
to certain tree-like graphs and graphs with a small vertex cover
number. In contrast to the parameters |𝐶 | and𝑘 , which have a strong
influence on the complexity of FCD, the bound ℓ on the margin of
victory has only little impact as all hardness results already hold
for ℓ = 0 and all our algorithmic results hold for arbitrary ℓ . The
full version of our paper is available on arXiv [3].

3 RELATEDWORK
Stoica et al. [18] introduced Fair Connected Regrouping, which is
a generalization of our FCD problem. Fair Connected Regrouping
differs from FCD in that, in Fair Connected Regrouping, one is

over graphs is NP-hard even on paths [2, Theorem 1]. This also proves that FCD is
sometimes easier than the corresponding gerrymandering over graphs problem.
2Notably, in most applications, the number of colors and districts should be rela-
tively small. E.g., in their experiments, Stoica et al. [18] partitioned 50,000 voters
into 10 voting districts and 41,834 schoolchildren into 61 school districts with |𝐶 | = 7.
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Figure 1: Overview of our parameterized complexity results.
Each box represents one parameterization of FCD. An arc
from parameter 𝑝 to another parameter 𝑝 ′ indicates that 𝑝
is upper-bounded by some function of 𝑝 ′. For parameters in
the red area (dotted), we prove that FCD is NP-hard even if
the parameter is a constant. For parameters in the orange
area (dashed), we prove W[1]-hardness and present an XP-
algorithm. For parameters in the yellow area (solid thick),
we have an XP-algorithm but W[1]-hardness is unknown.
The green area (solid) indicates fixed-parameter tractability.

additionally given a function that specifies for each vertex to which
district it can belong. They proved that Fair Connected Regroup-
ing is NP-hard even for only two colors and two districts. Moreover,
Stoica et al. [18] considered special cases of Fair Connected Re-
grouping: Fair Regrouping (omitting connectivity constraints)
and Fair Regrouping_X (further omitting any restriction to which
districts vertices can belong). They proved that Fair Regrouping
is NP-hard for three colors but in XP with respect to the number of
districts, and that Fair Regrouping_X is in XP with respect to the
number of colors.

FCD is relevant in district-based elections. Several papers have
studied how to assign voters to constituencies so as to “fairly” reflect
the political choices of voters [1, 12, 13, 16, 17]. Well-studied in this
context is gerrymandering, which can be regarded as a “malicious”
counterpart to our problem. In gerrymandering, the task is to parti-
tion a set of voters into districts obeying certain conditions such
that a designated alternative wins in as many districts as possible.
Initially, gerrymandering has been predominantly studied from the
perspective of social and political science [8, 10, 15] but more re-
cently also different variants of gerrymandering (over graphs) have
been considered from an algorithmic perspective [2, 5, 7, 9, 11, 14].
In particular, as done here for FCD, Bentert et al. [2], Gupta et al. [9],
and Ito et al. [11] analyzed the complexity of gerrymandering on
paths, cycles, and trees and studied the influence of the number of
candidates/colors and the number of districts.
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