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Covariant description of canonical formalism
in geometrical theories

CEDOMIR CRNKOVIC and EDWARD WITTENT

Quantum field theories are usually studied either by means of path integrals
or by means of canonical quantization. Path integral quantization has the
great virtue of explicitly maintaining all relevant symmetries, such as
Poincaré invariance. The canonical dpproach is usually interpreted as an
approach that ruins Poincaré invariance from the beginning through an
explicit choice of a ‘time’ coordinate. This is not necessarily so, however.
The essence of the canonical formalism can be developed in a way that
manifestly preserves all relevant symmetries, including Poincaré invariance
(Witten, 1986; Zuckerman, 1986). The purpose of the present paper is to
carry this out in the case of non-abelian gauge theories and general
relativity.

In the canonical formalism of a theory with N degrees of freedom, one
usually introduces coordinates and momenta p' and ¢/,i,j=1,..., N. One
then defines the two-form

w=dp' Adq'. §))
It is convenient to combine the p'and ¢’ in a variable @', I=1,...,2N, with
Q'=p' for i<N and Q'=q "N for i>N. One can think of w as an
antisymmetric 2N x 2N matrix w;, whose non-zero matrix elements are
; ;+8= —®;4+y,;= 1. This matrix is invertible; we will denote the inverse
matrix as w'’. One defines the Poisson bracket of any two functions A(Q')
and B(Q') by '

.y 0A 0B

[4.B]=0" 351 507" 2)
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Given the form of (1), this is easily seen to coincide with the usual definitions
of Poisson brackets. The advantage of the definition in (2) is that, as is well
known (see e.g. Abraham and Marsden, 1967), the essential features of w can
be described in an invariant way. Let Z be the phase space of the theory
under discussion, that is, the space on which the ps and gs are coordinates. If
one interprets w as a two-form on Z, then it is clearly a closed two-form,

dw=0, (3)
since its components are constant in the coordinate system used in (1). What
is more, we have already noted that the matrix  is invertible. The converse
to this is as follows. Let w be any two-form on a manifold Z (which for us will
be the phase space of a physical theory). Suppose that  is closed (obeys (3)),
and is non-degenerate in the sense that at each point z € Z, the matrix w;;(z)
is invertible. Then it is a classical theorem that locally one can introduce
coordinates on Z to put w in the standard form (1). (This is not true globally
in theories with interesting geometrical content.) A non-degenerate closed
two-form is called a symplectic structure. Thus, to describe the canonical
formalism of a theory it is not at all necessary to find or choose ps and gs; the
essence of the matter is to describe a symplectic structure on the classical
phase space. ‘

Clearly, the notion of a ‘symplectic structure on phase space’ is a more
intrinsic concept than'the idea of choosing ps and gs. However, at first sight
it might appear that the very concept of phase space is a non-covariant
concept, tied to a non-covariant, Hamiltonian description. This is not really
so. The whole idea, classically, of picking ps and gs is that the initial values of
the ps and gs determine a solution of the classical equations. More precisely,
classical solutions of any given physical theory, in any given coordinate
system, are in one-to-one correspondence with the values of the ps and gs at
time zero. This simple consideration leads us to a manifestly covariant
definition of what we mean by classical phase space: in a given physical
theory, classical phase space is the space of solutions of the classical
equations. We can always, if we wish, pick a coordinate system and identify
the classical solutions with the initial data in that coordinate system, but
there is no necessity to make such a non-covariant choice.

Given a relativistic field theory, such as the scalar field theory with
Lagrangian

L=j (% 0.0 a“qs—V(qs)), )
M

(here M is spacetime, and ¢ is a scalar field), how do we go about finding a
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covariant description of a symplectic structure on the space, Z, of classical
solutions? A point in Z is a solution of the classical equations

0=A¢—V'(¢), (5)
with A= —9, &* being the standard Laplacian. In order to construct a
symplectic structure on Z, we will need to discuss functions, tangent vectors,
differential forms, and exterior derivatives on Z.

Functions on Z are, of course, the easiest to discuss. Among the most
important are the following. Let x € M be a spacetime point. If ¢ is a solution
of (5), its value ¢(x) at the point x is a real number. The mapping from the
function ¢ to the number ¢(x) is a real valued function on Z. We will denote
this function by ¢(x). '

Now we will consider tangent vectors. At a point p € Z, corresponding to a
solution of (5), a tangent vector would be a small displacement in ¢ which
preserves (5). Thus, a tangent vector is the same as a solution of the
linearized equations which we obtain by expanding around a solution of (5).
Requiring that ¢ = ¢+ d¢ should obey (5) to lowest order in ¢, we find

0=Ad¢—V"(¢) 6¢. (6)
A solution of (6) is a tangent vector at the point in phase space
corresponding to the solution ¢. The tangent space is the vector space T of
solutions of (6).

Now, how do we describe one-forms on Z? The space of one-forms is, of
course, the dual of the tangent space which we have just described; it is the
. space of linear functionals on T. Most important for our purposes are certain
one-forms on Z which we will now describe. Let x € M be a spacetime point.
For every solution d¢ of (6), its value d¢(x) at the point x is, of course, a
number. The transformation from the function 8¢ to the number 5¢(x) is a
one-form on phase space which we will call d¢(x). More generally, we can
make k-forms as wedge functions of the one-forms d¢(x):

A= f dxy...dx, 0, (4)00(x() 6¢(xs) . . . 9(x,). (7)

Here, for each n-tuple of spacetime points x;...x, o, .($) is an
arbitrary zero form — an arbitrary real valued functlon on Z. On the right-
hand side of (7), the product of the d¢(x;) is understood to be a wedge
product. In particular, as the wedge product of one-forms is anticommuting,
we interpret the d¢(x) as anticommuting objects:

A 56(x) 5(y)= — ¢ (») 6¢(x). 8)

The general n-form on Z can be expanded as in (7); this expansion, however,
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is not unique, since the d¢(x) are not linearly independent, being subject
to (6).

Finally, we need an exterior derivative on Z, which we will call 0 and
which must map k forms to (k+ 1)- forms. It should obey

§%=0 9)
and the Leibniz rule
6(AB)=06A B+ (—1)"4-5B. (10)

We define by saying that acting on the zero-form (function) ¢(x), é gives
the one-form that we have called ¢(x). The Leibniz rule then determines the
action of § on an arbitrary zero-form I":

o(I'(¢))= de 560 0o(x), (11)

where 0I'/d¢(x) is just the variational derivative of I" with respect to ¢(x).
Equation (11) is a familiar formula to which we are giving, perhaps, a
slightly novel meaning. To act with ¢ on k-forms of k>0, one must bear in
mind, first of all, that as the one-form d¢(x) is the exterior derivative of the
zero-form ¢(x), it must be closed:

6(0¢(x))=0. (12)
Also, using the Leibniz rule, we then have the exterior derivative of a general
k form (7):

SA= f dx,. . .dx ‘%Jd)(—xﬂ@(s(p (x0) 86(x,) ... 36(x.).  (13)
Xo

Although our definition of  has been rather formal, one can readily see that
it possesses the standard properties of the exterior derivative. Thus,if Visa
vector field, A a zero-form, and iy the operation of contraction with V, we
have V(A)=i, oA.

Having defined the relevant concepts, how are we to find a symplectic
structure in, say, the scalar field theory (4)? The idea (Witten, 1986;
Zuckerman, 1986) is to consider the ‘symplectic current’

Jo(x)=0¢(x) 0, 6(x). (14)
At each spacetime point, (14) is a two-form on Z; but in its dependence on x,
J, is a conserved current:

0,J*(x)=0. (15)
To verify (15), one needs the equation of motion (6) and the fact that d¢ is
anticommuting. As J, is conserved, its integral over an initial value
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hypersurface X,
=f d=,Je, (16)
b

is independent of the choice of Z and so in particular is Poincaré invariant.
The two-form  is our desired symplectic structure on Z. It is evidently
closed, in view of (12), and it is easy to see that upon picking X to be the
standard initial value surface t=0, (16) reduces to

=J 8¢ 8¢, ’ (17)
z

which (as in (1)) is the standard formula.

Our goal in the present paper is to implement this procedure in the case of
Yang-Mills theory and general relativity. The main novelty that arises is the
need to establish gauge invariance as well as Poincaré invariance of the
symplectic structure. We will consider the two cases in turn.

16.1 Yang-Mills theory

Consxdermg first Yang—Mills theory, let 4 be the gauge connection and F
the Yang—Mills curvature or field strength. The covariant derivative of a
charged field A is D,A=0,A +[A4,, A]. The Yang-Mills equation of motion
is

0=[D*,F,,]=0"F,,+[4", F,]. (18)
. The variation of (18) is
D#6F ,,+[04*,F,,]=0. (19)
We define the symplectic current J,(x) as
J.=Tr[0A4* 6F ], (20)
where
0F,,=D,06A,—D,6A,. (21)

Let us show that J, is conserved. We have
*J,=Ti[D* 6A* 6F ]+ Tr[6A*D* 6F,,]
=3 Tr[6F* 6F,,] —Tr[04*[6A4° oF,,]]=0. (22)
On the last line of (22), the second term vanishes because 64 is
anticommuting, and the first because éF is anticommuting. So the two-form

= f Tr[64* 6F,,] dZ* (23)
z

N\

is Poincaré invariant.
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It is easy to sce that w is also closed; § 4*, being the exterior derivative of
the zero-form A4*, is closed, while, in view of (21) and the anticommutativity
of 6, we have

8(0F ;) =8(D, 54, —D, 6A4,) = 8([A,, 64] ~ [A,, 54,])
={64,,64,} —{64,,54,}=0. . (24)

Therefore, o is closed.
It remains to discuss the behavior of w under gauge transformations. First
of all, the gauge transformation law for the gauge field is

A,— A, +[D,e]l=A4,+0,e+[A,¢€]. (25)
Varying (25), we find that under gauge transformations, dA transforms as
0A,— 04,+[64,,¢]. (26)

In particular, 64 transforms homogeneously under gauge transformations.
And JF transforms in the same way: .

OF ,, = O6F ,,+[0F ,, €]. 27
Consequently, J* and  are gauge invariant.

This is an important step in the right direction, but it is not the end of the
story. Let Z be the space of solutions of (18), and let Z be the space of
solutions of (18) modulo gauge transformations. Thus, Z=Z/G, with G
being the group of gauge transformations. So far we have defined a gauge-
invariant closed two-form @ on Z. What we want is a gauge-invariant closed
two-form on Z. We would like to show that the differential form w that we
have defined on Z is the pullback from Z to Z of a differential form on Z,
which we will also call @. This will be so if the following condition is obeyed.
If V is any vector field tangent to the G orbitson Z,and i, is the operation of
contraction with ¥ the requirement is i, =0. This is a fancy way of saying
that the components of w in the gauge directions are zero; one must require
this since the gauge directions are eliminated in passing from Z to Z, so a
differential form on Z cannot have non-zero components in those directions.

" In Yang—-Mills theory, the gauge directions in field space are simply

0A,=D,e. S (28)
More generally, we can consider a field variation
04,=8A,+D,e, (29)

which has a gauge component D ¢, and another component 8’4, which is
not pure gauge. To verify that w has vanishing components in the gauge
directions, we must show that if we insert (29) in the definition of w, the term
proportional to ¢ drops out. The expression which must vanish is
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Aw= f dZ, Tr[D,e 0F + 04, [F**, ]] = J dz,d, Tr(eF™).  (30)

In the last step, we have used anticommutativity of ¢ and 6F* and the
equation of motion (19). Indeed, (30) vanishes, being the integral of a total
derivative, and this completes the construction of a symplectic structure on
the gauge-invariant space Z.

16.2 General relativity

We now turn our attention to general relativity. The discussion is similar,
although somewhat more complicated. Let g,, be the metric tensor of
spacetime, and R,,,, the corresponding Riemann tensor. The equation of
motion of pure general relativity is the Einstein equation R,,=0. To find its
variation, remember that for any vector field V, one has

[Du’ Dv] Vo= Raluv V;.' (3 1)
One finds for the variation of the Einstein equation
0=D,dI%,—D,dI%,. (32)
Here
5r;v=%g¢B(Dy 6gvﬂ +Dv 5gu[3 _Dﬁ 5g;1v) (33)

is the variation of the Levi-Civita connection I'. Note that 6T transforms as
a tensor. We define the symplectic current

J*= 612 [69" +3g" 6Ing] —oT,,[dg™ +39™ S Ing], (34)
where 61ng=4Indet(g,,)=g"" 6g,,= —g,, 09"". Also keep in mind that

3g"* = —g"*g" 0g,.
We have to show that D,J*=0. Terms with éIng give

(D, o1%,)g" d1lng —4(D, 0T}, )g* dIng +460%,9"*D,d1Ing
' —1060%,9%D,81n g=58T%,g" 6T, (35)

where we have used (33), (32), the fact that the metric tensor is covariantly
constant, and the anticommutativity of 6I". The remaining terms are

(Da 51_‘:\1) 59’“ + 5rz.vDa 59‘" - (Da 5r;v) 590‘# - 5r;‘;vDa 5gau
= —0I'},D, g™ =0T, 6T kg™,
which, together with (35), gives D,J*=0. This makes

N w=fd2anJ“
p>

Poincaré invariant.
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Let us show that w is closed, dw=0. We have

dw> =J d5,(0./g J°+/9 879
z
8J*= —44T%, 6g*" 6lng+34I}, 09 SIng.

Remembering that §Ing is an anticommuting one-form whose square is
zero, we have

8J*=—4J*51ng.
As 6\/g=%\/g dIng, dw=0. Thus, w is closed.

It now remains to investigate gauge invariance of w. The fact that w is
invariant under diffeomorphisms is relatively trivial; it follows from the fact
that all ingredients in the definition of w, including I', transform
homogeneously, like tensors. As in the Yang-Mills case, the more delicate
point is to show that we obtain a closed two-form not just on the space Z of
solutions of the Einstein equations, but also on the subtler space Z= Z/G,
with G being the group of diffeomorphisms. We must show that components
of w tangent to the G orbits vanish. Under a diffeomorphism x, - x,+¢,,
the metric changes by

Guv = Guv + D&, +D,g,.

We assume ¢ has compact support or, more generally, is asymptotic at
infinity to a Killing vector field. It we write

5guv=5lguv+Du8v+Dv8u9 (36)
where the De terms are pure gauge but &g is not, then our task is to show
that, with (36) inserted in w, the De terms do not contribute. It is useful first
to rewrite J* as
J*=4g"*(D, 69,4+ D, 69,5 — Dy 89,,) 09"

—1iD,8g** 5Ing+409**D,61ng—3(D*Ing)dlng. (37
Inserting (36) in (37), the term linear in ¢ is (after dropping the ' from &'g)
AJ*=[D,,D*Je, 6g*" +[D,, D,] 6g*"¢’

+D,[(D, 6g"" + D" 51n g)e*+ D” g"%,
+D,e*6g"* +3D%*Slng — (x> v)], (38)
where we have used (33), (32), and the identity [D,, D,]e* =0, which follows
from R,,=0. We are entitled to discard from AJ* terms of the form D, X*?,

with X*° being an antisymmetric tensor; such terms will vanish when
inserted in the integral for w. Discarding such total derivatives from (38), we
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are left with
Rv}.uasl 5guv + (R“).vu 59)4 + Ra}.vp 69“}')8."

= (Rv).ua + Ravu}.)al 5guv = gapRp).uval 59‘” = O
Therefore, components of @ tangent to the action of the diffefomorphism
group are zero.

In conclusion, we have described in a manifestly covariant way the
foundations of the canonical formalism of Yang—Mills theory and general
relativity. Since a similar treatment of string theory has been given
elsewhere, it seems that such an approach is possible for all of the
geometrical theories in physics.

References

Abraham, R. and Marsden, J. E. (1967). Foundations of Mechanics. Benjamin: New
York. )

Witten, E. (1986). Interacting field theory of open superstrings. Nucl. Phys., B276, 291.

Zuckerman, G. (1986). Action functionals and global geometry. Yale University preprint,
to appear in the proceedings of the San Diego workshop, ed. S.-T. Yau et al.



	Page1
	Page2
	Page3
	Page4
	Page5
	Page6
	Page7
	Page8
	Page9

