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Abstract. This study applied the exponential filter to pro-
duce an estimate of root-zone soil moisture (RZSM). Four
types of microwave-based, surface satellite soil moisture
were used. The core remotely sensed data for this study came
from NASA’s long-lasting AMSR-E mission. Additionally,
three other products were obtained from the European Space
Agency Climate Change Initiative (CCI). These datasets
were blended based on all available satellite observations
(CCI-active, CCI-passive, and CCI-combined). All of these
products were 0.25◦ and taken daily. We applied the filter to
produce a soil moisture index (SWI) that others have suc-
cessfully used to estimate RZSM. The only unknown in this
approach was the characteristic time of soil moisture varia-
tion (T ). We examined five different eras (1997–2002; 2002–
2005; 2005–2008; 2008–2011; 2011–2014) that represented
periods with different satellite data sensors. SWI values were
compared with in situ soil moisture data from the Interna-
tional Soil Moisture Network at a depth ranging from 20 to
25 cm. Selected networks included the US Department of En-
ergy Atmospheric Radiation Measurement (ARM) program
(25 cm), Soil Climate Analysis Network (SCAN; 20.32 cm),
SNOwpack TELemetry (SNOTEL; 20.32 cm), and the US
Climate Reference Network (USCRN; 20 cm). We selected
in situ stations that had reasonable completeness. These
datasets were used to filter out periods with freezing temper-
atures and rainfall using data from the Parameter elevation
Regression on Independent Slopes Model (PRISM). Addi-
tionally, we only examined sites where surface and root-zone
soil moisture had a reasonably high lagged r value (r > 0.5).

The unknown T value was constrained based on two ap-
proaches: optimization of root mean square error (RMSE)

and calculation based on the normalized difference vegeta-
tion index (NDVI) value. Both approaches yielded compara-
ble results; although, as to be expected, the optimization ap-
proach generally outperformed NDVI-based estimates. The
best results were noted at stations that had an absolute bias
within 10 %. SWI estimates were more impacted by the in
situ network than the surface satellite product used to drive
the exponential filter. The average Nash–Sutcliffe coeffi-
cients (NSs) for ARM ranged from−0.1 to 0.3 and were sim-
ilar to the results obtained from the USCRN network (0.2–
0.3). NS values from the SCAN and SNOTEL networks were
slightly higher (0.1–0.5). These results indicated that this ap-
proach had some skill in providing an estimate of RZSM.
In terms of RMSE (in volumetric soil moisture), ARM val-
ues actually outperformed those from other networks (0.02–
0.04). SCAN and USCRN RMSE average values ranged
from 0.04 to 0.06 and SNOTEL average RMSE values were
higher (0.05–0.07). These values were close to 0.04, which is
the baseline value for accuracy designated for many satellite
soil moisture missions.

1 Introduction

Soil moisture is one of the most difficult hydrologic variables
to either monitor or model (Lettenmaier et al., 2015). Under-
standing soil moisture dynamics is critical to support many
diverse applications in hydrology, meteorology, and agricul-
ture. In the agricultural sector, a fundamental limiting fac-
tor that constrains crop productivity is root-zone soil mois-
ture (RZSM). Understanding root-zone moisture dynamics
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is important also from a water resource standpoint and is a
valuable measure in drought monitoring (Bolten et al., 2010;
Bolten and Crow, 2012). The dimensions of RZSM also im-
pact other systems beyond the hydrologic cycle, most notably
with the quantification of carbon fluxes within soils. There-
fore, direct sensing of RZSM dynamics will bring us closer
to a truer understanding of the carbon soil pool, with obvious
implications for future climate change.

Given the importance of RZSM to agricultural and other
applications, more effort is needed to understand the im-
pacts of climate change associated with this critical vari-
able. The National Aeronautics and Space Administration
(NASA), European Space Agency (ESA), and other gov-
ernments across the world have had a long history of sup-
porting missions that generate remotely sensed surface soil
moisture, including the Scanning Multichannel Microwave
Radiometer (SMMR), the Special Sensor Microwave Imager
(SSM/I), Tropical Rainfall Measurement Mission (TRMM),
Advanced Microwave Scanning Radiometer-Earth Observ-
ing System (AMSR-E), Soil Moisture and Ocean Salinity
(SMOS), Soil Moisture Active Passive (SMAP), scatterom-
eters on the European remote sensing satellites, which in-
cludes scatterometer (SCAT) and the advanced scatterometer
(ASCAT) to name only a few (e.g., Lakshmi et al., 1997;
Wagner et al., 1999; Kerr et al., 2001; Jackson et al., 2002;
Hutchinson, 2003; Njoku et al., 2003; McCabe et al., 2005;
Owe et al., 2008; Entekhabi et al., 2010). Passive microwave
soil moisture estimates, like AMSR-E-measured horizon-
tal and vertical polarization temperatures in several wave-
lengths, which include 6.6/6.9 GHz (C band), 10.7 GHz (X
band), and 19.3 GHz (Ku band). In addition, the vertical po-
larization is examined at 36.5/37.0 GHz (Ka band). An ad-
vantage of the more recent SMOS and SMAP missions is
that they operate at a lower frequency 1.2/1.4 GHz (L band),
which has great penetrative power, especially in highly veg-
etated areas. In terms of the active sensors, both SCAT and
ASCAT operated at 5.3 GHz (C band) and have a similar de-
sign philosophy. These sensors make sequential observations
of the backscattering coefficient with six sideways-looking
antennas and make sequential observations of the backscat-
tering coefficient using three polarizing antennas.

Liu et al. (2012) described the development of two exten-
sively validated surface soil moisture products. These prod-
ucts were created using a harmonized dataset based on all
available soil moisture retrievals: one from the Vienna Uni-
versity of Technology (TU Wien) based on active microwave
observations (Wagner et al., 2003; Bartalis et al., 2007) and
one from the Vrije Universiteit Amsterdam (VUA), in col-
laboration with the NASA Goddard Space Flight Center Hy-
drological Sciences Laboratory, based on passive microwave
observations (Owe et al., 2008). This effort was a part of
the ESA Climate Change Initiative (CCI). The harmoniza-
tion of these datasets incorporated the advantages of both mi-
crowave techniques and spanned the entire period from 1978
onward. This effort is unlike NOAA’s Soil Moisture Oper-

ational Products System (SMOPS), which was a long-term
record of soil moisture based on only passive microwave
data.

A long-standing goal of the soil remote sensing commu-
nity is to develop techniques that can observe changes in
RZSM at depths greater than 10 cm, because all of the mis-
sions described above are confined to sensing moisture only
within the top 5 cm of the profile. In 2015, NASA launched
the SMAP mission that had the potential to combine the ad-
vantages of passive and active microwave retrievals to es-
timate soil moisture dynamics at depth. Unfortunately, early
on in this mission, the satellite’s radar failed. Despite this set-
back, NASA had invested considerable resources into the de-
velopment of an ensemble Kalman filter (EnKF)-based level
4 RZSM product for SMAP (Reichle et al., 2016) and the
development of lower-frequency airborne radar systems for
deeper penetration of the soil column (via the EV-1 Air-
MOSS project). While this work is to be commended, the
limited time availability of these products precludes their use
for long-term climatic trend studies.

This study used the exponential filter to leverage the
longer-duration CCI surface soil moisture record to produce
a record of RZSM that can be compared over almost two
decades (1997–2014). Wagner et al. (1999) developed the
exponential filter to examine soil moisture trends from Eu-
ropean remote sensing (ERS) scatterometer data focusing on
Ukraine. A later refinement of this filter included the de-
velopment of a recursive version that had the virtue of a
greater ease of implementation (Albergel et al., 2008). In re-
cent years, several authors have produced RZSM estimates
using the exponential filter and have conducted comparisons
at a range of spatial scales (Ford et al., 2014; Manfreda et
al., 2014; Qiu et al., 2014; Peterson et al., 2016; Kedzior
and Zawadzki, 2016). At the heart of the exponential filter
method is the assumption of hydrologic equilibrium within
the soil profile that makes it possible to estimate RZSM by
using only surface measurements, provided that soil physical
properties are known. This method also assumes that there is
no loss from the root zone due to transpiration. Transfer of
soil moisture from the surface to the root zone is controlled
by a pseudo-diffusivity term that allows both positive and
negative fluxes from and to the deep layer. This approach
overcame a limitation of the EnKF approach in that data as-
similation is not dependent on obtaining data from a land
surface model, in which there can be significant uncertainty
in terms of the model parameters used to constrain water and
energy balances (Kumar et al., 2009). This study presents
the results of the application of the exponential filter pro-
duced using four satellite soil moisture products from 1997
to 2014 focusing on the continental United States (CONUS).
As such, this work represents a unique application of the ex-
ponential filter over a multi-decadal timescale, which is only
afforded by the long-duration CCI record.
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Table 1. Observation eras from 1997 to 2014.

Era Description Time range

1 Pre-AMSR-E 27 November 1997–18 June 2002
2 Early AMSR-E 19 June 2002–30 June 2005
3 Middle AMSR-E 1 July 2005–30 June 2008
4 Late AMSR-E 1 July 2008–3 October 2011
5 Post-AMSR-E 4 October 2011–31 December 2014

2 Data

2.1 Era definitions

The data examined in this study span over 17 years. As
such, we compared soil moisture produced by the expo-
nential filter over five roughly equal eras (3–4.5 years),
which were defined based on the available satellite re-
trievals during each era (see Liu et al., 2012). These eras
included 27 November 1997–18 June 2002 (pre-AMSR-E),
19 June 2002–30 June 2005 (early AMSR-E), 1 July 2005–
30 June 2008 (middle AMSR-E), 1 July 2008–3 Octo-
ber 2011 (late AMSR-E), and 4 October 2011–31 Decem-
ber 2014 (post-AMSR-E; Table 1). The pre-AMSR-E era re-
lied heavily on the TRMM microwave imager (TMI) passive
observations and SCAT active retrievals that operated until
2006. In fact, the climatology of the passive dataset during
this period was rescaled based on TMI data and likewise
the same was true of AMSR-E during eras 2–4. During the
early AMSR-E era, passive observations from the WindSat
satellite became available online (Gaiser, 2004). The mid-
dle AMSR-E era was a time of transition in terms of active
observations as the SCAT satellite was replaced by ASCAT.
The late AMSR-E era saw the arrival of the ESA SMOS mis-
sion. After the failure of AMSR-E, SMOS observations took
on a more prominent role within the CCI passive microwave
framework. Also during the post-AMSR-E era, the Japanese
Space Agency launched AMSR2 (Wentz et al., 2014), which
is considered the replacement for the long-lasting AMSR-E
mission.

2.2 In situ soil moisture

Direct in situ comparisons were made between RZSM esti-
mates with in situ data from the International Soil Moisture
Network (ISMN; Dorigo et al., 2011). The ISMN provides
access to a host of meteorological and soil moisture data (at
many depths). In this study, we selected soil moisture at two
depths. Surface soil (0–10 cm) and RZSM (20–25 cm) mois-
ture were compared to assess the performance of the expo-
nential filter method. In this study, we focused on four net-
works within CONUS that have been examined in previous
studies. Al Bitar et al. (2012) conducted an extensive evalua-
tion of SMOS data using two networks; we utilized the Soil
Climate Analysis Network (SCAN; 20.32 cm) and SNOw-

pack TELemetry (SNOTEL; 20.32 cm). Additionally, we ob-
tained soil moisture observations from two other CONUS
networks: the US Department of Energy Atmospheric Ra-
diation Measurement (ARM; 25 cm) program (Jackson et
al., 1999) and the US Climate Reference Network (USCRN;
20 cm; Bell et al., 2013). Complete ARM observations only
existed from eras 1 to 4, and USCRN data were available
for only era 5 (Table 1). In situ values were aggregated to a
daily time step (based on UTC time) that matched the sur-
face satellite-based soil moisture product described below.
Figures 1 and 2 show the location of the stations selected
across the five eras.

The ARM network used the Campbell Scientific 229-L
heat dissipation matric potential sensor to estimate soil mois-
ture (Reece, 1996). Calibration of this method was based
on comparison of matric potential with soil water release
curves (Klute, 1986). Conversely, the SCAN, SNOTEL, and
USCRN networks all used a Stevens Water Hydra Probe
(Schaefer et al., 2007; Bell et al., 2013). Seyfried et al. (2005)
described the calibration approach and how the dielectric
measurements from the Hydra Probe sensor were converted
into volumetric soil moisture measurements.

2.3 Surface satellite-based soil moisture

This study was supported by four surface (5 cm) soil mois-
ture products, three of which came from the CCI program.
We used the CCI-passive, CCI-active, and CCI-combined
products (version 2.2). The harmonization process involved
in the creation of these products was described by Liu et
al. (2012) and these datasets are available online (http://www.
esa-soilmoisture-cci.org/node/145). In addition, we also uti-
lized stand-alone data from the AMSR-E mission during
eras 2–4. In this study, we acquired the version produced by
the Land Surface Parameter Model (LPRM; Owe et al., 2008;
ftp://hydrol.sci.gsfc.nasa.gov/data/s4pa/WAOB). All of these
satellite soil moisture products were produced at a daily time
step with a 0.25◦ spatial resolution.

2.4 Other datasets

Several other datasets were used in an ancillary role. Air tem-
perature and precipitation data were obtained from the Pa-
rameter elevation Regression on Independent Slopes Model
(PRISM; Daly et al., 1994) from grid cells (4 km spatial res-
olution) co-located with examined in situ sites (PRISM Cli-
mate Group 2015). These data were used to screen dates be-
low freezing and with significant precipitation data, as sug-
gested by Dorigo et al. (2011), to enhance quality control.

In addition, normalized difference vegetation index
(NDVI) values (Tucker, 1979) were used to help constrain
the only unknown in the exponential filter (the characteris-
tic time length) and were derived from Moderate Resolu-
tion Imagining Spectroradiometer (MODIS) data. The ver-
sion of MODIS (MOD13Q1) used near-infrared reflectances
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Figure 1. Locality map of examined in situ stations (ARM: X; SCAN: ∗; SNOTEL: +) with (a) era 1, (b) era 2, and (c) era 3. The gray area
represents the central CONUS, whereas white indicates the eastern and western regions of CONUS.

that were atmospherically corrected to mask water, clouds,
aerosols, and cloud shadows. Datasets were provided in a si-
nusoidal grid with a 250 m resolution, and an average of nine
pixels around each in situ station were used to calculate a
global average NDVI for each era.

3 Methods

3.1 Initial station filtering

To ensure selection of the highest-quality in situ stations, we
applied two criteria in our initial station selection. The first

criterion involved the amount of missing data within a can-
didate station. Sites that had an excessive number of missing
data, a total of over 20 days per year, were rejected. A second
criterion related to a fundamental assumption of the exponen-
tial filter method, which is that there is a hydrologic connec-
tion between the surface and root-zone horizons. One would
expect that deeper within the profile there would be a greater
lag in response. Therefore, a lagged r value between surface
measurements (generally made at 5 cm) and root-zone data
from 20 to 25 cm depth was made. Root-zone lag was cal-
culated between 1 and 40 days, and the day with the high-
est lagged r value was selected. Stations whose maximum
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Figure 2. Locality map of examined in situ stations (ARM: X; SCAN: ∗; SNOTEL:+) with (a) era 4 and (b) era 5. During era 5, X represents
USCRN instead of ARM stations. The gray area represents the central CONUS, whereas white indicates the eastern and western regions of
CONUS.

lagged r value fell below 0.5 were rejected. Qiu et al. (2014)
used a similar selection criterion in their study.

3.2 Exponential filter

Wagner et al. (1999) originally developed the exponential fil-
ter and Albergel et al. (2008) refined this approach with a
more robust recursive version of this method. This version
provided an estimate of a soil wetness index (SWI) within
the root zone. This index standardized RZSM based on the
total range of values recorded by the in situ dataset. The re-
cursive formulation provided a predictor of RZSM at time
(tn), which in this study was given in days and was derived
as

SWImn = SWImn(n−1)+Kn[ms(tn)−SWImn(n−1)], (1)

where SWImn(n−1) represented the estimated RZSM at time
tn−1, ms(tn) was the surface soil moisture estimate based on
either CCI products or AMSR-E retrievals, and Kn was the
gain at time tn determined with

Kn =
Kn−1

Kn−1+ e
tn−tn−1

T

, (2)

where T represented the timescale of soil moisture variation
in days. At the beginning of each era and after excessively

large gaps in ms(tn) data (> 12 days), the filter was initial-
ized with SWIm(1) =ms(tn) and Kn1 set to 1. Results from a
data denial experiment described below provided support for
the selection of 12 days as an appropriate timescale to reset
the filter. The prime advantage of the exponential filter was
that the only unknown was T . Finally, the SWImn generated
from the exponential filter, which ranged from 0 to 1000, was
rescaled to match the range of the in situ data (in volumetric
units) allowing for comparisons between these datasets.

3.3 Objective metrics

Direct comparisons were made between CONUS in situ sta-
tions that represented a long time series. While it is true that
soil moisture measurements exhibit a high degree of spatial
variability over a wide range of spatial scales from field plot
to watershed (e.g., Western et al., 2004; Wilson et al., 2004;
Brocca et al., 2007), temporal variation is much more muted.
Temporal stability is a concept fully rooted in soil science
(Vachaud et al., 1985; Martinez-Fernandez and Ceballos,
2003). Therefore, the approach of this study was to use stan-
dard objective metrics such as lagged r values to describe the
relationship between (coarse-scale) root-zone soil moisture
estimates based on the exponential filter and (point-scale) in
situ measurements. Other temporal statistics included bias,
Nash–Sutcliffe coefficients (NSs), and root mean square er-
ror (RMSE, in volumetric soil moisture). In terms of bias, re-

www.hydrol-earth-syst-sci.net/21/4403/2017/ Hydrol. Earth Syst. Sci., 21, 4403–4417, 2017



4408 K. J. Tobin et al.: Multi-decadal analysis of root-zone soil moisture

sults are also evaluated based on whether the absolute bias is
low (within 10 %) or high (greater than 10 %), which strongly
impacts the other objective metrics. Each of these metrics has
their own utility as discussed in the paper below.

3.4 Calibration of Topt

Albergel et al. (2008) noted no significant correlation be-
tween soil properties and the optimal timescale of soil mois-
ture variation (Topt). Therefore, they constrained this param-
eter by optimizing T based on the NS metric, an approach
also applied by Ford et al. (2014). However, Albergel et
al. (2008) also noted a weak relationship between T with cli-
mate. Specifically, a linkage between increased temperatures
and hence soil evaporation (not transpiration). A lower Topt
was representative of a faster response of SWI present in ar-
eas with a higher evaporational demand. This conjecture was
consistent with a relationship developed by Qiu et al. (2014)
using mean NDVI values at in situ sites.

In this study, we used two approaches to determine Topt.
The first method optimized Topt at a time in which the RMSE
is minimized. This was essentially the same approach as find-
ing a maximum NS value. RMSE was calculated between 1
and 68 days at a 1-day increment. Sites that converged on the
upper 68-day bound were rejected. Qiu et al. (2014) used a
similar upper bound as a means of selecting SCAN sites for
their study.

The second approach used the NDVI formulation from
Qiu et al. (2014) to calculate Topt. This relationship is given
as

Topt = [−75.263×NDVI] + 68.171. (3)

3.5 In situ station filtering and data denial experiment

To ensure that the exponential filter was effective in produc-
ing a RZSM estimate, the ms(tn) term was set based on sur-
face (5 cm) in situ data instead of satellite data. Normally,
grid-based satellite surface moisture estimates are used to
drive the exponential filter. However, to establish a filter
based on the quality of in situ data, an initial estimate of
RZSM is determined based on surface in situ data at the
5 cm level. Initial RZSM estimates with a NS value less than
0.50, which is a common threshold for defining a satisfactory
match between in situ and simulated hydrologic data (Mori-
asi et al., 2007), were rejected. This filter removed many of
the poor-performing outliers (NS <−1.00) from considera-
tion. Table 2 describes the issues with the remaining poor-
performing outliers that lingered after this in situ based fil-
tering approach.

Use of surface (5 cm) in situ data also supported a data de-
nial experiment that gauged how the filter’s performance was
impacted by gaps in the ms(tn) time series. This experiment
focused on the SCAN network during era 3 (2005–2008; Ta-
ble 1). Time series were altered to include only data at 2-, 5-,
8-, and 11-day intervals. This experiment was based on the

Table 2. Number of poor-performing (NS < 1.00) outliers for all
four satellite products.

ARM SCAN SNOTEL USCRN

RMSE optimization

In situ data 17 3 15 1
Insufficient SWI 0 1 14 0
Lack of range 0 11 0 3
Timing issues 0 0 9 0

NDVI approach

In situ data 22 16 32 5
Insufficient SWI 0 3 44 0
Lack of range 0 17 15 8
Timing issues 0 6 5 3

32 out of 42 sites that had in situ based NS in excess of 0.50,
i.e., the sites that survived this filtering process. Both surface
(5 cm) in situ and satellite (AMSR-E) data were used in this
experiment.

3.6 Spurious data filtering

Before calculation of SWI values for all four satellite prod-
ucts at each in situ station, a series of filters were applied
to remove any spurious results following the quality con-
trol guidelines articulated by Dorigo et al. (2013). Surface
temperature and precipitation data from co-located PRISM
grid cells flagged problematic dates within the time series
of each dataset. Satellite retrieval from days in which the
minimum air temperature was less than 0 ◦C were removed
from the SWI dataset. Satellite soil moisture retrievals were
particularly fraught with difficulty under freezing conditions
(Dorigo et al., 2011). Likewise, precipitation can be prob-
lematic and days with greater than 1 mm day−1 were ex-
cised following the guidance of Dorigo et al. (2013). Three
additional flags related to the quality of the in situ data
were applied. Days with values in excess of the porosity
reported by the ISMN were expunged from the rescaled
SWI dataset. Likewise, days that recorded the same value
(plateaus) or zero were deemed spurious and removed. The
final filtered rescaled SWI dataset consisted of less than
100 days; this dataset was rejected following the guidance of
Dorigo et al. (2013). Finally, SWI based estimates in which
NS <−1.00 were rejected as outliers. A detailed discussion
of these outliers is given below.

4 Results

Figure 3 shows the results of the data denial experiment in
which both in situ and satellite data (AMSR-E) were used at
the surface. Note a baseline performance for in situ dataset
has average NS values close to 0.7, which was almost iden-
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Table 3. Average lagged r values and Topt between SWI based and in situ soil moisture at the 25 cm depth for the ARM network. Standard
derivation is indicated in parentheses. The n value represents the number of observations.

AMSR-E CCI-combined CCI-passive CCI-active

Era n r value Topt n r value Topt n r value Topt n r value Topt

Optimization approach – low bias

1 – – – 14 0.471 (0.249) 30 (19) 4 0.614 (0.131) 25 (29) 9 0.450 (0.193) 26 (13)
2 9 0.587 (0.080) 4 (1) 10 0.491 (0.136) 9 (4) 10 0.554 (0.103) 7 (6) 11 0.493 (0.153) 17 (7)
3 12 0.589 (0.148) 7 (3) 12 0.520 (0.156) 12 (10) 12 0.615 (0.165) 8 (4) 12 0.460 (0.165) 13 (10)
4 4 0.666 (0.053) 32 (10) 3 0.707 (0.081) 10 (4) 2 0.649 (0.011) 12 (1) 1 0.823 5

NDVI approach – low bias

1 – – – 17 0.439 (0.241) 36 (3) 9 0.480 (0.171) 36 (2) 12 0.414 (0.172) 36 (4)
2 7 0.622 (0.156) 35 (3) 11 0.567 (0.172) 34 (4) 9 0.642 (0.132) 34 (4) 13 0.484 (0.154) 32 (3)
3 13 0.559 (0.204) 34 (2) 12 0.437 (0.179) 35 (3) 10 0.645 (0.137) 34 (3) 12 0.341 (0.197) 34 (3)
4 5 0.666 (0.053) 32 (6) 3 0.704 (0.004) 34 (2) 3 0.665 (0.542) 34 (2 7 0.323 (0.184) 32 (3)

1 2 5 8 11
-0.5

0

0.5

1

N
S

Intervals (days)

Figure 3. Box plot of the data denial experiment from the SCAN
network during era 3 (2005–2008). Results for day 1 represent base-
line data for the exponential filter driven by surface soil moisture
data (in situ data: F; low absolute bias RMSE-optimized AMSR-
E: •). Other time series were altered to include only data at 2-, 5-,
8-, and 11-day intervals.

tical to the results based on in situ surface soil moisture
datasets in which every other day was withheld. Even in
datasets with every four out of five dates withheld there was
only a slight drop in performance. This result underscored
the ability of the exponential filter to effectively cope with
datasets that have significant gaps. Average NS values fell to
0.5 only when over 90 % of the surface soil moisture dataset
was withheld and measurements from only every 11th day
were used. The data denial experiment using AMSR-E data
to drive the filter yielded a similar drop-off in performance
as the number of withheld days increased.

Figures 1 and 2 show lagged r values between in situ sur-
face (5 cm) and RZSM (20–30 cm) during the five eras. ARM
sites clustered in Oklahoma and Kansas had higher lagged
r values during era 1 (network average r = 0.864) and a drop
in this metric during eras 2 to 4 (network average r = 0.793–
0.796). SCAN sites exhibited correlation coefficients that
varied spatially. In general, better performances were noted
from eastern (network average r = 0.751–0.872) and central
sites (network average r = 0.812–0.874). Western sites had
slightly lower r values (network average r = 0.699–0.770).
Notable outliers were present for the stations in Montana
during eras 4 and 5 (Fig. 2) that could account partly for
the poorer performance noted during these eras. SNOTEL
stations were concentrated in the western CONUS and had
consistently high correlation coefficients (network average
r = 0.828–0.865). Finally, the USCRN sites examined dur-
ing era 5 (Table 1) generally had better r values in eastern
and central CONUS (network average r = 0.846–0.882) as
opposed to the west (network average r = 0.768).

The remainder of this section focuses on the results from
the exponential filter driven by the four satellite products.
The Topt and lagged r values discussed are based on results
that have a low absolute bias (±10 %). Note that the propor-
tion of sites that recorded low bias varies between networks
(data not shown). Most ARM stations were characterized by
having low bias (76–100 %), whereas SNOTEL sites had the
lowest number of sites with a low bias (32–45 %). SCAN
(53–60 %) and USCRN (60–66 %) had an intermediate num-
ber of sites with a low bias. The subsequent results focused
only on the low bias stations.

As might be expected, the Topt values from the NDVI ap-
proach had a much more limited range of values compared
with Topt values derived using the optimization approach (Ta-
bles 3–6). From the ARM network, average Topt based on
the NDVI approach ranged from 32 to 36 days, whereas
optimization produced much greater variation (4–32 days;
Table 3). At SCAN, the NDVI approach yielded a broader
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Table 4. Average lagged r values and Topt between SWI based on optimization and in situ soil moisture at the 20.32 cm depth for the SCAN
network (Figs. 1 and 2). Standard derivation is indicated in parentheses. The n value represents the number of observations.

AMSR-E CCI-combined CCI-passive CCI-active

Era n r value Topt n r value Topt n r value Topt n r value Topt

Optimization approach – low bias

1 – – – 1 0.817 19 1 0.691 1 3 0.458 (0.323) 22 (10)
2 4 0.691 (0.157) 39 (19) 7 0.598 (0.157) 27 (16) 2 0.661 (0.007) 16 (9) 7 0.519 (0.147) 15 (6)
3 17 0.596 (0.129) 10 (7) 19 0.556 (0.164) 14 (13) 16 0.556 (0.184) 9 (5) 17 0.521 (0.140) 17 (17)
4 14 0.697 (0.096) 15 (14) 16 0.698 (0.155) 19 (15) 10 0.720 (0.176) 15 (12) 16 0.642 (0.226) 17 (16)
5 – – – 17 0.572 (0.183) 16 (15) 11 0.472 (0.192) 21 (14) 15 0.589 (0.195) 14 (14)

NDVI approach – low bias

1 – – – 2 0.678 (0.199) 32 (6) 2 0.747 (0.096) 49 4 0.463 (0.282) 40 (10)
2 6 0.554 (0.198) 34 (16) 7 0.541 (0.179) 30 (12) 1 0.330 20 10 0.505 (0.171) 28 (7)
3 14 0.596 (0.111) 31 (10) 15 0.480 (0.193) 34 (11) 15 0.613 (0.095) 36 (11) 15 0.471 (0.187) 31 (10)
4 16 0.573 (0.242) 37 (15) 20 0.585 (0.223) 39 (15) 14 0.615 (0.238) 39 (15) 20 0.608 (0.226) 40 (15)
5 – – – 19 0.518 (0.220) 39 (13) 15 0.428 (0.238) 46 (11) 26 0.469 (0.237) 41 (13)

Table 5. Average lagged r values and Topt between SWI based on optimization and in situ soil moisture at the 20.32 cm depth for the
SNOTEL network. Standard derivation is indicated in parentheses. The n value represents the number of observations.

AMSR-E CCI-combined CCI-passive CCI-active

Era n r value Topt n r value Topt n r value Topt n r value Topt

Optimization approach – low bias

2 5 0.572 (0.311) 17 (15) 2 0.600 (0.034) 10 (1) 2 0.750 (0.054) 14 (7) 3 0.509 (0.156) 36 (13)
3 39 0.463 (0.264) 20 (15) 17 0.513 (0.290) 27 (18) 30 0.461 (0.293) 25 (20) 30 0.370 (0.317) 29 (11)
4 63 0.508 (0.299) 18 (14) 32 0.491 (0.353) 20 (16) 55 0.522 (0.302) 18 (11) 32 0.522 (0.379) 22 (18)
5 – – – 5 0.527 (0.189) 25 (13) 12 0.412 (0.252) 26 (17) 8 0.534 (0.319) 27 (21)

NDVI approach – low bias

2 2 0.678 (0.197) 44 (13) 1 0.438 49 4 0.584 (0.102) 45 (8) 4 0.444 (0.362) 44 (7)
3 44 0.367 (0.374) 44 (6) 28 0.313 (0.395) 44 (7) 43 0.334 (0.386) 44 (6) 45 0.327 (0.337) 44 (5)
4 71 0.425 (0.367) 43 (6) 33 0.385 (0.491) 43 (7) 61 0.451 (0.341) 44 (7) 41 0.228 (0.529) 44 (6)
5 – – – 11 0.425 (0.216) 44 (7) 9 0.357 (0.318) 43 (5) 10 0.590 (0.268) 42 (6)

range of average era Topt (28–46 days; Table 3). However,
again, optimization produced more variable Topt values (9–
39 days; Table 4). A similar pattern was noted at SNOTEL
sites. The NDVI approach yielded higher network average
era Topt values (42–45 days) vs. the more variable and lower
results from the optimization method (17–36 days; Table 5).
Finally, USCRN sites from era 5 (Table 1) exhibited a broad
range of values for both approaches (NDVI of 30–55 days;
optimization of 9–28 days; Table 6).

Tables 3–6 show results from the direct correlation be-
tween in situ RZSM- and SWI-based estimates generated
from the four satellite products. Network average values are
excluded in this discussion if there were less than three mea-
surements within an era for a network. Generally, but not al-
ways, the optimization approach yielded higher lagged r val-
ues than NDVI. Interestingly, in the ARM network, in 5 out
of 14 instances, the NDVI approach yielded network aver-

age r values that were greater than those obtained from the
optimization method (Table 3). ARM sites from the central
Great Plains had network average r values based on opti-
mization that ranged from 0.450 to 0.707 across eras 1–4
(Table 1), whereas the NDVI approach yielded a lower and
broader variation in r values (0.323–0.704; Table 3).

For SCAN sites, comparisons were made only for eras 2–
5 (Tables 1, 4). Era 1 was excluded in this comparison due
to limited data availability during this period. Network aver-
age r values based on optimization (0.458–0.720; Table 3)
generally outperformed those based on the NDVI approach
(0.428–0.615; Table 4). Additionally, when examined from a
geographic prospective, western CONUS sites had slightly
higher r values based on optimization (0.477–0.823) than
those from either the eastern (0.332–0.777) or central regions
(0.492–0.717).
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Table 6. Average lagged r values Topt between SWI based on optimization and in situ soil moisture at the 20 cm depth for the USCRN
network during era 5. Standard derivation is indicated in parentheses. Sites are divided by region (east, central, west) as indicated in Fig. 2.
The n value represents the number of observations.

CCI-combined CCI-passive CCI-active

Region n r value Topt n r value Topt n r value Topt

Optimization approach – low bias

East 1 0.105 4 – – – 1 0.486 15
Central 13 0.594 (0.185) 9 (8) 6 0.707 (0.086) 17 (19) 11 0.607 (0.126) 6 (3)
West 1 0.857 11 4 0.406 (0.125) 28 (21) 3 0.540 (0.389) 9 (1)

NDVI approach – low bias

East 2 0.388 (0.122) 1 1 0.071 25 2 0.410 (0.133) 21
Central 12 0.521 (0.231) 30 (10) 7 0.605 (0.194) 35 (9) 7 0.534 (0.176) 25 (7)
West 3 0.209 (0.068) 36 (20) 4 0.342 (0.128) 45 (20) 3 0.087 (0.122) 55 (5)

Era 1 Era 2 Era 3 Era 4 Era 5 Era 1 Era 2 Era 3 Era 4 Era 5
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Figure 4. Box plots that depict the NS metric for the ARM (eras 1–
4) and USCRN (era 5) networks. Results for high absolute bias
RMSE-optimized datasets are squares, low absolute bias RMSE-
optimized datasets are circles, and low absolute bias NDVI datasets
are triangles.

SNOTEL stations from the intermountain west showed the
greatest variability. Some sites recorded r values below 0, but
there were also quite a few sites with high correlation coeffi-
cients (> 0.75). However, in general, network average r val-
ues were lower in SNOTEL (optimization of 0.370–0.572;
NDVI of 0.228–0.590) than at SCAN western sites (Table 5).
Finally, the data from USCRN sites during era 5 (Table 1)
had higher network average r values in central sites vs. the
western CONUS (Table 6).

NS values across the five eras were depicted in Figs. 4–6.
Stations with low absolute bias (±10 %) consistently outper-
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Figure 5. Box plots depicting the NS metric for the SCAN network.
Symbols are the same as in Fig. 4.

formed stations with high bias within all networks and during
all eras. This was true for both the optimization and NDVI
(data not shown) approaches to constraining T . Not surpris-
ingly, the optimization approach generally outperformed the
NDVI method. Also, the four satellite products had quite
consistent results and did not exhibit any clear temporal
trends. All NS and RMSE network averages described below
were based on the optimization approach to constraining T

and had a low absolute bias. Figure 4 showed NS results from
the ARM and USCRN networks. Network average NS val-
ues for ARM ranged from −0.1 to 0.3, similar to the results
from the USCRN network (0.2–0.3). Network average NS
values from the SCAN and SNOTEL networks were shown
in Figs. 5 and 6, which were slightly higher (0.1–0.5).
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Figure 6. Box plots depicting the NS metric for the SNOTEL net-
work. Symbols are the same as in Fig. 4.
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Figure 7. Box plots depicting the RMSE metric for the ARM
(eras 1–4) and USCRN (era 5) networks. Symbols are the same as
in Fig. 4.

Figures 7–9 depicted RMSE values again across the five
eras (Table 1). In many respects, RMSE mirrors NS as a per-
formance metric. Like NS stations, RMSE values with a low
absolute bias outperformed those with high bias. However,
the difference between low and high bias datasets was gen-
erally not as pronounced for the RMSE metric as it was for
NS. However, like with NS, RMSE results showed no dis-
cernable temporal trends. RMSE values from the ARM and
USCRN networks were illustrated in Fig. 7. Network average
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Figure 8. Box plots depicting the RMSE metric for the SCAN net-
work. Symbols are the same as in Fig. 4.
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Figure 9. Box plots depicting the RMSE metric for the SNOTEL
network. Symbols are the same as in Fig. 4.

RMSE values for ARM ranged from 0.02 to 0.04 and were
significantly lower than values from the other networks ex-
amined in this study. USCRN network average RMSE values
ranged from 0.04 to 0.05 (Fig. 7). Figure 8 illustrated results
from the SCAN network, and network average RMSE values
were similar to USCRN sites (0.04–0.06). Finally, SNOTEL
RMSE results (Fig. 9) were higher than all other networks
(0.05–0.07).
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Figure 10. Selected time series associated with poorly performing (NS < 1.00) outliers with in situ data as solid gray and SWI estimates in
dashed black. Panel (a) shows an example of problematic in situ data. Panel (b) is an example where there was insufficient SWI data. Panel
(c) illustrates an SWI dataset that lacked the dynamic range present in the in situ data. Panel (d) depicts a discrepancy in timing between
SWI and in situ datasets. Dates are indicated in mm/dd/yyyy format.

5 Discussion and conclusions

A long-standing goal of the soil remote sensing community
has been to develop techniques that can observe changes in
RZSM. Regrettably, the technology had not yet progressed to
support a global RZSM product based only on remote sens-
ing retrievals. The use of land surface models such as the
community NOAH model (Chen et al., 1996), Global Land
Data Assimilation System (GLDAS; Rodell et al., 2007),
and European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis products (Uppala et al., 2005; Massari
et al., 2014) have been used to fill this gap in recent years.
These platforms have become popular and provide an esti-
mate of root-zone soil moisture that has been applied to field-
scale studies (Albergel et al., 2012; Blankenship et al., 2016;
Kedzior and Zawadski, 2016). In addition, another approach
that has been suggested is based on thermal infrared-based
remote sensing (e.g., Hain et al., 2011).

Besides ease of use, the exponential filter methodology
is an attractive alternative because it leverages existing re-

motely sensed soil moisture platforms. As such, this ap-
proach is not hindered by the incipit assumptions built in to
every modeling platform and relies purely on observational
data. Given the potential utility of the exponential filter ap-
proach, a detailed analysis of the potential errors associated
with the method is in order. There are four main sources of
error. Two of these errors are associated with the SWI esti-
mate and include (1) the unsuitability of the exponential fil-
ter at a given site and (2) retrieval errors in the surface soil
moisture dataset. The other two errors are not related to the
actual SWI estimate but instead are errors in the indepen-
dent datasets that were applied to verify the SWI estimate
at the scale of the 0.25◦ satellite grid. These errors included
(3) issues with in situ datasets (Dorigo et al., 2011, 2013)
and (4) non-representativeness of a point site when compared
with the large (0.25◦) footprint of a surface soil moisture grid
used to drive the filter (Crow et al., 2012). A significant qual-
ity control measure involved driving the filter with surface in
situ data instead of satellite soil moisture data. Stations that
scored a NS value below 0.5 based on this approach were re-

www.hydrol-earth-syst-sci.net/21/4403/2017/ Hydrol. Earth Syst. Sci., 21, 4403–4417, 2017



4414 K. J. Tobin et al.: Multi-decadal analysis of root-zone soil moisture

jected as not suitable. At these sites, perhaps the fundamental
assumption of the exponential filter method that there was
hydrologic equilibrium between the surface and root zone
was violated. Therefore, the gross errors recorded at some
sites cannot be ascribed to issues with the exponential filter,
and the data denial experiment demonstrated the robustness
of this method at least in certain instances (Fig. 3).

Extending this approach, we examined the quality of ex-
ponential filter results driven by surface in situ data against
background conditions including soil texture, land cover, and
climate zone (data not shown). In terms of soil texture, in
situ sites with loamy textures has a general tendency to out-
perform (based on NS value) sand- or clay-dominated sites.
This is not surprising given that the exponential filter gener-
ally works best when soil moisture is moderate (Ford et al.,
2014). Soil textures with a low available water capacity such
as sand and clay are more likely to have extreme, both dry
and wet, moisture contents. In terms of land cover, the only
consistent result is that in the SNOTEL network the more
open rangeland settings exhibited slightly better NS values
than forest-dominated areas. However, this pattern was not
observed at sites from the other networks. Finally, there is
no clear trend in performance of the exponential filter as a
function of climate zone.

Analysis of poor-performing outliers (NS <−1.00) pro-
vided additional insights into how the exponential filter can
fail at some sites (Table 2). Within the ARM network, all
outliers could be attributed to in situ data issues such as
spikes, breaks, anomalous high values that exceed soil poros-
ity, anomalous low values at zero, and extended plateaus
(Dorigo et al., 2013). An example of such a clearly flawed
in situ dataset is shown in Fig. 10a. Within the SNOTEL net-
work, there was more of a mix in error type (Table 3). Besides
in situ data issues, another significant source of error was the
limited number of days in some of the final SWI datasets.
Following the guidance of Dorigo et al. (2010), SWI datasets
with less than 100 days were rejected. However, based on
observations in this study, significant issues of representa-
tiveness were noted when there were less than 400 days
(Fig. 10b). The high altitude of many SNOTEL sites resulted
in a longer freezing season during which a greater number of
days were filtered out. There were some sites with in situ data
issues in the SCAN network (Table 2). However, many of the
outliers also were caused by either SWI values that lacked the
dynamic range of the in situ dataset (Fig. 10c) or SWI val-
ues that had significant timing offsets compared with in situ
RZSM observations (Fig. 10d). These issues were the result
of either site non-representativeness or errors in surface soil
moisture retrievals. Finally, USCRN sites exhibited a similar
mix of errors as noted in the SCAN network (Table 2).

A consistent result noted in this study was the impact of
bias on other performance metrics. Consistently better re-
sults for all metrics were noted (Tables 3–6; Figs. 4–9) when
there was a low absolute bias (within 10 %) vs. SWI datasets
that had a high absolute bias (> 10 %). Additionally, this ob-

servation was observed for SWI values produced with both
approaches to constrain T (minimization of RMSE and the
NDVI approach). The impact of bias on standard objective
metrics was a focus of temporal stability analysis (Vachaud
et al., 1985; Martinez-Fernandez and Ceballos, 2005). Sites
with little variation in bias yielded more robust comparisons
with remote sensing data (Starks et al., 2006), which is a re-
sult that was confirmed in this study across four distinct in
situ soil moisture networks and satellite products.

Interestingly, the results observed in this study were more
impacted by the in situ network than the surface satellite
product used to drive the exponential filter. In terms of the NS
metric, SCAN, SNOTEL, and USCRN outperformed ARM
(Figs. 4–6). The NS metric seemed to have a greater utility in
identifying outliers than the RMSE metric. This was because
it ranged from 1.00 to potentially −∞, unlike RMSE, which
ranged in this study from only 0 to 0.14.

Conversely, when considering the RMSE metric, ARM
sites yielded superior scores compared with SCAN, SNO-
TEL, and USCRN (Figs. 7–9). Within the ARM network av-
erage RMSE was less than 0.04, which is the baseline value
for accuracy designed for many satellite soil moisture mis-
sions (e.g., Kerr et al., 2001; Entekhabi et al., 2010). SCAN
and USCRN were slightly above this guideline and were
similar to RMSE values noted in previous in situ/satellite
soil moisture comparisons (e.g., Brocca et al., 2010; Jack-
son et al., 2010, 2012; Al Bitar et al., 2012). According to
the RMSE metric, SNOTEL sites performed the worst and
was significantly above the 0.04 performance target.

Perhaps the most interesting result from this study was
that the performance metrics in each in situ network did not
vary over time. Given that almost two decades of data were
examined, this finding is particularly noteworthy. Therefore,
SWI estimates of RZSM produced by the exponential filter
using CCI datasets can be leveraged for long-term, perhaps
even multi-decadal, climate studies (Manfreda et al., 2011).
Another fruitful line of future research could compare ex-
ponential filter estimates of RZSM with those generated by
land surface models. With the proliferation of space-based
remote sensing platforms and the continued development of
in situ monitoring networks, the duration of RZSM time se-
ries will only grow. As such, the approaches outlined in this
work can provide the cornerstone to support future assess-
ments of long-term trends in RZSM, which is an essential
climate variable.

Data availability. The harmonization process involved in the cre-
ation of the surface soil moisture products was described by Liu
et al. (2012), and these datasets are available online (http://www.
esa-soilmoisture-cci.org/node/145).

We also utilized stand-alone data from the AMSR-E mission dur-
ing eras 2–4. In this study, we acquired the version produced by the
LPRM (Owe et al., 2008; https://hydro1.gesdisc.eosdis.nasa.gov/
data/WAOB/).
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