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Abstract. Single satellite synthetic aperture radar (SAR)
data are now regularly used to estimate hydraulic model pa-
rameters such as channel roughness, depth and water slope.
However, despite channel geometry being critical to the
application of hydraulic models and poorly known a pri-
ori, it is not frequently the object of calibration. This pa-
per presents a unique method to simultaneously calibrate
the bankfull channel depth and channel roughness parame-
ters within a 2-D LISFLOOD-FP hydraulic model using an
archive of moderate-resolution (150 m) ENVISAT satellite
SAR-derived flood extent maps and a binary performance
measure for a 30× 50 km domain covering the confluence of
the rivers Severn and Avon in the UK. The unknown channel
parameters are located by a novel technique utilising the in-
formation content and dynamic identifiability analysis (DY-
NIA) (Wagener et al., 2003) of single and combinations of
SAR flood extent maps to find the optimum satellite im-
ages for model calibration. Highest information content is
found in those SAR flood maps acquired near the peak of the
flood hydrograph, and improves when more images are com-
bined. We found that model sensitivity to variation in channel
depth is greater than for channel roughness and a successful
calibration for depth could only be obtained when channel
roughness values were confined to a plausible range. The cal-
ibrated reach-average channel depth was within 0.9 m (16 %
error) of the equivalent value determined from river cross-

section survey data, demonstrating that a series of moderate-
resolution SAR data can be used to successfully calibrate the
depth parameters of a 2-D hydraulic model.

1 Introduction

Flooding of over one-third of the world’s land area affected
more than 2 billion people – 38 % of the world’s popula-
tion – between 1985 and 2003 (Dilley et al., 2005). Climate
change forecasts also indicate that in the future there may
be an increase in the frequency and pattern of flooding (Eu-
ropean Environment Agency, 2012; European Commission,
2014; IPCC, 2014). One response to this global hazard has
been an increasing demand for better flood forecasts (Schu-
mann et al., 2009a). Flood inundation models have an im-
portant role in flood forecasting and there has been scientific
interest in combining direct observations of flooding from re-
mote sources with these inundation models to improve pre-
dictions because of the persistent decline in the number of
operational gauging stations (Biancamaria et al., 2011a), as
well as the reality that many river basins are inaccessible for
ground measurement. Synthetic aperture radar (SAR) satel-
lites have particular importance in this respect as they can
discriminate between land and smooth open water surfaces
over large scales. These microwave (radar) frequency satel-
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lites are capable of all-weather day/night observations and
this makes them a particularly attractive option for observing
floods. Currently active SAR satellites include RADARSAT-
2, ALSOS-2/PALSAR-2, TerraSAR-X, TanDEM-X, Sen-
tinel 1a and 1b and the COSMO SkyMed constellation. His-
toric data are also available from SAR satellites now out of
operation such as ENVISAT, ERS1 and 2 and RADARSAT-
1.

By processing SAR data, it is possible to produce binary
maps of flood extent that can then be used either on their
own or intersected with a digital elevation model (DEM)
to produce shoreline water levels for model calibration and
validation. Integration of SAR data with models is an es-
tablished technique for reducing uncertainty in model pre-
dictions, as it updates/calibrates the model states/parameters
with observed data (e.g. Andreadis et al., 2007; Biancamaria
et al., 2011b; Domeneghetti et al., 2014; Giustarini et al.,
2011; Garcia-Pintado et al., 2013, 2015; Hostache et al.,
2009; Matgen et al., 2010; Mason et al., 2009, 2012; Mon-
tanari et al., 2009; Tarpanelli et al., 2013; Yan et al., 2014),
with the aim of improving flood forecasts. Naturally, cali-
bration of these hydraulic models is essential for accurate
results, and calibration studies to date have largely focused
on roughness. Aronica et al. (2002), Tarpanelli et al. (2013),
Hall et al. (2005), Schumann et al. (2007) and Di Baldas-
sarre et al. (2009a, 2010, 2011) have used flood extent maps
to successfully find best-fit roughness parameter values. Ma-
son et al. (2003) point to roughness being a dominant fac-
tor for shallow reaches in particular and Di Baldassarre et
al. (2009b) found that the optimal roughness parameters de-
pend on the timing of the SAR image and the magnitude of
the flood event. Given this prior research, historic observa-
tions of flooding should have a particular role in model cali-
bration and sensitivity testing.

The provision of good bathymetric data is also critical
to the application of hydraulic models (Trigg et al., 2009;
Legleiter and Roberts, 2009; Yan et al., 2015). Yet gener-
ally there are few ways to obtain bathymetry information for
hydraulic models where no ground data measurements ex-
ist. River depth may be estimated (e.g. Durand et al., 2010
employed an algorithm based on the Manning equation or
Moramarco et al., 2013 who created an entropy depth dis-
tribution using surface flow velocity data) or measured with
optical satellites using reflectance as done by Legleiter and
Roberts (2009) (though the method is best suited for clear
and shallow streams). Hostache et al. (2015) also proposed
a drifting GPS buoy to assimilate water elevation and slope
data into a hydraulic model to define riverbed bathymetry,
but overall passive and remote mechanisms are scarce. Spa-
tially distributed river depths are rarely available and there
is a strong argument that where channel geometry is a priori
unknown it should also be estimated through calibration.

It has commonly been thought that channel geometry and
roughness traded off against each other (e.g. as in the well-
known Manning equation) and therefore that they could not

be uniquely identified at the same time. However, Garcia-
Pintado et al. (2015) estimated channel friction and spatially
variable channel bathymetry together using water levels de-
rived from a sequence of real SAR overpasses (3 m resolu-
tion data from the COSMO-SkyMed constellation of satel-
lites) and the ensemble transform Kalman filter. Durand et
al. (2008) demonstrated that estimates of depth and water
(i.e. friction) slope could be derived simultaneously from
synthetic observations of water surface elevation integrated
with a hydraulic model, though this research related more
specifically to depth of flow, rather than depth of channel.
Yoon et al. (2012) were also able to derive bed elevations
from similar synthetic data. Mersel et al. (2013) progressed
this further by proposing a slope-break method to locate op-
timal locations to measure flow depth, through low to high
flows over time, using synthetic data. Durand et al. (2008),
Yoon et al. (2012) and Mersel et al. (2013) used synthetic al-
timetry data which were created within the context of the up-
coming Surface Water and Ocean Topography (SWOT) mis-
sion that will be able to resolve rivers over 100 m wide only.

Research to date has therefore demonstrated the feasibility
of calibrating hydraulic model parameters governing channel
depth and channel roughness simultaneously. This has been
achieved using the higher-spectrum-resolution (up to 50 m)
SAR images of flood extent. But because pixel size is in-
versely proportional to orbit revisit time, high-resolution data
are available only infrequently. There is thus some benefit to
also exploring the use of existing moderate-resolution (50 to
300 m) SAR data (such as the archive of 150 m resolution
ENVISAT wide swath mode) to understand more about how
channel depth and friction can be identified concurrently us-
ing coarser-resolution SARs, and whether a single SAR flood
map is sufficient to achieve this or if a sequence of flood maps
is more beneficial.

Therefore, the aim of this paper is to draw on this
prior research for simultaneous channel roughness and depth
calibration and extend it to determine whether medium-
resolution SAR data can be used to concurrently estimate
channel friction and geometry parameters in a hydraulic
model. If so, a secondary aim is to determine if a single SAR-
derived flood map is sufficient to do this or if a sequence of
flood maps is more useful. For this, the identifiability tech-
nique presented by Wagener et al. (2003), namely dynamic
identifiability analysis (DYNIA) is utilised. The objective of
this paper is therefore to test the utility of the DYNIA iden-
tifiability technique in this specific context to find the SAR
images with high parameter information and locate the likely
optimum parameter values. This methodology particularly
uses flood extent with an accuracy-scoring method that dis-
regards the correct detection of “no water” pixels.

In Sect. 2, we describe the methodology with informa-
tion on the hydraulic model, the data needed to run it and
the methods used to select the range of model parameters.
There is also an introduction to the procedure used to process
the satellite data and create flood extent maps. Section 3 de-
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scribes the study area and data used, whilst Sect. 4 presents
and discusses the results (including whether SAR observa-
tions at particular times during a flood or particular combi-
nations of images are more successful). Conclusions are pre-
sented in Sect. 5.

2 Method

2.1 Hydraulic model

We use the LISFLOOD-FP hydraulic model with the sub-
grid formulation of Neal et al. (2012) to simulate flood
flows. LISFLOOD-FP (Bates and De Roo, 2000) is a 2-D
hydraulic model for subcritical flow that solves the local in-
ertial form of the shallow water equations using a finite dif-
ference method on a staggered grid. As input, the model re-
quires ground elevation data describing the floodplain topog-
raphy, channel bathymetry information (river width, depth
and shape), boundary condition data consisting of discharge
time series at all inflow points to the domain, water surface
elevation time series at all outflow points and friction pa-
rameters which typically distinguish different values for the
channel and floodplain. Of these data, floodplain topogra-
phy information is readily available from airborne and satel-
lite digital elevation models, boundary condition data can
be taken from ground gauges, hydrologic models or statis-
tical distributions and friction parameters are typically esti-
mated from lookup tables or calibrated. Channel bathymetry
can be taken from ground-surveyed cross sections; how-
ever, for much of the planet no such measurements exist and
are impossible to obtain remotely. In this situation, channel
bathymetry is a priori unknown and it is therefore sensible to
also treat it as a parameter that must be calibrated along with
the friction.

In order to describe bathymetry as a calibrated variable in
this experiment, river channel depth was parameterised as a
linear scaling of reach-average width. In general, this linear
approach will not be appropriate over an entire river network
where the reach-averaged width to depth relationship would
be expected to change with bankfull discharge. However, the
width of the river chosen as a test case for this paper is con-
stant along the simulated reach, while we assume the depth
of tributaries has an insignificant impact on the flooding on
the main stem. In effect, the optimisation problem therefore
simplifies to estimating reach-averaged bankfull depth and
Manning’s nc for a channel of reach-average width. In width-
varying river systems, a dual parameterisation approach for
depth and width could be adopted but would substantially
complicate the parameter estimation problem. The flood-
plain Manning’s roughness coefficient was assumed constant
in these experiments as previous tests have shown that the
model was less sensitive to floodplain friction than channel
friction.

Water pdf estimation

Seeds estimation

Region growing

Image histogram

Flood and water 

surface like

Thtolerance
Region growing

Water surface 
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Reference image Flood image

Figure 1. General scheme of the three processing steps of the flood
detection algorithm.

We used Latin hypercube sampling (LHS) to take
1000 samples of the two uncertain LISFLOOD-FP param-
eters r and channel Manning’s roughness nc. LHS is a useful
sampling scheme for multiple variables as the method can
sample parameter values within a prior distribution in more
than one dimension (Huntington and Lyrintzis, 1998). We
used LHS here, as it is an efficient scheme that statistically
represents the parameter space without repetitions (Beven,
2009; Pianosi et al., 2016).

2.2 SAR image processing algorithm

Because SAR satellites are capable of all-weather day and
night observations and can distinguish the differences be-
tween land and open water signal returns, they are particu-
larly useful for observations of flooding. To derive flood ex-
tent maps from the SAR images, we adopted the method pro-
posed by Matgen et al. (2011) and developed by Giustarini et
al. (2013) and Chini et al. (2016). This method has three steps
as illustrated in Fig. 1. Firstly, the probability density func-
tion (pdf) of the open water backscatter values in the SAR
data is estimated. This requires identification of the bimodal
aspect to a histogram of backscatter values so that “open wa-
ter” values can be recognised from other backscatter values.
A theoretical pdf of water backscatter is then fitted to this his-
togram using nonlinear regression techniques. The backscat-
ter threshold value (Thseeds) where this pdf starts to diverge
from the histogram is identified. Then, isolating those pixels
with backscatter values lower than this threshold produces
a preliminary flood map (region growing seeds). The sec-
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Table 1. Contingency table (after Stephens et al., 2014 and Mason, 2003).

Modelled

Water No water

O
bs

er
ve

d
Water (A) Correct water (hits) (C) Under-prediction (misses)
No water (B) Over-prediction (false alarms) (D) Correct no water (correct rejections)

ond step is to apply a region growing approach to grow the
flooded areas within the preliminary flood map until a tol-
erance threshold level is reached (Thtolerance). For the SAR
image, this step refines the extent of pixels with an open wa-
ter value.

In the last step, a reference image is used to remove pixels
from the flood map that do not change between the flood and
non-flood images (Hostache et al., 2012) – i.e. pixels which
have “water-surface-like” radar responses and could be either
bodies of permanent water or smooth surfaces such as car
parks or flat roofs. This third step creates the final binary
map of flood extent. Errors inherent in the SAR processing
are, for simplicity, not considered in this paper.

2.3 Performance measures

We compare these SAR-derived flood maps against the sim-
ulated flood maps generated from LISFLOOD-FP output at
the equivalent time step by using a contingency matrix shown
in Table 1. Flood maps are compared pixel to pixel to deter-
mine if there is agreement or disagreement between the two
paired maps on whether there is surface water present or not.

From this, a binary pattern performance measure is used to
give a deterministic indication of how well each LISFLOOD-
FP-simulated flood map has represented the observed data
(Mason, 2003; Stephens et al., 2014). We chose to use the
critical success index (CSI, Eq. 1) as this measure does not
consider “correct rejections” – (D) in Table 1 – in the calcula-
tion (Bates and De Roo, 2000; Horritt et al., 2001; Aronica et
al., 2002) and it weights over- and under-prediction equally
– B and C – respectively. CSI scales between 1 (indicating
perfect skill in the model) and 0 (indicating no skill in the
model).

CSI=
A

A+B+C
(1)

If correct rejections were included by the use of a different
performance measure, the result would be overly optimistic
scores, given the large areas of no water normally observed
in a SAR image. All LISFLOOD-FP-simulated flood maps
would seem to perform exceptionally well with little to help
differentiate between each simulation.

Before comparing SAR and LISFLOOD-FP model results,
an independent remote dataset is used to illustrate the impact

of observation errors and gaps inherent in the SAR data from
processing. This validation step makes use of a very high-
resolution (0.2 m) aerial photograph taken by the Environ-
ment Agency of England and Wales (EA) on 24 July 2007
from an aircraft passing over at 11:30 GMT (details within
Giustarini et al., 2013). A flood map shapefile was created
from this imagery by manual definition of the flood bound-
ary. This was then converted and upscaled to a raster with the
same spatial resolution (75 m) of the LISFLOOD-FP model
results. Both the ENVISAT data and the LISFLOOD-FP re-
sults (the highest-scoring models) are compared with these
aerial data. A figure showing these flood extents and the CSI
results from this comparison are given in Sect. 4.1 below.

2.4 Parameter identifiability

To determine most likely values for r and nc, we follow the
technique of Wagener et al. (2003) in applying a DYNIA
method to the ensemble of CSI score results. Since the orig-
inal DYNIA method was applied to continuous data and not
discrete observations, some changes are needed which are
described at the end of this section.

The first stage in the DYNIA method is to rescale the “ob-
jective function” (i.e. CSI scores) so that they add up to 1,
which is done by dividing each model result by the sum of
all scores. Next, computing the cumulative distribution of the
rescaled objective function transforms the objective function
into a support measure which sums to unity – the “cumula-
tive support” – so that each support measure may be com-
parable. To obtain the information content (IC), a confidence
limit is applied to the rescaled objective functions to exclude
outliers. The width of the confidence limit depends on how
the best-performing parameters are spread within the param-
eter space: a wide confidence limit suggests that the param-
eters are distributed within the parameter space evenly and
IC is low, whereas a narrow confidence limit suggests that
the best-performing parameters are located within a smaller
range and IC is higher. To normalise results for these data, a
transformation measure was used (1 minus the width of the
confidence limits over the parameter range, normalised to run
from 0 to 1), so a value close to 1 is equivalent to a high
IC. The IC can have any value between 0 (no information in
that observation for parameter identification purposes) and 1
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(observation is most informative for the parameter). The IC
results are shown in Sect. 4.2 below.

The second stage in DYNIA is to find the identifiability
by locating where in the parameter–time space most param-
eter information can be found. This is achieved by examin-
ing a plot of cumulative support against a parameter value.
Any deviation from a straight line gradient of this cumula-
tive support indicates whether the parameter is conditioned
by the objective function or not. The stronger the deviation,
the stronger the conditioning/identifiability of the parameter
variable. This is done using the marginal parameter distribu-
tions – interactions are therefore only implicitly accounted
for. The final stage is to organise the data into bins and cal-
culate the gradient of the cumulative support between them.
The results from this examination are shown in Sect. 4.3 be-
low. These results are represented using plots of the gradient
of the cumulative support value versus the parameter of inter-
est to indicate the strength of the identifiability in each case.
The IC and identifiability for all single SAR acquisitions are
shown along with particular SAR combinations/groupings:
by flood event and by position in the flood hydrograph as
detailed in Sect. 3.2 and Table 3.

The original method proposed by Wagener et al. (2003)
recommends a pre-selection of models before stage 1 by
using only the top 10 % performing models. We deviate
from this original method by using the complete sample of
1000 sets of CSI scores since we found this gave a clearer
overview picture of identifiability with our data.

The objective of this paper is to determine if a grouping
of SAR data provides more information than single data.
Here, the method of obtaining the CSI “group” score is
also a small departure from the original DYNIA method.
These group scores are determined by multiplying each sin-
gle model/SAR flood map CSI result with the CSI score of
the next SAR flood map until all members of the particu-
lar group have been added. The unique combinations which
comprise these groups are described in Table 3. This com-
bining of CSI scores is done for results from each of the
1000 models/parameter scenarios. The next step is the same
as for single CSI scores as described above – i.e. to rescale
the objective function and compute the cumulative support.
So, although multiplying CSI values will reduce the grouped
score, it has no bearing, as it is the changes to the gradi-
ent of the cumulative support value that indicates parameter
identifiability, not the CSI scores themselves. The group IC
and identifiability results shown in Sect. 4.2 and 4.3 result
from SAR data that was grouped by this multiplication of
CSI scores.

3 Study area and data used

The area around Tewkesbury (UK), located at the confluence
of the Rivers Severn and Avon is our test location. Figure 2

Figure 2. Extent of the River Severn model.

illustrates the 30.5 km by 52.4 km model domain, showing
the two main rivers and their tributaries.

3.1 River Severn model set-up

Two separate LISFLOOD-FP models were created to test the
methodology. Both models are at 75 m spatial resolution and
use the same background DEM. Additionally, both models
use the same gauged inflows and have a rectangular-shaped
channel. At the lower end of the model, a “free” downstream
boundary condition was applied with a fixed energy slope
of 0.00007, based on the average valley slope.

The differences between the two separate models are in
how bankfull channel depth and Manning’s channel rough-
ness values are obtained. First, an “observed” model was
created using surveyed cross sections of the main rivers to
determine channel width and depth with a fixed Manning’s
channel roughness parameter of 0.038 (a value represent-
ing a main channel, which is clear with some winding and
presence of stones/vegetation, from Chow, 1959). The cross-
section survey data were provided by the EA. Second, a
“test” model was created in which the depth parameter r and
Manning’s channel roughness parameter nc are determined
using the DYNIA identifiability analysis as described in the
previous section. The depth parameter r was sampled be-
tween 0.0 and 0.5 so that the modelled river depth would
never exceed half of the river width. This is a reasonable as-
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sumption for this site where the Severn is on average around
75 m wide (estimated from lidar data) with surveyed bank-
full depth varying between 6 and 11 m. The range of Man-
ning channel roughness values for the sampling was set be-
tween 0.015 and 0.100 (Chow, 1959). A low nc of 0.015
would represent a channel, which is clear and straight,
whereas a high nc value of 0.100 would represent a channel
with very thick vegetation/submerged branches present. This
range widely encompasses recommended roughness values
for the rivers present within the study domain.

For both the test and observed models, the Manning flood-
plain roughness value was set at a standard 0.06 for the entire
domain. This is a reasonable average for the floodplain which
is mainly crop and grassland (0.03–0.04) but with the pres-
ence of some trees (0.12) and brush (0.07). The Manning val-
ues for the floodplain and the river channel (nc) are assumed
to be spatially and also temporally invariant. The floodplain
topography was taken from a 2 m resolution lidar-based digi-
tal surface model (DSM) with vertical RMSE of 0.10 m taken
on 9 December 2005 by the EA. The EA treated the DSM to
remove structures and vegetation, and we then spatially av-
eraged this digital terrain model (DTM) to 75 m resolution,
as this is an appropriate compromise between model fidelity
and computational cost for rural river reaches (Horritt and
Bates, 2001). The 75 m DTM was further processed to rein-
sert the maximum height of the flood embankments along the
reach in order to preserve normal flood behaviour along the
river banks. No bridges or weirs are included in the model.
Neal et al. (2011) and Garcia-Pintado et al. (2013) provide
additional details of the model set-up for the River Severn
around Tewkesbury.

Observed flows obtained from the EA were used as in-
flow to both models. Forcing flows come principally from
the gauging station on the River Severn at Bewdley but with
additional inputs from three tributaries of the River Severn:
River Stour (at Kidderminster), River Salwarpe (at Harford
Hill near Droitwich Spa) and River Teme (at Knightsford
Bridge near Knightwick). For the River Avon, flows from
the Evesham gauging station were used, with two additional
flow contributions from the Avon tributaries Bow Brook (at
Besford) and the River Isbourne (at Hinton). A smaller input
from a wetland area west of Tewkesbury was also included,
with flows scaled by area from the Salwarpe gauged flows.

The River Severn flood events of March 2007 (simula-
tion period: 19 February–29 April 2007), July 2007 (simula-
tion period: 5 June–12 August 2007), January 2008 (simula-
tion period: 26 November 2007–25 February 2008) and Jan-
uary 2010 (simulation period: 4 January–18 February 2010)
were modelled. The dates were chosen so the model would
start at least 10 days before the start of the flood and end after
flows had returned to within the banks.

3.2 SAR observations of the River Severn

Historic ENVISAT wide swath mode (WSM, 150 m resolu-
tion) data are available from the European Space Agency’s
ENVISAT catalogue. These were resized to 75 m resolution
data. Previous research at this site has largely focused on the
July 2007 flood event observations (Mason et al., 2012, 2014;
Durand et al., 2014; Garcia-Pintado et al., 2013; Schumann et
al., 2011). The present work makes use of other historic flood
observations in this area – namely the floods of March 2007,
January 2008 and January 2010. Details of the satellite ac-
quisition times are shown in Table 2, along with hydrologic
information on the flood taken from the gauging station at
Saxons Lode in the middle of the model domain. Time to
peak describes the number of hours between the start of the
event and the peak of the flood. Flooding from sequential
events or with high contributions from other sources such as
groundwater will therefore have a greater time to peak.

We separated these 11 SAR observations into different cat-
egories by particular flood event (Sect. 4.3.2) or where the
acquisition occurs on the flood hydrograph (Sect. 4.3.3). Ta-
ble 3 shows how this segmentation of the 11 acquisitions into
categories was devised.

4 Results and discussion

4.1 CSI scores

In this paper, we compare the results of hydraulic model-
generated flood maps with the SAR observations of flood ex-
tent in order to determine if the satellite data have informa-
tion in terms of calibrating the model. However, with inher-
ent errors in the SAR data from processing, it is worthwhile
first to compare the SAR data with those from other available
remote data to illustrate the impact of observation errors. For
validation, the CSI score is calculated between the ENVISAT
data and an aerial photograph of the River Severn taken on
24 July 2007.

Figure 3 illustrates the derived flood extent from these
aerial data (Fig. 3a) with the ENVISAT WSM SAR-derived
flood map (Fig. 3b) from the previous day. Highest-scoring
LISFLOOD-FP simulation flood maps from the observed
model (Fig. 3c) and test model (Fig. 3d) at the same time
step as the ENVISAT data are included for comparison. The
CSI results from this SAR aerial and SAR-LISFLOOD-FP
model comparison are shown in Table 4.

It is clear that the observed and test LISFLOOD-FP mod-
els produce lower CSI scores with the SAR data than with
the aerial data. This is to be expected, and other studies
which have used higher-resolution SAR imagery for vali-
dation (e.g. Bates et al., 2006; Di Baldassarre et al., 2009a,
2010) have observed the same result. The aerial photograph-
derived flood map was delineated manually and therefore has
improved representation of flooding because there are no de-
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Table 2. The European Space Agency (ESA) sourced ENVISAT ASAR WSM acquisitions used with equivalent flow and return period data
for rivers Avon and Severn; gauged data were obtained from the EA.

SAR ID Date Time At Saxons Lode (Severn) At Evesham (Avon)

Time to Gauged Event Gauged Event
flood flow return flow return
peak (m3 s−1) period (m3 s−1) period

(approx., h) (approx.) (approx.)

1 (March 2007, 1) 5 Mar 2007 10:27 268 388

< 5

188

< 3
2 (March 2007, 2) 5 Mar 2007 21:53 268 405 87
3 (March 2007, 3) 8 Mar 2007 10:34 268 419 55
4 (March 2007, 4) 8 Mar 2007 21:58 268 400 45

5 (July 2007, 1) 23 Jul 2007 10:27 132 532
30–40

196
110–150

6 (July 2007, 2) 23 Jul 2007 21:53 132 512 167

7 (January 2008, 1) 17 Jan 2008 21:55 228 432
< 5

64
< 38 (January 2008, 2) 24 Jan 2008 10:12 228 440 28

9 (January 2008, 3) 24 Jan 2008 21:38 228 433 26

10 (January 2010, 1) 18 Jan 2010 10:30 73 407
< 3

107
2

11 (January 2010, 2) 18 Jan 2010 21:53 73 403 37

Table 3. Description of SAR groupings.

Description SAR ID

1 2 3 4 5 6 7 8 9 10 11

By flood event March 2007 July 2007 January 2008 January 2010
By point in hydrograph (r= rising

r r f f f f p f f p p
limb, p= peak, f= falling limb)

Figure 3. The July 2007 flood extents as observed by aerial photography (on 24 July 2007 at 11:30 GMT, a) and ENVISAT ASAR instruments
in WSM (on 23 Jul 2007 at 10:27 GMT, b). The same flood event simulated in LISFLOOD-FP with surveyed cross sections (c, with
Manning’s channel roughness fixed at 0.038) and the test model with optimally calibrated parameters (d).

tection gaps in the flood extent, whereas SAR-derived flood
extents rely on the correct detection of areas of water using a
procedure which is vulnerable to issues of detection and pro-
cessing. So while we may conclude that aerial imagery has
the best level of detail in flood extent available here, these

data can also be limited by observation extent and process-
ing (i.e. manual delineation of the flood edge is still interpre-
tive) and, as a resource, aerial imagery is not as frequently
available as SAR data for observing flood events. It is also
worth pointing out that, for the ENVISAT SAR data, describ-
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Table 4. CSI scores for July 2007 flood extent maps comparing re-
sults obtained using ENVISAT WSM SAR- and aerial-derived flood
extents with hydraulic-model-generated flood extent.

Flood map Aerial- ENVISAT
photograph derived

derived

Aerial-photograph derived – 0.47
Observed model (not calibrated) 0.74 0.43
Test model 0.75 0.46

ing flood extent using the semi-automated algorithm can be
a faster solution than manually delineating flood extent from
new photographs.

The scores and flood extent for the observed model are
not better than the test model results as might be expected.
This may be explained by the fact that while the bathymetry
of the observed model does come from survey data, the
(domain-average) channel roughness value is not calibrated
in either model. While the test model had 1000 parameter-
varying depth and roughness values, the observed model had
a best estimate of domain-average channel roughness param-
eter (of 0.038). While appropriate for the main rivers, it is
evident that the channel roughness value is not suitable for
the narrower tributaries.

It is also of interest that when the aerial data are compared
with the ENVISAT WSM SAR-derived flood maps (row 1,
last column), CSI scores are similar to those obtained from
the best hydraulic model results. This indicates that the hy-
draulic models are representing the observed flood extent for
this flood accurately, within the limits of the available data.
While sections of the flood are missing in the SAR data (for
example, upper River Avon and River Severn) bias can be
introduced. Ideally, these non-informative areas of the SAR
data would be masked out to limit the impact, but with series
of data each differently capturing a flood event this requires
a more comprehensive analysis than available here. It is cur-
rently an active area of research; for example, Giustarini et
al. (2016) propose flood probability maps from sequences of
SAR data. These maps could be used to mask out low prob-
ability of flooding areas. Also Schlaffer et al. (2015) makes
use of harmonic analysis to refine flood extent mapping – a
mask could be created to obscure pixels with low signal to
noise ratios.

The first step in the methodology is to examine the ac-
curacy of the test model with changing parameter value us-
ing CSI. The ENVISAT WSM SAR and LISFLOOD-FP CSI
results were plotted against the r and nc parameter vari-
ables and are presented in Fig. 4. This figure includes only
two plots: one for an ENVISAT WSM acquisition taken on
23 July 2007 (10:27 GMT) and one taken on 24 January 2008
(10:12 GMT), but these CSI results represent typical results
for the entire SAR data available.

Figure 4. Single SAR acquisitions are compared with LISFLOOD-
FP modelled flood maps. (a) Results from the SAR acquisition on
23 July 2007 at 10:27 GMT, (b) results from the SAR acquisition
24 January 2008 at 10:12 GMT.

The black areas in Fig. 4 show that a number of r and
nc parameter combinations/models are able to produce a
good result (i.e. equifinality as described by Beven, 2009).
The optimal r parameter range varies slightly depending on
the image considered. Here, test models with the best repro-
duction of the SAR flood map have r parameters between
approximately 0.10 and 0.30 (July 2007) and between 0.07
and 0.25 (January 2008). Generally, the best reproduction of
the SAR flood maps is obtained with models that have an
r value in the smaller parameter range which translates to a
wide and shallow river channel.

Figure 4 also illustrates the covariance and a linear depen-
dency between the two parameters. This was observed in all
the SAR data. Although the choice of parameter range em-
phasises it, there is a slightly greater skill score sensitivity to
changes in r than for nc. This is to be expected since changes
in channel depth would have an immediate and local im-
pact on flood level and flood extent. It is logical therefore to
see changes in r producing a marked change in flood extent.
Channel roughness changes by contrast have an impact more
on flow velocities, consequently impacting on the timing of
flood wave propagation through the channel (as discussed in
Neal et al., 2015). This would have a more spatially diffuse
impact on flood extent that is barely perceptible here.

Previous SAR-based assimilation studies (Hostache et al.,
2009; Mason et al., 2009; Di Baldassarre et al., 2009a) show
that with a known and fixed channel bathymetry there is suf-
ficient sensitivity in the roughness parameter to enable cali-
bration. The above findings indicate that the sensitivity of nc
is less obvious when r is also unknown. There are previous
studies also where, as here, channel friction appears less sen-
sitive when other parameters are simultaneously calibrated.
Roux and Dartus (2008), for example, found sensitivity in
hydraulic model response to channel roughness to be weaker
than sensitivity to geometry parameters and boundary con-
ditions within a generalised sensitivity analysis framework.
Additionally, Garcia-Pintado et al. (2015) found that sensi-
tivity to bathymetry parameters dominated when using the
ensemble transform Kalman filter to simultaneously estimate
bathymetry and channel friction. The sensitivity in channel
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friction may therefore be not as obvious when other param-
eters are simultaneously calibrated because the model is no
longer compensating for previously unrepresented uncertain-
ties. It could be suggested that channel friction is reverting to
its true sensitivity and so when channel friction is combined
with more dominant parameters such as channel bathymetry
it is rendered less useful for model calibration.

Consequently, an important result of this paper is that –
in this particular experimental set-up with channel rough-
ness parameter nc examined simultaneously with the channel
depth parameter r for the available ENVISAT SAR data –
nc has a much reduced sensitivity compared with the r depth
parameter response. It is observed that nc will yield optimal
results for as long as r is also unknown. This lack of sen-
sitivity of channel roughness in this and all subsequent re-
sults meant that nc could not be identified with any real con-
fidence with this methodology (while r is also unknown). So
while nc analysis was carried out, from this point onwards
only those results from the more identifiable r parameter are
shown. nc results are now omitted (but can be provided upon
request if they are of interest).

4.2 Information content (IC)

Table 5 presents IC results for depth parameter r . For single
SAR observations (left column), there is clearly greater in-
formation content in the July 2007 flood event images. The
inundation during this higher-magnitude event extended well
into the floodplain, and the flood detection algorithm was
able to detect a large number of flooded cells. The lower IC
scores for the March 2007, January 2008 and January 2010
events show that these observations contain less information
to help estimate parameter r .

Grouping SAR data boosts the IC scores considerably, as
can be seen in the right-hand side columns of Table 5. Group
IC scores are estimated after the SAR data have been grouped
together and CSI scores combined as described in Sect. 2.4.
Different SAR groupings were tested as illustrated in Table 3
including combinations according to flood event, position on
the hydrograph as well as all SAR data.

For IC, the July 2007 flood now no longer outperforms the
rest and instead combinations of images, like the March 2007
flood event, have greater information on r . The March 2007
flood combination combines observations either side of the
hydrograph peak and the January 2008 flood combination ob-
serves flooding “at peak” and soon after in the “falling limb”.
By contrast, the reduced-scoring January 2010 and July 2007
combinations acquired images at a single stage in the hydro-
graph only. We might conclude that the detection quality of
the SAR flood maps and timing of acquisition must influence
the final IC score and this is supported also by the observa-
tion that the early falling limb grouping has one of the largest
IC scores here.

Nevertheless, the number of SAR flood maps combined
appears to be important also since the all SAR and early

Table 5. Information content for r from SAR observations and
groups of SAR observations with a 90 % confidence limit applied.

Sequence Information Sequence Information
content content

1 – Mar07_1 0.10 Rising limb 0.13
2 – Mar07_2 0.11 Peak of hydrograph 0.23
3 – Mar07_3 0.11 Falling limb 0.64
4 – Mar07_4 0.11 March 2007 event 0.50
5 – Jul07_1 0.16 July 2007 event 0.37
6 – Jul07_2 0.19 January 2008 event 0.25
7 – Jan08_1 0.10 January 2010 event 0.14
8 – Jan08_2 0.11 All SAR (1–11) 0.68
9 – Jan08_3 0.11
10 – Jan10_1 0.10
11 – Jan10_2 0.10

falling limb (just over half of these SAR images; Ta-
ble 3) groupings emerge as providing the highest IC. The
March 2007 flood grouping also contains twice as many
members as the July 2007 or January 2010 flood groupings
and outperforms both. Clearly, incorporating data from mul-
tiple observations improves IC since combining SAR images
(and CSI scores) improves the likelihood of extracting infor-
mation on the unknown parameters. However, it is not sim-
ply a question of numbers, otherwise falling limb (combining
6 SAR flood maps for an IC score of 0.64) would not be ap-
proaching the success of all SAR (combining 11 SAR flood
maps for an IC score of 0.68). Nor is greater information nec-
essarily revealed by removing poor scorers (the all SAR IC
score reduces from 0.68 to 0.64 when the four lowest-scoring
flood maps are removed from this grouping). Instead, the so-
lution may lie in using SAR flood maps around the peak
and falling limb of the flood since combining falling limb
and “rising limb” observations together yields an IC score
of 0.65 but combining falling limb and peak observations to-
gether provides an IC score of 0.67. Further work and data
are necessary to draw any firm conclusions for the r model
parameter.

4.3 Identifiability

The identifiability of r within single images and combina-
tions of images is assessed in this section. This shows where
the parameter is most easily identified in the ensemble of
model results. A strong identifiability response would be
marked by having a sharper peak in the following plots. The
steeper the gradient, the stronger is the identifiability of the
parameter. A sharper peak indicates that the best-performing
parameters are concentrated in a small area of the parameter
space. Conversely, a wider, shallower peak would indicate
lower identifiability and that the best-performing models are
widely distributed within the parameter range.
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Figure 5. Identifiability against r parameter for each EN-
VISAT SAR observation in our sample.

From the CSI contour plots as illustrated in Fig. 4, we
see that the best-performing model parameter combinations
are distributed fairly evenly within the parameter space, so a
90 % confidence limit was also applied to the data prior to
measuring the gradient of cumulative distribution of rescaled
support values and creation of these following plots.

4.3.1 Individual SAR observations

Figure 5 shows the identifiability plots for all single SAR
data, numbered as in Table 2. Because these plots do not gen-
erally have a strong peak, identifiability is relatively weak
for the individual SAR observations. The strongest response
here occurs for r between 0.05 and 0.15. The peaks are
shaped differently for each SAR observation; SAR 4 and
SAR 3 both have stronger identifiability (narrower peaks than
the rest), whereas SAR 6 and SAR 2 are relatively weak in
this ensemble by having wider peaks.

Taken collectively, these data provide inconclusive results.
This generally weaker identifiability suggests that parame-
ter r would be difficult to identify within these data indi-
vidually. The SAR data were acquired during different flood
events (see Table 3) and their peaks occur at different r pa-
rameter values. This variation may be due to differences in
the size of flood extent (magnitude of flooding), the process-
ing of the image or simply how the flood has developed.

4.3.2 Flood event

This section illustrates identifiability when data from individ-
ual SAR images are combined into flood events as indicated
in Table 3. An important characteristic of the flood event
identifiability plots is that the SAR acquisitions are taken to-
gether in close sequence. Garcia-Pintado et al. (2013) found
that a tight sequence of images could improve model predic-
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Figure 6. Identifiability against parameter r for flood events.

tions. Combining observations in this way appears to focus
the location of the r parameter more clearly than is possible
using single images.

Figure 6 shows that the March 2007 and January 2008
events produce a stronger identifiability between r parameter
values 0.07 and 0.15. However, the optimum r value varies
between 0.07 to 0.1 and 0.1 to 0.15 depending on which
of these floods is examined. It is entirely reasonable that
identifiability of channel depth parameter in the data would
vary with flood event as each flood is unique in magnitude
and mechanism. Based on Fig. 6, the March 2007 and Jan-
uary 2008 SAR images might therefore be best utilised to
locate the value of parameter r . These two events have ap-
proximately the same peak discharge flows at Saxons Lode
(see Table 2). However, the IC results point towards the
March 2007 data combination alone as having more param-
eter information and the reason for this becomes clear when
looking at the individual SAR maps of flood extent. The
group of SAR images acquired in March 2007 combine to
yield a more complete representation of the flood develop-
ment than the combination from January 2008. So, although
in Fig. 6 this identifiability plot shows that both March 2007
and January 2008 flood events would be useful to locate
the parameter r , IC shows the information contained in the
March 2007 flood maps to be of most value.

4.3.3 Through the flood hydrograph

Figure 7 looks at identifiability at three stages of a flood hy-
drograph for the r parameter, namely from observations at
the (late) rising limb, the peak and the (early) falling limbs
(with reference to the stage hydrograph at Saxons Lode in the
central portion of the model domain). The SAR data used for
“through the hydrograph” groupings are described in Table 3.
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Figure 7. Identifiability against r parameter for different stages in
hydrograph.

Previous studies have found that the scheduling of SAR
images is important for calibration of models. Di Baldas-
sarre et al. (2009b) found that identification of the optimal
model parameters depended on the timing of the SAR im-
age acquisition and the magnitude of the flood event. Garcia-
Pintado et al.’s (2013) paper established that to improve fore-
casting of water levels in a model, regular observations dur-
ing the rising limb and then less frequent observations during
the falling limb gave most success. Additionally, Schumann
et al. (2009b) cautioned that SAR images acquired during
the wetting and drying phases of a flood could be show-
ing floodplain connections and dewatering processes uncon-
nected with the hydraulics represented by the model.

While here the number of SAR data within each category
is limited, Fig. 7 shows there is still a difference in identifi-
ability for these separate phases. The strongest r parameter
identifiability occurs for those images taken around the flood
peak and falling limb of the hydrograph. These lines have the
steepest gradients and narrower peaks. Parameter r is most
identifiable between 0.1 and 0.2 in these data.

The weakest identifiability for the r parameter occurs for
the images taken during the rising limb as evidenced by the
wider peak. Yet this result is in contrast to previous studies
(e.g. Garcia-Pintado et al., 2013). The reasons for this dis-
agreement with earlier research may simply lie with the way
that through the hydrograph images were categorised. The
method makes use of only a single independent gauge (at
Saxons Lode) to define the phases, and as such it could be an
oversimplification of the flood dynamics in a river catchment
(such as where the rising, peak and falling limb of the flood
occur at different times depending on where they are mea-
sured within the model domain). It might be more accurate
to state that these flood extents observed around the peak and
early falling limb capture the average moment of transition
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Figure 8. Identifiability against r parameter for all hydrographs.

of flows over banks into the floodplain and these are better
conditions for identifying channel depth parameters.

Alternatively this divergence of findings for the optimum
image time could be explained by the different experimen-
tal set-up and goals. Garcia-Pintado et al. (2013) made use
of distributed and derived water levels to correct model in-
flow errors and improve model predictions with assimilation,
whereas identifiability here makes use of SAR-derived flood
extent to calibrate reach-averaged bathymetry and roughness
parameters for the entire river network. Information obtained
during the rising limb was the most useful time to correct in-
flows because the water level and channel volumes are most
changing during this time, whereas this experiment, in lo-
cating the optimum bathymetry and roughness parameters,
relies on mapping of flood extent (i.e. at bankfull and over-
bank). This is seen most usually in the peak and falling limb
images where there is indeed flood extent but also where
flows (at some locations within the model domain) are tran-
sitioning between channel and floodplain.

4.3.4 All data

Figure 8 shows the identifiability result for all 11 SAR flood
maps combined and compares it with all the previous group
results so far. As for the IC results, this all SAR arrange-
ment produces an observable improvement in identifiability
compared with the single SAR or flood event plots. Although
Sect. 4.3.1 shows that a single image does provide the in-
formation needed to locate parameter r , these results show
that a grouping of similarly conditioned images can locate r

more distinctly and thus with greater confidence. Here, the
strongest identifiability is for those models with r between
approximately 0.10 and 0.12. Identifiability is particularly
strong for the all SAR results.

These results suggest that greatest information for param-
eter r can be obtained by making use of as much data as is
available; in other words, by simply making use of all avail-
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able images, the depth parameter r becomes more identifi-
able. Moreover, all SAR data incorporates data from differ-
ent flood events and therefore represents a range of different
flooding mechanisms. As such, the parameter r might be con-
sidered more robustly calibrated. In this instance, including
even relatively poor flood maps does not negatively impact
the result. However, this might not always be true and situa-
tions may arise where particular flood maps (or sets of flood
maps) would be disinformative.

4.3.5 Constraining the channel roughness parameter
nc

The results above show that calibration is possible for the
more dominant depth parameter but that roughness is less
easily located in this simultaneous calibration methodology.
So far, it is assumed that no ground data are available to give
prior information on either parameter and so the ranges are
deliberately broad. However, one or both parameters could
be constrained further with some knowledge of the catch-
ment and standard look-up tables (e.g. Phillips and Tadayon,
2006; Chow, 1959). Given that even a cursory examination of
Google Earth imagery shows regions of meander and chan-
nel alteration, obstructions and changing vegetation along the
River Severn reach, the Manning channel roughness values
are more likely to lie between 0.035 and 0.055. This section
shows that if we constrain the nc parameter to a narrower
range based on physical principles and expert judgement, it is
possible to improve on first results. We focus here on just the
top-performing models (the maximum CSI score or within
2 % of it) to remove outlying model results.

Figure 9 compares the identifiability for all SAR data for
the full range of models (roughness is not constrained; solid
line) and for 236 models which satisfy the constraint of hav-
ing nc between 0.035 and 0.055 (dashed line). Where there
is no constraint on nc, the location of r is most identifiable
between approximately 0.10 and 0.12 in all SAR groupings.
With nc constrained, the r value moves to a lower depth range
of between approximately 0.08 and 0.10. This translates to a
reach-average model depth between 6 and 7.2 m and is rea-
sonably close to the observed data. In this constrained group
of models, the single highest-scoring model has r of 0.086
(nc of 0.036) and thus indicates the optimum reach-average
model depth is around 6.51 m. The equivalent rectangular
depth from the EA survey is 5.63 m (assuming a reach me-
dian width of 76 m) using bankfull cross-sectional area. The
difference therefore between the calibrated value and the ob-
served equivalent is approximately 0.88 m (an error of 16 %).

The model responds to changes in channel friction by al-
tering the speed of the flood wave and flow velocities. These
results highlight the important reasons for calibrating this
second parameter concurrently. If channel roughness were
set too high, the flood wave would be delayed. If it were set
too low, the flood wave would be too advanced.
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Figure 9. Identifiability for 23 July 2007 at 10:27 GMT showing all
data (solid line) and with nc restricted to between 0.035 and 0.055
(dashed line).

5 Conclusion

This paper presents a methodology for dual calibration of
bankfull depth and channel roughness parameters of the
LISFLOOD-FP sub-grid hydraulic model using SAR data
and a binary pattern classification measure based on flood
extent. Multiple models performed well initially, but by em-
ploying an identifiability methodology we located the area of
the parameter space with highest information for the depth
parameter r . The location narrows with the use of more SAR
images.

The methodology provides some information on which
single and combinations of SAR flood maps would be most
useful for calibration purposes. Single SAR flood maps
would be sufficient to calibrate the depth parameter but
the identifiability is much improved when multiple maps
are combined. Combinations aligned according to particu-
lar flood events/magnitudes are not conclusively different,
but using many or all available SAR images does offer a
real improvement in identifiability. There are indications that
combining maps with similar flood duration or stage of flood
(i.e. SAR images acquired close to peak or just after) would
be beneficial for calibrating the reach-average depth param-
eter, but further work is needed with more targeted observa-
tions than the 11 used here. For robustness, a good range of
flood magnitudes should be used for calibration.

The channel roughness parameter nc was less sensitive to
variations in flood extent and we failed to locate a represen-
tative value for this parameter when r was also varied. The
likely cause probably due to the initial range selected being
too broad and the suggestion that depth/bathymetry is the
more dominant parameter in the model which largely over-
rides, at this model scale at least, the significance of chan-
nel friction. By constraining nc to a more plausible range it
was possible to improve the calibration method and further
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improve the global estimate for the depth parameter. Under
this constraint, the models with top CSI and identifiability
results show that the reach-averaged depth parameter is cali-
brated to 0.086, translating roughly to a reach-average depth
of approximately 6.51 m. This is an error of 0.88 m compared
with an equivalent measure from observed cross-section data,
where channel depth is approximated as 5.63 m.

A benefit of this methodology is that, although we used
gauged inflows within the model, in theory, the calibration
methodology should work also with no recourse to ground
data if good inflows can be simulated and a good DEM is
available. The method also does not require a step to obtain
water levels from the flood data. It does, however, make some
simplifications and assumptions. First, the method assumes
that as there are no errors in the return signals or processing
of the ENVISAT WSM images and the derived flood maps
therefore represent the true and full flood extent. In reality,
there will be a chain of small errors in the processing of the
data that would have an impact on the derived flood extent,
and therefore also on the identifiability and IC results. This
is particularly true for single SAR data which are compared
against each other but perhaps less easily isolated in grouped
SAR data as the combining of data smooths out errors and, by
accumulation, compensates for perceived detection errors in
the remotely sensed data. Understanding the impact of these
individual errors on the final result would be an interesting
follow-on experiment. The importance of the SAR resolution
has not been tested here.

There is also error likely in the assumptions behind the
model set-up. For example, we assume that the channel depth
can be approximated with a parameter r , which is the ratio
between channel depth to width at bankfull flow (i.e. r is
a linear scaling; as width varies, so does depth directly, in
order to conserve water volumes). There is also the assump-
tion that there is no rate of change between width and depth,
so, in essence, depth and width do not vary along the mod-
elled reach and are therefore uniform within the domain. This
fixes r , width and depth to a single value per model, which is
applied throughout the domain. This assumption cannot truly
represent the reality of channel bankfull flows at particular
points in the model, so it can only be used if there is an as-
sumption that results represent a “reach-average” depth value
for the entire modelled domain, based on a reach-average
width. In this way, local variations in width, depth and flow
can be smoothed out. Straight uniform channels are observed
in natural systems only for short stretches of river, and so the
methodology may be more appropriate within smaller sub-
reaches (i.e. “sub-regions” or tributaries) where hydraulics
and hydrology are similar or within medium-sized catch-
ments with ostensibly negligible variation in domain channel
width. Future work will investigate the applicability of the
methodology under these conditions.
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