
Hydrol. Earth Syst. Sci., 20, 3263–3275, 2016
www.hydrol-earth-syst-sci.net/20/3263/2016/
doi:10.5194/hess-20-3263-2016
© Author(s) 2016. CC Attribution 3.0 License.

Cloud tolerance of remote-sensing technologies to
measure land surface temperature
Thomas R. H. Holmes1,2, Christopher R. Hain3, Martha C. Anderson1, and Wade T. Crow1

1Hydrology and Remote Sensing Lab., USDA-ARS, Beltsville, MD, USA
2Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
3Earth Science Interdisciplinary Center, University of Maryland, College Park, MD, USA

Correspondence to: Thomas R. H. Holmes (thomas.r.holmes@nasa.gov)

Received: 13 April 2016 – Published in Hydrol. Earth Syst. Sci. Discuss.: 21 April 2016
Revised: 1 July 2016 – Accepted: 21 July 2016 – Published: 11 August 2016

Abstract. Conventional methods to estimate land surface
temperature (LST) from space rely on the thermal infrared
(TIR) spectral window and is limited to cloud-free scenes. To
also provide LST estimates during periods with clouds, a new
method was developed to estimate LST based on passive-
microwave (MW) observations. The MW-LST product is
informed by six polar-orbiting satellites to create a global
record with up to eight observations per day for each 0.25◦

resolution grid box. For days with sufficient observations, a
continuous diurnal temperature cycle (DTC) was fitted. The
main characteristics of the DTC were scaled to match those
of a geostationary TIR-LST product.

This paper tests the cloud tolerance of the MW-LST prod-
uct. In particular, we demonstrate its stable performance with
respect to flux tower observation sites (four in Europe and
nine in the United States), over a range of cloudiness condi-
tions up to heavily overcast skies. The results show that TIR-
based LST has slightly better performance than MW-LST
for clear-sky observations but suffers an increasing negative
bias as cloud cover increases. This negative bias is caused by
incomplete masking of cloud-covered areas within the TIR
scene that affects many applications of TIR-LST. In contrast,
for MW-LST we find no direct impact of clouds on its ac-
curacy and bias. MW-LST can therefore be used to improve
TIR cloud screening. Moreover, the ability to provide LST
estimates for cloud-covered surfaces can help expand cur-
rent clear-sky-only satellite retrieval products to all-weather
applications.

1 Introduction

Information about the land surface temperature (LST) is an
important element in the retrieval of many hydrological states
and fluxes from satellite-measured radiances. For example,
the retrieval of soil moisture or precipitation from passive-
microwave observations requires a coincident estimate of
LST (e.g., Owe et al., 2008). In other applications, the rate
of change in temperature is contrasted with net radiation to
estimate evaporation as a residual of the surface energy bal-
ance (e.g., Anderson et al., 2011).

The most direct way to estimate LST from spaceborne in-
struments is by radiometers which measure within the ther-
mal infrared (TIR) band of the electromagnetic spectrum.
Thermal emission within this frequency band can be related
directly to the physical temperature of the land surface and
is more precisely termed the ensemble radiometric tempera-
ture (Norman and Becker, 1995). Spaceborne TIR radiome-
ters allow for very high spatial resolution imagery. Even at
the height of geostationary platforms radiometers can deliver
3 km spatial resolution, e.g., the Spinning Enhanced Visible
and Infrared Imager (SEVIRI). A drawback to the TIR tech-
nique is that – at such wavelengths – clouds completely block
the emission from the land surface. This means that space-
borne TIR radiometers give no information about the land
surface below the clouds and instead reflect the temperature
and emissivity of the clouds. The result is that the quality of
the cloud screening directly affects the quality of a TIR-LST
product.

An alternative, more cloud-tolerant technique is based in-
stead on passive-microwave (MW) observations. In partic-
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ular the Ka-band (∼ 37 GHz) was shown to have a strong
link with LST (Owe and Van de Griend, 2001). Based on
these observations, linear-regression-based LST estimates
were derived for the Ka-band (Holmes et al., 2009), and
variants of these linear relations are currently used in soil
moisture retrieval (Jackson et al., 1999; Owe et al., 2008).
However, using a single linear regression across the globe ig-
nores potentially significant differences in microwave emis-
sivity and can result in large biases, especially in desert ar-
eas. It also cannot account for large differences in the am-
plitude of the diurnal cycle between MW- and TIR-based
LST, which have been implicated in reduced soil moisture
retrieval skill during daylight hours (Lei et al., 2015; Pari-
nussa et al., 2011). In contrast to these relatively simple linear
methods, a neural network method was developed by Aires
et al. (2001) to estimate LST based on multiple microwave
channels besides Ka-band. By using atmospheric and sur-
face information in addition to TIR-LST in the training of the
scheme, this method minimized systematic bias in monthly
mean temperatures. However, because the training is based
on a single polar-orbiting satellite, it cannot give diurnal tem-
perature information. Both of these methods were compared
with station data by Catherinot et al. (2011), giving strong
confirmation on the lack of sensitivity of microwave-based
LST estimates to cloud liquid water path. This method has
recently been developed further to allow for more continu-
ous application to a more diverse suite of satellites and over-
pass times (Prigent et al., 2016). One drawback to all passive-
microwave-based methods is relatively coarse spatial resolu-
tion as compared to TIR sensors. At Ka-band, the smallest
footprint size currently achieved with polar-orbiting satellites
is 10× 15 km.

Because of the complementary nature of TIR- and MW-
based LST, there is a clear interest in merging these two in-
dependent technologies. For example, TIR-LST-based evap-
oration retrievals would benefit from observational data dur-
ing cloudy periods (e.g., Anderson et al., 2011). On the other
hand, microwave soil moisture retrievals from Soil Moisture
Active Passive (SMAP) have the goal of 9 km spatial resolu-
tion, and this poses a resolution challenge to MW-LST inputs
if TIR-LST cannot be leveraged. Reconciling the systematic
differences in diurnal temperature cycle (DTC) between TIR
and Ka-band is the first step towards an ultimate merger into
a diurnally continuous LST product. To do this, Holmes et
al. (2015) developed a method to scale the diurnal charac-
teristics of a multi-satellite dataset of Ka-band observations
to a TIR-LST product with 15 min temporal sampling from
geostationary satellites. This scaling was able to account for
biases in characteristics of the DTC related to Ka-band emis-
sivity, sensing depth and atmospheric effects (Holmes et al.,
2015). By explicitly taking account of systematic differences
in DTC between TIR and Ka-band, this method is able to
estimate LST at any time of day from sparse Ka-band ob-
servations. Note that a similar pixel-by-pixel approach was

applied by André et al. (2015) over the Arctic region where
a single satellite can provide diurnal sampling.

The aim of this paper is to evaluate the new global MW-
LST dataset in comparison with existing TIR-LST data over
clear-sky days and particularly to test the assumption that
MW-LST is tolerant to high levels of cloud coverage. Ground
observations provide a common benchmark to test the rela-
tive accuracy of the two satellite products. Because the di-
urnal MW-LST product (Holmes et al., 2015) was scaled to
TIR-based LST as produced by the Land Surface Analysis
Satellite Application Facility (LSA-SAF; see http://landsaf.
meteo.pt), the evaluation is mostly concerned with tempo-
ral precision, not with absolute bias. In previous work it was
shown that relative aspects of a coarse-scale product can be
evaluated using sparse in situ observations (Holmes et al.,
2012). For a thorough discussion of absolute accuracy, read-
ers are referred to papers detailing validation exercises for
LSA-SAF-LST (e.g., Ermida et al., 2014; Göttsche et al.,
2013, 2016).

After establishing the accuracy of MW-LST relative to
TIR-LST for a particular site, the stability of the precision of
MW-LST (relative to ground data) for increasing cloudiness
will be tested. Previous work showed indications of cloud
tolerance of MW-LST in comparison to TIR-LST (Holmes et
al., 2015), but the analysis used proxies for both cloud cover
and LST quality. In this paper we use a more direct estimate
of cloudiness and provide a more detailed look at the valida-
tion statistics for different levels of daytime cloudiness with
the ground station as the reference. The hypothesis we test
is that clouds affect a satellite-measured LST by introduc-
ing an error (E). If E is consistent in sign throughout the
measurement period (e.g., if clouds always lower the satel-
lite LST estimate), this will introduce a systematic bias that
will increase with cloud cover. If on the other hand the sign
of E varies, it will increase the random error in LST, but not
necessarily a systematic bias. Only if we do not see a sys-
tematic bias with increasing cloud cover, nor an increase in
random error, can we reject the hypothesis that clouds affect
the satellite LST.

2 Materials

2.1 Satellite LST estimates: thermal infrared

TIR-LST is available from many sources, including both low
Earth-orbiting satellites and geostationary satellites. Because
of our interest in the diurnal features of LST, used in sur-
face energy balance evaluations, this study focuses on TIR-
LST products developed from geostationary satellites. The
first product is based on the SEVIRI aboard the Meteosat
Second Generation (MSG-9) satellite. MSG-9 is positioned
over the Equator at 0◦ longitude. It has geographic cover-
age of Africa, Europe and the east coast of South America
(with incidence angles below 70◦). The Land Surface Anal-
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ysis, Satellite Application Facility (LSA-SAF) produces op-
erational LST products based on split-window observations
(channels centered at 10.8 and 12.0 µm) of MSG-9. LSA-
SAF-LST is originally produced at 3 km spatial resolution.
For this study, the data are aggregated to match the 0.25◦

resolution of MW-LST. If two-thirds of the 3 km observa-
tions are masked, then the sample average is rejected for that
location and time.

For North America, NOAA operates the Geostationary
Operational Environmental Satellites (GOES). GOES Sur-
face and Insulation Products (GSIP) are produced by the Of-
fice of Satellite Data Processing and Distribution (OSPO),
National Environmental Satellite Data and Information Ser-
vice (NESDIS), NOAA, and include LST (V3 was used for
this study). Unlike MSG-based LST, GOES GSIP LST is
based on a dual-window technique (3.9 and 11.0 µm) rather
than the preferred split-window technique due to the lack of a
12µ thermal channel on the current generation of the GOES
imager. An operational hourly LST at 0.125◦ spatial resolu-
tion is available from 2 April 2009 onwards. For this study,
we averaged the nine 0.125◦ nodes that cover the edge and
center of the 0.25◦ MW-LST product grid cell. In order to
further reduce possible cloud contamination, a particular data
point is only used if all nine 0.125◦ pixels covering the 0.25◦

grid box contain (non-cloud-masked) data.

2.2 Satellite LST estimates: microwave

The MW-LST product is based on vertical polarized Ka-band
(36–37 GHz) brightness temperature (T Ka) as measured by
microwave radiometers on six satellites in low Earth or-
bit. These satellites include the Advanced Microwave Scan-
ning Radiometer on EOS (AMSR-E) to October 2011 and
its successor on AMSR2 from July 2012. Also included are
the Special Sensor Microwave and Imager (SSM/I) on plat-
forms F13, F14 and F15 of the Defense Meteorological Satel-
lite Program; the Tropical Rainfall Measurement Mission
(TRMM) Microwave Imager (TMI); and Coriolis-WindSat.
These observations are combined to create a global record
with up to eight observations per day for each 0.25◦ resolu-
tion grid box. The data are binned in 15 min windows of local
solar time (00:00–00:15 is the first window of the day). The
brightness temperatures are intercalibrated using observa-
tions from the TRMM satellite (with an equatorial overpass)
as a transfer reference. Individual 0.25◦ averages are masked
if the spatial standard deviation of the oversampled Ka-band
observations exceeds a prior determined threshold for a given
grid box. Both the intercalibration and quality control proce-
dures are described in detail in Holmes et al. (2013a).

The methodology to estimate LST from this record of Ka-
band observations is described in Holmes et al. (2015) and
summarized below. For days with suitable observations (a
minimum of four, including at least one within a third day
length from solar noon) and no T Ka < 250 K (an indication
of frozen soil), a continuous DTC is fitted. The DTC model

used is based on Göttsche and Olesen (2001) with slight
adaptations to limit the number of parameters. This imple-
mentation (DTC3) is fully described in Holmes et al. (2015).
DTC3 summarizes the DTC with two daily parameters (daily
minimum T0 at the start and end of the day, and diurnal
amplitude A) together with diurnal timing (ϕ), which is as-
sumed a temporal constant (Holmes et al., 2013b). The daily
mean is defined by the daily minimum and the amplitude
(T = T0+A/2). The Ka-band DTC parameters for individ-
ual days (T

Ka
d , AKa

d ) are scaled to match the long-term mean
of TIR observations:

AMW
d = AKa

d /δ, (1)

T
MW
d = β0+β1T

Ka
d . (2)

The scaled parameters are indicated with the superscript
“MW”. The parameter δ represents the slope of the zero-
order least-squares regression line for estimating the am-
plitude of AKa

d from TIR-LST (ATIR
d ). The intercept (β0)

and slope (β1) to correct the mean daily temperature (T
Ka
d )

for systematic differences with TIR-LST (T
TIR
d ) are deter-

mined with a constrained numerical solver, as in Holmes et
al. (2015). The constraint is based on radiative transfer con-
siderations and assures that the scaling of the mean is in
agreement with the prior scaling of the amplitude (Eq. 1).
These scaling parameters were determined for each 0.25◦

grid box based on data for the period 2009–2012. The scal-
ing (Eqs. 1 and 2) is applied to every day for which estimates
of T

Ka
and AKa are available. Together with the timing of

the diurnal cycle of TIR-LST, ϕTIR, as determined based on
(Holmes et al., 2013b), we then calculate the diurnal MW-
LST based on the same DTC3 model:

MW-LST= DTC3
(
ϕTIRTMW

0 AMW) . (3)

Comparing actual Ka-band observations to estimates pro-
vided by the fitted DTC model provides a valuable means of
quality control. The root mean square error (RMSE) of the
misfit between the DTC3 model and the sparse T Ka observa-
tions is used to flag days where the assumptions imposed by
the shape of clear-sky DTC are not valid or individual Ka-
band observations have a large bias.

Besides the continuous MW-LST product, we can also
evaluate the product at the actual Ka-band observation times
(thus weakening our reliance on the DTC3 model). To do
this, we project the difference between the original MW data
and the DTC model fit onto MW-LST. This product is re-
ferred to as MW-LST-Sparse:

MW-LST-Sparse= DTC3
(
ϕTIR,TMW

0 ,AMW)
+

1
δ

(
T Ka
−DTC3

(
ϕKa,T Ka

0 ,AKa)) . (4)

In MW-LST-Sparse the impact of the DTC3 model is limited
to providing the minimum and amplitude of the diurnal. The
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differences between the observations and the diurnal model
at the actual observation time are preserved. The difference
between the continuous MW-LST and the MW-LST-Sparse
is illustrated in Fig. 1 (lower panel).

2.3 Ground observations

FLUXNET is a worldwide network of meteorological mea-
surement towers (flux tower) with common measurement
protocols (Baldocchi et al., 2001). Each flux tower includes
an instrument positioned above the vegetation canopy to
measure net radiation. This instrument is made up of two
pyranometers to measure up- and downwelling shortwave
radiation and two pyrgeometers to measure up- and down-
welling longwave radiation. The radiometric surface tem-
perature (T ) can be derived from the longwave radiation
measurements (upwelling: L↑, W m−2; downwelling: L↓,
W m−2) using the following equation:

L↑ = εLσT
4
+ (1− εL)L↓, (5)

where εL is the broadband emissivity over the spectral
range of the pyrgeometer (4.5–42 µm) and σ is the Stefan–
Boltzmann constant (σ = 5.670× 10−8 W m−2K−1).

2.3.1 Longwave emissivity

An estimate of εL is obtained for each site based on mea-
surements of L↑ together with additional measurements of
screen level air temperature (Ta), sensible heat flux (H) and
wind speed (u). This estimate is based on three assumptions:
(1)H is directly proportional to the near-surface temperature
gradient, (2) the difference T−Ta represents that temperature
gradient and (3)H = 0 when there is no vertical temperature
gradient (i.e., T = Ta). With these three assumptions in mind
we then iterate over εL to find the solution where the regres-
sion ofH against (T − Ta) goes through zero and the squared
errors are minimized. When measurements of wind speed
are available, they are used to select atmospheric conditions
where the relationship between H and the near-surface tem-
perature gradient is strongest (u> 2 m s−1). For forest sites,
the direct relationship between H and T gradients breaks
down. In those cases, the simpler assumption is used that the
long-term average of T and Ta are equal: 〈T 〉 = 〈Ta〉. For
more discussion and examples of this method see Holmes et
al. (2009). In this study we apply this method to determine
monthly εL for each site individually and then use the me-
dian value of εL (listed in Table 1) to calculate T based on
Eq. (5). The standard deviation of the monthly measurements
of εL is also listed in Table 1 and provides an indication of
both uncertainty and seasonal variation in εL.

2.3.2 Spatial representativeness and site selection

The tower-based estimate of T , from (Eq. 5), directly rep-
resents only the immediate tower surroundings within a ra-

dius of approximately 50 m. Clearly this is a very small spa-
tial sampling of the 0.25◦ grid box (∼ 25× 25 km) repre-
sented by the satellite LST estimates used in this study (see
Sects. 2.1 and 2.2). As a consequence, we typically find large
systemic differences between the station data and the areal
average. Given that overall weather conditions are relatively
homogenous over distances of 25 km, these differences can
be attributed to the land cover type at the station location in
comparison to that over the entire grid box (for examples of
this, see Holmes et al., 2009). The representation of the spa-
tial average by ground observations can be improved signif-
icantly if more than one station is available in the same grid
box and the towers are situated in thermodynamically con-
trasting land cover types (forest and cropland/herbaceous). In
that case the land cover associated with the tower site (sub-
script, s) determines the weight (W) according to the spa-
tial fraction of that land cover type within the 0.25◦ grid box
(MCD12C1; Friedl et al., 2010). We use this information to
estimate the grid average LST as the weighted average of
site-measured T according to Eq. (6):

LST=

n∑
s=1

WsTs

n∑
s=1

Ws

. (6)

For example, site DE-Hai of location A is located in a for-
est and represents 16 % of the pixel. Site DE-Geb is located
in croplands and represents 80 % of the pixel that has low
vegetation cover or bare soil. Urban, open water or wetland
accounts for the remaining 4 %, which does not affect the
weighting. We only considered locations where this rest frac-
tion is below 5 % of the grid coverage. Another criterion for
site selection was that the land cover at the site must repre-
sent more than 75 % of the pixel. Sites in mountainous areas
are also excluded. For the period of 2009–2012 this means
there are 13 locations with at least 2 years of flux tower sites
available for this study, and four of these locations contain
multiple stations. For pixels where only one station is avail-
able, LST is set equal to the site measurement: LST= T . All
the validation targets are listed in Table 1, together with the
geographic location of the individual stations, the land cover
type as reported by the flux tower operators and the parame-
ters W and εL as described above.

2.3.3 Cloudiness at tower location

The downwelling shortwave radiation (S↓) as measured at
the flux tower is strongly affected by the amount of con-
densed water in the atmosphere. We can therefore use the re-
duction in site-measured daytime S↓ relative to an expected
value during clear skies as a proxy for cloudiness. The clear-
sky irradiance S↓clear is estimated based on top-of-atmosphere
solar irradiance (STOA), which can be calculated based on
geographic location and day of year (Van Wijk and Ubing,
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Figure 1. An example of the available data at station B, showing 8-day time series of station-measured shortwave incoming radiation (S↓,
or SW, top) and LST (bottom graph). In the top graph S↓ (black lines) is compared to the clear-sky expected value, S↓clear (Eq. 7, red dash),
to illustrate the computation of the cloud cover proxy (Acloud, Eq. 8, values in blue text). In the lower graph the station LST is compared to
the TIR and MW satellite LST products. The dashed line is an occurrence where the MW-LST is masked due to a high misfit between sparse
observations and the diurnal model.

1963). Even on a clear day, atmospheric absorption reduces
the irradiance at the surface by 20 to 30 % from the top-
of-atmosphere value. We estimate this clear-sky absorption
(Aclr) by calculating the slope (β) of the zero-order linear re-
gression between S↓ and STOA for days that are in the highest
quintile of S↓/STOA :Aclr = 1−β. These estimates of Aclr
(listed in Table 1 for each individual site) range from 0.22
to 0.31 and show a good agreement between stations of the
same cluster. We use the minimum recorded value for each
cluster to calculate S↓clear:

S
↓

clear = S
TOA (1−Aclr) . (7)

By using S↓clear to normalize measured S↓, we account for so-
lar zenith effects and can formulate a measure for shortwave
cloud absorption (Acloud), expressed in percentage:

Acloud = 100
S
↓

clear− S
↓

S
↓

clear

. (8)

This definition of Acloud is used as a measure of cloudiness
and calculated based on 3 h totals of insolation for the day-

time between 06:00 and 18:00. Obviously this definition of
cloud absorption does not apply when the Sun is below the
horizon. For nighttime hours we use the neighboring daytime
window:

Acloud (0− 6)= Acloud (6− 12) , (9)
Acloud (18− 24)= Acloud (12− 18) . (10)

Figure 1 gives an example of the site-measured S↓ and the
calculated Acloud for an 8-day summer period at station B
(top panel). The bottom panel shows the site-measured LST
and illustrates how the temporal sampling of the satellite
products is affected by clouds.

2.4 Statistical metrics

In the description of the results we make use of standard sta-
tistical metrics. In terms of absolute error metrics we report
bias, the long-term mean difference between satellite product
and in situ data, and the RMSE. By removing the long-term
mean difference, we can calculate RMSE of the unbiased
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Table 1. List of ground validation targets detailing geographic location and International Geosphere-Biosphere Programme (IGBP) vegetation
type. Local parameters determined for each station are weight (W ) in spatial average, longwave emissivity and clear-sky absorption.

Cluster ID, name Site ID Geographic Vegetation (IGBP) W εL Clear-sky Notes
location median absorbtion

(STD) (Aclr)

A. DE-Thuringia DE-Hai 51.0792◦ N, Deciduous broadleaf .16 0.993 (0.001) 0.33 ∗

10.453◦ E forest
DE-Geb 51.1001◦ N, Croplands .80 0.983 (0.004) 0.31

10.9143◦ E

B. DE-Dresden DE-Tha 50.9636◦ N, Evergreen needleleaf .36 0.983 (0.005) 0.26
13.5669◦ E forest

DE-Kli 50.8928◦ N, Croplands .61 0.993 (0.001) 0.27
13.52250◦ E

C. CZ-Billy Kris CZ-BK1 49.50021◦ N, Evergreen needleleaf .72 0.985 (0.001) 0.29 ∗

18.5368◦ E forest
CZ-BK2 49.4944◦ N, 1 Grasslands .23 0.985 (0.001) 0.30

18.5429◦ E

D. ES-LMa ES-LMa 39.9415◦ N, Savannas .77 0.987 (0.001) 0.25
5.7734◦W

E. US-Marys River US-MRf 44.6465◦ N, Evergreen needleleaf 1.0 0.995 (0.000) 0.27
123.5515◦W forest

F. US-Woodward US-AR1 36.4267◦ N, Grasslands .98 0.993 (0.003) 0.23
99.42◦W

G. US-SGP Main US-ARM 36.6058◦ N, Croplands 1.0 0.963 (0.011) 0.23
97.4888◦W

H. US-Wind River US-Wrc 45.8205◦ N, Evergreen needleleaf .99 0.993 (0.004) 0.23
121.9519◦W forest

I. US-Santa Rita US-SRC 31.9083◦ N, Open shrublands .5 0.960 (0.008) 0.21
110.8395◦W

US-SRM 31.8214◦ N, Woody savannas .5 0.983 (0.006) 0.21
110.8661◦W

J. US-Audubon US-Aud 31.5907◦ N, Grasslands .99 0.950 (0.003) 0.20
110.5092◦W

K. US-Lucky Hills US-Whs 31.7438◦ N, Open shrublands 1.0 0.972 (0.017) 0.19
110.0522◦W

L. US-Woodward US-AR2 36.6358◦ N, Grasslands 1.0 0.992 (0.003) 0.26
99.5975◦W

M. US-Kansas US-KFS 39.0561◦ N, Grasslands 1.0 0.945 (0.015) 0.25
95.1907◦W

∗ Sites are located in neighboring grid cells. Reference: C: Marek et al. (2011).

data (ubRMSE). These three metrics are related as follows:

RMSE=
√

ubRMSE2
+ bias2. (11)

We further report standard error of estimate (SEE) as a mea-
sure of temporal precision:

SEE= σ
√

1− ρ2, (12)

where σ is the standard deviation of in situ data and ρ is
Pearson’s correlation coefficient.

3 Results

We acquired data for 17 field sites in 13 unique grid locations
with data records within the 4-year time period of 2009 to
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Table 2. Percentage coverage for two LST products.

MSG domain 2009–2011

Frost-free days

Sat All All All Clear-sky Cloudy
product sky sky

TIR 36 42 47 94 14
MW 50 55 64 75 56

2012. Table 2 lists the amount of days with at least 12 hours
of observations for either MW or TIR-LST to give an overall
sense of available validation data for this study. In total we
have 13 316 data days of in situ data (36 out of 44 data years).
Of these data days, 50 % also have MW-LST estimates, and
36 % have TIR-LST observations. For MW, this percentage is
negatively affected by the gap between AMSR-E (radiometer
turned off in October 2011) and AMSR2 (first observations
in July 2012). The MW-LST product is heavily reliant on
these satellites with a midday overpass for constraining the
diurnal amplitude. For TIR, the percentage is particularly low
for GOES due to a more stringent cloud filter than employed
for MSG.

To better represent the relative data coverage that is possi-
ble with the two LST retrieval techniques, we focus on the
four station pairs in the MSG domain and limit the time
period to 2009–2011. We further focus on the days where
the minimum temperature (as measured at the station) stays
above freezing (the MW method is not applicable for sub-
freezing temperatures). Within this smaller subset, we have
2506 data days of in situ data, and the coverage of MW is
55 % in comparison with the 42 % coverage for TIR. How-
ever, breaking this down by cloud cover reveals the big dif-
ference in coverage resulting from the wavelength-dependent
tolerance to clouds. During clear skies, the coverage of TIR is
93 %, and MW comes in at 76 % (mainly attributed to the 2-
out-of-3-days revisit for ascending AMSR-E). During cloudy
days the coverage drops to 13 % for TIR, whereas for MW it
maintains 55 % coverage.

In the following section we want to answer two questions.
How does the MW-LST compare to TIR-LST in relation to
ground data during days with clear skies? And is the perfor-
mance of MW-LST affected by clouds? We focus on hourly
average temperatures for days where the station data remain
above 1 ◦C to avoid snow or frozen surface conditions.

3.1 Clear-sky comparison of satellite LST products

The ground observations provide a common benchmark to
test the relative accuracy and bias of the two satellite prod-
ucts with the same in situ data. Days with clear skies are
selected based on the measure of cloudiness as defined in
Sect. 2.3.3, with a maximum accepted value of Acloud = 0.2.
This is in addition to the cloud screening performed in the

Table 3. Summary of “clear-sky” validation results.

European FLUXNET Statistic TIR-LST MW-LST MW-LST-
Sparse

A: DE-Thuringia ubRMSE 2.2 2.4 2.4
Bias 0.4 1.2 1.1
N 2050 2636 525

B: DE-Dresden ubRMSE 1.6 1.7 1.7
Bias −0.6 −0.7 −0.9
N 4157 4521 1245

C: CZ-BK ubRMSE 2.6 2.6 2.6
Bias 2 2 1.9
N 2787 2985 850

D: ESLMa ubRMSE 1.7 2.5 2.6
Bias 0.4 0.8 0.7
N 12055 9652 2560

Multi-site average ubRMSE 2.1 2.3 2.3
|Bias| 0.9 1.2 1.2

AmeriFlux Statistic TIR-LST MW-LST MW-LST-
Sparse

E: US-Marys River ubRMSE 3.2 3 3.3
Bias 1.9 1.5 1.7
N 2810 1991 756

F: US-Woodward ubRMSE 3.1 3 2.8
Bias −0.6 −0.5 −0.5
N 2925 10386 3811

G: US-SGP Main ubRMSE 2.8 3.3 3
Bias 0.5 0.4 0.6
N 2895 8362 3105

H: US-Wind River ubRMSE 2.5 2.3 2.5
Bias −0.9 −1.1 −1.1
N 4219 6915 1687

I: US-Santa Rita ubRMSE 2.9 3.5 3.3
Bias −1.5 −0.7 −1.2
N 8908 13478 5312

J: US-Audubon ubRMSE 2.4 3.4 3.4
Bias −1.3 −1.3 −1.6
N 3301 8345 3078

K: US-Lucky Hills ubRMSE 3.1 3.5 3.5
Bias −0.7 0.3 −0.1
N 7870 10786 4545

L: US-AR2 ubRMSE 3.2 2.6 2.4
Bias −0.5 −0.6 −0.6
N 2033 8766 3124

M: US-Kansas ubRMSE 2.3 2.1 2
Bias −0.2 −0.1 −0.4
N 1454 4788 1627

Multi-site average ubRMSE 2.8 3 2.9
|Bias| 0.9 0.7 0.9

generation of the TIR products (Sect. 2.1), the quality con-
trol of the MW-LST (Sect. 2.2) and the selection of frost-free
days. Even though the spatial representativeness and uncer-
tainty in εL may insert systematic errors in the estimation of
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Figure 2. Comparison between TIR-LST (x axis) and MW-LST (y axis) in terms of their validation metrics with station LST for frost-free
and cloud-free days. From left to right the three panels show (a) ubRMSE, (b) mean bias and (c) bias in1 (LST). Each marker represents the
statistics as calculated for individual locations as identified by the letter (see Table 1 for definition). For the GOES domain the filled markers
highlight the stations used in the cloud analysis. Black lines provide visual support and indicate targets (e.g., 1 : 1 line, cross at zero bias).

the spatial average from the ground stations, they can be used
as a reference to compare different satellite LST products.

For each of the 13 validation targets we tabulate (see Ta-
ble 3) ubRMSE and bias (see Sect. 2.4 for definition). By ex-
cluding long-term bias, the ubRMSE gives an indication of
the overall data quality, which includes the random error and
errors resulting from a mismatch in variance (either seasonal
or diurnal). Errors in spatial representation of the sites affect
MW and TIR in the same way. In order to highlight the rel-
ative performance of the two satellite products with respect
to the common benchmark, we compare their performance
directly in Fig. 3.

Encouragingly, the multi-site average ubRMSE for the
four European FLUXNET sites shows the MW-LST (2.3 K)
to be only moderately higher than TIR-LST (2.1 K) for
these frost-free and cloud-free observations. This is a pos-
itive result for MW-LST because of the extra processing
needed to correct MW data for sensing depth differences
with TIR. Both satellite products have a higher ubRMSE
with the AmeriFlux stations, but again the multi-site average
ubRMSE for MW-LST (3.0 K) is only slightly higher than
that for TIR-LST (2.8 K). Figure 2a compares the ubRMSE
with in situ data directly for the two satellite technologies.
The high correlation between the two methods is an indica-
tion that the spurious effect of spatial representation of the
site affects both methods to similar degrees. Of all the sta-
tions, MW-LST has a lower ubRMSE at 5 of the 13 stations,
and the only stations where we record more than 0.5 K differ-
ence in ubRMSE between TIR and MW-LST are FLUXNET
station D (2.5 K for MW vs. 1.7 K for TIR) and AmeriFlux
stations I (3.5 K for MW vs. 2.9 K for TIR) and J (3.4 K
for MW vs. 2.4 K for TIR). These stations, together with K
and L, all have dry conditions with low vegetation. When
there is less vegetation, the influence of soil emissivity on the
observed Ka-band brightness temperature becomes larger.
Small changes in soil moisture can affect the soil emissivity

and will result in biases for MW-LST when a constant emis-
sivity is assumed (as in the current implementation). This
points to possible improvements when the scaling to TIR
is performed at shorter window lengths, perhaps in 3-month
moving windows.

Because MW-LST is scaled directly to TIR-LST, its bias is
almost completely determined by the bias between TIR-LST
and the site (Table 3 and Fig. 2b). The European FLUXNET
sites fall within the MSG domain, and these data years were
part of the data on which the scaling of MW-LST is trained
(Holmes et al., 2015). Although the mean bias (Fig. 2b) is al-
most identical, the bias in morning heating (1T , Fig. 2c) has
more variation between the two satellite products. It is inter-
esting that generally the satellite products overestimate 1T
compared to ground data: on average they both overestimate
the recorded heating at the stations by about 10 %.

3.2 Cloud tolerance of satellite LST

To test the stability of the MW-LST for increasing levels of
cloudiness, we took a closer look at the four sites in Eu-
rope and three in the US (sites A–G). To isolate the effect
of clouds on the agreement between satellite and ground ob-
servations, we first remove structural differences by fitting a
linear regression for each location, based on data with cloudi-
ness below 20 % (0 – see Sect. 2c). We then divide the data
into five equal bins of increasing cloud coverage from 0 to
100 %. The RMSE and mean difference (bias) between the
satellite data and the regression-corrected in situ data is then
calculated for each 20 % cloud bin. The purpose is to test the
assumption that MW-LST is tolerant to higher levels of cloud
coverage.

Figure 3 shows the result of this analysis for locations A–
G (from left to right). For each location the data coverage
(top row), RMSE (middle row) and bias (bottom row) are
displayed for the five 20 % bins of cloudiness. First of all,
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Figure 3. RMSE and bias of satellite LST with regression-corrected in situ data for five levels of cloud cover ((Acloud, Eqs. 8–10). From left
to right are locations A–G (see Table 1 for site information). Results for TIR-LST (red) are contrasted with those for MW (blue). Markers
indicate that more than 15 days with data were available for a particular cloud cover bin. Green dashed lines indicate the results for MW-
LST-Sparse. For each site and cloud interval the percentage coverage of the temporal record is depicted in the top row with half-rounds in
proportion to the number of data pairs. The potential number of data pairs (grey) refers to the number of in situ data points for each cloud
bin. The actual number of data pairs is superimposed on this for MW (blue) and TIR (red).

the large increase in negative bias with increasing cloudi-
ness for the TIR-LST product stands out. At all stations we
see a clear negative bias in response to increasing cloudiness
for TIR-LST, and the overall agreement between stations is
striking. At 40–60 % cloud cover, all stations but one show
a significant negative bias for TIR-LST. Above 60 % cloud
cover all stations (where TIR-LST is still available, presum-
ably due to failure of the cloud mask) show a negative bias
of 2 K or more. This clearly shows that for TIR-LST we have
to accept the hypothesis that clouds affect the satellite LST
estimate, even after a cloud mask is applied. It is well known
that TIR observations are sensitive to clouds and that a fail-
ure to mask for cloud conditions will result in an underesti-
mated LST (for land surface above freezing). Because of this
systematic response to clouds, the bias metric by itself is a
good indicator of the effect of cloud contamination in clear-
sky TIR-LST products. The symbols in the top row show the
diminishing temporal sampling with increasing cloud cover.
When we contrast this with the size of the bias, it is clear

that the cloud mask as implemented in the LSA-SAF product
(for sites A–D) is not sufficient at removing cloud artifacts.
The GOES product (for sites E–G) appears to remove times
with high cloud values more completely. Although investi-
gating the efficacy of cloud masks for TIR techniques is not
the purpose of this paper, it does help illustrate how cloud
effects can be identified with these ground stations.

In clear contrast to the TIR-LST products, the response
of MW-LST to increasing cloudiness is much more muted
and not as consistent across stations. Stations A, B, C and
E show no response in terms of bias, and below 80 % cloud
cover there is no station with a MW-LST bias of more than
1 K. One station shows a negative trend (D), and two sta-
tions show a positive trend (F and G). But only above 80 %
cloudiness do these trends result in bias error of greater than
1 K. Because we see both positive and negative biases in the
MW-LST analysis, we cannot rely solely on the bias metric
to assess the impact of clouds. If there are cancelling biases
affecting an individual station, this could suppress the bias.
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Table 4. Validation results by MW satellite (all data, a.m. or p.m. overpass), aggregated for locations A–M (see Table 1).

2009 linear regression 2015 diurnal scaling

Satellite Overpass RMSE SEE Bias RMSE SEE Bias N

AMSR-E 4.5 3 0.7 3.2 2.6 0.2 6227
a.m. 4.4 1.9 3 3.1 2.1 −1.1 2817
p.m. 4.6 2.7 −1.5 3.3 2.6 1.4 3410

AMSR2 4.4 2.4 1.6 3 1.9 0.8 843
a.m. 5 1.7 3.7 2.6 2 −0.7 347
p.m. 3.8 1.6 −0.3 3.2 1.6 1.9 478

WindSat 3.5 2.3 0.8 3.1 2.5 −0.6 3080
a.m. 3.3 2.1 1.4 3.1 2 −0.2 1617
p.m. 3.7 1.9 0.2 3 2.1 −0.9 1463

SSM/I 3.8 2.4 0.9 3.1 2.6 −0.3 5401
a.m. 3.5 2.3 1.1 3.1 2.2 0.2 2740
p.m. 4 2.1 0.8 3 2.3 −0.8 2661

Average (all sites) 4.1 2.4 1.2 3.1 2.4 0.6

Forest (sites: C, E, H) 5.1 2.1 4.3 3 2 0.5

Low vegetation 3.9 2.5 0.9 3.2 2.5 0.7

The increased retrieval error would still be reflected in an in-
creased RMSE. However, the RMSE of MW-LST changes
minimally relative to its baseline value at 0–20 % cloudiness
and mirrors the size of the bias. This indicates that there is
little potential for “hidden” biases behind these numbers. For
MW-LST we can therefore reject the hypothesis that clouds
affect the satellite LST estimate.

The MW-LST-Sparse product (Eq. 4) adopts the same
scaling with TIR as the diurnal MW-LST but has much less
sensitivity to the imposed shape of the diurnal model (DTC).
For clear skies this distinction is negligible, as apparent from
the almost identical values of ubRMSE shown in Table 3. The
effect of the clear-sky model is likely to be higher on days
with cloudy or partially cloud-covered sky. And although the
sparse set only has four–eight observations per day, it allows
more samples on days with complex temperature changes.
Such days are removed from the MW-DTC product if no
good match is found between the diurnal model and obser-
vations. We can therefore use the MW-LST-Sparse product
to test for undue influence of the DTC model (and its re-
lated quality flags) on the relationships between LST errors
and cloudiness. The response in bias of MW-LST-Sparse to
increasing cloudiness is almost identical to the response of
MW-LST for each station (see Fig. 3). In terms of RMSE the
sparse set shows values equal to or higher than the diurnally-
continuous MW-LST product, which is not surprising as it
does not have the smoothing and quality control associated
with the DTC model.

3.3 All-sky validation by satellite overpass time

The MW-LST record is a combination of different satellites.
In the following analysis the validation results of the MW-
LST product are broken down by time of day and satellite in-
put record. All data pairs where the minimum temperature at
the station stays above freezing are included in this analysis,
regardless of cloud cover. It is interesting to compare these
results to the much simpler approach that uses a single lin-
ear regression model globally (Holmes et al., 2009). Table 4
lists RMSE, SEE and bias for the old and new approach. The
statistics are aggregated for all locations as listed in Table 1.
The mean scaling with TIR-LST results in a drop in bias for
the MW-LST, reducing the average RMSE by 1 K. Part of
this reduced RMSE results from the improved characteriza-
tion of the amplitude of the diurnal cycle, which improves
the slope at all times of day and accounts for 0.2 K of the
improvement in RMSE. The impact on the precision (quan-
tified here by SEE) is mixed – on average there is no change.
Biggest improvements in all metrics are recorded for the for-
est locations (sites C, E and H).

4 Discussion

Considering all eight locations used in the cloud analysis, we
see little to no response to clouds in terms of bias and RMSE
for MW-LST, and this allows us to reject the hypothesis that
clouds negatively affect its accuracy. However, for three sites
we do find weak and opposing biases at higher cloud cov-
erage which require an explanation. The wavelength of Ka-
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band (8 mm) is 2 orders of magnitude larger than a typical
cloud droplet (10 µm). Therefore, any effect of clouds on
MW-LST would stem from changes in associated meteoro-
logical conditions like atmospheric vapor content and tem-
perature profiles and their potential impact on Ka-band emis-
sion processes. According to the zero-order radiative transfer
model, an increased atmospheric opacity (through increasing
atmospheric water content) increases the weight of the at-
mospheric contribution to the satellite-measured brightness
temperature, relative to the top of vegetation emission. The
sign and size of the effect of a change in atmospheric opacity
thus depend on the contrast between the atmospheric tem-
perature and the land surface temperature times the effective
emissivity. It is therefore possible that this could explain the
site-to-site differences in bias as shown in Fig 3. Analyzing
the overall effect of the atmosphere on biases in MW-LST
will require more detailed atmospheric profile information
coupled with a radiative transfer model.

Another possible explanation is that the positive biases
recorded at locations F and G are related to scale differences
between the site and the 0.25◦ grid cell. Spatial heterogeneity
in LST is likely more pronounced during clear-sky periods
when spatially varying soil and vegetation yield a strong in-
fluence on the daytime temperature gradients. During cloudy
periods the temperature gradients are not as pronounced and
more directly linked to the more uniform air temperature. If
the mean temperature at the station is generally higher than
the areal mean LST, and this bias diminishes with increasing
cloudiness, this would be transformed through our clear-sky
training into a positive bias for the satellite product at high
cloudiness. However, this effect would affect both MW and
TIR to the same extent. We have tested this at locations with
two stations in contrasting land cover types (A–C). What we
found is that indeed it is possible to “rotate” the bias response
by changing the weights of the individual stations and that
this rotation affects both MW and TIR-LST. This effect of
site representation can therefore explain the greater variation
in response from station to station for locations where only
one station was available (D–G).

5 Conclusions

In this paper, a recently developed satellite MW-LST product
is compared to ground station data and satellite TIR-based
LST products. The MW-LST was developed to complement
TIR-LST with a coarser spatial resolution but at a higher tem-
poral resolution. The higher temporal resolution of MW-LST
is based on the assumption that MW has a relatively high
tolerance to clouds, which allows for observations at times
when no TIR observations are possible. This paper tests this
assumption by looking at the precision with respect to ground
stations for increasing levels of estimated cloudiness. Our
analysis is performed at the 0.25◦ spatial resolution as pred-
icated by the MW-LST product. At this coarse spatial res-

olution, the overall unbiased RMSE between TIR-LST and
ground stations during clear-sky days is 2.1 K for the four lo-
cations in the MSG domain, and 2.8 K for the nine locations
in the GOES domain. For the same locations we find that the
MW-LST is only slightly higher (+0.2 K for both domains).

With increasing cloudiness the RMSE increases signifi-
cantly for TIR-LST, caused by a matching negative trend
in bias that is seen at all seven locations. This demonstrated
the known effect that clouds have on TIR estimates of LST.
The fact that these trends are so apparent highlights the lim-
itations of current cloud screening techniques as employed
in TIR-LST products that are in general use. In clear con-
trast to this we find a much more limited response in both
RMSE and bias for MW-LST. Because of this we conclude
that there is no significant direct impact of clouds on the ac-
curacy of the MW-LST product. However, at three stations
the size and sign of the response is such that further research
is needed to identify the exact causes introducing error in
MW-LST. By taking into account the atmospheric humid-
ity and temperature profile, further analysis may investigate
the extent to which this mixed response can be explained by
atmospheric conditions associated with cloudiness. Alterna-
tively, if a greater database were available of locations with
flux tower sites in contrasting land covers, this could be used
to isolate the role of scale mismatch between station and the
satellite product.

As an immediate outcome the result of this work high-
lights the utility of MW technology for cloud screening of
TIR-LST. This is something that will be explored in future
work. Ultimately, the goal is to find the best way of combin-
ing MW and TIR technology for the estimation of LST from
space.

6 Data availability

Time series of MW-LST and TIR-LST covering the locations
and time period of this paper are available upon request from
the corresponding author. The global source data for MW-
LST are publicly available. They are aggregated from several
data centers, and we would like to thank Goddard Earth Sci-
ences (GES) Data and Information Services Center (DISC)
for archiving and distributing TRMM satellite as acquired by
NASA’s Earth-Sun System Division, the National Snow and
Ice Data Center for archiving and distributing Aqua-AMSR-
E data, and NOAA’s Comprehensive Large Array-data Stew-
ardship System (CLASS) for dissemination of Defense Me-
teorological Satellite Program data. LSA-SAF disseminates
EUMETSAT products. This work further used data acquired
by the FLUXNET community (fluxnet.ornl.gov) and in par-
ticular by the following networks: AmeriFlux and CarboEu-
ropeIP.
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