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Abstract. The estimation of terrestrial water storage varia-
tions at river basin scale is among the best documented ap-
plications of the GRACE (Gravity and Climate Experiment)
satellite gravity mission. In particular, it is expected that
GRACE closes the water balance at river basin scale and al-
lows the verification, improvement and modeling of the re-
lated hydrological processes by combining GRACE ampli-
tude estimates with hydrological models’ output and in-situ
data.

When computing monthly mean storage variations from
GRACE gravity field models, spatial filtering is mandatory
to reduce GRACE errors, but at the same time yields biased
amplitude estimates.

The objective of this paper is three-fold. Firstly, we want
to compute and analyze amplitude and time behaviour of the
bias in GRACE estimates of monthly mean water storage
variations for several target areas in Southern Africa. In par-
ticular, we want to know the relation between bias and the
choice of the filter correlation length, the size of the target
area, and the amplitude of mass variations inside and outside
the target area. Secondly, we want to know to what extent
the bias can be corrected for using a priori information about
mass variations. Thirdly, we want to quantify errors in the
estimated bias due to uncertainties in the a priori information
about mass variations that are used to compute the bias.

The target areas are located in Southern Africa around the
Zambezi river basin. The latest release of monthly GRACE
gravity field models have been used for the period from Jan-
uary 2003 until March 2006. An accurate and properly cal-
ibrated regional hydrological model has been developed for
this area and its surroundings and provides the necessary a
priori information about mass variations inside and outside
the target areas.
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The main conclusion of the study is that spatial smoothing
significantly biases GRACE estimates of the amplitude of an-
nual and monthly mean water storage variations and that bias
correction using existing hydrological models significantly
improves the quality of GRACE estimates. For most of the
practical applications, the bias will be positive, which im-
plies that GRACE underestimates the amplitudes. The bias
is mainly determined by the filter correlation length; in the
case of 1000 km smoothing, which is shown to be an appro-
priate choice for the target areas, the annual bias attains val-
ues up to 50% of the annual storage; the monthly bias is even
larger with a maximum value of 75% of the monthly storage.
A priori information about mass variations can provide rea-
sonably accurate estimates of the bias, which significantly
improves the quality of GRACE water storage amplitudes.
For the target areas in Southern Africa, we show that after
bias correction, GRACE annual amplitudes differ between 0
and 30 mm from the output of a regional hydrological model,
which is between 0% and 25% of the storage. Annual phase
shifts are small, not exceeding 0.25 months, i.e. 7.5 deg. It is
shown that after bias correction, the fit between GRACE and
a hydrological model is overoptimistic, if the same hydrolog-
ical model is used to estimate the bias and to compare with
GRACE. If another hydrological model is used to compute
the bias, the fit is less, although the improvement is still very
significant compared with uncorrected GRACE estimates of
water storage variations. Therefore, the proposed approach
for bias correction works for the target areas subject to this
study. It may also be an option for other target areas pro-
vided that some reasonable a priori information about water
storage variations are available.
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1 Introduction

The Gravity Recovery and Climate Experiment (GRACE),
launched in March of 2002, has been designed to measure the
Earth’s time variable gravity field at approximately monthly
intervals with a spatial resolution of a few hundred kilome-
ters. So far, 34 monthly gravity field solutions (April 2002–
March 2006) have been released to the scientific community.
Each solution consists of a set of spherical harmonic coef-
ficients complete to degree and order 120. Differences be-
tween two monthly solutions reflect temporal gravity varia-
tions. They are caused by post glacial rebound, mass trans-
port in the atmosphere and the oceans, and the redistribution
of water, snow and ice on land. Prior to gravity field esti-
mation, GRACE measurements have already been corrected
for the major contribution of ocean and atmospheric mass
variations. Therefore, differences between two monthly so-
lutions mainly reflect changes in terrestrial water storage, i.e.
groundwater, soil moisture, rivers, lakes, snow, and ice.

As a result, GRACE promises to provide new hydrological
information in the form of estimates of monthly mean water
storage variations over river basins having length scales of a
few hundred kilometers and larger. This would allow the clo-
sure of the water balance for river basins and the verification
and improvement of the modelling of the related hydrolog-
ical processes by combining GRACE estimates of monthly
mean water storage variations with hydrological observations
and hydrological model output.

However, GRACE estimates of monthly mean water stor-
age variations are erroneous due to measurement noise and
the aliasing of unmodelled high-frequency mass variations
into the monthly GRACE gravity field solutions (Swenson
and Wahr, 2002; Wahr et al., 1998, 2006; Swenson and Wahr,
2006). Figure 1 shows the difference between two monthly
gravity field solutions expressed in terms of equivalent wa-
ter heights without smoothing and with 1000 km Gaussian
smoothing.

The trackiness of the plot, which is typical for GRACE
monthly solutions, is due to GRACE data errors and er-
rors in the background models used in the pre-processing of
GRACE data, and can be much larger than the mass varia-
tion. To reduce these errors, spatial filtering (i.e. smoothing)
is routinely applied. Unfortunately, spatial filtering biases the
GRACE estimates of monthly mean mass variations. It is the
subject of optimal filter design to find a filter that minimizes
the sum of GRACE errors and filter errors.

The subject of this paper is to analyze the bias in GRACE
estimates and to investigate to what extent the bias can be re-
duced when using a priori information about mass variations.
This improves the understanding of the potential and limita-
tions of GRACE estimates of monthly mean water storage
variations and is the basis for the design of an optimal filter
for the target area at hand.

The paper is organized as follows: in Sect.2, the relation
between mass variations inside and outside the target area,

spatial smoothing, and bias has been established. In particu-
lar, an alternative representation of the bias has been derived,
which shows explicitly the contribution to the bias of mass
variations inside and outside the target area. The approach
to be followed in this study is outlined in Sect.3. Informa-
tion about mass variations inside and outside the target area
is needed to compute the bias. We use the regional hydrolog-
ical model LEW to provide this information for four target
areas in Southern Africa centred at the upper Zambezi sub-
catchment. The model is described in Sect.4. The results of
the analysis are presented in Sect.5. This includes a time se-
ries of the bias for the period January 2003 until March 2006
for each target area and various choices of spatial filtering,
and a comparison of GRACE bias-corrected and uncorrected
monthly mean water storage variations with the output of the
LEW hydrological model. In particular, it has been shown
that after bias correction, the agreement between LEW and
GRACE are on the level of several millimeters, which gives
an indication of residual errors in smoothed GRACE data and
LEW model errors. Finally, uncertainties in the LEW model
output have been estimated using Monte-Carlo simulations,
and propagated into the bias. This gives an idea about the
quality of a priori water storage variations needed to com-
pute the bias.

Section6 contains a summary of the results and the main
conclusions of this study. In particular, some advice concern-
ing the use of GRACE models and bias computation has been
given.

2 GRACE monthly mean mass variations, spatial filter-
ing, and bias

Monthly GRACE gravity field models are very noisy
(cf. Fig. 1). When computing the monthly mean water stor-
age variation over a target area, the noise is partially reduced,
but still unacceptable high. Therefore, some additional spa-
tial smoothing is required prior to the computation of mean
monthly mass variations over a target area. Isotropic Gaus-
sian smoothing is widely used in many GRACE related stud-
ies (e.g.Jekeli, 1981; Wahr et al., 1998). More advanced ap-
proaches include non-isotropic smoothing kernels (e.g.Han
et al., 2005) or Wiener filters, which use a priori information
about noise and signal (i.e. water storage) (e.g.Swenson and
Wahr, 2002).

Spatial smoothing reduces noise, but also introduces a
bias in the estimated monthly mean water storage varia-
tion. This bias leads to a significant amplitude reduction
in estimated monthly mean water storage variations. There-
fore,Velicogna and Wahr(2006) re-scaled the amplitude es-
timates for Antarctica by a factor of 1.61; Fenoglio-Marc
et al. (2006) applied a factor of 1.79 for the Mediterranean
Sea;Chen et al.(2007) found a scaling factor of 1.33 for the
Amazon and Mississippi basins and 1.54 for the Ganges and
Zambezi basins.
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Fig. 1. Global monthly mean water storage variation between April and March 2003 from GRACE. Top panel – without smoothing, Bottom
panel – after 1000 km Gaussian smoothing.

In appendix it is shown that the bias in the GRACE
monthly mean water storage estimate can be written as

ε̄0 =
1

4πR2

∫
σ0

f0(χ − W) dσR −
1

4πR2

∫
σR−σ0

fl W dσR,

(1)
wheref0 is the mass variation inside the target area,fl the
mass variations outside the target area,χ the characteristic
function of the target area, andW the target area filter func-
tion, which is the spherical convolution of the spatial filter

function (e.g. the Gaussian kernel) with the characteristic
function χ . σ0 is the target area andσR is the mean Earth
sphere. According to Eq. (1), the bias consists of two terms.
The first term on the right-hand side of Eq. (1) is calledtype 1
error. It expresses the contribution of mass variations inside
the target area to the bias. Sinceχ−W is always positive, it
causes anunderestimationof the amplitude of the monthly
mean mass variation averaged over the target area. The sec-
ond term on the right-hand side of Eq. (1) is calledtype 2
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error. It represents the contribution of mass variations out-
side the target area to the bias. If the mass variations inside
and outside the target area are “in phase” (i.e. they have the
same sign), the sum of the two terms of the right-hand side of
Eq. (1) is always smaller than each individual term; in other
words, the two bias contributors cancel to some extent. That
may be the reason why in literature (e.g.Chen et al., 2005a,b)
filtered GRACE solutions fit quite well withunfilteredesti-
mates of the monthly mean storage variation from hydrolog-
ical models. The sum of the two error terms will attain a
maximum if there are no mass variations outside the target
area or, even more extreme, if the mass variation outside the
target area differs in sign from the mass variation inside the
target area. Note thatε̄0 is sometimes calledleakage error
(e.g.Wahr et al., 1998; Swenson and Wahr, 2002; Swenson
et al., 2003); sometimes the termleakage erroronly refers to
the type 2 error (e.g.Klees et al., 2006).

3 Approach

In this study, we want to analyse the time behaviour of the
bias, due to spatial smoothing in GRACE monthly mean
water storage variations for various target areas in Southern
Africa; moreover we want to investigate how accurately the
bias can be estimated using a priori information about the
mass variations. The following approach is followed:

– To quantify the bias, we need information about the
mass variation inside (functionf0, Eq. (1)) and outside
(functionfl , Eq. (1)) the target area. Information about
fl is only required within the significant support of the
target area filter functionW , which in turn depends on
the correlation length of the spatial filter. Therefore,
small errors may be introduced at this stage if the signif-
icant support of the filter functionW exceeds the range
of the LEW model. We will come back to this question
in Sect.4.

– Four target areas located in Southern Africa have been
selected, with different sizes ranging from 4.7×105 km2

to 5.2×106 km2. This has been done, in order to investi-
gate the relation between magnitude of the bias and size
of the target area.

– Information about the spatial and temporal behaviour
of the functionsf0 and fl are provided by the re-
gional Lumped Elementary Watershed (LEW) model
for Southern Africa, which is described in section4.
This information is considered as ’exact’ when comput-
ing the bias.

– 34 monthly GRACE gravity field models, covering the
period between January 2003 and March 2006, have
been used (release RL03 models, provided by GFZ).

The models have been smoothed with a Gaussian fil-
ter with correlation length 600, 800, and 1000 km, re-
spectively. This allows to investigate the relation be-
tween the correlation length and the bias. The smoothed
GRACE monthly gravity field models have been trans-
formed into monthly mean water storage over the target
areas following the approach by (Swenson and Wahr,
2002). The mean water storage over the period January
2003 and June 2006 has been subtracted, which gives
GRACE monthly mean water storage variations over the
target areas relative to the mean.

– The LEW model has been run for the period January
2003 until March 2006, providing a time series of
monthly water storage variations for each target area
relative to the mean. This information has been used
in Eq. (1) to obtain a time series of bias estimates in
GRACE monthly mean water storage. At this stage, un-
certainties in LEW have been ignored.

– GRACE monthly mean water storage variations have
been bias corrected. Consequently, the biased and the
bias-corrected GRACE monthly mean water storage
variations have been compared with the output of the
LEW model and the fit between LEW model output and
GRACE estimates has been assessed.

– In reality, the mass variations inside and outside the tar-
get areas are not precisely known. To quantify the ef-
fect of uncertainty in prior information about the mass
variation functions on the computed bias, the uncertain-
ties in the LEW model output have been simulated by
Monte Carlo techniques and propagated into bias uncer-
tainties. This allows the assessment of errors in a priori
mass variation function and how they propagate into the
bias. Alternatively, the global CPC-GLDAS hydrolog-
ical model output has been used to compute the bias.
Details are described in Sect.5.3. Results have been
compared with the bias from LEW model output.

4 Lumped Elementary Watershed for Southern Africa
(LEW)

It is well known that global hydrological models have quite
large uncertainties and hardly can be used for the purpose
of this study. In our investigation of the bias in GRACE
monthly mean water storage variations caused by spatial
smoothing, we deal with relatively small target areas of
105

−106 km2. Therefore, we use a recently developed LEW
regional hydrological model output to compute the bias.

The Lumped Elementary Watershed (LEW) approach has
been presented in a previous study byWinsemius et al.
(2006a). The application of this approach over the Zam-
bezi gave promising results and is specifically interesting for
application in Africa, since it enables the implicit incorpora-
tion of redistribution of surface runoff in downstream located
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model units, called LEWs, that represent e.g. a wetland, lake
or man-made reservoir.

For this study, the model presented inWinsemius et al.
(2006a) has been extended, by taking into account all river
basins below the equator, in particular Shebelle, Southern
part of the Nile, Congo, Zambezi, Okavango, Limpopo, and
Orange. In this section a short description of the modelling
approach is given.

4.1 Sub-catchment delineation

Figure 4 shows the major river basins, being considered
in the model. Within the major basins, many model units
or “LEWs” have been delineated. Most LEWs represent
sub-catchments, however remarks can be made about a few
LEWs: the major lakes and reservoirs in our target area,
the Zambezi, have also been separately delineated. These
are Lake Kariba, Lake Cahora-Bassa and Lake Nyasa (also
known as Lake Malawi). The flow behaviour in the upper
Nile is very much dependent on the water level in lake Victo-
ria. Therefore, a LEW has been defined for lake Victoria.
Runoff from upstream LEWs spill in this lake and down-
stream runoff has been generated through a simple outflow
relation dependent on the water level. In the Okavango river
basins, the Okavango delta has been delineated manually to
take into account the surface runoff redistribution which is
actually taking place in this delta. Also its neighbouring in-
terior basins have been modelled in a purely “vertical” way,
meaning that there is no lateral exchange of water between
these basins and others (i.e. there are no runoff processes
considered). The same holds for the 2 most eastern sub-
catchments of the Shebelle sub-model. These basins drain on
the salt lake Turkana (North-Kenya – Rift Valley) and there-
fore do not produce any runoff to neighbouring catchments.

4.2 Climate input data

For calibration, the model has been forced by data from the
Climate Research Unit (CRU) (New et al., 2002). These data
consist of fields of global monthly precipitation, wind speed,
relative humidity, and 2 m air temperature (minimum, max-
imum and mean). All data are given on a 0.5×0.5 degree
grid. The grids have been used to compute reference evap-
oration numbers, based on the Penman-Monteith equations
(Penman, 1948; Monteith, 1981).

These climate data are completely based on ground station
records. The spatial coverage is non-homogeneous in time
and, therefore, the quality is non-homogeneous in space and
time. For that reason, the emphasis of the model calibration
was on the overall discharge behaviour (e.g. the behaviour of
apparent linear reservoirs and long-term released volumes).
We feel that for our application, the use of CRU data is ade-
quate. We must underline that the model developed for this
study may be used for other purposes, as well, however it is
advised to use regional rainfall sources and re-calibrate the

0 5 10 15 20 25 30 35 40 45 50
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

° longitude

° 
la

tit
ud

e

AFRICA

AFRICAN  REPUBLIC

ANGOLA

BOTSWANA

BURUNDI

CENTRAL

CONGO, REPUBLIC OF THE

ETHIOPIA

GABON
KENYA

LAND

LESOTHO

MALAWI

MOZAMBIQUE

NAMIBIA

RWANDA

SOMALIA

SOUTH

SWAZI−

TANZANIA

UGANDA

CONGO, DEM. REPUBLIC

ZAMBIA

ZIMBABWE

 

 

Political boundary
Runoff gauge
Rivers
Lakes

Fig. 2. The Lumped Elementary Watershed model for Southern
Africa as being used in this study. The grey lines represent the
delineations of sub-catchments. Large rivers and lakes are indicated
in respectively dark and light blue. The major river basins selected
for this model are shown in a color gradient from dark-green to
yellow. The black dots indicate locations of runoff gauges, from
which monthly stream flow records are available and have been used
for calibration.

model when it is used for smaller scales than considered in
this study.

4.3 Runoff

Monthly runoff data has been obtained from several data
sources, among which the Global Runoff Data Centre and
the Zambian Department of Water Affairs (Lusaka, Zambia).
Anywhere where there was runoff available (sometimes very
short time series), it was used to calibrate the model. Gen-
erally, parsimonious model structures were applied and most
model units were given the same model structure. In gen-
eral, it may be expected that the model performs best in re-
gions where both the rainfall and runoff gauge network is
relatively dense. As can be observed in Fig. 4, many parts
of this model remain ungauged. The reliability of modelled
storage is for a large part dependent on the correct estimation
of the storage thresholds, more specific, the storage capacity
of soil moisture. Generated runoff amounts at river outlets
have been therefore calibrated in such a way, that at least
the total long-term released volumes of runoff are more or
less equal to the observed long-term volumes. This is for
example done at the outlet of the Congo. While quite some
runoff information was available from the Northern parts of
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Fig. 3. The four target areas being used in this study (from left to
right, from top to bottom): upper Zambezi, Zambezi, upper Zam-
bezi + Okavango, and Zambezi + Congo.

This has been done in order to investigate the relation be-
tween size of the area and amplitude of the bias. The out-
put of the LEW regional hydrological model (cf. section 4)
covers the whole area of Southern Africa enabling averaging
over the areas in the range of

����A ' ����J
km � . Gaussian spa-

tial filters with correlation lengths of
�����

km, D ��� km, and�������
km have been used and the bias has been computed for

each filter.
The output covers the period January 2003 until March

2006. Water storage variations over the area shown in Figure
4 have been used to compute the bias. A potential contribu-
tion to the bias of water storage variations outside this area
has been neglected. This is justified because (i) the contri-
bution of oceans and atmosphere have already been removed
by GFZ prior to the estimation of monthly GRACE models;
(ii) the continental areas are outside the significant support
of the filter function for the upper Zambezi, Zambezi, and
upper Zambezi + Okavango target areas. This does not hold
for the Zambezi + Congo target area. Therefore, we expect
some errors in the estimated bias for this target area caused
by unmodelled mass variations North to the area shown in
figure 4. We expect that these errors are small as there are
little water storage variations in this part of Africa.

5.1 Bias estimate from LEW

Monthly bias estimates have been computed from the output
of LEW using Eq. (1). The computations have been done for
each target area and choice of the Gaussian filter correlation
length. Figure 4 shows the bias time series for the four tar-
get areas and

�������
km Gaussian smoothing. From the time

series of monthly bias values, the amplitude of the annual
bias can be computed. The results are shown in table 1 for
each target area and the three Gaussian filters. The following

Table 1. Amplitudes of the annual bias for different target areas,
computed from LEW model output. Annual amplitudes of (un-
filtered) LEW water storage variations and bias-to-signal-ratio are
given for comparison.K L bias M NONQP RS L from LEW M NONTP rel.bias M UVP

Gauss,
8:9�9�9

km

UPZ 73 155 47
Z 61 133 46
UPZO 50 120 42
ZC 22 71 31

Gauss, W 9�9 km

UPZ 55 155 35
Z 46 133 35
UPZO 39 120 33
ZC 15 71 21

Gauss, X 9�9 km

UPZ 36 155 23
Z 30 133 23
UPZO 28 120 23
ZC 8 71 11

observations are made:

1. The bias-to-signal-ratio is significant. A comparison of
Figure 4 with Figure 5 shows, that the monthly bias
may even exceed the amplitude of the water storage
variations (signal). This emphasizes the need to cor-
rect GRACE estimates of monthly mean water storage
variations for the bias introduced by spatial smoothing.
Otherwise it will not be possible to calibrate hydrologi-
cal models using GRACE amplitude estimates.

2. The bias strongly depends on the correlation length of
the filter: the smaller the correlation length, the smaller
the bias. For instance, moving from

�������
km to

�����
km

reduces the annual bias amplitude of the upper Zambezi
target area from �;	 mm to 	 � mm, i.e. by about � ��� .
However, simply reducing the filter correlation length
is not the solution to the problem. Even for

�����
km,

the bias-to-signal-ratio is still very large. Moreover, the
choice of a shorter filter correlation length increases the
noise in GRACE water storage amplitudes.

3. The bias and the bias-to-signal-ratio depend on the size
of the target area: the smaller the target area, the larger
the bias and the bias-to-signal ratio. For instance, for the
smallest target area, the upper Zambezi (area YZ� � �#? ���
A
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Fig. 3. The four target areas being used in this study (from left to
right, from top to bottom): upper Zambezi, Zambezi, upper Zam-
bezi + Okavango, and Zambezi + Congo.

the Congo, the Southern part (near the Zambezi) remains
completely ungauged. Therefore, the LEWs near the Zam-
bezi have been given parameter values that were appointed to
their neighbouring LEWs located within the Zambezi, where
quite some runoff gauges are present and further calibra-
tion was applied to match long-term runoff volumes at the
Congo’s most downstream runoff gauge.

4.4 Regional water management and wadis

A large challenge in large-scale water balance modelling is
the regional lateral interactions that take place between river
and surrounding areas, either because of human interference
or present topography, geology and climatology. Large dams
and lakes may be relatively simple to include in the LEW
modelling approach as was described in Sect.4.2, however
information is needed about there operation and general be-
haviour (e.g. surface – volume curves and operating rules)
to adequately model their water balance. For the applica-
tion that is presented in this paper, we feel that a rough es-
timation of their water balance should be adequate. In addi-
tion, many irrigation schemes are present in Southern Africa,
more specifically in the Orange basin, the lower Zambezi and
the Incomati. Also wadi areas are present, e.g. in the She-
belle river basin, where runoff is generated in the Ethiopian
highlands, which ends up in the downstream desert area.
The redistribution of surface runoff over either irrigated ar-
eas or wadis has been included by spilling a certain amount
of runoff in downstream irrigated areas, wadis or wetlands.

For other applications where these interactions are of greater
importance, more details about these interactions must be in-
cluded in the model.

4.5 LEW model run for GRACE time series

The LEW water storage estimates have been generated us-
ing rainfall estimates from the Famine Early Warning System
(FEWS) (Herman et al., 1997). This product is partly satel-
lite based and has a resolution of 0.1×0.1◦. The estimates
have been lumped over the LEWs to provide a time series
from January 2001 until June 2006. The first 2 years of sim-
ulation have been taken as warming-up time to stabilize the
state variables of the LEW model structures.

5 Results of the error analysis

The analysis has been done for four target areas of different
sizes (cf. Fig. 3):

1. upper Zambezi (UZ), 4.7×105 km2,

2. Zambezi (Z), 1.3×106 km2,

3. upper Zambezi + Okavango (UZO), 1.2×106 km2,

4. Zambezi + Congo (ZC), 5.2×106 km2.

This has been done in order to investigate the relation be-
tween size of the area and amplitude of the bias. The output
of the LEW regional hydrological model (cf. Sect.4) covers
the whole area of Southern Africa enabling averaging over
the areas in the range of 105

−107 km2. Gaussian spatial fil-
ters with correlation lengths of 600 km, 800 km, and 1000 km
have been used and the bias has been computed for each fil-
ter.

The output covers the period January 2003 until March
2006. Water storage variations over the area shown in Fig. 4
have been used to compute the bias. A potential contribu-
tion to the bias of water storage variations outside this area
has been neglected. This is justified because (i) the contri-
bution of oceans and atmosphere have already been removed
by GFZ prior to the estimation of monthly GRACE models;
(ii) the continental areas are outside the significant support
of the filter function for the upper Zambezi, Zambezi, and
upper Zambezi + Okavango target areas. This does not hold
for the Zambezi + Congo target area. Therefore, we expect
some errors in the estimated bias for this target area caused
by unmodelled mass variations North to the area shown in
Fig. 4. We expect that these errors are small as there are little
water storage variations in this part of Africa.

5.1 Bias estimate from LEW

Monthly bias estimates have been computed from the output
of LEW using Eq. (1). The computations have been done for
each target area and choice of the Gaussian filter correlation
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Table 1. Amplitudes of the annual bias for different target areas,
computed from LEW model output. Annual amplitudes of (un-
filtered) LEW water storage variations and bias-to-signal-ratio are
given for comparison.

σ0 bias[mm] f̄0 from LEW [mm] rel.bias[%]

Gauss, 1000 km

UPZ 73 155 47
Z 61 133 46
UPZO 50 120 42
ZC 22 71 31

Gauss, 800 km

UPZ 55 155 35
Z 46 133 35
UPZO 39 120 33
ZC 15 71 21

Gauss, 600 km

UPZ 36 155 23
Z 30 133 23
UPZO 28 120 23
ZC 8 71 11

length. Figure 4 shows the bias time series for the four target
areas and 1000 km Gaussian smoothing. From the time series
of monthly bias values, the amplitude of the annual bias can
be computed. The results are shown in Table1 for each target
area and the three Gaussian filters.

The following observations are made:

1. The bias-to-signal-ratio is significant. A comparison of
Fig. 4 with 5 shows, that the monthly bias may even ex-
ceed the amplitude of the water storage variations (sig-
nal). This emphasizes the need to correct GRACE esti-
mates of monthly mean water storage variations for the
bias introduced by spatial smoothing. Otherwise it will
not be possible to calibrate hydrological models using
GRACE amplitude estimates.

2. The bias strongly depends on the correlation length of
the filter: the smaller the correlation length, the smaller
the bias. For instance, moving from 1000 km to 600 km
reduces the annual bias amplitude of the upper Zambezi
target area from 73 mm to 36 mm, i.e. by about 50%.
However, simply reducing the filter correlation length
is not the solution to the problem. Even for 600 km,
the bias-to-signal-ratio is still very large. Moreover, the
choice of a shorter filter correlation length increases the
noise in GRACE water storage amplitudes.

3. The bias and the bias-to-signal-ratio depend on the
size of the target area: the smaller the target area, the
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Fig. 4. Bias as a function of time between January 2003 and March
2006 for four target areas: upper Zambezi (red triangles), Zambezi
(blue squares), upper Zambezi + Okavango (green circles) and Zam-
bezi + Congo (black x-marks). 1000 km Gaussian smoothing has
been used.

larger the bias and the bias-to-signal ratio. For in-
stance, for the smallest target area, the upper Zam-
bezi (area≈4.7×105 km2), the amplitude of the annual
bias is 47% of the annual water storage variation when
1000 km Gaussian smoothing is applied. For the largest
area, the Zambezi + Congo, (area≈5.2×106 km2), the
annual bias reduces to about 31% of the annual water
storage variation.

5.2 Bias-corrected GRACE estimates versus LEW model
output

The estimated bias can be used to correct GRACE monthly
mean water storage variations. We used 31 release RL03
monthly GRACE gravity field models between January 2003
and March 2006 provided by GFZ. The degree 1 coefficients
and the degree 2 zonal coefficient have been excluded from
the analysis, which corresponds to the currently adopted pro-
cedure. This leads to minor errors in the GRACE monthly
mean water storage variations for the target areas consid-
ered in this study. From the time-series of monthly grav-
ity field models, monthly water storage variations have been
computed following the procedure ofSwenson and Wahr
(2002). These estimates have been corrected then for the
bias. For this purpose, the bias estimates, computed from the
LEW model output, have been spline interpolated to the time
epochs of the monthly GRACE models. Finally, the annual
water storage variation has been computed for the biased and
bias-corrected GRACE estimates and compared with the an-
nual water storage from LEW. The results are summarized in
Table2.
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Table 2. Amplitude of the annual water storage variation.[1]: GRACE estimate,[2]: annual bias,[3]: bias-corrected GRACE,[4]: LEW
model output,[5]: difference between bias-corrected GRACE and LEW model output.

target area [1] [2] [3] = [1] + [2] [4] [5] = [3] − [4]

Gauss filter, 1000 km

UPZ 82 73 155 155 0
Z 83 61 144 133 11
UPZO 68 50 118 120 -2
ZC 33 22 55 71 -16

Gauss filter, 800 km

UPZ 102 55 157 155 2
Z 100 46 146 133 13
UPZO 80 39 119 120 -1
ZC 40 15 55 71 -16

Gauss filter, 600 km

UPZ 124 36 160 155 5
Z 117 30 147 133 14
UPZO 91 28 119 120 -1
ZC 47 8 55 71 -16

Table 3. Statistics of the differences between GRACE monthly es-
timates and LEW model output before and after bias correction.

area GRACE – LEW GRACEcorr – LEW
min max RMS min max RMS

Gauss filter, 1000 km

UPZ 0.4 198.0 68.0 0.3 52.0 25.0
Z 1.4 125.0 48.0 1.5 49.0 27.0
UPZO 1.6 197.0 59.0 1.5 50.0 24.0
ZC 1.5 81.0 35.0 0.0 57.0 20.0

Gauss filter, 800 km

UPZ 0.8 174.0 56.0 0.3 61.0 28.0
Z 3.0 106.0 38.0 2.0 58.0 32.0
UPZO 0.0 177.0 52.0 0.3 56.0 26.0
ZC 0.4 80.0 31.0 0.2 66.0 22.0

Gauss filter, 600 km

UPZ 0.2 135.0 45.0 7.0 69.0 33.0
Z 1.1 82.0 31.0 1.3 67.0 37.0
UPZO 2.8 147.0 46.0 0.4 59.0 28.0
ZC 1.1 80.0 29.0 1.0 75.0 24.0

A remarkable result is that bias-corrected GRACE esti-
mates of theannualand themonthlymean water storage vari-
ations fit significantly better with LEW estimates than uncor-
rected GRACE estimates (cf. Table2). For instance, when
using 1000 km Gaussian smoothing, the annual difference re-

duces from 73 mm to 0 mm for the upper Zambezi, from 50
to 11 for the Zambezi, from 52 to−2 for the upper Zambezi
+ Okavango and from 38 to−16 for the Zambezi + Congo
area. The annual differences do not depend on the choice
of the filter correlation length. Monthly differences between
bias-corrected GRACE and LEW are larger than annual dif-
ferences, in particular in the wet seasons and for small target
areas (cf. Fig. 5).

Table3 gives some statistical information about the differ-
ences between the amplitudes ofmonthlymean water storage
variations from GRACE and LEW model output. It is re-
markable that the fit with LEW is the best for a filter correla-
tion length of 1000 km; smaller filter correlation lengths lead
to larger RMS differences between bias-corrected GRACE
and LEW. This can be explained by the fact that filter corre-
lation lengths smaller than 1000 km due not sufficiently sup-
press the noise in GRACE monthly gravity fields; after bias
correction, the noise is still dominant and causes a larger mis-
fit between GRACE and LEW. An extreme situation is the
Zambezi target area for a 600 km Gaussian filter. After bias
correction, the RMS difference between GRACE and LEW
increasesfrom 31 mm to 37 mm!

When a 1000 km Gaussian filter is used, we observe a
significant improvement by 44% and 63% of the fit be-
tween monthly GRACE and LEW amplitudes after bias cor-
rection for all target areas. This is also visible in Fig. 5,
which shows the time series of monthly mean water storage
variations. The largest difference between LEW and bias-
corrected GRACE is attained in spring 2004, whereas the
differences in spring 2005 and spring 2006 are significantly
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Fig. 5. Time series of monthly mean water storage variations over the target areas: From left to right and top to bottom: upper Zambezi,
Zambezi, upper Zambezi + Okavango, and Zambezi + Congo. A 1000 km Gaussian filter has been used. Black triangles: unfiltered LEW;
blue x-marks: biased GRACE; red boxes: bias-corrected GRACE.

smaller. The reason for the large difference in spring 2004
is not clear yet. It could be attributed to either the LEW
model or the GRACE data. For instance, a poor quality of
rainfall input data from the beginning of 2004 could cause
significant errors in the LEW model output. This would also
propagate into the computed bias. Alternatively, it is possible
that GRACE did not capture the water storage variation over
the target areas very well in spring 2004, due to a poor orbit
geometry (Winsemius et al., 2006b). This would cause an
additional bias in GRACE monthly amplitudes, which can-
not be corrected for.

The maximum difference between bias-corrected GRACE
and LEW monthly amplitudes (57 mm for 1000 km Gaussian
smoothing) is observed in the Zambezi + Congo area, which
is the largest target area. At the first glance, this is unex-
pected as the bias is the smallest for this area and the quality
of GRACE should improve with increasing size of the tar-
get area. We explain this with the poorer performance of the

LEW model, which does not provide good estimates of water
storage variations in the areas North to the Zambezi + Congo
target area (cf. Figs. 4 and 3). This information is needed to
get a good estimate of the bias, as mass variations outside the
target area contribute to the bias according to Eq. (1). The
poorer performance of LEW may be a consequence of the
poor coverage of this area with gauge stations, which causes
a bias in the rainfall data.

Chen et al.(2007) report significant phase shifts up to 10
deg for some areas after spatial smoothing is applied. For the
four target areas in Southern Africa, the phases of the water
storage variations from the bias-corrected GRACE and (un-
filtered) LEW model output fit quite well. The annual phase
difference is maximum for the upper Zambezi + Okavango
target area (0.25 months or 7.5 deg); for the other target ar-
eas, the annual phase difference is below 0.1 months (or 3
deg).
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Fig. 6. Water storage variations (in red) averaged over the upper
Zambezi basin from the Monte Carlo simulation (200 realizations,
30% noise in rainfall numbers). Mean water storage is given in
black.

5.3 Bias, bias uncertainty, and the role of the hydrological
model

In this section, we want to address two questions:

1. The computation of the bias in GRACE monthly mean
water storage variations requires knowledge about the
water storage variations inside and outside the target
area. This information is, of course, not available as
otherwise there would be no need to use GRACE. In
practice, only some a priori information about the water
storage variations may be available, e.g. from a hydro-
logical model. Uncertainties in the a priori information
propagates into the estimated bias. Therefore, the ques-
tion is how changes in the hydrological model output
propagate into the bias estimates.

2. In the analysis done before, the same hydrological
model (LEW) is used for bias computation and for com-
parison with GRACE. We concluded that after bias cor-
rection, the fit between LEW and GRACE improves sig-
nificantly. Therefore, one may ask whether the fit is less
if another hydrological model is used to compute the
bias.

A thorough answer to the first question requires an as-
sessment of the uncertainty of the LEW hydrological model.
This is extremely complex and out of the scope of this study.
Therefore, a more simplistic approach is followed, which is
based on the fact that the rainfall data are the most signif-
icant (but not the only) source of uncertainty of the output
of LEW for South Africa. Therefore, we generated a series
of alternative water storage variations over the target areas
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Fig. 7. Time variable bias (in green) averaged over the upper Zam-
bezi target area from a Monte Carlo simulation (200 realizations,
30% noise in rainfall numbers). Mean bias is given in black.

using a Monte-Carlo simulation. This series have been ob-
tained by changing the input rainfall data to LEW randomly.
That is, the rainfall data were superimposed by a zero mean
Gaussian white noise with a standard deviation of 30% of the
rainfall numbers. 200 noise realizations have been generated
for each time step. For each set of rainfall data, the LEW
model has been run, which yields water storage variation es-
timates for the area shown in Fig. 4 for the period January
2003 until March 2006. These estimates have been used to
compute a time series of the bias for the period January 2003
until March 2006. From the 200 realizations, a mean bias
and a RMS bias have been computed for each time step.

Figures 6 and 7 show the 200 monthly mean water storage
variations and the estimated bias time series, respectively, for
the upper Zambezi target area. The RMS bias shows a signif-
icant yearly pattern, which is in phase with the rainfall pat-
tern. That is, the largest RMS values are attained during the
wet season, i.e. in spring each year. In fall, the uncertainties
are much smaller, because there is almost no rainfall.

For the upper Zambezi area and a 1000 km Gaussian filter,
the maximum RMS bias is attained in spring 2006 (27 mm)
(cf. Fig. 8); the annual RMS bias is 15 mm. This is much
smaller than the 73 mm difference of the annual amplitude
of water storage variation between LEW and (uncorrected)
GRACE (cf. Table 2, UPZ, column [1] and [4]). Therefore,
the Monte Carlo experiment indicates that even relatively un-
certain information about mass variations is helpful to reduce
the bias significantly.

In order to address the second question, we repeat the
complete data analysis with the global hydrological model
CPC-LDAS, and compared the results with the ones ob-
tained with the LEW model. The land data assimilation sys-
tem (LDAS) is one of the land surface models developed at
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Fig. 8. RMS of the monthly bias caused by 30% noise in rain-
fall numbers for the upper Zambezi target area. 1000 km Gaussian
smoothing applied.

NOAA Climate Prediction Center (CPC). It is forced by ob-
served precipitation, derived from CPC daily and hourly pre-
cipitation analysis, downward solar and long-wave radiation,
surface pressure, humidity, 2-m temperature and horizontal
wind speed from NCEP reanalysis. The output consists of
soil temperature and soil moisture in four layers below the
ground. At the surface, it includes all components affecting
energy and water mass balance, including snow cover, depth,
and albedo. The data for the CPC-LDAS model are freely
available on the INTERNET (CPC, a,b). No data have been
found after December 2005. Therefore, the comparison with
LEW covers the period January 2003 until December 2005.
The CPC-LDAS model has also been used in other GRACE
studies, e.g. inSwenson et al.(2003); Wahr et al.(2004).

The following differences of water storage variations have
been computed for the period January 2003 until December
2005:

– LEW minus (uncorrected) GRACE (referred to as
LEW-GRACE)

– LEW minus (bias-corrected) GRACE; the bias is com-
puted using LEW (referred to as LEW-GRACE/LEW)

– LEW minus (bias-corrected) GRACE; the bias is
computed using CPC-LDAS (referred to as LEW-
GRACE/CPC)

– CPC-LDAS minus (uncorrected) GRACE (referred to
as CPC-GRACE)

– CPC-LDAS minus (bias-corrected) GRACE; the bias
is computed using CPC-LDAS (referred to as LEW-
GRACE/CPC)
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Fig. 9. Time series of bias estimates computed on the basis of the
CPC-LDAS hydrological model (black circles) and the differences
between the bias from CPC-LDAS and LEW (green squares) for the
Upper Zambezi target area.

– CPC-LDAS minus (bias-corrected) GRACE; the bias
is computed using LEW (referred to as CPC-
GRACE/LEW)

The main results of this comparison are shown in Fig. 9
(comparison of the bias computed from LEW and CPC-
LDAS, respectively, for the Upper Zambezi target area),
Figs. 10 and 11 (time series of differences between LEW,
CPC-LDAS, and GRACE for the Upper Zambezi target
area), and Table4 (RMS differences between LEW, CPC-
LDAS, and GRACE for all target areas). They can be sum-
marized as follows:

1. Bias estimates computed from LEW and CPC-LDAS
show significant differences (cf. Fig. 9). For the period
January 2003 until December 2005, the largest differ-
ence is 55 mm. It is attained during wet periods, i.e.
when strong rainfall occurs. The RMS difference is
about 15 mm. On the other hand, these differences are
much smaller than the bias itself.

2. The differences LEW-GRACE/LEW and CPC-
GRACE/CPC are significantly smaller than LEW-
GRACE and CPC-GRACE, respectively. The same
holds for the differences LEW-GRACE/CPC and
CPC-GRACE/LEW compared with LEW-GRACE and
CPC-GRACE, respectively. This indicates that bias
correction really works for the target areas subject to
this study.

3. The fit of a hydrological model with bias-corrected
GRACE is overoptimistic if the same hydrological
model is used to compute the bias. This is evident if one
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Fig. 10. Differences of water storage variations from LEW and
GRACE for the period January 2003 until December 2005. Up-
per Zambezi target area. Gaussian filter with 1000 km correlation
length. Black triangles: LEW – GRACE; red squares: LEW –
GRACE/LEW; blue crosses: LEW-GRACE/CPC
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Fig. 11. Differences of water storage variations from CPC-LDAS
and GRACE for the period January 2003 until December 2005. Up-
per Zambezi target area. Gaussian filter with 1000 km correlation
length. Black triangles: CPC-LDAS – GRACE; red squares: CPC-
LDAS – GRACE/CPC; blue crosses: CPC-LDAS – GRACE/LEW.

compares the RMS difference between GRACE/LEW
and GRACE/CPC (which is in fact the difference of
the bias as computed from LEW and CPC-LDAS),
with the RMS difference between LEW-GRACE/LEW
and CPC-GRACE/CPC. In this sense, one can say that
the estimated bias is “biased” towards the hydrological
model used. This makes it very difficult to decide what
hydrological model better fits GRACE (or vice versa),

Table 4. Statistics of the differences between LEW and GRACE,
and CPC and GRACE monthly estimates of the water storage. A
Gaussian filter with 1000 km has been used.

RMS

diff. UPZ Z UPZO ZC

Gauss filter, 1000 km

LEW – GRACE 54.0 41.0 41.0 36.0
LEW – GRACE/LEW 22.0 26.0 18.0 19.0
LEW – GRACE/CPC 28.0 22.0 29.0 24.0
CPC – GRACE 65.0 41.0 72.0 34.0
CPC – GRACE/CPC 28.0 40.0 51.0 22.0
CPC – GRACE/LEW 40.0 56.0 57.0 35.0

and to draw conclusions about the noise in GRACE and
hydrological model estimates of water storage varia-
tions after bias correction.

4. The difference LEW-GRACE is always smaller than
the difference CPC-GRACE. That is, (uncorrected)
GRACE better fits the LEW model output than the CPC-
LDAS model output.

5. The difference LEW-GRACE/LEW is always smaller
than CPC-GRACE/CPC.

6. The difference LEW-GRACE/CPC is always smaller
than CPC-GRACE/LEW.

Items 4, 5, and 6 may be seen as an indicator of the supe-
rior quality of LEW compared with CPC-LDAS for the four
target areas.

6 Conclusions

Spatial smoothing of GRACE monthly gravity field models
introduces a significant bias in GRACE-estimated monthly
mean water storage variations. For the four target areas con-
sidered in this study, the bias attains values between 50–70%
of the total water storage variation. This confirms estimates
reported in previous studies for other areas, (e.g.Chen et al.,
2007). For most target areas in the world, GRACE always
underestimates the amplitudes of monthly mean water stor-
age variations.

The bias strongly depends on the amplitude of the water
storage variation inside and outside the target areas. More-
over, the size and shape of the target area also influence the
amplitude of the bias. Generally, the larger the target area,
the smaller the bias.

Without bias correction, it is hardly possible to enhance
hydrological models using GRACE. To compute the bias, a
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priori information about the mass variations inside and out-
side the target area is needed. This information can be pro-
vided for instance by hydrological models. Whether GRACE
itself can be used as source of information in an iterative ap-
proach to bias estimation has to be investigated. In this study,
the output of a regional hydrological model has been used
successfully to estimate the bias. After bias correction, the
annual amplitude differences of GRACE and regional hydro-
logical model reduce to some millimeters.

Monthly amplitude differences may be significantly larger
than annual differences, in particular during wet periods.
There are two potential explanations: first of all, the LEW
model does not perform well during these periods; this also
effects the estimated bias. Secondly, GRACE does not cap-
ture the monthly water storage variation very well, which is
caused by an unfavorable orbit geometry. However, the ex-
ceptionally large 30 mm amplitude difference for the Zam-
bezi + Congo target area in spring 2004 is likely a result of a
poor performance of the LEW model to estimate mass varia-
tions for the area North to the Zambezi + Congo target area.

We do not observe significant phase differences between
GRACE and LEW. The maximum phase difference is 0.25
month (i.e. 7.5 deg) for the upper Zambezi + Okavango area;
the phase difference for the other target areas is below 0.1
month (i.e. 3 deg).

The RMS of the bias due to 30% noise in rainfall num-
bers vary between 5 mm and 27 mm. Averaged over the pe-
riod between January 2003 until March 2006, this is about
20% of the amplitude of the water storage variation. The as-
sumption of 30% noise in rainfall data is rather pessimistic,
although there are other contributors to the error budget of
LEW water storage estimates, which propagate into the esti-
mated bias. Therefore, it should be possible to obtain good
estimates of the bias even if the quality of the a priori in-
formation about mass variations inside and outside the target
area is relatively poor. The question of bias estimability using
a priori information about mass variations, however, depends
on the location of the target area and has to be addressed on
a case-by-case basis.

For the target areas subject to this study, bias correc-
tion improves significantly the quality of GRACE estimates
of water storage variations, independently whether LEW or
CPC-LDAS is used to compute the bias. As bias estimates
are biased towards the hydrological model used to compute
the bias, the fit between a hydrological model and bias-
corrected GRACE is too optimistic.

The study limits to the application of isotropic Gaussian
smoothing. When using other filter functions, e.g. non-
isotropic filters or Wiener filters, the bias is likely to be
smaller. Nevertheless, the need to apply a bias correction
is still there. The ability to compute the bias depends on the
location of the target area and the availability of a priori in-
formation about mass variations inside and outside the target
area. The question whether GRACE can be used in an iter-

ative approach to provide this information as alternative to
hydrological models is left open for future studies.

Appendix A

Suppose the functionf describes the monthly mean mass
variations on Earth. Letσ0 be our target area (e.g. a river
basin) andσR the mean surface of the Earth, represented as a
sphere with radiusR. The mean value of the functionf over
σ0 is

f̄0 =
1

σ0

∫
σ0

f dσR. (A1)

Introducing the characteristic function of the target area

χ =

{
4πR2

σ0
in σ0

0 in σR − σ0
,

we can write Eq. (A1) as

f̄0 =
1

4πR2

∫
σR

f χ dσR. (A2)

The true monthly mean mass variation functionf is of
course unknown; from GRACE monthly gravity field solu-
tions, we can obtain an estimatêf . With

f = f̂ + εf ,

this estimate is

f̄0 =
1

4πR2

∫
σR

f̂ χ dσR +
1

4πR2

∫
σR

εf χ dσR. (A3)

The second term on the right-hand side of Eq. (A3) describes
the error of the GRACE estimate of the monthly mean mass
variation averaged over the target area. In reality, this term is
very large, and the standard procedure to reduce it is to apply
spatial smoothing with a filterWs ,

f̂s =
1

4πR2

∫
σR

f̂ Ws dσR.

Correspondingly,f̂s instead off̂ is used to compute the
monthly mean mass variation averaged over the target area
according to

ˆ̄f0 =
1

4πR2

∫
σR

f̂s χ dσR.

Often (but not necessarily), the spatial filter (smoother)Ws is
an isotropic function on the sphere, e.g. a Gaussian. The true
monthly mean mass variation averaged over the target area is

f̄0 =
ˆ̄f0

+
1

4πR2

∫
σR

(f − fs)χ dσR +
1

4πR2

∫
σR

εfs χ dσR,

(A4)
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wherefs=f̂s+εfs andεfs is the error off̂s . The first term
on the right-hand side of Eq. (A4) is the estimate we obtain
from GRACE monthly gravity models. The last two terms
describe the error. The first error term is the error introduced
by the spatial smoothing; the second error term describes
how GRACE errors propagate into the smoothed mass vari-
ation functionf̂s . The spatial smoothing only makes sense
(i.e. is successful) if

|

∫
σR

(f − fs)χ dσR +

∫
σR

εfs χ dσR| < |

∫
σR

εf χ dσR|.

With

W :=
1

4πR2

∫
σR

WS χ dσR,

it can easily be shown that

ˆ̄f0 =
1

4πR2

∫
σR

f̂ W dσR, (A5)

and

f̄0 =
ˆ̄f0

+
1

4πR2

∫
σR

f (χ − W) dσR +
1

4πR2

∫
σR

εf W dσR.

(A6)

The second term on the right-hand side of Eq. (A6),

ε̄0 :=
1

4πR2

∫
σR

f (χ − W) dσR, (A7)

is the bias in the monthly mean mass variation averaged over
the target areas that is caused by spatial smoothing. The bias
can be interpreted as the error we introduce when using the
filter W instead of the characteristic functionχ . That is, us-
ing W reduces GRACE-related errors, but introduces at the
same time a bias in the monthly mean mass variation esti-
mate. To balance these errors is the subject of the choice of
an optimal filter. This is not addressed here; for details about
the optimal choice of a filter, we recommend (Swenson and
Wahr, 2002) and (Han et al., 2005). To analyze the bias̄ε0,
we first write

f =

{
f0 in σ0

fl in σR − σ0
,

and obtain a decomposition ofε̄0 into two parts:

ε̄0 =
1

4πR2

∫
σ0

f0(χ − W) dσR

+
1

4πR2

∫
σR−σ0

fl (χ − W) dσR. (A8)

The type 2 error can be re-written, when taking into account
thatχ=0 in σR−σ0. Then,∫

σR−σ0

fl (χ − W) dσR = −

∫
σR−σ0

fl W dσR.

Now, the true monthly mean mass variation averaged over
the target area can be written as

f̄0 =
ˆ̄f0 + ε1 + ε2 + ε3,

where ˆ̄f0 is the GRACE estimate (cf. Eq. (A5)), and

ε1 =
1

4πR2

∫
σ0

f0(χ − W) dσR

ε2 = −
1

4πR2

∫
σR−σ0

fl W dσR

ε3 =
1

4πR2

∫
σR

εf W dσR.

describe the errors, with the biasε̄0=ε1+ε2.
Many authors account for the errors in the estimated am-

plitudes of the monthly mean water storage variation over
the target area, by changing the correlation length of the fil-
terWs such that the GRACE water storage amplitudes fit best
in a least-squares sense the amplitudes of a global hydrolog-
ical model on a global scale. For a Gaussian filter function,
this gives a filter correlation length of about 800 km for the
routinely used global hydrological models GLDAS. This ap-
proach is certainly weaker than the approach byVelicogna
and Wahr(2006), although in this way, errors in the global
hydrological model may average out a little bit. Anyway, the
best one can obtain then is a global scale factor; scale factors
for specific regions of interest may significantly differ from
the global one.

Velicogna and Wahr(2006) followed another approach.
They introduced a scale factorλ, defined as

λ =

∫
σR

f χ dσR∫
σR

f W dσR

,

and obtained an estimateλ̂ of λ assuming that the mass vari-
ation functionf is

f =

{
h = constant inσ0

0 in σR − σ0
.

The functionh was assumed to be a layer of water with thick-
ness 1 cm distributed over the target area. Then,

λ̂ =
1∫

σ0
W dσR

.

Thereafter, the estimatêλ ˆ̄f0 was used as scale-corrected
GRACE estimate of the monthly mean mass variation av-
eraged over the target area. This simple approach of correct-
ing GRACE water storage amplitudes for the bias is correct
if there are no mass variations outside the target area. Only
then, the scale factor does not depend on the amplitude of the
mass variation inside the target area and the scale factor can
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properly be determined by the assumption of a homogeneous
mass layer of any thickness. However, if there are mass vari-
ations outside the target area, the estimated scale factor is
erroneous. Then, the exact scale factor depends among oth-
ers on the amplitude of the mass variation inside and outside
the target area as shown in Eq. (1).
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