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Abstract. The estimation of terrestrial water storage varia- The main conclusion of the study is that spatial smoothing
tions at river basin scale is among the best documented agsignificantly biases GRACE estimates of the amplitude of an-
plications of the GRACE (Gravity and Climate Experiment) nual and monthly mean water storage variations and that bias
satellite gravity mission. In particular, it is expected that correction using existing hydrological models significantly
GRACE closes the water balance at river basin scale and aimproves the quality of GRACE estimates. For most of the
lows the verification, improvement and modeling of the re- practical applications, the bias will be positive, which im-
lated hydrological processes by combining GRACE ampli- plies that GRACE underestimates the amplitudes. The bias
tude estimates with hydrological models’ output and in-situis mainly determined by the filter correlation length; in the
data. case of 1000 km smoothing, which is shown to be an appro-

When computing monthly mean storage variations fromPriate choice for the target areas, the annual bias attains val-
GRACE gravity field models, spatial filtering is mandatory U€s up to 50% of the annual storage; the monthly bias is even

to reduce GRACE errors, but at the same time yields biaseddrger with a maximum value of 75% of the monthly storage.
amplitude estimates. A priori information about mass variations can provide rea-

The objective of this paper is three-fold. Firstly, we want _sonably accurate estimates of the bias, which significantly

. . . improves the quality of GRACE water storage amplitudes.
to compute and analyze amplitude and time behaviour of th(?:orr) the targetqareaz in Southern Africa, we gshow trilat after

bla_s n GRACE estimates of mO’?th'y mean Wat_er Storagebias correction, GRACE annual amplitudes differ between 0
variations for several target areas in Southern Africa. In par-

ticular, we want to know the relation between bias and theand 30 mm from the output of a regional hydrological model,

. . ) : which is between 0% and 25% of the storage. Annual phase
choice of the filter correlation length, the size of the target . : . ;
. . L . _shifts are small, not exceeding?® months, i.e. bdeg. Itis
area, and the amplitude of mass variations inside and outside . . :
hown that after bias correction, the fit between GRACE and
the target area. Secondly, we want to know to what exten

the bias can be corrected for using a priori information about® hydrological model is overoptimistic, if the same hydrolog-

- . . . ical model is used to estimate the bias and to compare with
mass variations. Thirdly, we want to quantify errors in the . .
; . N ) .~ GRACE. If another hydrological model is used to compute
estimated bias due to uncertainties in the a priori information

about mass variations that are used to compute the bias the bias, the fit is less, although the improvement is still very
P " significant compared with uncorrected GRACE estimates of

The target areas are located in Southern Africa around thyater storage variations. Therefore, the proposed approach
Zambezi river basin. The latest release of monthly GRACEqy pias correction works for the target areas subject to this
gravity field models have been used for the period from Ja”'study. It may also be an option for other target areas pro-

uary 2003 until March 2006. An accurate and properly cal-yided that some reasonable a priori information about water
ibrated regional hydrological model has been developed forstorage variations are available.

this area and its surroundings and provides the necessary a
priori information about mass variations inside and outside
the target areas.
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1228 R. Klees et al.: The bias in GRACE estimates of water storage variations

1 Introduction spatial smoothing, and bias has been established. In particu-
lar, an alternative representation of the bias has been derived,
The Gravity Recovery and Climate Experiment (GRACE), which shows explicitly the contribution to the bias of mass
launched in March of 2002, has been designed to measure th@riations inside and outside the target area. The approach
Earth's time variable gravity field at approximately monthly to be followed in this study is outlined in Se@&. Informa-
intervals with a spatial resolution of a few hundred kilome- tion about mass variations inside and outside the target area
ters. So far, 34 monthly gravity field solutions (April 2002~ is needed to compute the bias. We use the regional hydrolog-
March 2006) have been released to the scientific communityical model LEW to provide this information for four target
Each solution consists of a set of spherical harmonic coefareas in Southern Africa centred at the upper Zambezi sub-
ficients complete to degree and order 120. Differences becatchment. The model is described in SdcfThe results of
tween two monthly solutions reflect temporal gravity varia- the analysis are presented in S&ctThis includes a time se-
tions. They are caused by post glacial rebound, mass transies of the bias for the period January 2003 until March 2006
port in the atmosphere and the oceans, and the redistributiofor each target area and various choices of spatial filtering,
of water, snow and ice on land. Prior to gravity field esti- and a comparison of GRACE bias-corrected and uncorrected
mation, GRACE measurements have already been correctegionthly mean water storage variations with the output of the
for the major contribution of ocean and atmospheric masg EW hydrological model. In particular, it has been shown
variations. Therefore, differences between two monthly so-that after bias correction, the agreement between LEW and
lutions mainly reflect changes in terrestrial water storage, i.eGRACE are on the level of several millimeters, which gives
groundwater, soil moisture, rivers, lakes, snow, andice.  an indication of residual errors in smoothed GRACE data and
As a result, GRACE promises to provide new hydrological LEW model errors. Finally, uncertainties in the LEW model
information in the form of estimates of monthly mean water output have been estimated using Monte-Carlo simulations,
storage variations over river basins having length scales of and propagated into the bias. This gives an idea about the
few hundred kilometers and larger. This would allow the clo- quality of a priori water storage variations needed to com-
sure of the water balance for river basins and the verificatiorpute the bias.
and improvement of the modelling of the related hydrolog-  Section6 contains a summary of the results and the main
ical processes by combining GRACE estimates of monthlyconclusions of this study. In particular, some advice concern-
mean water storage variations with hydrological observationsng the use of GRACE models and bias computation has been
and hydrological model output. given.
However, GRACE estimates of monthly mean water stor-
age variations are erroneous due to measurement noise and
the aliasing of unmodelled high-frequency mass variations GRACE monthly mean mass variations, spatial filter-
into the monthly GRACE gravity field solutionSyvenson ing, and bias
and Wahy2002 Wahr et al, 1998 2006 Swenson and Wahr
20009. Figure 1 shows the difference between two monthly Monthly GRACE gravity field models are very noisy
gravity field solutions expressed in terms of equivalent wa-(cf. Fig. 1). When computing the monthly mean water stor-
ter heights without smoothing and with 1000 km Gaussianage variation over a target area, the noise is partially reduced,
smoothing. but still unacceptable high. Therefore, some additional spa-
The trackiness of the plot, which is typical for GRACE tial smoothing is required prior to the computation of mean
monthly solutions, is due to GRACE data errors and er-monthly mass variations over a target area. Isotropic Gaus-
rors in the background models used in the pre-processing asian smoothing is widely used in many GRACE related stud-
GRACE data, and can be much larger than the mass variaes (e.gJekeli 1981, Wahr et al, 1998. More advanced ap-
tion. To reduce these errors, spatial filtering (i.e. smoothing)proaches include non-isotropic smoothing kernels (dan
is routinely applied. Unfortunately, spatial filtering biases the et al, 2005 or Wiener filters, which use a priori information
GRACE estimates of monthly mean mass variations. It is theabout noise and signal (i.e. water storage) (8wgenson and
subject of optimal filter design to find a filter that minimizes Wahr, 2002).
the sum of GRACE errors and filter errors. Spatial smoothing reduces noise, but also introduces a
The subject of this paper is to analyze the bias in GRACEbias in the estimated monthly mean water storage varia-
estimates and to investigate to what extent the bias can be reion. This bias leads to a significant amplitude reduction
duced when using a priori information about mass variationsin estimated monthly mean water storage variations. There-
This improves the understanding of the potential and limita-fore, Velicogna and Wah¢2006 re-scaled the amplitude es-
tions of GRACE estimates of monthly mean water storagetimates for Antarctica by a factor of.@1; Fenoglio-Marc
variations and is the basis for the design of an optimal filteret al. (2006 applied a factor of 9 for the Mediterranean
for the target area at hand. Sea;Chen et al(2007) found a scaling factor of.33 for the
The paper is organized as follows: in S&ttthe relation  Amazon and Mississippi basins and4 for the Ganges and
between mass variations inside and outside the target aredambezi basins.
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Fig. 1. Global monthly mean water storage variation between April and March 2003 from GRACE. Top panel — without smoothing, Bottom
panel — after 1000 km Gaussian smoothing.

In appendix it is shown that the bias in the GRACE function (e.g. the Gaussian kernel) with the characteristic
monthly mean water storage estimate can be written as function x. op is the target area angy is the mean Earth
1 1 sphere. According to Eql]), the bias consists of two terms.
g0 = ﬁ/ Jfolx = W)dog — —— / fiWdog, The first term on the right-hand side of Ed)) (s calledtype 1
T RS Jop 47 R Jop—oy N - L
) error. It expresses the gontr|t?ut|on of mass vanaugns |q3|de
the target area to the bias. Singe W is always positive, it
causes amnderestimatiorof the amplitude of the monthly
mean mass variation averaged over the target area. The sec-
ond term on the right-hand side of EQ) (s calledtype 2

where fp is the mass variation inside the target argathe
mass variations outside the target argahe characteristic
function of the target area, aritl the target area filter func-
tion, which is the spherical convolution of the spatial filter
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error. It represents the contribution of mass variations out- The models have been smoothed with a Gaussian fil-
side the target area to the bias. If the mass variations inside  ter with correlation length 600, 800, and 1000 km, re-
and outside the target area are “in phase” (i.e. they have the  spectively. This allows to investigate the relation be-
same sign), the sum of the two terms of the right-hand side of  tween the correlation length and the bias. The smoothed

Eqg. @) is always smaller than each individual term; in other GRACE monthly gravity field models have been trans-
words, the two bias contributors cancel to some extent. That  formed into monthly mean water storage over the target
may be the reason why in literature (eGhen et al.2005ab) areas following the approach bgwenson and Wahr
filtered GRACE solutions fit quite well withunfiltered esti- 2002. The mean water storage over the period January
mates of the monthly mean storage variation from hydrolog- 2003 and June 2006 has been subtracted, which gives
ical models. The sum of the two error terms will attain a GRACE monthly mean water storage variations over the

maximum if there are no mass variations outside the target  target areas relative to the mean.
area or, even more extreme, if the mass variation outside the
target area differs in sign from the mass variation inside the
target area. Note thap is sometimes calletbakage error
(e.g.Wahr et al, 1998 Swenson and Wah2002 Swenson

et al, 2003; sometimes the terheakage erroonly refers to

the type 2 error (e.Klees et al.2006).

— The LEW model has been run for the period January
2003 until March 2006, providing a time series of
monthly water storage variations for each target area
relative to the mean. This information has been used
in Eg. (1) to obtain a time series of bias estimates in
GRACE monthly mean water storage. At this stage, un-
certainties in LEW have been ignored.

3 Approach — GRACE monthly mean water storage variations have
been bias corrected. Consequently, the biased and the

In this study, we want to analyse the time behaviour of the bias-corrected GRACE monthly mean water storage

bias, due to spatial smoothing in GRACE monthly mean variations have been compared with the output of the

water storage variations for various target areas in Southern  LEW model and the fit between LEW model output and

Africa; moreover we want to investigate how accurately the GRACE estimates has been assessed.

bias can be estimated using a priori information about the

o . X ] — In reality, the mass variations inside and outside the tar-
mass variations. The following approach is followed:

get areas are not precisely known. To quantify the ef-
fect of uncertainty in prior information about the mass
variation functions on the computed bias, the uncertain-
ties in the LEW model output have been simulated by
Monte Carlo techniques and propagated into bias uncer-
tainties. This allows the assessment of errors in a priori
mass variation function and how they propagate into the
bias. Alternatively, the global CPC-GLDAS hydrolog-
ical model output has been used to compute the bias.
Details are described in Se&.3. Results have been
compared with the bias from LEW model output.

— To quantify the bias, we need information about the
mass variation inside (functiofy, Eqg. (1)) and outside
(function f;, Eq. (1)) the target area. Information about
/1 is only required within the significant support of the
target area filter functiomV, which in turn depends on
the correlation length of the spatial filter. Therefore,
small errors may be introduced at this stage if the signif-
icant support of the filter functioW exceeds the range
of the LEW model. We will come back to this question
in Sect.4.

— Four target areas located in Southern Africa have beem Lumped Elementary Watershed for Southern Africa
selected, with different sizes ranging fron74 10° km? (LEW)

to 5.2x10° km?. This has been done, in order to investi-
gate the relation between magnitude of the bias and sizét is well known that global hydrological models have quite
of the target area. large uncertainties and hardly can be used for the purpose
of this study. In our investigation of the bias in GRACE
— Information about the spatial and temporal behaviourmonthly mean water storage variations caused by spatial
of the functions fp and f; are provided by the re- smoothing, we deal with relatively small target areas of
gional Lumped Elementary Watershed (LEW) model 10°—10°km?. Therefore, we use a recently developed LEW
for Southern Africa, which is described in sectidn  regional hydrological model output to compute the bias.
This information is considered as 'exact’ when comput- The Lumped Elementary Watershed (LEW) approach has
ing the bias. been presented in a previous study Wnsemius et al.
(20063. The application of this approach over the Zam-
— 34 monthly GRACE gravity field models, covering the bezi gave promising results and is specifically interesting for
period between January 2003 and March 2006, havepplication in Africa, since it enables the implicit incorpora-
been used (release RLO3 models, provided by GFZ)tion of redistribution of surface runoff in downstream located
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model units, called LEWS, that represent e.g. a wetland, lake 15
or man-made reservoir.

For this study, the model presentedWinsemius et al.
(20064 has been extended, by taking into account all river
basins below the equator, in particular Shebelle, Southern
part of the Nile, Congo, Zambezi, Okavango, Limpopo, and
Orange. In this section a short description of the modelling ‘
approach is given. st ]

10p

&)
—

of

4.1 Sub-catchment delineation 101 ( v ‘ . 1

Figure 4 shows the major river basins, being considered -15; ‘ L5y ]
in the model. Within the major basins, many model units e “
or “LEWSs” have been delineated. Most LEWs represent
sub-catchments, however remarks can be made about a few
LEWSs: the major lakes and reservoirs in our target area,
the Zambezi, have also been separately delineated. These, | aicarsomday
are Lake Kariba, Lake Cahora-Bassa and Lake Nyasa (also * Rumofgauge
known as Lake Malawi). The flow behaviour in the upper _g/—t¥= .
Nile is very much dependent on the water level in lake Victo- ’ e wonéﬁude 0oo®om s ®
ria. Therefore, a LEW has been defined for lake Victoria.

Runoff from upstream LEWSs spill in this lake and down- Fig. 2. The Lumped Elementary Watershed model for Southern
stream runoff has been generated through a simple outflov\rica as being used in this study. The grey lines represent the
relation dependent on the water level. In the Okavango rive,_delineatio_ns ofsub-catch_ments. Large river_s aqd Iakes_are indicated
basins, the Okavango delta has been delineated manually iB res_pectwely dark and Ilght blue. The mgjor river basins selected
take into account the surface runoff redistribution which is for this model are shown in a color gradient from dark-green to

tually taki | in this delta. Also it iahbouring i yellow. The black dots indicate locations of runoff gauges, from
actually taing place in this defta. Aiso 1ts ne|9 o_urng 'N* Wwhich monthly stream flow records are available and have been used
terior basins have been modelled in a purely “vertical” way,

h ) for calibration.
meaning that there is no lateral exchange of water between

these basins and others (i.e. there are no runoff processes
considered). The same holds for the 2 most eastern sub-
catchments of the Shebelle sub-model. These basins drain anodel when it is used for smaller scales than considered in
the salt lake Turkana (North-Kenya — Rift Valley) and there- this study.
fore do not produce any runoff to neighbouring catchments.
4.3 Runoff

—20F

4.2 Climate input data
Monthly runoff data has been obtained from several data

For calibration, the model has been forced by data from thesources, among which the Global Runoff Data Centre and
Climate Research Unit (CRUNgw et al, 2002). These data  the Zambian Department of Water Affairs (Lusaka, Zambia).
consist of fields of global monthly precipitation, wind speed, Anywhere where there was runoff available (sometimes very
relative humidity, and 2m air temperature (minimum, max- short time series), it was used to calibrate the model. Gen-
imum and mean). All data are given on &80.5 degree erally, parsimonious model structures were applied and most
grid. The grids have been used to compute reference evagnodel units were given the same model structure. In gen-
oration numbers, based on the Penman-Monteith equationeral, it may be expected that the model performs best in re-
(Penman1948 Monteith, 1981). gions where both the rainfall and runoff gauge network is

These climate data are completely based on ground statiorelatively dense. As can be observed in Fig. 4, many parts
records. The spatial coverage is non-homogeneous in timef this model remain ungauged. The reliability of modelled
and, therefore, the quality is non-homogeneous in space anstorage is for a large part dependent on the correct estimation
time. For that reason, the emphasis of the model calibratiorof the storage thresholds, more specific, the storage capacity
was on the overall discharge behaviour (e.g. the behaviour 0bf soil moisture. Generated runoff amounts at river outlets
apparent linear reservoirs and long-term released volumeshave been therefore calibrated in such a way, that at least
We feel that for our application, the use of CRU data is ade-the total long-term released volumes of runoff are more or
guate. We must underline that the model developed for thidess equal to the observed long-term volumes. This is for
study may be used for other purposes, as well, however it iexample done at the outlet of the Congo. While quite some
advised to use regional rainfall sources and re-calibrate theunoff information was available from the Northern parts of
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) Upper Zambezi “ Zambezi For other applications where these interactions are of greater
;;\7” ;;\7’ﬁ importance, more details about these interactions must be in-
st { st { cluded in the model.
0| { 0 {
i i 4.5 LEW model run for GRACE time series
) Z ) Z The LEW water storage estimates have been generated us-
25 -25 ing rainfall estimates from the Famine Early Warning System
- N 0 L (FEWS) Herman et a].1997. This product is partly satel-
oo m o a, 0® T om0 lite based and has a resolution 0f80.1°. The estimates
5 UP-Zambezi & Okavango - Zambezi & Congo have been lumped over the LEWS to provide a time series
10\7_/_, 1.7\.7_/.’ from January 2001 until June 2006. The first 2 years of sim-
ot of ulation have been taken as warming-up time to stabilize the
. : £ . : state variables of the LEW model structures.
% -10| % -10
o -15| o =15
20 20 5 Results of the error analysis
-25| =25
0 N 0 T2 The analysis has been done for four target areas of different
-85 10 °éfongil uage 40 50 o 10 °é‘I)ongit L.Iage 40 50 sizes (Cf F|g 3)

1. upper Zambezi (UZ), Zx 10° km?,

Fig. 3. The four target areas being used in this study (from leftto 2 zambezi (), 13x10° km?,
right, from top to bottom): upper Zambezi, Zambezi, upper Zam-
bezi + Okavango, and Zambezi + Congo. 3. upper Zambezi + Okavango (UZO), 2k 10f km?,

4. Zambezi + Congo (ZC), Bx 1P km?.

the Congo, the Southern part (near the Zambezi) remains s has been done in order to investigate the relation be-
completely ungauged. Therefore, the LEWS near the Zamyeen size of the area and amplitude of the bias. The output
bezi have been given parameter values that were appointed {% ihe | EW regional hydrological model (cf. Sed).covers
their neighbouring LEWSs located within the Zambezi, where the whole area of Southern Africa enabling averaging over
quite some rgnoff gauges are present and further calibrag,c reas in the range of 10107 km?. Gaussian spatial fil-
tion was applied to match long-term runoff volumes at the g yith correlation lengths of 600 km, 800 km, and 1000 km

Congo’s most downstream runoff gauge. have been used and the bias has been computed for each fil-
' . ter.
4.4 Regional water management and wadis The output covers the period January 2003 until March

) .. 2006. Water storage variations over the area shown in Fig. 4
A large challenge in large-scale water balance modelling i§,4ye peen used to compute the bias. A potential contribu-

the regional lateral interactions that take place between rivefi,, (4 the bias of water storage variations outside this area
and surrounding areas, either because of human interferengg,q peen neglected. This is justified because (i) the contri-
or present topography, geology and climatology. Large damg, tjon of oceans and atmosphere have already been removed
and lakes may be relatively simple to include in the LEW ,y GE7 prior to the estimation of monthly GRACE models;
modelling approach as was described in S&@, however iy the continental areas are outside the significant support
information is needed about there operation and general be&s e fijter function for the upper Zambezi, Zambezi, and
haviour (e.g. surface — volume curves and operating rules), e 7ambezi + Okavango target areas. This does not hold
to adequately model their water balance. For the applicaso, the zambezi + Congo target area. Therefore, we expect
tion that is presented in this paper, we feel that a rough €Sz me errors in the estimated bias for this target area caused
timation of their water balance should be adequate. In addlby unmodelled mass variations North to the area shown in

tion, many irrigation schemes are present in Southern Africarjg 4 e expect that these errors are small as there are little
more specifically in the Orange basin, the lower Zambezi and, ;o storage variations in this part of Africa.

the Incomati. Also wadi areas are present, e.g. in the She-

belle river basin, where runoff is generated in the Ethiopians 1 Bias estimate from LEW

highlands, which ends up in the downstream desert area.

The redistribution of surface runoff over either irrigated ar- Monthly bias estimates have been computed from the output
eas or wadis has been included by spilling a certain amoundf LEW using Eq. 1). The computations have been done for
of runoff in downstream irrigated areas, wadis or wetlands.each target area and choice of the Gaussian filter correlation
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Table 1. Amplitudes of the annual bias for different target areas, 200
computed from LEW model output. Annual amplitudes of (un-
filtered) LEW water storage variations and bias-to-signal-ratio are 150
given for comparison.

100

00 bias[mm]  fofrom LEW [mm] rel.biag%] =

Gauss, 1000 km % 50
2

urPz 73 155 47 ®

Z 61 133 46 0

UPZO 50 120 42

ZC 22 71 31 s

Gauss, 800 km

~100 ; ; ; ; i i
UPZ 55 155 35 2003 20035 2004 20045 2005 20055 2006  2006.5

z 46 133 35 Time, [year]
UPZO 39 120 33
zC 15 71 21

Fig. 4. Bias as a function of time between January 2003 and March
Gauss, 600 km 2006 for four target areas: upper Zambezi (red triangles), Zambezi
(blue squares), upper Zambezi + Okavango (green circles) and Zam-

"ZJPZ gg 113?3? 2233 bezi + Congo (black x-marks). 1000 km Gaussian smoothing has
UPZO 28 120 23 been used.
ZC 8 71 11

larger the bias and the bias-to-signal ratio. For in-
stance, for the smallest target area, the upper Zam-
bezi (area~4.7x 10° km?), the amplitude of the annual
length. Figure 4 shows the bias time series for the four target  pjas is 47% of the annual water storage variation when
areas and 1000 km Gaussian smoothing. From the time series 1000 km Gaussian smoothing is applied. For the largest
of monthly bias values, the amplitude of the annual bias can  area, the Zambezi + Congo, (are®.2x 10° km?), the
be computed. The results are shown in TaHfier each target annual bias reduces to about 31% of the annual water
area and the three Gaussian filters. storage variation.
The following observations are made:

1. The bias-to-signal-ratio is significant. A comparison of 5.2 Bias-corrected GRACE estimates versus LEW model
Fig. 4 with 5 shows, that the monthly bias may even ex- output
ceed the amplitude of the water storage variations (sig-
nal). This emphasizes the need to correct GRACE esti-The estimated bias can be used to correct GRACE monthly
mates of monthly mean water storage variations for themean water storage variations. We used 31 release RLO3
bias introduced by spatial smoothing. Otherwise it will monthly GRACE gravity field models between January 2003
not be possible to calibrate hydrological models usingand March 2006 provided by GFZ. The degree 1 coefficients
GRACE amplitude estimates. and the degree 2 zonal coefficient have been excluded from

the analysis, which corresponds to the currently adopted pro-

2. The bias strongly depends on the correlation length ofcedure. This leads to minor errors in the GRACE monthly
the filter: the smaller the correlation length, the smaller mean water storage variations for the target areas consid-
the bias. For instance, moving from 1000 km to 600 km ered in this study. From the time-series of monthly grav-
reduces the annual bias amplitude of the upper Zambezty field models, monthly water storage variations have been
target area from 73 mm to 36 mm, i.e. by about 50%. computed following the procedure &wenson and Wahr
However, simply reducing the filter correlation length (2002. These estimates have been corrected then for the
is not the solution to the problem. Even for 600 km, bias. For this purpose, the bias estimates, computed from the
the bias-to-signal-ratio is still very large. Moreover, the LEW model output, have been spline interpolated to the time
choice of a shorter filter correlation length increases theepochs of the monthly GRACE models. Finally, the annual
noise in GRACE water storage amplitudes. water storage variation has been computed for the biased and

bias-corrected GRACE estimates and compared with the an-

3. The bias and the bias-to-signal-ratio depend on thenual water storage from LEW. The results are summarized in

size of the target area: the smaller the target area, thdable2.

www.hydrol-earth-syst-sci.net/11/1227/2007/ Hydrol. Earth Syst. Sci., 11, 12272007
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Table 2. Amplitude of the annual water storage variatigf]: GRACE estimate[2]: annual bias[3]: bias-corrected GRACH4]: LEW
model output[5]: difference between bias-corrected GRACE and LEW model output.

Table 3. Statistics of the differences between GRACE monthly es-
timates and LEW model output before and after bias correction.

target area [1]

(2

[Bl=1[1+1[2] [4]

(5] = (3] - [4]

Gauss filter, 1000 km

uUpPZ
z

UPzO

ZC

82

83

68
33

73
61
50
22

155
144
118

Gauss filter, 800 km

uUpPZ
z

UPzO

ZC

102

100

80
40

55
46
39
15

157
146
119

Gauss filter, 600 km

upPZ
z

UPzO

ZC

124
117
91
47

36
30
28
8

160
147
119

155 0
133 11
120 -2
71 -16
155 2
133 13
120 -1
71 -16
155 5
133 14
120 -1
71 -16

area GRACE - LEW GRACEyr— LEW
min  max RMS min max RMS
Gauss filter, 1000 km
uPz 04 1980 680 03 520 250
Z 1.4 125.0 48.0 1.5 49.0 27.0
UPZO 1.6 197.0 59.0 1.5 50.0 24.0
ZC 1.5 81.0 350 00 57.0 200
Gauss filter, 800 km
upPz 0.8 1740 56.0 03 61.0 28.0
Z 3.0 106.0 38.0 2.0 58.0 32.0
uUPzO 0.0 177.0 52.0 0.3 56.0 26.0
ZC 0.4 80.0 31.0 0.2 66.0 220
Gauss filter, 600 km
upPz 0.2 1350 450 7.0 69.0 330
Z 1.1 82.0 31.0 1.3 67.0 37.0
UPZO 2.8 147.0 460 04 590 28.0
ZC 1.1 80.0 290 1.0 750 24.0

duces from 73 mm to O mm for the upper Zambezi, from 50
to 11 for the Zambeazi, from 52 te 2 for the upper Zambezi

+ Okavango and from 38 te- 16 for the Zambezi + Congo
area. The annual differences do not depend on the choice
of the filter correlation length. Monthly differences between
bias-corrected GRACE and LEW are larger than annual dif-
ferences, in particular in the wet seasons and for small target
areas (cf. Fig. 5).

Table3 gives some statistical information about the differ-
ences between the amplitudeswbnthlymean water storage
variations from GRACE and LEW model output. It is re-
markable that the fit with LEW is the best for a filter correla-
tion length of 1000 km; smaller filter correlation lengths lead
to larger RMS differences between bias-corrected GRACE
and LEW. This can be explained by the fact that filter corre-
lation lengths smaller than 1000 km due not sufficiently sup-
press the noise in GRACE monthly gravity fields; after bias
correction, the noise is still dominant and causes a larger mis-
fit between GRACE and LEW. An extreme situation is the
Zambezi target area for a 600 km Gaussian filter. After bias
correction, the RMS difference between GRACE and LEW
increasedrom 31 mm to 37 mm!

When a 1000 km Gaussian filter is used, we observe a
significant improvement by 44% and 63% of the fit be-
tween monthly GRACE and LEW amplitudes after bias cor-

A remarkable result is that bias-corrected GRACE esti-rection for all target areas. This is also visible in Fig. 5,

mates of th@nnualand themonthlymean water storage vari-

which shows the time series of monthly mean water storage

ations fit significantly better with LEW estimates than uncor- variations. The largest difference between LEW and bias-

rected GRACE estimates (cf. Tabi®. For instance, when

corrected GRACE is attained in spring 2004, whereas the

using 1000 km Gaussian smoothing, the annual difference redifferences in spring 2005 and spring 2006 are significantly

Hydrol. Earth Syst. Sci., 11, 1227241, 2007
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Fig. 5. Time series of monthly mean water storage variations over the target areas: From left to right and top to bottom: upper Zambezi,
Zambezi, upper Zambezi + Okavango, and Zambezi + Congo. A 1000 km Gaussian filter has been used. Black triangles: unfiltered LEW;
blue x-marks: biased GRACE; red boxes: bias-corrected GRACE.

smaller. The reason for the large difference in spring 2004LEW model, which does not provide good estimates of water
is not clear yet. It could be attributed to either the LEW storage variations in the areas North to the Zambezi + Congo
model or the GRACE data. For instance, a poor quality oftarget area (cf. Figs. 4 and 3). This information is needed to
rainfall input data from the beginning of 2004 could cause get a good estimate of the bias, as mass variations outside the
significant errors in the LEW model output. This would also target area contribute to the bias according to B}. The
propagate into the computed bias. Alternatively, it is possiblepoorer performance of LEW may be a consequence of the
that GRACE did not capture the water storage variation ovempoor coverage of this area with gauge stations, which causes
the target areas very well in spring 2004, due to a poor orbita bias in the rainfall data.

geometry YWinsemius et aJ.2006h. This would cause an Chen et al(2007) report significant phase shifts up to 10
additional bias in GRACE monthly amplitudes, which can- deg for some areas after spatial smoothing is applied. For the
not be corrected for. four target areas in Southern Africa, the phases of the water

The maximum difference between bias-corrected GRACEstorage variations from the bias-corrected GRACE and (un-

and LEW monthly amplitudes (57 mm for 1000 km Gaussianm.tered) LE.W model output fit quite well. The e_mnual phase
difference is maximum for the upper Zambezi + Okavango

smoothing) is observed in the Zambezi + Congo area, whic )
is the largest target area. At the first glance, this is unex'}arg(at area (@5 months or 5 deg); for the other target ar

pected as the bias is the smallest for this area and the qualitggs’) the annual phase difference is belov@onths (or 3
of GRACE should improve with increasing size of the tar- 9)-

get area. We explain this with the poorer performance of the
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Fig. 6. Water storage variations (in red) averaged over the upperFig. 7. Time variable bias (in green) averaged over the upper Zam-
Zambezi basin from the Monte Carlo simulation (200 realizations, bezi target area from a Monte Carlo simulation (200 realizations,
30% noise in rainfall numbers). Mean water storage is given in30% noise in rainfall numbers). Mean bias is given in black.

black.

] ) ] ~using a Monte-Carlo simulation. This series have been ob-
5.3 Bias, bias uncertainty, and the role of the hydrologicaligjneq by changing the input rainfall data to LEW randomly.
model That is, the rainfall data were superimposed by a zero mean
Gaussian white noise with a standard deviation of 30% of the
rainfall numbers. 200 noise realizations have been generated
for each time step. For each set of rainfall data, the LEW

1. The computation of the bias in GRACE monthly mean . . L
L : model has been run, which yields water storage variation es-
water storage variations requires knowledge about theg

In this section, we want to address two questions:

. T ; mates for the area shown in Fig. 4 for the period January
water storage variations inside and outside the targe . .
L L . 003 until March 2006. These estimates have been used to
area. This information is, of course, not available as

otherwise there would be no need to use GRACE. Incompute atime series of the bias for the p_erlod January 2.003
. o . until March 2006. From the 200 realizations, a mean bias
practice, only some a priori information about the water : :
D . and a RMS bias have been computed for each time step.
storage variations may be available, e.g. from a hydro-— _.
Figures 6 and 7 show the 200 monthly mean water storage

logical model. Uncertainties in the a priori information iati dth timated bias ti : tively. f
propagates into the estimated bias. Therefore, the quesv—a”a lons and the estimated bias Ume SEries, respectively, Tor

tion is how changes in the hydrological model output the upper Zambezi target area. The RMS bias shows a signif-

propagate into the bias estimates icant yearly pattern, which is in phase with the rainfall pat-

tern. That is, the largest RMS values are attained during the
2. In the analysis done before, the same hydrologicalwet season, i.e. in spring each year. In fall, the gncertainties
model (LEW) is used for bias computation and for com- &r€ much smaller, because there is almost no rainfall.
parison with GRACE. We concluded that after bias cor-  FOr the upper Zambezi area and a 1000 km Gaussian filter,
rection, the fit between LEW and GRACE improves sig- the maximum RMS bias is attained in spring 2006 (27 mm)

nificantly. Therefore, one may ask whether the fit is less(Cf- Fig. 8); the annual RMS bias is 15mm. This is much
if another hydrological model is used to compute the Smaller than the 73 mm difference of the annual amplitude

bias. of water storage variation between LEW and (uncorrected)
GRACE (cf. Table 2, UPZ, column [1] and [4]). Therefore,

A thorough answer to the first question requires an asthe Monte Carlo experiment indicates that even relatively un-
sessment of the uncertainty of the LEW hydrological model.certain information about mass variations is helpful to reduce
This is extremely complex and out of the scope of this study.the bias significantly.

Therefore, a more simplistic approach is followed, which is In order to address the second question, we repeat the
based on the fact that the rainfall data are the most signifcomplete data analysis with the global hydrological model
icant (but not the only) source of uncertainty of the output CPC-LDAS, and compared the results with the ones ob-
of LEW for South Africa. Therefore, we generated a seriestained with the LEW model. The land data assimilation sys-
of alternative water storage variations over the target areatem (LDAS) is one of the land surface models developed at
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Fig. 8. RMS of the monthly bias caused by 30% noise in rain- Fig. 9. Time series of bias estimates computed on the basis of the

fall numbers for the upper Zambezi target area. 1000 km GaussialtPC-LDAS hydrological model (black circles) and the differences

smoothing applied. between the bias from CPC-LDAS and LEW (green squares) for the
Upper Zambezi target area.

NOAA Climate Prediction Center (CPC). It is forced by ob-

served precipitation, derived from CPC daily and hourly pre- — CPC-LDAS minus (bias-corrected) GRACE; the bias
cipitation analysis, downward solar and long-wave radiation, is computed using LEW (referred to as CPC-
surface pressure, humidity, 2-m temperature and horizontal =~ GRACE/LEW)

wind speed from NCEP reanalysis. The output consists of . . _ o
soil temperature and soil moisture in four layers below the '€ main results of this comparison are shown in Fig. 9
ground. At the surface, it includes all components affecting(COmparison of the bias computed from LEW and CPC-
energy and water mass balance, including snow cover, deptt;PAS: respectively, for the Upper Zambezi target area),
and albedo. The data for the CPC-LDAS model are freelyFigs: 10 and 11 (time series of differences between LEW,
available on the INTERNETGPG, ab). No data have been CPC-LDAS, and GRACE for the Upper Zambezi target
found after December 2005. Therefore, the comparison witf'€), and Tabld (RMS differences between LEW, CPC-
LEW covers the period January 2003 until December 2005-PAS, and GRACE for all target areas). They can be sum-
The CPC-LDAS model has also been used in other GRACEMarized as follows:

e s e B etmaes compute fom LEW and CRCLDAS
9 9 show significant differences (cf. Fig. 9). For the period

been computed for the period January 2003 until December January 2003 until December 2005, the largest differ-

2005: ence is 55mm. It is attained during wet periods, i.e.
— LEW minus (uncorrected) GRACE (referred to as when strong rainfall occurs. The RMS difference is
LEW-GRACE) about 15mm. On the other hand, these differences are

much smaller than the bias itself.
— LEW minus (bias-corrected) GRACE; the bias is com-

puted using LEW (referred to as LEW-GRACE/LEw)  2- The differences LEW-GRACE/LEW and CPC-
GRACE/CPC are significantly smaller than LEW-

— LEW minus (bias-corrected) GRACE; the bias is GRACE and CPC-GRACE, respectively. The same

computed using CPC-LDAS (referred to as LEW- holds for the differences LEW-GRACE/CPC and
GRACE/CPC) CPC-GRACE/LEW compared with LEW-GRACE and
CPC-GRACE, respectively. This indicates that bias
— CPC-LDAS minus (uncorrected) GRACE (referred to correction really works for the target areas subject to
as CPC-GRACE) this study.

— CPC-LDAS minus (bias-corrected) GRACE; the bias 3. The fit of a hydrological model with bias-corrected
is computed using CPC-LDAS (referred to as LEW- GRACE is overoptimistic if the same hydrological
GRACE/CPC) model is used to compute the bias. This is evident if one
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100} A 1 Table 4. Statistics of the differences between LEW and GRACE,
1

A
8ol 1 | and CPC and GRACE monthly estimates of the water storage. A

1

1

1

1

Gaussian filter with 1000 km has been used.

. RMS

1 diff. upz z UPZO ZC
1 Gauss filter, 1000 km

LEW — GRACE 540 410 410 36.0
. LEW - GRACE/LEW 22.0 26.0 18.0 19.0
LEW-GRACE/CPC 28.0 22.0 29.0 24.0
CPC - GRACE 65.0 41.0 720 34.0
1 CPC - GRACE/CPC 28.0 400 51.0 22.0
CPC-GRACE/LEW 40.0 56.0 57.0 35.0

Water storage variation, [mm]

2003.5 2004 2004.5 2005 2005.5 2006

Time, [year]
Fig. 10. Differences of water storage variations from LEW and and to dr_aw ConC|USi0n§ about the noise in GRACE a_nd
GRACE for the period January 2003 until December 2005. Up- hydrological model estimates of water storage varia-

per Zambezi target area. Gaussian filter with 1000 km correlation  tions after bias correction.

length. Black triangles: LEW — GRACE; red squares: LEW —

GRACE/LEW; blue crosses: LEW-GRACE/CPC 4. The difference LEW-GRACE is always smaller than
the difference CPC-GRACE. That is, (uncorrected)
GRACE better fits the LEW model output than the CPC-
LDAS model output.

100} ’AI \
! 5. The difference LEW-GRACE/LEW is always smaller
than CPC-GRACE/CPC.

6. The difference LEW-GRACE/CPC is always smaller
than CPC-GRACE/LEW.

Items 4, 5, and 6 may be seen as an indicator of the supe-

Water storage variation, [mm]

! i ! ] rior quality of LEW compared with CPC-LDAS for the four
L v A target areas.
\ A v\
A\ )
_100 L L A L L x L L L ]
2003.5 2004 2004.5 2005 2005.5 2006 6 Conclusions
Time, [year]

Spatial smoothing of GRACE monthly gravity field models
_ _ o introduces a significant bias in GRACE-estimated monthly
Fig. 11. Differences of .water storage varlatlpns from CPC-LDAS mean water storage variations. For the four target areas con-
and GRACE for the period January 2003 until December 2005. YP-sidered in this study, the bias attains values between 50-70%

per Zambezi target area. Gaussian filter with 1000 km correlation o . - .
length. Black triangles: CPC-LDAS — GRACE; red squares: cpc.of the total water storage variation. This confirms estimates

LDAS — GRACE/CPC: blue crosses: CPC-LDAS — GRACE/LEW, 'eported in previous studies for other areas, (€len et al.
2007. For most target areas in the world, GRACE always
underestimates the amplitudes of monthly mean water stor-

compares the RMS difference between GRACE/LEW age variations.

and GRACE/CPC (which is in fact the difference of  The bias strongly depends on the amplitude of the water
the bias as computed from LEW and CPC-LDAS), storage variation inside and outside the target areas. More-
with the RMS difference between LEW-GRACE/LEW over, the size and shape of the target area also influence the
and CPC-GRACE/CPC. In this sense, one can say thaamplitude of the bias. Generally, the larger the target area,
the estimated bias is “biased” towards the hydrologicalthe smaller the bias.

model used. This makes it very difficult to decide what  Without bias correction, it is hardly possible to enhance
hydrological model better fits GRACE (or vice versa), hydrological models using GRACE. To compute the bias, a
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priori information about the mass variations inside and out-ative approach to provide this information as alternative to
side the target area is needed. This information can be prohydrological models is left open for future studies.

vided for instance by hydrological models. Whether GRACE

itself can be used as source of information in an iterative ap- )

proach to bias estimation has to be investigated. In this study,A‘ppend'X A

the output of a regional hydrological model has been use . .
succes:[s)fully to estimate the bias. After bias correction, tthuppose the functioy describes the monthly mean mass

. : ) variations on Earth. L r tar r .g. a river
annual amplitude differences of GRACE and regional hydro- a ato S on Eart e be our target area (e.g. a rive
. . basin) andrr the mean surface of the Earth, represented as a
logical model reduce to some millimeters.

) . o sphere with radiu®. The mean value of the functiofiover
Monthly amplitude differences may be significantly larger 00 iS

than annual differences, in particular during wet periods. _
There are two potential explanations: first of all, the LEW Jo= 50 Joy [ dog. (A1)
model does not perform well during these periods; this also . . .

effects the estimated bias. Secondly, GRACE does not Capl_ntroducmg the characteristic function of the target area
ture the monthly water storage variation very well, which is {M in oo
caused by an unfavorable orbit geometry. However, the ex- X =

ceptionally large 30 mm amplitude difference for the Zam-

bezi + Congo target area in spring 2004 is likely a result of e can write Eq.AL) as

poor performance of the LEW model to estimate mass varia-

tions for the area North to the Zambezi + Congo target area. fo=

We do not observe significant phase differences between 4 R?
GRACE and LEW. The maximum phase difference i250
month (i.e. 75 degq) for the upper Zambezi + Okavango area;
the phase difference for the other target areas is beldw 0
month (i.e. 3deg).

The RMS of the bias due to 30% noise in rainfall num- f=f+ ef,
bers vary between 5mm and 27 mm. Averaged over the pe- . ) )
riod between January 2003 until March 2006, this is aboutthls estimate Is
20% of the amplitude of the water storage variation. Theas- - 1 A
sumption of 30% noise in rainfall data is rather pessimistic, fo= A7 R2 /(;R fx dor +
although there are other contributors to the error budget of

LEW water storage estimates, which propagate into the esti] N€ sécond term on the right-hand side of ExB)describes
mated bias. Therefore, it should be possible to obtain goodhe error of the GRACE estimate of the monthly mean mass

estimates of the bias even if the quality of the a priori in- Variation averaged over the target area. In reality, .this termis
formation about mass variations inside and outside the targefery 1arge, and the standard procedure to reduce itis to apply
areais relatively poor. The question of bias estimability usingSPatial smoothing with a filteWs,

a priori information about mass variations, however, depends R 1 R

on the location of the target area and has to be addressed on fs= A R2 / f Wi dog.

a case-by-case basis. ok

For the target areas subject to this study, bias correcCorrespondingly,f; instead of f is used to compute the
tion improves significantly the quality of GRACE estimates monthly mean mass variation averaged over the target area
of water storage variations, independently whether LEW oraccording to
CPC-LDAS is used to compute the bias. As bias estimates

0 iNog —og

fa xdon (A2)

The true monthly mean mass variation functignis of
course unknown; from GRACE monthly gravity field solu-
tions, we can obtain an estimage With

dog. (A3
47TR2 ARSfX R ( )

are biased towards the hydrological model used to compute fio = Lz/ fs x dog.
the bias, the fit between a hydrological model and bias- 4 R% Jop
corrected GRACE is too optimistic. Often (but not necessarily), the spatial filter (smoothey)s

The study limits to the application of isotropic Gaussian an isotropic function on the sphere, e.g. a Gaussian. The true
smoothing. When using other filter functions, e.g. non- monthly mean mass variation averaged over the target area is
isotropic filters or Wiener filters, the bias is likely to be
smaller. Nevertheless, the need to apply a bias correction fo= ]30
is still there. The ability to compute the bias depends on the

location of the target area and the availability of a priori in- + 1 / (f — fs)x dor + ! / ey, x dog,

; o i ; 4T R? |, 47 R? |,
formation about mass variations inside and outside the target R R
area. The question whether GRACE can be used in an iter- (A4)
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wherefs:f}+sfx andey, is the error off;. The first term
on the right-hand side of EgA&) is the estimate we obtain
from GRACE monthly gravity models. The last two terms
describe the error. The first error term is the error introduced
by the spatial smoothing; the second error term describes

how GRACE errors propagate into the smoothed mass variwhere fo is the GRACE estimate (cf. EGAB)), and
ation functionf;. The spatial smoothing only makes sense

Now, the true monthly mean mass variation averaged over
the target area can be written as

f0=fo+81+82+83,

i.e. is successful) if 1
( ) 1= o | ot = Wrdon
I/ (f—fx)XdUR-l-/ ef, xdog| <| | ey x dogl. 1
OR oR OR g =——- fi Wdog
] 47 R? Jh—op
With 1 1
W= 45 R? /(;R Ws x do, 3T anR2 /aR er W dog.
it can easily be shown that describe the errors, with the biag=s1-+¢>.
2 1 . Many authors account for the errors in the estimated am-
fo= 47 R? / J Wdog, (A5) plitudes of the monthly mean water storage variation over
oR the target area, by changing the correlation length of the fil-
and ter W; such that the GRACE water storage amplitudes fit best
_ 2 in a least-squares sense the amplitudes of a global hydrolog-
fo=fo ical model on a global scale. For a Gaussian filter function,
1 1 this gives a filter correlation length of about 800 km for the
t mr2 /UR f = W)dog + 4 R2 /UR e W dog. routinely used global hydrological models GLDAS. This ap-
(AB) proach is certainly weaker than the approachvelicogna

The second term on the right-hand side of EXB)

1
foi= o / Fx — W) dog, (A7)

and Wahr(2006, although in this way, errors in the global
hydrological model may average out a little bit. Anyway, the
best one can obtain then is a global scale factor; scale factors
for specific regions of interest may significantly differ from
the global one.

is the bias in the monthly mean mass variation averaged over \elicogna and Wah(2006 followed another approach.
the target areas that is caused by spatial smoothing. The biaghey introduced a scale factar defined as

can be interpreted as the error we introduce when using the
filter W instead of the characteristic functign That is, us- ng f x dog

ing W reduces GRACE-related errors, but introduces at the A= W’

same time a bias in the monthly mean mass variation esti- ok

mate. To balance these errors is the subject of the choice of |4 Jptained an estimateof 1 assuming that the mass vari-
an optimal filter. This is not addressed here; for details abouhtion function  is

the optimal choice of a filter, we recommerienson and

Wahr, 2002 and Han et al, 2009. To analyze the biasy, h = constant ing

we first write f= . .
0 inog — op
fo inog
f= fi inog—oo’ The function: was assumed to be a layer of water with thick-
ness 1 cm distributed over the target area. Then,
and obtain a decomposition &f into two parts: 1
A=
_ 1 [ Wdog
=— - w)d R
0= 173 . Jo(x ) dog %
1 Thereafter, the estimate fo was used as scale-corrected
— — W)dog. (A8 i i
+ 47 R? /UR_UO filx )dog. (A8) GRACE estimate of the monthly mean mass variation av-

The type 2 error can be re-written, when taking into accoun

that x=0 in og —op. Then,

/ fl(X—W)dGR=—/ fi Wdog.
OR—00 OR—00
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t

eraged over the target area. This simple approach of correct-
ing GRACE water storage amplitudes for the bias is correct

if there are no mass variations outside the target area. Only
then, the scale factor does not depend on the amplitude of the
mass variation inside the target area and the scale factor can
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