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Abstract 
Information retrieval (IR) systems need to constantly update 
their knowledge as target objects and user queries change 
over time. Due to the power-law nature of linguistic data, 
learning lexical concepts is a problem resisting standard 
machine learning approaches: while manual intervention is 
always possible, a more general and automated solution is 
desirable. In this work, we propose a novel end-to-end 
framework that models the interaction between a search en-
gine and users as a virtuous human-in-the-loop inference. 
The proposed framework is the first to our knowledge com-
bining ideas from psycholinguistics and experiment design 
to maximize efficiency in IR. We provide a brief overview 
of the main components and initial simulations in a toy 
world, showing how inference works end-to-end and dis-
cussing preliminary results and next steps. 

 Introduction   
Information retrieval (IR) systems play an important part in 
the digital life of billions of people daily and in the overall 
economy: taking fashion as an industry example, 25% of 
all transactions are now happening online (Statista 2019). 
Due to the interactive nature of IR, search engines are great 
use cases for studying human-machine collaboration “in 
the wild”.  
 In this paper, we sketch a novel framework drawing 
from psycholinguistics and experiment design to address 
lexical learning in IR through human-in-the-loop inference: 
this end-to-end pipeline provides principled lexical learn-
ing to IR systems without manual intervention or large 
amount of data. As such, the proposed framework sits ide-
ally in between human experts and machine learning. Hu-
man curated resources can be seamlessly used as input to 
the system, which then exploits the Bayesian apparatus to 
evolve autonomously over time. On the other hand, the 
system can supplement standard distributional approaches 
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(Grbovic et al. 2016), helping precisely where they are 
notoriously less effective, i.e. the “long tail” (Bai et al. 
2018)1.   

Problem statement 
Consider the stylized IR interface in Figure 1, showing 
how User and System take turns in discovering products on 
a digital store (in the example, User is looking for ruffle 
dresses):  
 

a) User searches for objects using a word z; 
b) the System realizes z is unknown, and asks the 

User to pick a “close one” from a small set of ob-
jects; 

c) the User gives feedback by clicking on at most 
one object. 

 

 
Figure 1: a stylized IR interface for so-called “product search”.  

 Intuitively, the problem is the following: how can we 
design a System that learns the meaning of z as quickly as 
possible, leveraging User’s feedback? The answer requires 
us to solve two problems: first, System must be able to 
reason over meaning hypotheses for z in a consistent fash-

 
1 The problem statement also resembles topics in the bandit and active 
learning community (e.g. Bouneffouf et al. 2014): the main difference is 
that in the present case symbolic knowledge is both the source of meaning 
hypotheses and the engine for optimal experiments.  



ion; second, System must be able to ask User the “right” 
question (in the form of product selection) to maximize 
learning.  

Reasoning over meaning 
Knowledge graphs (KGs) are spreading (Sicular and Brant, 
2018) as an effective backbone for IR (He et al., 2016). If 
System represents products as a taxonomy (see Figure 2), 
given an unknown word z and nodes as meaning hypothe-
ses, the posterior probability of each node, given User’s 
clicks x1, x2, … xn in X, is given by Bayes formula: 
P(node|X) ∝ P(X|node) * P(node). 
 

 
Figure 2: a stylized fashion KG with 4 products and 5 nodes.  

 Extending the intuitions of (Xu and Tenenbaum, 2007) 
to leverage KGs, we define a prior favoring “ontological 
distinctiveness”2 (OD) for nodes as: 
 
1)  P(node) ∝ OD(node, sibling(node)) 
 
Likelihood follows the “size principle”: if ext(node) is the 
function assigning products to a node, we define likelihood 
for a single observation xi as: 
 
2)  P(xi|node) ∝ δ · (1/|ext(node)|) + bernoulli(ε) 
 
where δ = 1 if xi	∈	ext(node), 0 otherwise. In other words, 
smaller hypothesis are preferred and a noise parameter ε 
accounts for erratic user behavior (e.g. how much can we 
trust User picking P1 to really mean that P1 is a peplum?).  

Asking for human help efficiently 
Consider again the KG in Figure 2: for bundle size n=2, 
System can show User [P2, P1] vs [P3, P2] vs [P4, P3], etc. 
and then observe what she clicks. What System wants, 
given its prior over nodes, is to show bundle b* such that 
User action y over b* maximally updates the distribution 
(Ouyang et al., 2016), as measured by the expected Kull-
back–Leibler divergence. Since feedback is not known in 
advance, we need to marginalize over all the possible y, 
giving: 

 
2 If a given KG represents product features, a natural choice to measure 
OD would be calculating the Jacquard Distance between the feature set of 
the given nodes. 

 
3)  b* = argmax(b) Ep(y; b) DKL(P(node) | b, y) || P(node))  
 
If we calculate the expected information gain (EIG) for all 
bundles in Figure 2, [P4, P3] is the best one3. 

Putting all together in a virtuous loop 
Going back to the original problem statement, it is now 
easy to see how System can leverage User to efficiently 
gain knowledge over an unknown word z: System will first 
prepare meaning hypotheses over z and then calculate the 
product bundle maximizing EIG. Once User clicks on a 
product, the Bayesian inference will produce a posterior 
distribution which can be used as prior for a second inter-
action (and so on, in a virtuous loop). In the case of the KG 
from Figure 2, if z=footwear, [P4, P3] will be the test bun-
dle; after observing User clicking on P4, System’s confi-
dence on the meaning of z is already converging over the 
correct node shoes (~98% average confidence over 10 
MCMC runs4).  
 It’s crucial to note that such efficiency is the result of 
combining the two ideas and that neither is sufficient  
alone: KG-based lexical acquisition can work only by con-
ditioning on reasonable feedback, such as the data provid-
ed by maximizing EIG5; on the other hand, selecting the 
perfect bundle would be worthless without an inferential 
model that is good at leveraging the structure of the hy-
pothesis space.  

Conclusion 
We presented a novel framework for IR systems and show 
preliminary results from simulations: both components are 
principled and independently motivated, and we look for-
ward to explore the computational model in more realistic 
use cases (e.g. varying KGs, preferences, noise etc.). 
 While many practitioners believe IR to be mostly a “Big 
Data” problem, the extreme power-law nature of language 
interfaces makes for a compelling “small data” business 
case6: there is great theoretical and practical value in de-
veloping alternative approaches, as human-machine col-
laboration promises to make optimal use of every search 
interaction, no matter how rare. 

 
3 Intuitively, this is correct since a single click on P4 will make the node 
shoes much more likely. 
4 Please see the additional materials for the relevant charts. 
5 Note for example that if product bundle is chosen randomly, only ~50% 
of the time P4 would be selected. 
6 Please see additional materials showing query distribution for real web-
sites: it is not unusual that a vast amount of traffic is generated by rare 
queries (the “long tail” of the distribution), for which standard data hun-
gry statistical tools may give inaccurate results. 
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