[go: up one dir, main page]

Open In App

Convert Infix To Prefix Notation

Last Updated : 27 Mar, 2023
Summarize
Comments
Improve
Suggest changes
Like Article
Like
Save
Share
Report
News Follow

Given an infix expression, the task is to convert it to a prefix expression.

Infix Expression: The expression of type a ‘operator’ b (a+b, where + is an operator) i.e., when the operator is between two operands.

Prefix Expression: The expression of type ‘operator’ a b (+ab where + is an operator) i.e., when the operator is placed before the operands.

Examples: 

Input: A * B + C / D
Output: + * A B/ C D 

Input: (A – B/C) * (A/K-L)
Output: *-A/BC-/AKL

How to convert infix expression to prefix expression?

To convert an infix expression to a prefix expression, we can use the stack data structure. The idea is as follows:

  • Step 1: Reverse the infix expression. Note while reversing each ‘(‘ will become ‘)’ and each ‘)’ becomes ‘(‘.
  • Step 2: Convert the reversed infix expression to “nearly” postfix expression.
    • While converting to postfix expression, instead of using pop operation to pop operators with greater than or equal precedence, here we will only pop the operators from stack that have greater precedence.
  • Step 3: Reverse the postfix expression.

The stack is used to convert infix expression to postfix form.

Illustration:

See the below image for a clear idea:

Convert infix expression to prefix expression

Convert infix expression to prefix expression

Below is the C++ implementation of the algorithm.

C++




// C++ program to convert infix to prefix
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the character is an operator
bool isOperator(char c)
{
    return (!isalpha(c) && !isdigit(c));
}
 
// Function to get the priority of operators
int getPriority(char C)
{
    if (C == '-' || C == '+')
        return 1;
    else if (C == '*' || C == '/')
        return 2;
    else if (C == '^')
        return 3;
    return 0;
}
 
// Function to convert the infix expression to postfix
string infixToPostfix(string infix)
{
    infix = '(' + infix + ')';
    int l = infix.size();
    stack<char> char_stack;
    string output;
 
    for (int i = 0; i < l; i++) {
 
        // If the scanned character is an
        // operand, add it to output.
        if (isalpha(infix[i]) || isdigit(infix[i]))
            output += infix[i];
 
        // If the scanned character is an
        // ‘(‘, push it to the stack.
        else if (infix[i] == '(')
            char_stack.push('(');
 
        // If the scanned character is an
        // ‘)’, pop and output from the stack
        // until an ‘(‘ is encountered.
        else if (infix[i] == ')') {
            while (char_stack.top() != '(') {
                output += char_stack.top();
                char_stack.pop();
            }
 
            // Remove '(' from the stack
            char_stack.pop();
        }
 
        // Operator found
        else {
            if (isOperator(char_stack.top())) {
                if (infix[i] == '^') {
                    while (
                        getPriority(infix[i])
                        <= getPriority(char_stack.top())) {
                        output += char_stack.top();
                        char_stack.pop();
                    }
                }
                else {
                    while (
                        getPriority(infix[i])
                        < getPriority(char_stack.top())) {
                        output += char_stack.top();
                        char_stack.pop();
                    }
                }
 
                // Push current Operator on stack
                char_stack.push(infix[i]);
            }
        }
    }
    while (!char_stack.empty()) {
        output += char_stack.top();
        char_stack.pop();
    }
    return output;
}
 
// Function to convert infix to prefix notation
string infixToPrefix(string infix)
{
    // Reverse String and replace ( with ) and vice versa
    // Get Postfix
    // Reverse Postfix
    int l = infix.size();
 
    // Reverse infix
    reverse(infix.begin(), infix.end());
 
    // Replace ( with ) and vice versa
    for (int i = 0; i < l; i++) {
 
        if (infix[i] == '(') {
            infix[i] = ')';
        }
        else if (infix[i] == ')') {
            infix[i] = '(';
        }
    }
 
    string prefix = infixToPostfix(infix);
 
    // Reverse postfix
    reverse(prefix.begin(), prefix.end());
 
    return prefix;
}
 
// Driver code
int main()
{
    string s = ("x+y*z/w+u");
   
    // Function call
    cout << infixToPrefix(s) << std::endl;
    return 0;
}


Java




// Java program to convert infix to prefix
import java.util.*;
 
class GFG {
    // Function to check if the character is an operand
    static boolean isalpha(char c)
    {
        if (c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z') {
            return true;
        }
        return false;
    }
 
    // Function to check if the character is digit
    static boolean isdigit(char c)
    {
        if (c >= '0' && c <= '9') {
            return true;
        }
        return false;
    }
 
    // Function to check if the character is an operator
    static boolean isOperator(char c)
    {
        return (!isalpha(c) && !isdigit(c));
    }
 
    // Function to get priority of operators
    static int getPriority(char C)
    {
        if (C == '-' || C == '+')
            return 1;
        else if (C == '*' || C == '/')
            return 2;
        else if (C == '^')
            return 3;
 
        return 0;
    }
 
    // Reverse the letters of the word
    static String reverse(char str[], int start, int end)
    {
        // Temporary variable to store character
        char temp;
        while (start < end) {
            // Swapping the first and last character
            temp = str[start];
            str[start] = str[end];
            str[end] = temp;
            start++;
            end--;
        }
        return String.valueOf(str);
    }
 
    // Function to convert infix to postfix expression
    static String infixToPostfix(char[] infix1)
    {
        String infix = '(' + String.valueOf(infix1) + ')';
 
        int l = infix.length();
        Stack<Character> char_stack = new Stack<>();
        String output = "";
 
        for (int i = 0; i < l; i++) {
 
            // If the scanned character is an
            // operand, add it to output.
            if (isalpha(infix.charAt(i))
                || isdigit(infix.charAt(i)))
                output += infix.charAt(i);
 
            // If the scanned character is an
            // ‘(‘, push it to the stack.
            else if (infix.charAt(i) == '(')
                char_stack.add('(');
 
            // If the scanned character is an
            // ‘)’, pop and output from the stack
            // until an ‘(‘ is encountered.
            else if (infix.charAt(i) == ')') {
                while (char_stack.peek() != '(') {
                    output += char_stack.peek();
                    char_stack.pop();
                }
 
                // Remove '(' from the stack
                char_stack.pop();
            }
 
            // Operator found
            else {
                if (isOperator(char_stack.peek())) {
                    while (
                        (getPriority(infix.charAt(i))
                         < getPriority(char_stack.peek()))
                        || (getPriority(infix.charAt(i))
                                <= getPriority(
                                    char_stack.peek())
                            && infix.charAt(i) == '^')) {
                        output += char_stack.peek();
                        char_stack.pop();
                    }
 
                    // Push current Operator on stack
                    char_stack.add(infix.charAt(i));
                }
            }
        }
        while (!char_stack.empty()) {
            output += char_stack.pop();
        }
        return output;
    }
 
    static String infixToPrefix(char[] infix)
    {
        // Reverse String and replace ( with ) and vice
        // versa Get Postfix Reverse Postfix
        int l = infix.length;
 
        // Reverse infix
        String infix1 = reverse(infix, 0, l - 1);
        infix = infix1.toCharArray();
 
        // Replace ( with ) and vice versa
        for (int i = 0; i < l; i++) {
 
            if (infix[i] == '(') {
                infix[i] = ')';
                i++;
            }
            else if (infix[i] == ')') {
                infix[i] = '(';
                i++;
            }
        }
 
        String prefix = infixToPostfix(infix);
 
        // Reverse postfix
        prefix = reverse(prefix.toCharArray(), 0, l - 1);
 
        return prefix;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String s = ("x+y*z/w+u");
 
        // Function call
        System.out.print(infixToPrefix(s.toCharArray()));
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python code to convert infix to prefix expression
 
 
# Function to check if the character is an operator
def isOperator(c):
    return (not c.isalpha()) and (not c.isdigit())
 
 
 
# Function to get the priority of operators
def getPriority(c):
    if c == '-' or c == '+':
        return 1
    elif c == '*' or c == '/':
        return 2
    elif c == '^':
        return 3
    return 0
 
 
   
# Function to convert the infix expression to postfix
def infixToPostfix(infix):
    infix = '(' + infix + ')'
    l = len(infix)
    char_stack = []
    output = ""
 
    for i in range(l):
         
        # Check if the character is alphabet or digit
        if infix[i].isalpha() or infix[i].isdigit():
            output += infix[i]
             
        # If the character is '(' push it in the stack
        elif infix[i] == '(':
            char_stack.append(infix[i])
         
        # If the character is ')' pop from the stack
        elif infix[i] == ')':
            while char_stack[-1] != '(':
                output += char_stack.pop()
            char_stack.pop()
         
        # Found an operator
        else:
            if isOperator(char_stack[-1]):
                if infix[i] == '^':
                    while getPriority(infix[i]) <= getPriority(char_stack[-1]):
                        output += char_stack.pop()
                else:
                    while getPriority(infix[i]) < getPriority(char_stack[-1]):
                        output += char_stack.pop()
                char_stack.append(infix[i])
 
    while len(char_stack) != 0:
        output += char_stack.pop()
    return output
 
 
 
# Function to convert infix expression to prefix
def infixToPrefix(infix):
    l = len(infix)
 
    infix = infix[::-1]
 
    for i in range(l):
        if infix[i] == '(':
            infix[i] = ')'
        elif infix[i] == ')':
            infix[i] = '('
 
    prefix = infixToPostfix(infix)
    prefix = prefix[::-1]
 
    return prefix
 
 
 
# Driver code
if __name__ == '__main__':
    s = "x+y*z/w+u"
     
    # Function call
    print(infixToPrefix(s))


C#




// C# program to convert infix to prefix
using System;
using System.Collections.Generic;
 
public class GFG {
    // Check if the given character is an alphabet
    static bool isalpha(char c)
    {
        if (c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z') {
            return true;
        }
        return false;
    }
 
    // Check if the current character is a digit
    static bool isdigit(char c)
    {
        if (c >= '0' && c <= '9') {
            return true;
        }
        return false;
    }
 
    // Function to check if the character is an operator
    static bool isOperator(char c)
    {
        return (!isalpha(c) && !isdigit(c));
    }
 
    // Function to get the precedence order of operators
    static int getPriority(char C)
    {
        if (C == '-' || C == '+')
            return 1;
        else if (C == '*' || C == '/')
            return 2;
        else if (C == '^')
            return 3;
 
        return 0;
    }
 
    // Reverse the letters of the word
    static String reverse(char[] str, int start, int end)
    {
 
        // Temporary variable to store character
        char temp;
        while (start < end) {
 
            // Swapping the first and last character
            temp = str[start];
            str[start] = str[end];
            str[end] = temp;
            start++;
            end--;
        }
        return String.Join("", str);
    }
 
    // Function to convert infix to postfix notation
    static String infixToPostfix(char[] infix1)
    {
        String infix = '(' + String.Join("", infix1) + ')';
 
        int l = infix.Length;
        Stack<char> char_stack = new Stack<char>();
        String output = "";
 
        for (int i = 0; i < l; i++) {
 
            // If the scanned character is an
            // operand, add it to output.
            if (isalpha(infix[i]) || isdigit(infix[i]))
                output += infix[i];
 
            // If the scanned character is an
            // ‘(‘, push it to the stack.
            else if (infix[i] == '(')
                char_stack.Push('(');
 
            // If the scanned character is an
            // ‘)’, pop and output from the stack
            // until an ‘(‘ is encountered.
            else if (infix[i] == ')') {
                while (char_stack.Peek() != '(') {
                    output += char_stack.Peek();
                    char_stack.Pop();
                }
 
                // Remove '(' from the stack
                char_stack.Pop();
            }
 
            // Operator found
            else {
                if (isOperator(char_stack.Peek())) {
                    while (
                        (getPriority(infix[i])
                         < getPriority(char_stack.Peek()))
                        || (getPriority(infix[i])
                                <= getPriority(
                                    char_stack.Peek())
                            && infix[i] == '^')) {
                        output += char_stack.Peek();
                        char_stack.Pop();
                    }
 
                    // Push current Operator on stack
                    char_stack.Push(infix[i]);
                }
            }
        }
        while (char_stack.Count != 0) {
            output += char_stack.Pop();
        }
        return output;
    }
 
    // Driver code
    static String infixToPrefix(char[] infix)
    {
        // Reverse String Replace ( with ) and vice versa
        // Get Postfix
        // Reverse Postfix *
        int l = infix.Length;
 
        // Reverse infix
        String infix1 = reverse(infix, 0, l - 1);
        infix = infix1.ToCharArray();
 
        // Replace ( with ) and vice versa
        for (int i = 0; i < l; i++) {
            if (infix[i] == '(') {
                infix[i] = ')';
                i++;
            }
            else if (infix[i] == ')') {
                infix[i] = '(';
                i++;
            }
        }
        String prefix = infixToPostfix(infix);
 
        // Reverse postfix
        prefix = reverse(prefix.ToCharArray(), 0, l - 1);
 
        return prefix;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        String s = ("x+y*z/w+u");
       
        // Function call
        Console.Write(infixToPrefix(s.ToCharArray()));
    }
}
 
// This code is contributed by gauravrajput1


Javascript




// Javascript program to convert infix to prefix
// program to implement stack data structure
class Stack {
  constructor() {
    this.items = [];
  }
 
  // add element to the stack
  push(element) {
    return this.items.push(element);
  }
 
  // remove element from the stack
  pop() {
    if (this.items.length > 0) {
      return this.items.pop();
    }
  }
 
  // view the last element
  top() {
    return this.items[this.items.length - 1];
  }
 
  // check if the stack is empty
  isEmpty() {
    return this.items.length == 0;
  }
 
  // the size of the stack
  size() {
    return this.items.length;
  }
 
  // empty the stack
  clear() {
    this.items = [];
  }
}
 
function isalpha(c) {
  if ((c >= "a" && c <= "z") || (c >= "A" && c <= "Z")) {
    return true;
  }
  return false;
}
 
function isdigit(c) {
  if (c >= "0" && c <= "9") {
    return true;
  }
  return false;
}
function isOperator(c) {
  return !isalpha(c) && !isdigit(c);
}
 
function getPriority(C) {
  if (C == "-" || C == "+") return 1;
  else if (C == "*" || C == "/") return 2;
  else if (C == "^") return 3;
  return 0;
}
 
function infixToPostfix(infix) {
  infix = "(" + infix + ")";
 
  var l = infix.length;
  let char_stack = new Stack();
  var output = "";
 
  for (var i = 0; i < l; i++) {
    // If the scanned character is an
    // operand, add it to output.
    if (isalpha(infix[i]) || isdigit(infix[i])) output += infix[i];
    // If the scanned character is an
    // ‘(‘, push it to the stack.
    else if (infix[i] == "(") char_stack.push("(");
    // If the scanned character is an
    // ‘)’, pop and output from the stack
    // until an ‘(‘ is encountered.
    else if (infix[i] == ")") {
      while (char_stack.top() != "(") {
        output += char_stack.top();
        char_stack.pop();
      }
 
      // Remove '(' from the stack
      char_stack.pop();
    }
 
    // Operator found
    else {
      if (isOperator(char_stack.top())) {
        if (infix[i] == "^") {
          while (getPriority(infix[i]) <= getPriority(char_stack.top())) {
            output += char_stack.top();
            char_stack.pop();
          }
        } else {
          while (getPriority(infix[i]) < getPriority(char_stack.top())) {
            output += char_stack.top();
            char_stack.pop();
          }
        }
 
        // Push current Operator on stack
        char_stack.push(infix[i]);
      }
    }
  }
  while (!char_stack.isEmpty()) {
    output += char_stack.top();
    char_stack.pop();
  }
 
  return output;
}
 
function infixToPrefix(infix) {
  /* Reverse String
   * Replace ( with ) and vice versa
   * Get Postfix
   * Reverse Postfix  *  */
  var l = infix.length;
 
  // Reverse infix
  infix = infix.split("").reverse().join("");
 
  // Replace ( with ) and vice versa
  var infixx = infix.split("");
  for (var i = 0; i < l; i++) {
    if (infixx[i] == "(") {
      infixx[i] = ")";
    } else if (infixx[i] == ")") {
      infixx[i] = "(";
    }
  }
  infix = infixx.join("");
 
  var prefix = infixToPostfix(infix);
 
  // Reverse postfix
  prefix = prefix.split("").reverse().join("");
  return prefix;
}
 
// Driver code
 
var s = "x+y*z/w+u";
console.log(infixToPrefix(s));


Output

++x/*yzwu

Complexity Analysis:

  • Time Complexity: O(n)
    • Stack operations like push() and pop() are performed in constant time. 
    • Since we scan all the characters in the expression once the complexity is linear in time
  • Auxiliary Space: O(n) because we are keeping a stack.


Previous Article
Next Article

Similar Reads

Program to convert Infix notation to Expression Tree
Given a string representing infix notation. The task is to convert it to an expression tree.Expression Tree is a binary tree where the operands are represented by leaf nodes and operators are represented by intermediate nodes. No node can have a single child. Construction of Expression tree The algorithm follows a combination of shunting yard along
12 min read
Infix to Prefix conversion using two stacks
Infix: An expression is called the Infix expression if the operator appears in between the operands in the expression. Simply of the form (operand1 operator operand2). Example : (A+B) * (C-D) Prefix: An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (operator operand1 ope
13 min read
Infix, Postfix and Prefix Expressions/Notations
Mathematical formulas often involve complex expressions that require a clear understanding of the order of operations. To represent these expressions, we use different notations, each with its own advantages and disadvantages. In this article, we will explore three common expression notations: infix, prefix, and postfix. Table of Content Infix Expr
6 min read
Prefix to Infix Conversion
Infix : An expression is called the Infix expression if the operator appears in between the operands in the expression. Simply of the form (operand1 operator operand2). Example : (A+B) * (C-D) Prefix : An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (operator operand1 o
6 min read
Convert Infix expression to Postfix expression
Write a program to convert an Infix expression to Postfix form. Infix expression: The expression of the form "a operator b" (a + b) i.e., when an operator is in-between every pair of operands.Postfix expression: The expression of the form "a b operator" (ab+) i.e., When every pair of operands is followed by an operator. Examples: Input: A + B * C +
11 min read
Postfix to Infix
Infix expression: The expression of the form a op b. When an operator is in-between every pair of operands. Postfix expression: The expression of the form a b op. When an operator is followed for every pair of operands. Postfix notation, also known as reverse Polish notation, is a syntax for mathematical expressions in which the mathematical operat
7 min read
Infix to Postfix Converter using JavaScript
Postfix expressions are easier for a compiler to understand and evaluate. So this is a converter that converts infix expression to postfix expression using JavaScript. Pre-requisites: Stack operationInfix to Postfix conversionBasic JavaScript Approach: Button Convert call function InfixtoPostfix() and this function converts the given infix expressi
4 min read
Maximum sum increasing subsequence from a prefix and a given element after prefix is must
Given an array of n positive integers, write a program to find the maximum sum of increasing subsequence from prefix till ith index and also including a given kth element which is after i, i.e., k > i. Examples : Input: arr[] = {1, 101, 2, 3, 100, 4, 5} i-th index = 4 (Element at 4th index is 100) K-th index = 6 (Element at 6th index is 5.) Outp
14 min read
Check if count of substrings in S with string S1 as prefix and S2 as suffix is equal to that with S2 as prefix and S1 as suffix
Given three strings S, S1, and S2, the task is to check if the number of substrings that start and end with S1 and S2 is equal to the number of substrings that start and end with S2 and S1 or not. If found to be true, then print "Yes". Otherwise, print "No". Examples: Input: S = "helloworldworldhelloworld", S1 = "hello", S2 = "world"Output: NoExpla
8 min read
Maximum prefix sum which is equal to suffix sum such that prefix and suffix do not overlap
Given an array arr[] of N Positive integers, the task is to find the largest prefix sum which is also the suffix sum and prefix and suffix do not overlap. Examples: Input: N = 5, arr = [1, 3, 2, 1, 4]Output: 4Explanation: consider prefix [1, 3] and suffix [4] which gives maximum prefix sum which is also suffix sum such that prefix and suffix do not
7 min read
Exponential notation of a decimal number
Given a positive decimal number, find the simple exponential notation (x = a·10^b) of the given number. Examples: Input : 100.0 Output : 1E2 Explanation: The exponential notation of 100.0 is 1E2. Input :19 Output :1.9E1 Explanation: The exponential notation of 16 is 1.6E1. Approach: The simplest way is to find the position of the first non zero dig
5 min read
Knuth's Up-Arrow Notation For Exponentiation
Knuth's up-arrow notation, also known as Knuth's arrow notation, is a mathematical notation for exponentiation that was introduced by Donald Knuth in his book "Concrete Mathematics". It uses a sequence of up-arrows (↑) to represent exponentiation with various bases and exponents. Approach: Exponentiation depends on the number of arrows used in the
4 min read
Print all words matching a pattern in CamelCase Notation Dictionary
Given a dictionary of words where each word follows CamelCase notation, The task is to print all words in the dictionary that match with a given pattern consisting of uppercase characters only. Note: CamelCase is the practice of writing compound words or phrases such that each word or abbreviation begins with a capital letter. Common examples inclu
15+ min read
Analysis of Algorithms | Big-Omega Ω Notation
In the analysis of algorithms, asymptotic notations are used to evaluate the performance of an algorithm, in its best cases and worst cases. This article will discuss Big-Omega Notation represented by a Greek letter (Ω). Table of Content What is Big-Omega Ω Notation?Definition of Big-Omega Ω Notation?How to Determine Big-Omega Ω Notation?Example of
9 min read
Top 30 Big-O Notation Interview Questions & Answers
Big O notation plays a role, in computer science and software engineering as it helps us analyze the efficiency and performance of algorithms. Whether you're someone preparing for an interview or an employer evaluating a candidates knowledge having an understanding of Big O notation is vital. In this article, we'll explore the 30 interview question
10 min read
Analysis of Algorithms | Θ (Theta) Notation
In the analysis of algorithms, asymptotic notations are used to evaluate the performance of an algorithm by providing an exact order of growth. This article will discuss Big - Theta notations represented by a Greek letter (Θ). Definition: Let g and f be the function from the set of natural numbers to itself. The function f is said to be Θ(g), if th
6 min read
Longest prefix that contains same number of X and Y in an array
Content has been removed on Author's request.
1 min read
Longest palindromic string formed by concatenation of prefix and suffix of a string
Given string str, the task is to find the longest palindromic substring formed by the concatenation of the prefix and suffix of the given string str. Examples: Input: str = "rombobinnimor" Output: rominnimor Explanation: The concatenation of string "rombob"(prefix) and "mor"(suffix) is "rombobmor" which is a palindromic string. The concatenation of
11 min read
Maximum array sum with prefix and suffix multiplications with -1 allowed
Given N elements (both positive and negative). Find the maximum sum, provided that the first operation is to take some prefix of the sequence and multiply all numbers in this prefix by -1. The second operation is to take some suffix and multiply all numbers in it by -1. The chosen prefix and suffix may intersect. What is the maximum total sum of th
8 min read
Prefix sum array in Python using accumulate function
We are given an array, find prefix sums of given array. Examples: Input : arr = [1, 2, 3] Output : sum = [1, 3, 6] Input : arr = [4, 6, 12] Output : sum = [4, 10, 22] A prefix sum is a sequence of partial sums of a given sequence. For example, the cumulative sums of the sequence {a, b, c, ...} are a, a+b, a+b+c and so on. We can solve this problem
1 min read
Longest Common Prefix using Linked List
Given a set of strings, find the longest common prefix. Examples: Input : {“geeksforgeeks”, “geeks”, “geek”, “geezer”} Output : "gee" Input : {"apple", "ape", "april"} Output : "ap" Previous Approaches: Word by Word Matching, Character by Character Matching, Divide and Conquer, Binary Search, Using Trie Data Structure Below is an algorithm to solve
14 min read
Maximum subarray sum in O(n) using prefix sum
Given an Array of Positive and Negative Integers, find out the Maximum Subarray Sum in that Array. Examples: Input1 : arr = {-2, -3, 4, -1, -2, 1, 5, -3} Output1 : 7 Input2 : arr = {4, -8, 9, -4, 1, -8, -1, 6} Output2 : 9 Kadane's Algorithm solves this problem using Dynamic Programming approach in linear time. Here is another approach using Dynamic
8 min read
String from prefix and suffix of given two strings
Given two strings a and b, form a new string of length l, from these strings by combining the prefix of string a and suffix of string b. Examples : Input : string a = remuneration string b = acquiesce length of pre/suffix(l) = 5 Output :remuniesce Input : adulation obstreperous 6 Output :adulatperous Approach : Get first l letters from string a, an
4 min read
Counting common prefix/suffix strings in two lists
Given two Lists of strings s1 and s2, you have to count the number of strings in s2 which is either a suffix or prefix of at least one string of s1. Examples: Input: s1 = ["cat", "catanddog", "lion"], s2 = ["cat", "dog", "rat"]Output: 2Explanation: String "cat" of s2 is a prefix of "catanddog"string "dog" of s2 is suffix of "catanddog" Input: s1 =
4 min read
Postfix to Prefix Conversion
Postfix: An expression is called the postfix expression if the operator appears in the expression after the operands. Simply of the form (operand1 operand2 operator). Example : AB+CD-* (Infix : (A+B) * (C-D) ) Prefix : An expression is called the prefix expression if the operator appears in the expression before the operands. Simply of the form (op
7 min read
Number of prefix sum prime in given range query
Given an array of non-negative integers and range query l, r, find number of prefix sum which are prime numbers in that given range. Prerequisite : Prefix Sum | Primality Test Examples : Input : {2, 3, 4, 7, 9, 10}, l = 1, r = 5; Output : 3 Explanation : prefixSum[0] = arr[l] = 3 prefixSum[1] = prefixSum[0] + arr[2] = 7, prefixSum[2] = prefixSum[1]
9 min read
Divisibility by 3 where each digit is the sum of all prefix digits modulo 10
Given K, number of digits, and d0 and d1 as the two digits to form the k-sized integer. Task is to check whether the k-sized number formed using d0 and d1 is divisible by 3 or not. For each i, di is the sum of all preceding (more significant) digits, modulo 10 — more formally, the following formula must hold : [Tex]\huge{d_{i} = \sum_{j = 0}^{i - 1
11 min read
Minimum number of prefix reversals to sort permutation of first N numbers
Given N numbers that have a permutation of first N numbers. In a single operation, any prefix can be reversed. The task is to find the minimum number of such operations such that the numbers in the array are in increasing order. Examples: Input : a[] = {3, 1, 2} Output : 2 Step1: Reverse the complete array a, a[] = {2, 1, 3} Step2: Reverse the pref
10 min read
Longest Common Prefix Matching | Set-6
Given a set of strings, find the longest common prefix. Examples: Input: str[] = {geeksforgeeks, geeks, geek, geezer} Output: gee Input: str[] = {apple, ape, april} Output: ap Previous Approaches: Set1 | Set2 | Set3 | Set4 | Set5 Approach: Sort the given set of N strings.Compare the first and last string in the sorted array of strings.The string wi
6 min read
First element greater than or equal to X in prefix sum of N numbers using Binary Lifting
Given an array of N integers and a number X. The task is to find the index of first element which is greater than or equal to X in prefix sums of N numbers. Examples: Input: arr[] = { 2, 5, 7, 1, 6, 9, 12, 4, 6 } and x = 8 Output: 2 prefix sum array formed is { 2, 7, 14, 15, 21, 30, 42, 46, 52}, hence 14 is the number whose index is 2 Input: arr[]
9 min read
Practice Tags :
three90RightbarBannerImg