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ABSTRACT 

One of the most challenging aspects in the successful 
application of SAR interferometry (INSAR) is 
unwrapping the interferometric phase. The difficulties 
arise in attempting to find global optimization 
procedures with the best possible cost criteria for data 
that are both noisy and incomplete. Recent progress in 
this problem includes introduction of network flow 
optimization, and the use of triangular irregular networks 
for sparse data. Interferograms differ greatly in the 
difficulty to unwrap depending on the interferogram 
fringe complexity and correlation. We examine the 
characteristics of these types and present phase 
unwrapping strategies for each of these.  

1 INTRODUCTION 
The absolute unwrapped interferometric phase 

derived is directly proportional to the difference in path 
lengths for the SAR image pair. Applications of 
interferometry relate the unwrapped phase to 
geophysical parameters such as elevation, and 
deformation due to ice motion, surface subsidence, 
earthquakes, volcanic inflation/deflation, and tectonic 
motion [1,2]. The complex-valued interferogram values 
however, are known only modulo 2π and must be 
unwrapped to obtain a quantitative interpretation. 

Phase unwrapping is the process of restoring the 
correct multiple of 2π to each point of the 
interferometric phase image. 

For a well-behaved smooth phase field all the 
unwrapped phase differences between adjacent 
interferogram samples lie between -π and  +π.  When 
this is true, phase unwrapping is straightforward. The 
unwrapped phase can be evaluated by a simple path-
independent integration of the phase differences of 
adjacent wrapped phases, starting from a reference 
location and using the assumption that all phase 
differences are in the interval (-π, π). 

In actual interferograms phase unwrapping is more 
complicated because of phase steps outside the interval 
(-π, π). Causes for local phase gradients larger than π 
are:   
1. Phase Noise: Temporal decorrelation, shadow and 

low SNR cause phase noise. For repeat-track 

interferometry temporal decorrelation is often the 
main cause. 

2. Phase Under-sampling: The phase is under-
sampled when the phase gradient exceeds half a 
fringe (phase cycle) per sample. In the presence of 
phase noise the under-sampling already occurs at 
lower gradients.  

3. Phase Discontinuities: In interferograms layover 
and discontinuous surface deformation (e.g. at 
sliding faults or at glacier rock interfaces) cause 
discontinuities in the interferometric phase. 

2 PHASE UNWRAPPING ALGORITHMS 
One group of unwrapping algorithms poses the 

problem in terms of a solution of a two-dimensional 
partial differential equation. Among these is the least-
squares algorithm [3]. Intrinsically these methods are not 
developed for discontinuous functions. Consequently 
large deviations in the unwrapped phase occur in the 
vicinity of true phase discontinuities relating to physical 
features such as layover. Another characteristic of these 
methods is that the output phase can differs by values 
different than an exact multiple of 2π. 

2.1 BRANCH CUT ALGORITHMS 
The principle of branch cut algorithms is to restrict 

the integration through the image to paths with local 
phase differences in the interval (-π, π). Summing the 
phase finite differences about short circular paths 
permits localization of discontinuities in the wrapped 
phase field. If the sum is non-zero, a so-called “residue” 
lies in the region. The residue value or “charge” can be 
positive (+1) or negative (-1) depending on the sign of 
the sum. Line segments (branches) are drawn between 
positive and negative residues in a systematic way to 
function as barriers during the path integration that 
cannot be crossed. This discharging of residues results in 
a consistent, path independent solution. The appearance 
of these cuts and the residues for a typical interferogram 
are shown in Figure 3. One can observe that most of the 
residues come in pairs that lie close together. This is due 
to phase noise that generates a pair of residues. The 
basic ideas of the branch-cut algorithms and a first 
implementation were presented by Goldstein [4]. 
Presently used implementations differ in the 
methodology used to determine the branch cuts.  



In our implementation the branches form tree-like 
networks that have zero net charge. The goal of the 
algorithm is to connect residues in such a way that 
minimizes the net length of branches. Construction of a 
new tree begins by finding an unvisited residue and 
connecting to its nearest residue neighbor, regardless of 
sign. A line (“branch cut”) is drawn connecting this 
residue to the neighbor. If the neighbor has not been 
visited previously, its charge is added to the net sum of 
charges for the current tree. If the tree is neutral, then the 
algorithm searches for a unvisited residue and constructs 
a new tree, otherwise, the regions around all the current 
tree residues are search for new tree members. After a 
residue has been incorporated in a tree it is marked as 
visited such that its charge is not counted multiple times. 
The tree-building terminates when all residues in the 
interferogram have been visited.  

Refinements of this algorithm have include 
modification of the search strategy in areas of low 
correlation, and the use of distance weighting of the data 
to optimize the tree structure. In the original 
implementation, many unnecessary cuts may be drawn 
that completely wall of areas. Our implementation 
incorporates exiting trees into the current tree directly 
thereby reducing redundant branches.  

In many cases our implementation of the branch-cut 
algorithm provides a robust and efficient unwrapping 
solution that works well for images with high correlation. 
Under certain conditions multi-looking of the 
interferogram or filtering can facilitate the unwrapping. 
Especially, when limiting the unwrapping to areas of 
higher coherence, respectively lower phase noise, the 
branch-cut solution is rather conservative, with few 
unwrapping errors. 

The spatially incomplete solution is a significant 
limitation of the branch-cut solution. In the case of 
longer-time differential interferograms higher coherence 
is often restricted to relatively small, spatially 
disconnected urban areas. In such a case the operator 
supported bridging of the unwrapped phase can be 
tedious and uncertain. And, from the conceptual point of 
view, it is a disadvantage that the optimization is done on 
a local rather than on a global basis. 

The demand for global optimization and automated 
and optimized unwrapping of disconnected areas of high 
coherence and the available advanced methodology in 
network flow optimization lead to the development of 
the minimum cost flow and triangulation network based 
phase unwrapping solution presented below. 

2.2 MINIMUM COST FLOW AND 
TRIANGULATION 

The minimum cost flow problem defines a network 
consisting of nodes and directed arcs that connect the 
nodes. Associated with each of the arcs are a flow, a cost 
per unit flow, and an arc capacity. Flow moves from 
source nodes to sink nodes through the network arcs. 
Nodes that are neither sources nor sinks are trans-

shipment nodes. The MCF problem solution gives the 
optimum flow in each of the arcs that minimize the total 
cost. The total cost is defined as the sum of costs for all 
the arc flows. In the MCF paradigm, flows are integer 
quantities. This problem has been extensively studied 
and efficient algorithms have been found and presented 
in the literature (e.g. Ahuja [7]). The application of 
minimum cost flow (MCF) techniques to phase 
unwrapping and thereby achieve a global optimization 
was first presented by Costantini [6].  

In our formulation of the phase unwrapping problem 
in the network flow form, a node is associated with each 
of the local closed paths used to evaluate the residues. 
Source nodes are associated with the positive residues 
and sink nodes with the negative residues. Integer values 
of arc flow are equivalent to additional multiples of 2π to 
add to the gradient derived from the wrapped phase. 
Two arcs are necessary between every pair of adjacent 
nodes because flow is defined only to be positive flow in 
the MCF problem formulation. The pixels lie between 
the network arcs and nodes. When calculating the 
unwrapped phase by summing along the path, the 
gradient is adjusted if there is flow in the arc crossing the 
path of integration.  

The cost per unit flow assigned to each arc is a 
critical parameter in the optimization process. Generally, 
it should be expensive to cause a phase jump in an area 
of low phase noise, and inexpensive in noisy regions 
where it is known that the phase should jump by several 
multiples of 2π. In our implementation the cost is 
proportional to a function of the coherence.  

Another important element for improving the 
unwrapping has been to generalize the network topology 
to be a triangulation network as was previously proposed 
by [8]. In our implementation a Delaunay triangulation is 
used [9]. Using the triangulation has several distinct 
advantages. Only those points that have reliable enough 
phase values are considered in the unwrapping. Areas of 
too high phase noise are not considered. 

As was the intention, the combination of 
triangulation with the MCF algorithm permits robust 
phase unwrapping in many cases of isolated areas of 
high coherence. This is particularly advantageous in the 
case of long interval differential interferograms. An 
example of this is shown in Figure 4 where the 
discontinuous regions were correctly unwrapped without 
operator interaction. Another advantage of the triangular 
network is the two times higher density of the network 
which permits better localization of phase discontinuities 
leading to more precise unwrapping. The MCF solution 
is rather memory intensive. A special method was 
implemented to still permit unwrapping of very large 
interferograms. Figure 5 shows the use of adaptive 
thinning the input interferogram to reduce the total 
number of nodes. Regions of lower correlation and steep 
slopes have a denser triangle density compared with flat 
high correlation areas. Patching is another approach to 



overcome the problem, but the optimization area is 
reduced to the patch size. 

3 CONCLUSIONS 
In this paper we have reviewed several practical 

approaches to phase unwrapping that take into the 
account the characteristics of SAR interferograms 
including regions with very high noise and phase 
discontinuities. The introduction of the MCF and 
triangulation paradigms significantly improves the 
robustness and applicability of SAR interferometry to 
geophysical research. The commercial availability of 
these algorithms is leading to wide spread application in 
the user community.  
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Figure 3a: Interferogram showing interferometric phase 
intensity weighted by the interferometric correlation. Areas 
of layover have low correlation and significant phase 
discontinuities. Phase display is 2π per color cycle. 

Figure 3b: Unwrapped interferometric phase showing 
residues (+: red, -: blue) and branch cuts (black). Note that 
most residues come in +/- pairs. Chains of residues occur 
along regions of lay-over. Phase display is 10π per color 
cycle. 

 
 
 
 
 



   
Figure 4a: Correlation map for an 
urban differential interferogram after 
filtering. Correlation displayed from 
0.0 to 1.0 as linear intensity.  

Figure 4b: Interferometric phase after 
adaptive filtering. Phase displayed as 
2π per color cycle. 

Figure 4c: Unwrapped interferometric 
phase using triangulation to connect 
regions. Phase displayed as 10π per 
color cycle. 

 
 

   
Figure 5a: Correlation over Las Vegas 
ERS Tandem data, 5 looks, 20 meter 
azimuth spacing. Correlation displayed 
from 0.0 to 1.0 as intensity. 

Figure 5b: Sampled unwrapped phase 
showing adaptively thinned unwrapped 
phase mesh. Phase displayed as 20π 
per color cycle. 

Figure 5c: Full unwrapped phase 
using sampled unwrapped data as 
model for the full interferogram. Phase 
displayed as 20π per color cycle. 

 
 
 


