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technological change and its effects on productivity. Rates of embodied technological
change are necessary to properly measure the productive stock of capital. Results from
the hedonic pricing literature have been used for this purpose, though not without
controversy.

In this dissertation, | first develop an alternative, production-side approach to
estimating embodied technological change. The method exploits the large variation in
plant-level investment histories available in the Longitudinal Research Database at the
U.S. Census Bureau. The empirical results show that the rate of embodied
technological change (or, equivalently, obsolescence) in U.S. manufacturing from
1972-96 is between 7 and 17 percent. Any number in thisrange is substantialy larger
than price-based estimates.

A method of measuring embodied technological change via data on research



and development (R&D) is also developed. | propose an index that captures the
amount of R&D embodied in an industry’s capital. Combining (and adjusting) data
from the National Science Foundation and the Commerce Department, | construct a
weighted average of the R&D done on the equipment capital that an industry purchases
for 62 industries that span the U.S. private economy.

| find that the mean level of embodied R&D over 1972-96 is positively and
significantly correlated with the estimates of embodied technologica change that |
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investment is analyzed.
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Chapter 1

Introduction

The hypothesis that much of technological progress is embodied in new capital
goods, and therefore investment in new capital is necessary to foster productivity
growth, isan old one -- tracing its roots at least as far back as Smith’s Wealth of
Nations, which attributed its source to the division of labor: “The invention of all those
machines by which labour is so much facilitated and abridged, seems to have been
originally owing to the division of labour” (Smith, 1776, p.9).> The basic hypothesis
was refined and extended over time by Karl Marx, Joseph Schumpeter, and Robert
Solow, among others.? Y et, obtaining independent measures of the rate(s) at which
embodied (or “investment-specific”) technological change has progressed has long
eluded us. Absent knowledge of thisrate, it isimpossible to correctly measure the
productive capacity of the economy’s capital stock. The concept of the productive
capacity of capital, or simply productive capital for short, is the theoretically correct
(in terms of Neoclassical production theory) concept of capital to be used in production
and productivity analyses. The productive capital stock, combined with information on

the degree to which capital is being utilized, tells us the flow of capital services used in

! See Scherer (1999), Chapters 2-4, for a discussion of the history of economic thought
relating to technological change (particularly that which is embodied in machinery) and
long-run productivity growth.

2 In The Communist Manifesto, Marx argued that technological advances in machinery
are adistinguishing feature of the “bourgeois’ or capitalist system: “The bourgeoisie
cannot exist without constantly revolutionizing the instruments of production, and
thereby the relations of production, and with them the whole relations of society”
(Marx and Engels, 1848).



the production process. The flow of capital servicesto production is one of the main
determinants of labor productivity. Thus, understanding and predicting labor
productivity relies on good measures of productive capital (aswell as utilization rates).

Y et surprisingly little research has focused on the measurement of capital.®
Perhaps this inattention is due to alow priority that the economics profession hasin the
past assigned to issues of data measurement in general. As Griliches (1994) argues, “It
is the preparation skill of the econometric chef that catches the professional eye, not the
quality of the raw materials in the meal, or the effort that went into procuring them.”
The situation does appear to be changing, however, at least asit pertains to capital
measurement. Thanks in part to the rapid advances in equipment technology which
have exacerbated and exposed the shortcomings of the current ways of measuring
capital, researchersinterested in productivity analysis and forecasting can no longer
ignore these shortcomings in their empirical work. This recognition has created a
strong and somewhat urgent need for a quantitative idea of the contribution these
technological advances in equipment have had on productive capital and productivity
(and more importantly, on their growth rates).

Everything presented in this dissertation was done with an eye towards
satisfying thisneed. In Chapter 2, | develop a production-side approach to estimating
equipment-embodied technological change as an alternative to the controversial price-
side approach. The method exploits the large variation in plant-level investment
histories available in the Longitudinal Research Database at the U.S. Census Bureau.

The empirical results show that the rate of embodied technological change (or,

% Unless otherwise indicated, capital will hereafter refer to productive capital.
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equivalently, obsolescence) in the average U.S. manufacturing plant from 1972-96 is
between 7 and 17 percent (depending upon the assumed specification). Any number in
this range is substantially larger than price-based estimates, which has two important
implications. First, the contribution of embodied technological change to economic
growth isfar greater than previoudly thought. Second, these estimates suggest that
official investment price deflators do not adequately adjust for quality change.

A method of measuring embodied technological change via data on research
and development (R&D) is developed in Chapter 3. | propose an index that attempts to
capture the amount of R&D embodied in an industry’s capital. Combining (and
adjusting) data from the National Science Foundation and the Commerce Department, |
construct a weighted average of the R& D done on the equipment capital that an
industry purchases for 62 industries that span the U.S. private economy. | show that
over three-quarters of the growth in embodied R&D over this period can be attributed
to increased R& D done on equipment assets, with changes in asset mix explaining most
of the remainder. | also find that the mean level of embodied R& D over 1972-96 is
positively and significantly correlated with industry-level estimates of embodied
technological change found using the plant-level manufacturing data. Furthermore,
embodied R&D has a positive and significant effect on conventionally-measured total
factor productivity growth (as we would expect if conventionally-measured capital
stocks do not account for embodied technology). | use the estimated relationship
between embodied R& D and estimates of embodied technological change to impute

rates of embodied technological change for non-manufacturing industries.



In Chapter 4, | use the industry-level measures of embodied technological
change to construct quality-adjusted measures of (productive) equipment capital stocks.
I then use these equipment capital stocks to estimate labor productivity equations which
are then incorporated into IDLIFT, afull structural input-output forecasting model
developed and maintained by INFORUM.* A primary motivation for this dissertation
was to provide labor productivity equations for IDLIFT that (1) follow Neoclassical
production theory, (2) fit the industry-level time series data well, and (3) have sensible
coefficients. Attemptsto do thisin the past have been unsuccessful, perhaps due to the
mismeasurement of capital introduced by not accounting for embodied technological
change. It is shown that accounting for embodied technological change does in fact
result in labor productivity equations that fit the data as well or better than either
similar equations using non-quality-adjusted capital stocks or the former, non-
Neoclassically-based, productivity equations.

In Chapter 5, the estimated coefficients from the new labor productivity
equations are then programmed into the IDLIFT model (in C++) and the model is run
(now using these coefficients to determine the labor necessary to produce the model’s
forecasted level of output). Forecasts are generated and show that the new version of
the model exhibits behavior in response to investment shocks that is more in line with
neoclassical theory.

Chapter 6 concludes and suggests areas where further research is needed.

* INFORUM stands for Interindustry Forecasting at the University of Maryland. Itisa
non-profit research center founded by Clopper Almon in 1967 which provides industry-
level and macroeconomic forecasting and policy analysis. Douglas Meade has been
largely responsible for the development of IDLIFT.

4



Chapter 2

The Production-Side Approach to Estimating Embodied Technological Change

Note: This Chapter isa modified version of Sakellaris and Wilson (2000)

1. Introduction

Asnoted in Chapter 1, the ultimate goal of this dissertation isto aid in the
understanding and predicting of labor productivity by properly accounting for
embodied technological change in our measures of capital. This chapter contributes to
this goal by providing (1) an estimation framework with which to estimate embodied
technological change and (2) a measure of how much of unexplained labor productivity
growth (in manufacturing) is due to embodied technological change. By “unexplained
labor productivity growth” here, | mean the part of labor productivity growth that
cannot be explained by changes in the measured capital-labor ratio -- in other words,
conventionally-measured total factor productivity (TFP) growth. So by providing a
decomposition of TFP growth into embodied and disembodied technological change, |
am able to provide a sense of the magnitude of the measurement error in labor
productivity growth that is due to capital mismeasurement. In this chapter and the next,
I make extensive use of the concept of TFP as a “measure of our ignorance”
(Abramovitz, 1956) and therefore focus on accounting for some of TFP growth by
mismeasurement of capital. | will return to explaining labor productivity per sein
Chapter 4.

The seminal papers by Johansen (1959) and Solow (1960) argued that more

recent vintages of capital may embody technological advances that make them “ better”
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than older vintages. “Better”, or equivalently “of higher quality”, means displaying
higher productivity after adjusting for wear and tear. An important implication of this
ideaisthat investment is essential in reaping benefits from some part of technological
progress. Recently, there has been significant research on the role of embodied
technological change as a source of economic growth and fluctuations. Hulten (1992)
shows that the failure to adjust capital for quality change has the effect of suppressing
the quality effects into the conventional total-factor-productivity residual. He also
finds that about 20 percent of the residual growth in quality-adjusted output of U.S.
manufacturing is due to embodied technological change. Greenwood, Hercowitz, and
Krusell (1997) find that embodied technological change accounts for close to 60
percent of the growth of output per hours worked in the U.S. economy.®

Both of these studies use Gordon's (1990) price index for producer durable
equipment (PDE) and identify the embodied technological growth with the rate of
decline of thisindex relative to a base index that is assumed not to contain any quality
adjustment. This puts the rate of embodied technological change at about 3 percent for
the years 1954 to 1990. Through a combination of techniques, including hedonics and
matched models, Gordon created new price indexes for many types of durable goods as
an alternative to the official price indexes reported in the Producer Price Indexes (PPI)

and Consumer Price Indexes (CPI). However, as Gordon (1996) points out, the

! It should be noted that Greenwood, €l al. (1997) make a distinction between
“embodied” and “investment-specific” technological change by defining the latter as
either quality improvements in capital or decreases in the cost of producing capital,
whereas they define embodied technological change as only quality improvements. We
make no such distinction in this chapter and use these terms interchangeably. Our
estimates of embodied technologica change should reflect the combined effect of these
two phenomena.



difference in the growth rates of hisimplied PDE index and the typical base index
(usually either the PCE deflator or the NIPA PDE deflator) is not due to quality change
alone. Some of the difference results from Gordon's corrections for traditional
substitution bias present in the official indexes.

Furthermore, not al kinds of quality change are captured by the Gordon index.
First of all, Gordon was only able to create new price indexes for durable goods for
which sufficient data on model characteristics and prices was available. The Sears
catalog was the primary source of thisdata. For alarge number of goods, there simply
was no data with which to improve upon the officia price measurement.

Secondly, and more fundamentally, hedonic and matched models are smply
inappropriate for alarge number of goods. Consider the identifying assumptions of
these models. A hedonic model identifies a set of characteristics that define a product,
then prices a unit of each of those characteristics, and finally measures the price change
associated with a bundle of characteristics holding constant the number of units. For
example, it defines a computer as consisting of RAM, processor speed, hard disk space,
size, and weight. It then estimates the prices of a megabyte of memory, a megahertz of
processor speed, a megabyte of hard disk space, one less cubic inch, and one less
pound. Finaly, it comparesthe price of al GB RAM, 1.5 Ghz CPU, 50 GB hard disk,
1200 in®, 10 Ib. “bundl€”’ in 2001 with how much this bundle would have cost in 2000
had such a bundle been on the market. With a matched model, one would find a
computer in 2001 that has exactly the same bundle of characteristics as a computer that

was on the market in 2000, then calculate their price difference.



Christensen (1997) distinguishes between two types of technological change. A
sustaining technological change is one which continues to push out the technological
frontier along an established performance trajectory. A disruptive change, on the other
hand, redefines the characteristics by which a product’ s performance is judged.
Hedonic and matched models work well for goods, such as computers, that have a
clear, definable, set of characteristics which exhibit a sustained trgjectory of
improvement over time. Goods characterized by disruptive technological change,
however, have arapidly changing characteristics set making comparisons aong the
dimensions of a single performance trajectory meaningless. For an economy consisting
of alarge number of these goods, comparing the productivity (a single “characteristic”
by which all capital goods can be compared) of one year’s goods to an earlier year's
goods seems a far better solution.

In this chapter we propose an estimation framework that arrives at estimates of
the rate of growth of embodied technological change directly from observed
production, input and investment decisions at the plant level. If there are vintage
effects (embodiment) then plants with relatively newer equipment should be more
productive (controlling for materials, labor input and utilization of capital and labor).
These effects may be estimated in a production function framework where the capital
stock of equipment is not constructed using the perpetual inventory method. Instead,
we include in the estimating equation the whole history of investment in equipment (all
the vintages) deflated by a deflator that does not correct for any quality change.

The result that we obtain isthat each vintage is about 12 percent more

productive than the previous year's vintage (in the preferred specification and



controlling for other productive inputs). This number is astounding compared to the
commonly accepted 3 percent based on Gordon’s (1990) series.® This has several
important implications. First, the role of investment-specific technological change as
an engine of growth is even larger than previously estimated. Second, existing
producer durable price indices substantially mismeasure quality change, yielding biased
measures of capital stock growth. Lastly, assuming Hulten and Wykoff’'s (1981)
estimates of economic depreciation, which have since been adopted by the U.S. Bureau
of Economic Analysis (BEA), are correct, our estimates suggest that obsolescence is
the most important factor in the decline of a capital asset’s value over time.

We evaluate the impact of embodied technological change on US
manufacturing gross output growth between 1972 and 1996. We estimate that the
effective capital stock of equipment grew about three times faster than commonly
estimated and that the contribution of embodied technological change to US

manufacturing total factor productivity growth was about two thirds.

2. A Two-Sector Model of | nvestment-Specific Technological

Change’

2 A notable exception is Bahk and Gort (1993) who also estimate a high rate of
embodied technological growth.

% The exposition in this section follows Hornstein and Krusell (1996), Greenwood et al.
(1997), and Hercowitz (1998). For clarity, we do not make a distinction here between
structures and equipment investment, though in the empirical work this distinction will

be crucial.



In order to formalize the concept of capital-embodied technological change we
consider atwo-sector model where one sector produces investment goods ( |~ ) and the

other produces consumption goods (¢). Each good is produced using capital (k) and

labor (I) as inputs according to the following production functions:

I = thtE?,tIJi:: (2
1)

c, =zk" I @
2)

where z isthe level of technology common to both sectors whereas q is technological
level specific to the investment sector®. A “~” denotes that the variable is defined in
terms of efficiency units. For smplicity, e, the elasticity of output with respect to
capital is assumed to be the same in both sectors.” Assume that all factors of
production are perfectly mobile across sectors and that perfect competition holdsin all

markets. Then, as aresult of factor price equalization, the price of investment goods

relative to consumption goodsiis: F’ti / Pf =1/ qt. Thus, one may compute the

* Greenwood et al. (1997) discuss conditions under which the economy exhibits
balanced growth with or without exogenous technological change.

® Hornstein and Krusell (1996) show the implications of allowing « to differ by sector.
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rate of growth of investment-specific (capital-embodied) technological change from the
rate of decline in the relative price of investment goods.

Figure 2-1 graphs the Personal Consumption Expenditures (PCE) deflator from
the National Income and Product Accounts (NI1PA) and an average equipment-
investment price index for manufacturing. The latter is an average, over our plant-level
sample, of the 3-digit industry equipment-investment deflators constructed by the
Federal Reserve Board (FRB) using industry investment-by-asset type data from the
BEA and Producer Price Indexes (PPI) for asset types'. Oddly enough, these two
indexes grow about the same rate between 1972 and 1996". Does this mean that there
was no embodied technological change during this period? Aswe detall in the next
section, severa authors provided a negative answer arguing that the official price
indexes for PDE grow too fast as aresult of mismeasurement. They use, instead,
equipment-investment price indexes constructed by Gordon (1990) to reflect quality
change. However, the comparison of the above two price indexes is not the only way
to ascertain the importance of embodiment. We provide below and in section (4) an

alternative approach relying on data on produced output and utilized inputs .

® The FRB industry-level deflators are matched to the plant-year records in our sample
according to the 3-digit industry to which a plant belonged in that year. For each year
between 1972 and 1996 (the investment years covered by our sample), we take the
within-year, cross-sectional mean of the equipment-investment price deflators. Thus,
for any particular year, this mean can be thought of as a weighted average of the FRB’s
3-digit deflators where the weights are the fraction of our sample in each 3-digit
industry. An unweighted average is nearly identical.

"However, the behavior is distinctly different in two subperiods. Between 1972 and
1981 equipment-investment prices rose 2.25 percent per year compared to consumption
goods whereas from 1982 to 1996 they fell 1.67 percent per year.

11



Since the production function is homogeneous of degree one and the capital-
labor ratio is equal across sectors one can write total output in terms of consumption

goods as.

it — —_ 1, afl-a
_+Ct =Y, _Ztktlt (2-
q,

3)
Note that capital input, R, in the above expression is defined in efficiency units (i.e. in

terms of investment goods):

(2-

4)
where § is the geometric rate of physical depreciation'?. The above expression for total
output demonstrates that this two-sector economy is equivalent to a one-sector
economy where (disembodied) technological change is captured by z, and output saved
as capital is enhanced (in terms of efficiency) by capital-embodied technological
change, g.. The society can only take advantage of this latter form of technological

change by forgoing consumption and investing in capital.

8 This concept comes in many other names, for example, physical decay, or
depreciation from use. It is not equivalent to economic depreciation.

13



To see this more clearly, define investment in terms of consumption goods:

it — it /C]t Then, the capital transition equation may be written as:

~

k.= (1-3)k_, +igq, @

t

5)
Once again, in order to construct the capital stock correctly one needs to adjust each
vintage of investment for quality change that is due to investment-specific
technological change. Equations (2-3) and (2-5) provide an aternative way of
estimating embodied technological change, g,, without the use of a price index for
equipment investment. One may estimate the q series econometrically with plant level
data, say, on output and current and past investment measured in terms of consumption
in addition to data on labor input.

Equations (2-3) and (2-4) may be written equivalently as:

—_— aj,ajla
yt - tht kt It (2-

6)

K =[(1-8)/(1+y)] &, +i e

7)
To seethis, let g/q.,=1+y, and k, = K,/q,. The system of (2-6) and (2-7) provides an
alternative way of constructing the capital stock and decomposing growth in output.

Investment flows are unadjusted for quality improvement but depreciation gets
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augmented by aterm, 1/(1+y,), that reflects obsolescence due to investment-specific
technological change™. Note, however, that the residual in this decomposition known
astotal factor productivity (TFP) cannot be attributed to investment-neutral
technological change, z, aone.

To drive home the point that there are many different but equivalent ways of
measuring aggregate output and capital, and accounting for growth we present now yet
another aternative to equations (2-3) and (2-4). Suppose that we measured aggregate
output, Y, by summing investment goods production expressed in efficiency units and
consumption goods production in consumption units. Indeed, thisis the approach the
NIPA attemptsto follow. The national income accounting identity would then be

written as.
I+Ct :Yt :[(1_“"[) +utqt] Btizfli_a (2-
8)

where[l, = th / kt is the fraction of aggregate capital stock, measured in

efficiency units, devoted to investment goods production. Equivalently, p,, may be
measured as the ratio of the output of the investment sector, |~ , to total output, y, both

measured in terms of consumption,

® See Solow (1960) for extensive discussion of the implications of this result.
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K = T (2-

9)
The TFP that one obtains after applying the growth accounting decomposition with
these measures of aggregate output (equation (2-8)) and capital stock (equation (2-4)) is
aweighted average of the TFP in each of the two sectors where the weight is given by
Mi

3. Related Literature

One could classify the set of related papers into two camps. Most of the recent
contributions use Gordon's (1990) quality-adjusted price indices for PDE in order to
identify embodied technological change and then answer important questions related to
economic growth or fluctuationsin the U.S. The second camp contains older
contributions that estimated embodied technological change using data on production
and capital stock age using an approach due to Nelson (1964). We review these two

camps briefly here and point out the main differences of our approach.

A. Price-Based Estimates of Embodied Technological Change

Gordon (1990) isamajor study aimed at correcting mismeasurement in
equipment price indices due to quality change. He provides quality-adjusted price
indices for 22 types of equipment and their components. Hulten (1992) was the first to

use these series in order to identify embodied technological change. He constructed a
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share-weighted average of Gordon’s indices as well as one for the corresponding price
indices published by BLS. Taking the ratio of the two, he calculated the average
annual growth rate of embodied technological change to be 3.44 percent for U.S.
manufacturing during 1949-1983. Asaresult, he attributed about 20 percent of the
residual growth of quality-adjusted manufacturing gross output to embodied
technological change.

Various papers followed Hulten (1992) in using Gordon's data but differed in
the methodology employed. Greenwood et al. (1997) argued that the baseline index
for comparison should be the implicit price deflator for non-durable consumption
goods. This had very little affect on their estimate of embodied technological change.
Three other differences in methodology, however, were important. Greenwood et al.
(1997) advocated that output not be adjusted for quality change, that value added data
be used in place of gross output and that a general equilibrium approach be used that
accounts for input growth due to embodied technological change. They found that
embodied technological change contributed about 58 percent of all output growth in the
U.S. between 1954 and 1990™.

Hornstein and Krusell (1996) and Greenwood and Y orukoglu (1997), among
others, note that the Gordon index pointsto alarge increase in the rate of embodied
technological change after 1973%. They argue that this increased technological change
and the adjustment processes necessitated by it are largely responsible for the post-

1973 measured slowdown in productivity growth.

19 Disembodied change provided the rest. The authors use the terminology investment-
specific versus neutral technological change.

" Thisincrease is about 25 percent. See, e.g., Hornstein and Krusell (1996) p. 231.
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Greenwood et al. (2000) use Gordon's data to investigate the importance of
embodied technological change for postwar U.S. aggregate fluctuations. They
document a negative comovement between relative price of equipment and equipment
investment. Their analysis suggests that about 30 percent of output fluctuations are due
to shocksin this relative price.'

The practice of using Gordon’s (1990) quality-adjusted price indices for PDE in
order to identify embodied technological change is not uncontroversial. Gordon (1996)
takes issue with it. He clamsthat differences between his indices and the official ones
are not entirely due to quality change. He offers as an example the traditional
substitution bias introduced by a change in the relative prices of goods. Furthermore,
he continues, quality adjustment may arise for reasons unrelated to embodied
technological change. For example, an energy price increase may lead consumersto
shift from inexpensive and energy-inefficient air conditioners to expensive and energy-
efficient ones. The latter are also more costly to produce at any given level of
technology in the equipment-producing sector (denoted gz, in our two-sector model)
and do not necessarily represent an increase in technology’. Given these problems, it
seems fruitful to examine aternative methods of estimating embodied technological

change.

12 There are several related papers. See Greenwood et a. (2000) pp. 110-2 for a partial
review.

3 Gort and Wall (1998) argue that estimates of embodied technological change based
on Gordon (1990) may be substantially biased towards zero (pp. 1658-9). They aso
point out another problem with the group of studies applying this methodology. While
they adjust investment flows for quality change, they implicitly assume that economic
depreciation rates, derived from Hulten and Wykoff (1981) and incorporated in the
NIPA, measure only physical decay. Thisis unlikely to be true as these measures also
incorporate obsolescence, in principle.
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B. Production-Based Estimates of Embodied Technological Change

Nelson (1964) developed a variant of Solow’s (1960) embodiment model that
illustrated the relationship between the rate of embodied technological change and the
average age of capital. He showed that, to an approximation, the log of efficiency-
adjusted capital (K) is proportional to atime trend plus the difference of ya and the log
of unadjusted capital (k), where g is the average age of the unadjusted capital stock.
Thus, a standard production function estimation (in logs) provides an estimate of
embodied technological change by dividing the coefficient on average age by the
coefficient on capital stock. Bahk and Gort (1993) study a sample of young
manufacturing plants and find that a 1-year drop in average age is associated with
between a 2.5 and a 3.5 percent rise in the plant’s gross output (See their Table 1 and p.
571). Assuming a one-sixth share weight for capital in the production function of gross
output, these results correspond to a 15-21 percent annual rate of growth of embodied
technological change. Thisisfive to seven times higher than the price-based estimates
discussed above.

However, Bahk and Gort (1993) make the dubious assumption that maintenance
outlays offset the effect of physical decay on the capital stock. Their capital stock
construct is the sum of gross investments of all vintages without any adjustment for

physical depreciation’®. Their estimates are best regarded as describing the joint impact

14 While they admit that “this assumption is only at best an approximation of reality”
(p.566) they do not provide concrete supporting evidence for it.
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of physical depreciation and embodiment. Our view isthat physical decay occurs at a
rate higher than zero.

For the sake of comparison, we also estimate the rate of embodied technological
change using the average vintage specification. However, as discussed in Section 6
below, the Nelson approach relies on an approximation which is unreasonable for our
data. Our framework is more general than Nelson's (1964) and is described in the next

section®®,

4. Our Methodology

The elusive holy grail of the embodiment literature has been independent
estimates of embodied technological change. Our approach isto estimate that from
production data. It involves exploiting the cross-sectional and time-series variation in
plant-level historical investment distributions in order to estimate the relative levels of
technology embodied in particular vintages of investment.

A simple example will help illustrate the basic concept. Consider two plants, A
and B, both born in 1980 and observed continuously until 1989 (inclusive). Plant A
expended 55% of its lifetime (up to 1989) investment in 1980 and 5% in each year
thereafter. In contrast, plant B invested 55% in 1989 and 5% in each prior year. The
plants are otherwise identical. One can exploit the variation in these two plants
vintage distributions in investment (net of physical decay) to estimate embodied

technological change by comparing their output in 1989. Doms and Dunne (1998)

> A smilar approach has been used before in a different but related context. Mark
Doms (1996) applied the approach to a sample of “mini-mill” steel plantsin order to
estimate the physical depreciation schedule.
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provide empirical evidence of this kind of variation in investment. They find that over
a 17-year period, 50% of the average plant’s investment is concentrated in 3 years (not
necessarily consecutive). Furthermore, lumpy investment activity is not perfectly
synchronized across plants.

We now formalize the production approach. Consider a Cobb-Douglas function

for the production of plant output:

Yi =B, +6, +a mog(UthJit) N mog(uﬁsit) + (2-10)

wherey is gross output, | is labor hours, Sis the structures capital stock, mis materials
(including energy expenditures), Jis the equipment capital stock, i indexes plants, and t
indexes year®. Lowercase letters denote natural logs. The disturbance term,
captures stochastic shocks to disembodied technology. It may contain both an
aggregate and an idiosyncratic component. Equation (2-10) isthe plant-level analogue
of the aggregate production function (2-3).

U’ and U® in equation (2-1) denote that the utilization rates of equipment and
structures capital, respectively. To measure utilization, we follow Petropoulos (1999)
who shows that under certain reasonable conditions, the intensity of a plant’s energy
usage can be used as a proxy for capital utilization. Specifically (suppressing year and

plant subscripts), we assume:

16 All variables are in constant dollars unless stated otherwise.
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U’ =(E/J)" ad U°=(E/9" >

11)
where E denotes energy expenditures (fuel plus electricity). For purposes of
identification, we assume that t; = t5 = 1. Substituting these expressions into the

production function (2-1) and rearranging, we obtain
Y, =B, +6n, +[a(t-1)/t]Hog(J,)

+n(t -1)/t] Mog(S,) +[@ )16 €,

where e denotes In(E). Observable measures of g, I, m, and e can be readily
constructed using variables in the LRD and price deflators from the NBER-CES
Productivity Database (hereafter, NBER-CES). The construction of variablesis
described in Appendix A.

In this chapter, we focus on the estimation of the rate of embodied technological
change in equipment capital. Therefore, plants structures capital stock is calculated
according to the traditional perpetual inventory definition (see Appendix A) using
historical structures investment from the LRD, price deflators from NBER-CES, and
physical decay data from the FRB. Equipment capital, on the other hand, is a

parameterized stream of past real equipment investment (net of physical decay):
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T

‘Jt = Z It—sDt,t—s(pt—s (2-

13)

where T isthe age of the plant, I, is real equipment investment of vintage t-s capita
goods, D, is the fraction of one dollar’s worth of vintage t-s investment that is still
used in production in year t, and ¢ is the level of embodied technology in equipment
capital of vintage t-s relative to some numeraire year’s technology#?%. This equation is
analogous to equation (2-5) in the 2-sector model. Equation (2-13) incorporates a one-
year time-to-build assumption; that is, new investment is not put into operation until the
following year. It takes time to build because of actual assembly requirements or
because time is needed to train workers on how to use the new equipment?,

Substituting equation (2-13) into (2-12) yields the estimating model. Given the
large number of parameters and the non-linearity of the model, we found that obtaining
estimates (precise or otherwise) of ¢, was not possible in all but the most

parsimonious of specifications. Thus, for the regressions reported in this chapter, we

7 In terms of the two-sector model we described earlier, ¢, is the ratio of g, to q, where
0 refersto the numeraire year.

18 We assume that investment in vintage t-s capital goods is synonymous with new
investment in year t-s. Thisisincorrect to the extent that there is investment in used
capital of earlier vintages. Unfortunately, data on the vintage of a plant’s used
investment is not available in the LRD. This should have little effect on our results
since used investment is typically a negligible part of total investment (new plus used).

¥ We estimated some specifications allowing no time to build but assuming that
investment is distributed evenly throughout the year so that, on average, six months
worth of total investment in the newest vintage is used at any one time. The estimates
of y are uniformly higher under this specification.
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simplify by assuming a constant geometric rate of embodied technological change.

This changes the specification of Jto:

‘Jt = i | t—SDt,t—s (1 + y)t—s—to (2-

14)
where v is the rate of embodied technological change and t, is the numeraire year in
which the level of embodied technology is normalized to 1. We choose 1996, the last

year of our data, as the numeraire year.*

A. Discussion of Variable Capital Utilization

Unmeasured variation in the intensity with which plants utilize capital may lead
to biases in production function estimation. We avoid this pitfall by proxying for
capital utilization with energy use®. The parameter t in the assumed functional form

(2-11) isthe elasticity of the rate of energy use with respect to capital utilization. It

2 Equations (2-13) and (2-14) provide away of aggregating vintages that embody
different technology levels. Fisher (1965) shows that a necessary and sufficient
condition for the existence of a capital aggregate are that the marginal rate of
substitution between any pair of inputs within the aggregate be independent of the
inputs outside the aggregate. Under constant returns to scale, as Solow (1960) showed,
this condition requires that 1) production with each vintage be additively separable, 2)
total factor productivity be the same across all vintage production functions at a given
year, and 3) investment in a“better” vintage of equipment is equivalent to alarger
amount” of investment measured in constant quality.

2 This approach was suggested by Jorgenson and Griliches (1967) and followed by
Burnside, Eichenbaum, and Rebelo (1995) for industry-level estimation and
Petropoulos (1999) for plant-level estimation, anong others. See Fernald and Basu
(1999) for pitfalls arising from unmeasured factor utilization.
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allows for energy use being proportional to capital services (UJor US, asin Burnside,
Eichenbaum, and Rebelo, 1995) when t =1. For values of t > 1 the marginal cost of
capital services increases faster with utilization than with capital stock and at the
extreme (t=«) there is no variation in utilization asit istoo expensive. Similarly, when
t< 1 the marginal cost of capital services increases slower with utilization than with
capital stock and at the extreme (t = 0) any variation in utilization is achieved by an

infinitesimal variation in energy use.?®

B. Discussion of Physical Depreciation Assumptions

Our estimates of the rate of growth of embodied technological change rely
importantly on accurate measures of physical depreciation. Thisis the part of
economic depreciation that is due to wear and tear resulting from using the asset in
production. We do not use the exponential depreciation rates produced by BEA, which
are largely based on the estimates of Hulten and Wykoff (1981), as these reflect both
physical deterioration and obsolescence. Instead, we employ the methodology used by
BLS and FRB in constructing capital stocks adjusted for the effects of physical
depreciation. This methodology is described in Appendix A.

There are two important differences. First, the FRB-BLS methodology results
in an age-efficiency schedule that is vastly different from geometric, especially in the
early part of an asset’s life. Second, the implied rate of depreciation is much lower

than that for BEA. These features can be seen in Figure 2-2 which graphs the average

2 Petropoulos (1999) argues that often plants increase capital utilization by “dusting
off” older, less efficient machines. Then, increases in utilization would require
increasing rates of energy use per unit of capital utilized (t > 1).
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depreciation schedule by age in our primary sample for each source of depreciation
data. Specifically, for the FRB-BLS depreciation data, thisis the average by age (9)
over al years (t) and plants (i), of the D;, . introduced in equation 13%". The sameis

done for the D; s data that isimplied by the BEA depreciation rates according to the

identity D, .. = (L=0.™")"". Lastly, the depreciation schedule implied by a 12%

geometric rate is provided as a frame of reference. In the empirical section, we explore
the implications for our estimates of y of different assumptions about physical

depreciation.

5. Data

The plant-level data we use come from the Longitudinal Research Database
(LRD), which is housed at the U.S. Census Bureau’s Center for Economic Studies. The
LRD consists of annual data on U.S. manufacturing establishments collected in the
quingennial Census of Manufactures (CM) and the Annual Survey of Manufacturing
(ASM). At thistime, it covers 1963, 1967, and 1972-96. The construction of the
variables that we use in our analysis is described in detail in Appendix A.

We construct several data samples with which to estimate equation (2-3). Our
primary sample, which we term the “POST72A” sample, is an unbalanced panel
consisting of all plant-year observations from plants born in or after 1972 that survived

for at least four consecutive years (including the birth year), with the last possible

# Though D, . has a plant subscript, this variable is the same for al plants within a 3-
digit industry.
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observation year being 1996. Thus, a single plant may have multiple observationsin
our sample, provided that we continuously observe the plant’s equipment investment
for every year from birth until the current observation year. Observations from plants
born prior to 1972 are excluded as we cannot observe their entire investment history.
These missing investment variables would likely have caused substantial biases in
estimating the relative efficiency of different vintages of investment.

Since we exclude plants born prior to 1972 there is a concern that our results
may not be representative of the entire manufacturing sector. There is evidence (e.g.
Dunne, 1991) that large, old plants invest in more technologically advanced equipment
than do young, small plants. Thus, for purposes of comparison, we construct a sample
containing all observations in POST72A and, in addition, plants born prior to 1972 for
which we observe “most” of their investment history. Specifically, we include
observations in which cumulative observed equipment investment as of the current
observation year is at least 80% of the current book value of equipment assets.
Assuming equipment assets are retired on afirst-in-first-out (FIFO) basis, this will
ensure that though capital is still understated, no more than 20% of equipment currently
in place is unobserved. Again we include only observations for plants that have
survived at least 4 consecutive years. We call this sample “SCREEN.” %

We keep only observations from plants that have survived at least four

consecutive years in an effort to avoid two possible problems. First, the factor

% The 80% cut-off value was chosen based on an analysis of the cross-sectional
distribution of the ratio of cumulative observed investment to current book value for
each year inthe LRD. This screen/cut-off applies to plant-year observations, that is
earlier observations for a plant may be screened out while later ones may be kept.
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elasticities, particularly for capital, in the first three years of a plant’s operations have
been shown to be significantly different than those in later years (see Bahk and Gort
(1993)). Infact, the elasticity of output with respect to capital is often found to be
statistically insignificant in the first few years. Bahk and Gort attribute this
phenomenon to learning by doing. Second, data isimputed for a substantial portion of
any given year’s newly-born plants (with the exception of data on industry,
employment, and payroll). Thus, datafrom the first year of plantsis fraught with
measurement error. Since we utilize the entire investment history of a plant, we are not
immune to the measurement error introduced by imputation of the first year's
equipment investment. However, the share of investment that isimputed becomes
smaller and smaller as the plant ages and thus, it is hoped, its impact should be minimal
by the fourth year.

There is a trade-off between the improved data reliability, achieved by
excluding observations from the first three years of a plant’s operations, and the
potential introduction of a sample selection bias by only selecting observations that
were “successful” enough to survive at least four years. To ensure that our results are
not unduly affected by this type of bias, we also create a sample, called POST72B,
which is a superset of POST72A and relaxes the restriction that plants survive at least
four years. Due to the imputation of data for the first year of many plants, we till
exclude observations from the birth year. This should amost entirely eliminate the
possibility of a“survivorship” bias in the regressions run using this sample since plants

are alowed to exit after their second year.
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For afinal aternative to our primary sample (POST72A), we also construct a
balanced panel sample consisting of 1975-96 observations from plants that were
continuously in the LRD from 1972-96 (but not necessarily born between 1972-96).
This was done in order to facilitate comparison to the rest of the literature on plant
behavior since similar balanced panels are frequently used. Following our previous
discussion, we expect the 1972-96 panel to suffer greatly from problems of omitted

variables bias (due to unobserved pre-1972 investment) and sample selection bias.

A. Isour Sample Representative of Manufacturing?

The POST72A sample seems to be the best aternative when trying to jointly
minimize the potential biases discussed above. It consists of atotal of 96,846 plant-
year observations covering 24,404 plants. Appendix A provides detailed comparison of
POST72A to the other data sets we use and to the aggregate manufacturing sector
(according to published Census data). In terms of the dynamic behavior of its plants,
this sample is quite representative of the manufacturing sector as awhole. The average
growth rates of investment and employment are quite similar over the 1975-96 period.
Thisis true even though the sample, due to the nature of the LRD, consists of plants
that are larger, on average, than the typical manufacturing plant (in terms of gross
shipments, employment, or investment) as aggregate activity is primarily shaped by
large plants. The sample distribution of shipments across 2-digit SIC industriesis also
quite representative of manufacturing though there is a tendency to under-represent
mature-plant industries such as Petroleum and over-represent young-plant industries

such as Communications.

30



6. Results

In this section we present the results of our estimation. We employ non-linear
least squares (NLLS) with a heteroskedasticity- and autocorrelation-consistent (HAC)
variance-covariance matrix. The HAC VC matrix is necessary because autocorrelation
of the errorsislikely due to the fact that the same plant can have multiple observations
in our sample. All regressionsinclude year and industry dummies as well as industry-
specific time trends. In addition, we include a dummy variable, which we call Mullti,
indicating whether the plant is part of a firm that operates multiple plants. Table 2-1
contains our main results.

Initially, we do not alow for variable capital utilization by setting t=~. Asmay
be seen in column (A), the rate of growth of embodied technological change, v, is
estimated to be alittle under 8 percent. Thisis higher than the rate calculated in the
price-based approaches using Gordon's (1990) data. The coefficient on Multi indicates
that plants in a multi-establishment firm have on average 8.7 percent higher TFP than
single-establishment firms, other things equal. Thisis consistent with past resultsin
the plant-level literature (see, e.g., Baily, Hulten, and Campbell (1992)). The estimated
factor elasticities are quite close to observed factor shares with the exception of the
capital coefficients, which are a bit lower.”

The data seem to support allowing for variable capital utilization, at least as

proxied by energy use. As may be seen in Column (B), the estimate of t is2.08 (with a

% Allowing factor elasticities to vary by industry yields a dightly lower estimate of y of
0.055 (0.028). However, many of the estimated elasticities are nonsensical, particularly
those for structures. It appears allowing industry-varying elasticities may be asking too
much from the data and therefore we maintain the assumption of common elasticities
for the regressions to follow.
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standard error of 0.09). Thisvalue impliesthat the marginal cost of capital services
(UJ or US) increases faster with utilization than with capital stock. In particular the
Leontief assumption employed by Jorgenson and Griliches (1967) and Burnside et al.
(1995), t=1, isregjected by our data. The estimated elasticities of capital and |labor
change in the direction one would expect if plants vary their capital utilization
significantly in response to shocks. Not taking such variation into account creates an
omitted variable likely to be positively correlated with employment (biasing its
coefficient upward) and negatively correlated with the stock of capital (biasing its

coefficient downward)®.

% For plant-level evidence on these patterns of correlation see Sakellaris (2000).
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Table2-1 Main Results

Parameter A B C D

Y 0.077 (0.029) 0.169 (0.049) 0.116 (0.060) 0.271 (0.059)
Intercept 2.298 (0.049) 2.421 (0.054) 2.369 (0.080) -1.183 (1.077)
Multi 0.087 (0.008) 0.079 (0.008) 0.080 (0.008) 0.080 (0.005)
B 0.344 (0.005) 0.322 (0.005) 0.319 (0.005) 0.318 (0.002)
0 0.545 (0.005) 0.531 (0.005) 0.529 (0.005) 0.529 (0.002)
o 0.078 (0.003) 0.108 (0.005) 0.114 (0.005) 0.114 (0.002)
1 0.008 (0.002) 0.020 (0.004) 0.018 (0.004) 0.019 (0.002)
T 2.076 (0.091) 2.219 (0.105) 2.232 (0.050)
Adjusted R? 0.926 0.927 0.927 0.927

A: Baseregression (does not alow for capital utilization or learning-by-doing effects).
B: Adjusts for capital utilization using energy expenditures (see equation 11).
C: Full specification (adjusts for capital utilization and includes variables capturing

learning-by-doing effects associated with investment spikes).

D: Average vintage regression (see equation 15).

Note: Regressions A-D also included year and industry dummy variables as well as
industry-specific time trends. The coefficients on these are not shown in order to
conserve space. They can be obtained from the authors upon request.

Asmay be seen in (B) controlling for variation in utilization reduces the
coefficient of labor by 2 percent while it increases the sum of the coefficients of capital
by more than a third bringing the ratio of the elasticities of labor and capital to about 2
to 1, asexpected. Returnsto scale are estimated to be 0.98 which is not statistically
significantly different from one. The estimate of y is much higher now at 17 percent.
Thisimplies a vastly higher rate of embodied technological change than is usualy

considered.

A. Learning Effects
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Severa papers since Arrow (1962) have suggested that the installation of new
equipment embodying improved technology may involve significant subsequent
investments in training workers as well as experimentation in the organization of
production. These would tend to reduce productivity initialy while raising it
eventually and Arrow (1962) termed this process “learning by doing”.** Ignoring such
learning effects might bias our estimate of y, though the direction of the bias is not
clear. To explore the extent of such problems we repeat our estimation including an
indicator of whether the plant undertook an equipment-investment spike together with
seven lags of it.** Our ideaisthat spikes are associated with most instances of an
introduction of anew and “better” vintage of technology and the inclusion of the spike
indicators should control for learning effects on productivity. Asmay be seenin
column C of Table 2-1, the estimate of vy isabout 12 percent and the rest of the

coefficients do not change much.®

B. Average Vintage Effect
In Section 3 we mentioned that an alternative production-based approach which

obtains y viathe estimated coefficient on average age or vintage of capital is due to

" See Greenwood and Jovanovic (1998) for an extensive analysis of the
macroeconomic implications of learning-by-doing as well as references to some recent
work.

% \We identify a spike with observations of equipment investment to capital ratios
greater than 0.20. See Power (1998), Doms and Dunne (1998), Cooper, Haltiwanger,
and Power (1999) and Sakellaris (2000) for justification of using this definition at the
plant level.

# The coefficients on the spike indicators show an approximately 6% drop in
productivity in the first year after a spike with slow recovery thereafter.
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Nelson (1964). Inthe most parsmonious case where one does not allow for
unobserved utilization or learning effects, this approach leads to the following

specification (ignoring the constant, the error term, and time and industry dummies):

y, =pd+p +6M, +n(§, +a [ +o Dog(l+yV,) (215

where " islog equipment capital unadjusted for embodied technological change (i.e. |

isjust j from equation (2-14) with y set equal to zero) and V isthe average vintage of

equipment for plant i in year t. Generally, yV is assumed to be close to zero alowing

the last termin (2-15) to be approximated by ayVit . In our sample, however, the

mean (over al plant-year observations) average vintage is approximately 12
(corresponding to 1984). The product of 12 and even a very small v, say 0.01, will till
be far from zero suggesting that serious specification errors are likely when we
estimate (2-15).

In fact, as shown in column (D) of Table 2-1, the Nelson method yields the
rather implausible estimate of 27 percent for y which is significantly different from the

12 percent found using our method.

C. Industry-specific time trends

We are concerned that dynamic behavior of output, inputs, and disembodied
technological change may differ substantially across industries. A prominent example
is the computer sector which has enjoyed rapid growth in its productivity relative to

other manufacturing industries and a correspondingly rapid relative decline in its price
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index. In order to control for thiswe include a set of industry-specific time trends in
each of our regressions. All industry trends were between +1 percent with the
important exceptions of computers (8.3%) and communication equipment (3.3%).%
Given that the computer industry has such a high rate of disembodied technological
change, it is natural to wonder whether the computer industry is the primary driver of
our high estimates of y. Omitting the computer industry decreases our estimate from
0.116 to 0.070 (with a std. error of 0.053). Thus, it appears the computer industry is a

but probably not the primary driver of economy-wide embodied technology.

D. Alternative Depreciation Assumptions

The estimate of y depends crucialy on our assumption for physical
depreciation. We now explore the implications of aternative assumptions on
depreciation. We go through two hypotheses that imply that current methods of capital
stock construction are valid. Our departure point is the observation that the PCE
deflator and the official equipment-investment price index do not display very different
trends for manufacturing (see Figure 2-1).

The first hypothesisisthat: a) there is no embodied technological change and
as aresult PCE and official equipment-investment deflators are correctly measured and
roughly similar over the 25-year period studied here, and b) the BEA geometric rates

are accurate measures of physical depreciation alone (despite the fact they differ greatly

¥ These estimates refer to the regression in Column C though the corresponding
estimates from the other regressions are quite smilar. We were able to reject the
hypothesis that industries do have a common time trend viaa Wald test at a 99% level
of confidence. The F-statistic is 84.5, far greater than the 99% critical value of 1.8.
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from the FRB patterns of physical depreciation). Hypothesis 2 isthat: @) thereis
embodied technological change, b) whereas the consumption goods price is correctly
measured by the PCE deflator, the official equipment-investment deflator does not
adjust at all for embodied technological change, and c) the BEA geometric rates
correctly measure the combined effect of physical depreciation and obsolescence.
Unfortunately, the above two hypotheses are observationally equivaent with
our data and methodology. To evaluate whether either could be true we perform two
experiments, the results of which are shown in Table 2-2. In columns A and C we
impose the BEA rates in place of the schedules for D, ; obtained with the BLS-FRB
methodology. An alternative check is to impose zero depreciation and see whether the
estimate of vy is approximately equal to the average BEA rate for our sample, 12%. The
results of this are shown in Columns B and D. Columns A and B correspond to the
baseline specification which does not control for variable capital utilization or learning
effects, whereas Columns C and D corresponds to our preferred specification which
does control for these effects. When BEA rates are used, the estimates of y are
insignificantly different from zero providing support for these hypotheses. The
estimates in Columns B and D, however, are inconsistent with either of the hypotheses.
In our preferred specification the estimate of v is 24.5 percent with a standard error of
6.5 percent, which is statistically different from 12.1 at the 10% level of significance.

The evidence is less contradictory to these hypotheses in the baseline specification that
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does not control for variable capital utilization. Thus, the strength with which we can

reject these hypotheses depends upon which specification one prefers.®

Table2-2 Resultswith Alternative Depreciation Assumptions

Parameter A B C D
y 0.019 (0.025) | 0.153(0.029) | 0.005 (0.042) | 0.245 (0.065)
Intercept 2.218 (0.047) | 2.417 (0.024) | 2.229(0.034) | 2.534 (0.081)
Multi 0.087 (0.008) | 0.086(0.008) | 0.080 (0.008) | 0.080 (0.008)
B 0.344 (0.005) | 0.344(0.005) | 0.319(0.005) | 0.319 (0.005)
) 0.545 (0.005) | 0.545(0.005) | 0.529 (0.005) | 0.529 (0.005)
o 0.079 (0.003) | 0.079(0.003) | 0.115(0.005) | 0.116 (0.005)
n 0.007 (0.002) | 0.007 (0.002) | 0.017 (0.004) | 0.016 (0.004)
T 2.219 (0.106) | 2.249 (0.109)
Adjusted R? | 0.926 0.926 0.927 0.927

A: Baseregression (does not alow for capital utilization or learning-by-doing effects);
physical decay measured by BEA economic depreciation rates.

B: Base regression; no physical decay allowed for.

C: Full specification (adjusts for capital utilization and includes variables capturing
learning-by-doing effects associated with investment spikes); physical decay measured
by BEA economic depreciation rates.

D: Full specification; no physical decay allowed for.

Next, we entertain the possibility that physical depreciation rates are near-

geometric and amount to various fractions of the BEA rates. We construct the

parameterized capital stock using as physical depreciation rates some fraction times the
BEA-provided rate for each observation’s industry and year. We then estimate how y

varies. Table 2-3 and Figure 2-3 contain the results. As expected, the lower isthe

3 Deflating by the equipment-investment deflator instead of the PCE deflator does not
change our conclusions.
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assumed depreciation rate the higher is the estimate of y, which ranges from 0 to 25
percent (with a standard error of approximately 6 percent). Clearly aswe alow less
and less of the decrease in productivity of early vintages of investment over time to be
explained by physical decay, vy isleft to explain, rightly or wrongly, more of this
decrease. Tota economic depreciation, the sum of physical decay and obsolescence,
ranges from 13 to 25 percent. Also shown in Figure 2-3 isthe average BEA economic
depreciation rate of 12% and the implied rates of obsolescence as the physical
depreciation rate isincreased. Our estimated y’s and implied economic depreciation
rates differ from those suggested by the BEA datain two important respects. First,
except when physical depreciation is assumed to be 100% of the BEA rates, our y’'s
and economic depreciation rates are substantially higher (though not statistically so).
Second, the y’ s exhibit a steepening rather than constant slope as assumed physical
depreciation increases. This suggests that the assumption of near-geometric physical

depreciation rates may be inappropriate.
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Table 2-3

Resultswith Physical Depreciation asa Fraction of BEA Rates

Fraction of BEA rates Estimated y Implied Economic
Depreciation Rate'
0 0.245 (0.065) 0.245
0.25 0.205 (0.064) 0.236
0.5 0.159 (0.061) 0.220
0.75 0.087 (0.053) 0.178
1 0.005 (0.042) 0.126

Note: All of the estimates in column 2 were obtained using the same, preferred
specification: adjustment to control for unobserved utilization and spike dummies
included to control for learning-by-doing effects (i.e., the same specification as was
used in Table 1, Column C).

E. Estimates from Cross-sections

It isimpossible to decompose productivity change into its embodied and
disembodied components by using time series data for a single plant, firm, industry, or
economy (see Hall (1968) for a discussion of this identification problem). The basic
insight of this chapter is that, armed with data on physical depreciation, one can isolate
the embodied component by exploiting the large cross-sectional variation in investment
histories within a given year that is available at the plant-level. In principle, we could
estimate our model (equation (2-10)) using only one cross-section. However, we
pooled many cross-sections in order to maximize the number of observations (and
therefore the variation in investment distributions). Naturally, one may ask whether

similar estimates of y may be obtained with the cross-sections alone.
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Table 2-4 shows the results of such an exercise using cross-sections from 1980-
96 of our primary sample. The top portion of the table involves a specification in
which unobserved utilization is controlled for (asin Column C of Table 2-1). It isclear
from the large standard errors here that pooling the cross-sectionsis vital to obtaining
any reasonable precision on y. The median estimate, mean estimate, and standard error

of the mean are 0.239, 0.216, and 0.046, respectively.
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Table 2-4 Resultsfrom Cross-Sections

Gamma Std. error Adjusted R? Cross-sectionyear  Control for Utilization

0.256 0.123 0.930 96 Yes
0.253 0.114 0.895 95 Yes
0.286 0.126 0.912 94 Yes
0.109 0.073 0.940 93 Yes
0.239 0.112 0.937 92 Yes
0.134 0.092 0.897 91 Yes
0.129 0.124 0.889 90 Yes
0.091 0.098 0.891 89 Yes
0.382 0.197 0.909 88 Yes
0.236 0.174 0.921 87 Yes
-0.118 0.117 0.887 86 Yes
-0.099 0.108 0.883 85 Yes
0.307 0.262 0.883 84 Yes
0.877 0.399 0.930 83 Yes
-0.140 0.130 0.926 82 Yes
0.442 0.403 0.929 81 Yes
0.282 0.290 0.893 80 Yes
0.172 0.075 0.929 96 No
0.203 0.078 0.894 95 No
0.164 0.076 0.911 94 No
0.048 0.045 0.939 93 No
0.079 0.055 0.936 92 No
0.069 0.060 0.896 91 No
0.062 0.071 0.888 90 No
0.077 0.078 0.890 89 No
0.198 0.116 0.908 88 No
0.119 0.106 0.920 87 No
-0.081 0.092 0.886 86 No
-0.072 0.086 0.882 85 No
0.183 0.167 0.883 84 No
0.171 0.134 0.929 83 No
-0.109 0.105 0.926 82 No
0.141 0.197 0.928 81 No
0.255 0.246 0.893 80 No

Note: The same regression is run, either with or without allowing for capital utilization,
for each cross-section year between 1980 to 1996. Aswith the pooled regressions, for
any cross-section investment is observed from a plant’s birth until the current cross-
section year. In al regressions, industry dummies are included.

Despite the large standard errors, one may wonder if the large variationin y

across cross-sections indicates that the true y has varied greatly over time. To test this,
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we estimate our full specification on the pooled sample allowing vy to vary by year and
test the hypothesisthat v is constant. The F-statistic for thistest is0.17 compared to a
95% critical value of 1.00. Thus, one cannot reject the hypothesis of a constant y over
cross-sectiona years.

The cross-sectiona resultsin Table 2-4 are aso helpful in assessing whether
our pooled estimate of v is affected by the assumption that the elasticity of energy
usage with respect to capital utilization, <, is constant. It is possible that T was lower in
the 1970’s when energy costs were high than it was in the 1980’s and 1990's. It can
easily be shown that the contribution of equipment capital to output, «(t-1)/t, is
increasing in t. If the constant average, and estimated, t is higher (lower) than the true
7 for early (later) vintages, then the contribution of early vintage equipment to output
would be overstated (understated). To compensate, the estimation procedure in its
efforts to minimize the sum of squared errors will want to underweight early vintage
investment relative to later investment as it searches for the SSE-minimizing y. This
implies an upward biasin y. Thisisa possible explanation for the increase from 8% to
17% when we adjust for utilization (see Columns A and B of Table 2-1).

However, our cross-sectional results provide strong evidence that thisis not the
case. Inthe cross-sections, t, like all other parameters, is estimated separately for each
year. The bottom portion of Table 2-4 refers to the specification that does not control
for unobserved capital utilization (same asin Column A of Table 2-1). If the 9%
difference we get in the pooled regressions is due to an unaccounted-for trend in t, then
this difference should disappear in the cross sections. In fact, on average, this

difference is slightly higher (though not significantly so) at about 10% for any



particular cross-section.

Furthermore, allowing only t to vary by year and estimating our full
specification over the pooled sample yields a gamma of 0.127 (0.054) compared to the
0.116 (0.060) in Table 2-1, Column C. t, doesin fact exhibit a dlight rising trend over

time which is statistically significant according to a Wald test.®

F. Results from other Samples

As mentioned in Section 5, our primary sample, POST72A, was chosen so asto
minimize the possible effect of several biases. We now present results using other
samples.®” POST72B was created in order to evaluate the likelihood of a “survivorship”
bias. There isa possible sample selection bias introduced by the fact that unproductive
plants are unlikely to survive for many consecutive years and our primary sample
excludes plants that have not survived for at least 4 years.® Plants with high expected
present discounted values of future profits may be more likely to invest in high-tech
equipment than plants with less rosy prospects for the future. These plants are also
more likely to survive for along period. Moreover, investing in high levels of

embodied technology is likely to be a cause of future profitability and survival®.

¥ The F-statistic for the test of the null hypothesis that t is constant for all yearsis
8.48> F,;,(.95)=1.00.

% Section 5 describes the various samples and discusses the potential biases that are
involved.

% Evidence that less productive plants are less likely to survive than more productive
plants may be found in Baily, Hulten, and Campbell (1992), and Olley & Pakes (1996),
among others.

® Thisintuition is confirmed in a study by Timothy Dunne (1991) who analyzes plant-
level datafrom the Survey of Manufacturing Technology. He shows that large, old
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Therefore, plants with higher than average shares of vintage investment in high-tech
equipment in the early years of the sample are more likely to be included in POST72A.
Having higher than average (relative to the average manufacturing plant in a given
year) levels of embodied technology in the early years of the sample should result in a
downward biasiny. However, our results show that vy is actually higher (though not
significantly so) with our primary sample compared to that with POST72B, which
seems to indicate that this potential source of bias is not a serious concern. This can be
seen in Table 2-5 which displays the results from estimating our full specification using

each of our four samples.”

plants utilize new technologies more intensively than young, small plants.

% For estimations using the POST72B sample, we include a dummy variable indicating
whether or not the plant was born in the previous year together with two lags of this.
The coefficients on these variables indicate that all else equal, productivity is 2.5%
below average in the first year after a plant’s birth, 2.1% below two years after, and
1.7% below three years after.
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Table2-5 Resultsfrom Alternative Samples

Sample
Parameter POST72A POST72B SCREEN 72-96 PANEL
y 0.116 (0.060) | 0.085 (0.069) | 0.209(0.034) | 0.039 (0.042)
Intercept | 2.369 (0.080) | 2.441(0.085) | 2.324 (0.047) | 2.244 (0.080)
Multi 0.080 (0.008) | 0.098 (0.006) | 0.059 (0.005) | 0.083 (0.012)
B 0.319 (0.005) | 0.354 (0.004) | 0.324(0.001) | 0.299 (0.005)
) 0.529 (0.005) | 0.496 (0.004) | 0.545(0.003) | 0.566 (0.005)
o 0.114 (0.005) | 0.112(0.004) | 0.099(0.002) | 0.088 (0.004)
n 0.018 (0.004) | 0.019 (0.004) | 0.025(0.001) | 0.028 (0.003)
T 2.219 (0.105) | 1.909 (0.055) |2.731(0.092) | 6.569 (1.397)
Adjusted R? | 0.927 0.934 0.925 0.903
N 96846 163191 224337 184678

Note: All 4 columns refers to the full specification (i.e. that in Table 1, Column C).
The “POST72B” regression also includes three dummy variables indicating whether

the plant was born one year ago, two years ago, or three years ago.

The SCREEN sample is an effort to increase the sample size and

representativeness by including observations from plants which have a small amount

(less than 20% of current equipment assets) of unobserved pre-1972 investment.

However, because pre-1972 investment is omitted and no variable is available to proxy

for it, this introduces an omitted variable bias, the direction of which depends on the

correlation between pre-1972 and post-1972 equipment investment. 1n amodel of

lumpy investment, the larger a plant’s current effective capital stock, the less likely the

plant isto invest in new capital, implying a negative correlation.** Thisimpliesa

3 Thisintuition is supported by Cooper, Haltiwanger, and Power (1999) who find that
the probability of investment in a given year increases with the time since the plant’s
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negative bias on «.. Evaluating the likely bias on y is more complicated. The
correlation between pre- and post-1972 investment should be more negative for early
post-1972 investment since as time goes on the pre-1972 equipment is gradually retired
and therefore no longer contributes to production (and hence does not factor into
contemporaneous investment decisions). Thus, the omitted pre-1972 equipment causes
one to underestimate the contribution of early vintages relative to later vintages. This
implies a positive biason vy.

These priors are in fact supported by the data. The estimate of « falls from
0.114 with POST72A to 0.099 with SCREEN, while y rises from 0.116 to 0.209.

Finally, because balanced panels are commonly used in plant-level studies, we
also created a sample consisting only of plants that were continuously observed from
1972 to 1996. This sampleis also affected by the omission of pre-1972 investment and
is likely to be strongly affected by a survivorship bias as well. Though we found no
evidence of a survivorship bias in our primary sample where plants could not exit until
after 4 years, a survivorship bias seems far more likely in this balanced panel of 25
years. The y obtained using this sampleis 0.039. Though it is possible that large, old,
and successful plants have a lower true rate of embodied technological change, it seems

more plausible that thislower ¥ is evidence of a serious survivorship bias.

G. Smultaneity Bias

last large investment.
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It iswell known that OLS estimation of production function relationshipsis
subject to potential simultaneity biases.”> Since the “independent” variables are
production inputs that are chosen optimally by the producers, the usual exogeneity
assumptions that are required for the consistency of OLS may fail. A plant manager’s
input choices are determined by plant quality (or, equivalently, managerial efficiency
or disembodied technology) along with factor prices and product demand. Since part
of this quality is unobserved by the econometrician, it is subsumed into the disturbance
term of the production function. The result is that variable inputs may be correlated
with the disturbance term.

To address the possibility of simultaneity bias, we attempted a non-linear

instrumental variables (NLIV) estimation. An appropriate set of instrumental variables
should include all exogenous variables in the model together with other exogenous and
relevant (i.e. correlated with the Jacobian vector of first derivatives of the model with
respect to the parameter vector) instruments. For identification it is necessary to have
at least one instrument per parameter to be estimated. Unfortunately, it is very difficult
to find good instruments (exogenous and relevant) at the plant level for our purposes.
This limits severely the success of our NLIV estimations as we will see below. In order
to address these problems partially, we try to minimize the number of parametersto be
estimated by following a suggestion of Griliches and Ringstad (1971). We replace
factor elasticities of some or al of the inputs (e.g. of materials and labor) with

measures of their share in cost (using 4-digit industry-level datafrom the NBER-CES

% Marschak and Andrews (1944) were the first to recognize this problem. Griliches and
Mairesse (1995) provide a thorough discussion of the issue together with attempts to
ameliorate the problem using plant-level data.

49



Productivity Database and 2-digit equipment and structures rental rates from the BLYS).

For instruments, we use the set of 4-digit industry-level downstream demand
indicators originally constructed by Bartelsman, Caballero, and Lyons (1994) and
modified by Baily, Bartelsman, and Haltiwanger (1996). Anindustry’s demand
indicator is a weighted average of the economic activity of manufacturing and service
industries (downstream industries) that purchase the industry’s output. The weights are
the share of each downstream industry’s purchases in the upstream industry’ s tota
output and the measure of economic activity is the sum of the cost-share weighted
growth rates of each factor input (capital, labor, and materials). In order to filter out
any endogenous effect that an upstream industry’ s productivity may have, through its
output price, on downstream industries activity, the indicator excludes the activity of
downstream industries whose purchases from the upstream industry are greater than
5% of their total intermediate input purchases. The instrument set also includes the
second through fourth powers of this downstream demand indicator, and investment
lagged 3 through 24 years (24 is oldest possible non-zero lagged investment that a plant
in our sample can possibly have).*®

The results of these regressions are shown in table 2-6. Column A shows the
regression results from our preferred specification where labor’s and material’s
elasticities are not estimated but rather are measured by their industry cost shares.

Column B shows the results from the same regression except that all factor elasticities

¥ |t may be argued that past investment, even lagged more than three years, is
endogenous. Unfortunately, when we omit lagged investment from our set of
instruments, our first-stage R? drops substantially and the standard errors rise making
the estimates essentially meaningless.
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are measured by their industry cost shares and no utilization adjustment is made.*
Column C contains results from an average vintage specification also without a

utilization adjustment and with all factor elasticities measured by cost shares.

Table2-6 Resultsfrom NLI1V Estimation

A B C
Y 0.332 (0.319) -0.134 (0.048) 0.144 (0.098)
I ntercept -0.030 (0.980) 1.519 (0.029) 2.494 (1.006)
o 0.166 (0.033)
n 0.112 (0.030)
Multi -0.269 (0.047) 0.058 (0.011) 0.049 (0.010)
Scale 0.939 (0.007) 0.947 (0.006)
P-value for Test of | 1.000 1.000 1.000
over-identifying
restrictions
Adjusted R? 0.905 0.905 0.906

A: Regression with labor and materials elasticities measured by industry cost-shares.
B: Regression with all factor elasticities measured by industry cost-shares.

C: Average vintage regression with al factor elasticities measured by industry-level
cost-shares.

Note: Regressions A-C aso include year and industry dummy variables.

The results of our 1V estimations are inconclusive. Largely due to the inclusion
of lagged investment in our instrument set, our first-stage R?s (not shown) are fairly
high, particularly for the first derivative of y. Yet, despite this apparent relevance, we

are not able to estimate y with any reasonable degree of precision. Of the three

“ The iterative estimation procedure was not able to converge when t was included in
the regression.
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regressions shown, only the estimate of y in column B is significant. Based on
unreported OL S results we conclude that the negativity of y ismost likely due to the
imposition of the industry cost-shares rather than to the use of V. In summary, despite
our effortsto instrument for endogeneity, we are not able to rule out the possibility of
simultaneity bias in our estimate of vy.

The recent literature on nonconvexities in investment behavior, however,
provide one argument for why endogeneity may not be a problem here. As stated
above, the simultaneity bias results from a positive contemporaneous correlation
between investment and productivity shocks (the disturbance in our regressions)
combined with serial correlation of productivity shocks (resulting in a correlation
between past investment and current productivity shocks). The contemporaneous
response of investment to a productivity or profitability shock will depend upon the
adjustment cost function and the size of the shock. Nonconvexities, particularly of an
(S,9)-nature, imply a small response or no response at al for relatively modest shocks.
If most of the mass of the distribution of shocksisin the inaction-range (i.e. inside the
S,S bands), then endogeneity should be a minor problem. Cooper & Haltiwanger
(2000), in fact, use an LRD dataset similar to ours and find that the adjustment cost
function is U-shaped with very little response in investment to small profit shocks.
Unfortunately, the true productivity shocks in our sample are not observed of course, so

we cannot plot this distribution to confirm that most of its massis in the inaction range.

H. Why do | not use the Olley and Pakes (1996) method?
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Olley and Pakes (1996) present a model of plant behavior that motivates a
three-stage algorithm for estimating a production function while controlling for factor
endogeneity and selection bias due to endogenous exit. The model relies crucially on
an “invertibility condition.” This amounts to investment being a monotonic function of
unobserved productivity, and observed plant state variables such as capital stock. This
allows productivity to be expressed as an inverse function of investment and these state
variables.

In the first two stages of the Olley-Pakes algorithm, output is projected on the
variable inputs and a polynomial function, which proxies for unobserved productivity,
in terms of investment and the plant-specific state variables (capital and age in their
model). The probability of survival is then estimated as a similar polynomial. Inthe
third and final stage, the estimated values of the contribution to production from
variable factors and productivity, and the endogenous effects of survival, from the first
two stages, are subtracted from output and the remainder is regressed on the plant-
specific state variables in order to estimate their contributions to production. For our
study, the second stage of their method would not be necessary since our data sample
allows for most entry and exit and thus largely eliminates the possibility of selection
bias from only observing plants that survive for the length of the panel.

Why not then apply the Olley-Pakes approach to our model which allows for
the embodied technological change? The problemisthat capital stock is not an
observed plant state variable in our approach. We use a parameterized stream of

current and past investment rather than a capital stock construct. Thisrenders
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unidentifiable the separate effects of embodied technology in current investment and

the productivity signal of current investment.

7. Productivity Growth Decomposition

Our findings have the important implication that the equipment capital stock is
mismeasured considerably in studies of productivity growth or production function
estimation. In particular, we estimate that the stock of equipment grows at much faster
rates than is reflected in conventional methods. As may be seenin Table 2-7, the
growth rate of equipment capital stocks depends crucially on the assumptions made on
physical depreciation, the investment-price deflator, and the rate of growth of
embodied technological change.*® We calculate the annual growth rate of equipment
capital stock under five different sets of assumptions.*® The growth rate of the stock
implied by the results from our main regression (Column C of Table 2-1), with
v=0.116, is 14.7 percent. Thisis substantially higher than the growth rate of the
conventional capital stock (y=0, investment deflated by the FRB/PPI investment
deflators and adjusted for depreciation using the BEA/Hulten-Wykoff rates), which is

4.2 percent in our sample. It isalso far above the growth rates of the capital stocks

“ For the construction of these capital stocks, a numeraire year (t,) of 1972 was used.
The choice of numeraire year can affect whether the growth rate of capital is
monotonically increasing or monotonically decreasing iny. This can be seen easily by
taking the derivative of (J3/J.;) with respect to gammawhere J, is defined according to
equation (2-14). Choosing a numeraire year at the beginning of our sample ensures that
the growth rate will increase with y. What is important for comparing capital stock
growth rates using different y’sis not necessarily the sign of this derivative, but just
that the derivative is monotonic in vy.

2 Specificaly, we regress the log of equipment capital stock on't and an intercept. The
coefficient on year gives the average annua growth rate.
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endorsed by either Hulten (1992) or Greenwood, et a. (1997), which are both 7.0
percent in our sample. The key element that generates the higher growth rate in our
capital stock construct isthe value of y. When we set y to zero but use the FRB/BLS
depreciation data and the PCE deflator to construct the capital stock its growth rate is

only 4.4 percent.

Table 2-7

Annual Growth Ratesin Equipment Capital from 1972-96

Type of Equipment Capital Stock Our Sample Aggregate
Manufacturing
A. This paper -- y = 11.6% 14.7% 14.0%
B. This paper -- y =7.7% 11.2% 10.0%
C. Thispaper --y =0 4.4% 2.1%
D. Conventional 4.2% 3.0%
E. Hulten (1992) 7.0% 6.0%
F. Greenwood, et al. (1997) 7.0% 5.7%

A -- The equipment capital stock implied by the y found in Table 1, Column C:
v=0.116 and the FRB physical depreciation schedules and the PCE deflator are
used.

0.077, FRB physical depreciation, and PCE deflator.

0, FRB physical depreciation, and PCE deflator.

0, BEA depreciation, and FRB/PPI investment deflators.

0.03, BEA depreciation, and FRB/PPI investment deflators.

0.03, BEA depreciation, and deflator for PCE of nondurables and nonhousing

services.

TlrnUOw
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We now examine the relative importance of embodied and disembodied
technological change for productivity growth in our sample of U.S. manufacturing
plants. According to equation (2-3), the residual growth rate in output, after accounting

for quality-adjusted input growth, is due to technological change that is not embodied
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in equipment investment. That growth rate in our sample is 0.57 percent annually.*’
Correspondingly, the rate of output growth that is due to embodied technological
change is equal to the equipment elasticity times the differential growth rate of quality-
adjusted and non-quality adjusted equipment capital stocks. This measure averages
1.17 percent annually in our sample.”® The implication is that equipment-embodied
technological change accounted for about two-thirds of total technological change

between 1972 and 1996 in our sample of U.S. manufacturing plants.

8. Conclusion

Determining the rate of embodied technological change is of crucid
importance. It isanecessary ingredient for productivity analysis which relies on
accurate measures of capital accumulation. Furthermore, it tells us how much of the
declinein an asset’ s value as it ages can be attributed to obsolescence.

In this chapter, we developed a production-side approach that can provide
alternative estimates of embodied technological change to price-based estimates. We
found that the rate of embodied technological change for the typical manufacturing
plant is between 8 and 17 percent. These rates are much higher than that suggested by
the relative rate of decline of Gordon’s (1990) equipment price deflators which puts it

no higher than 4%. These results are consistent with arguments made by Hornstein and

* This number comes from the coefficient on t after regressing the log of TFP,
constructed using the equipment capital stock with ay=.116, ont and an intercept.

“ The equipment elaticity is 0.114 from Column C of Table 2-1. The approximate
annual growth rate in the equipment capital stock due to embodied technological
change is 10.3 percent. This number comes from subtracting the 14.7 percent in Row A
of Table 2-7 from the 4.4 percent in Row C.
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Krusell (1996), Gort and Wall (1998), and others who argue that these price-based
estimates are likely to understate true embodied technological change.

If our estimates are accurate, embodied technological change may account for
as much as two-thirds of the total growth in TFP, suggesting an important role for

investment in spuring productivity growth above and beyond its traditional role of

capital deepening.
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Chapter 3

M easuring Embodied Technological Change via Upstream Research and

Development

1. Introduction

Chapter 2 proposed an production-side approach to measuring embodied
technological change that exploits time-series and cross-sectional variation in
investment histories. Inter alia, the current chapter extends this approach to alow the
estimates of embodied technological change to vary by industry. Nonetheless, there
remain two inherent limitations of these estimates. (1) they can only be obtained for
manufacturing industries, and (2) there are no comparable results in the literature with
which to evaluate the reasonableness of these estimates. That is, how does one know
whether it is sensible for one particular industry to have a higher estimated rate of
embodied technological change than another. An inspection of capital flows tables
may be able to tell us which industries invest in goods that are considered “high-tech,”
but other than subjective priors, we have no way of quantifying how high-tech an
industry’s capital goods are.

In order to evaluate the realism of estimated rates of embodied technological
change in manufacturing industries and to extend these results to non-manufacturing
industries, | first attempt to estimate the relationship between an industry’s estimated
rates and it’ s distribution of capital across asset types. This estimation fails to provide
a sufficiently high degree of precision to be useful for imputing non-manufacturing

rates of embodied technological change. Next, | propose two alternative indices that
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are meant to capture the amount of research and development (R&D) embodied in an
industry’s capital and then investigate the effectiveness of each index in explaining
embodied technological change. Each index is aweighted average of past and present
R&D performed on the (upstream) capital goods purchased by a (downstream)
industry. To construct these indices, | create a data set containing R&D by product
field from 1957 to 1997, using various releases of the National Science Foundation’'s
Research and Development in Industry. This data is then combined with Commerce
Department data on industry investment by asset type. The product field R&D data
allows me to avoid measurement problems associated with using R& D by performing
industry.

After discussing many of the interesting features of the constructed indices, |
search for some reduced-form relationships between embodied R&D and either the
estimated rates of embodied technological change that | find at the plant-level or the
Solow Residual.”® It turns out that the level, but not the growth rate, of embodied R&D
is positively and significantly related to both the Solow Residual and the estimates of
embodied technological change. This mirrors the relationship | find between the
product-oriented R& D applied to equipment assets and the rates of technological

change in these assets implied by their relative price movements.

! There is alarge literature seeking to measure the effects of R& D on productivity.
However, the R&D variable that is generally used is R&D done by the firm, industry,
or economy for which productivity is being measured. Thereis also a growing
literature on the productivity effects of R& D spillovers -- that is, R&D done by other
firmsthat are “close” to the firm/industry in question in terms of distance, industry,
production process, input-output linkages, etc.. Though interesting in their own right,
these types of R&D effects are likely to affect disembodied technological change and
thus are separate from the embodied effects of R& D discussed in this paper.
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2. Industry-Specific Estimates of Embodied Technological Change

Using the same sample and model as that used for the regression in Table 2-1,
Column C, but interacting y with an industry dummy variable, | am able to estimate y
separately for each sector/industry. The estimates of y by sector are shown in the third
column of Table 3-1. The estimates seem sensible for the most part with the exception
of some dlightly negative estimates and unrealistically high valuesin Computers (16)
and Electronic Components (19). The negative values are not too disturbing given their
rather high standard errors. They also occur in sectors where one might expect low
levels of embodied technology. It seems reasonable to interpret these negatives as
findings of y=0 for these sectors and thus | replace the negative y’s with zero for
constructing quality-adjusted capital stocks. The very high y’sin sectors 16 and 19 are
most likely aresult of the use of the BEA’s 4-digit level shipments deflators. These
deflators come from the BL S with two key exceptions. computers and semiconductors
(semiconductors are a component of sector 19). | have also tried estimating the model
using the persona consumption expenditures (PCE) deflator (which has some
theoretical justification as discussed in Section 2 of Chapter 2). The results are shown
in the fourth column of Table 3-1. Using the PCE deflator for output resultsin a
strongly negative y for the Computer industry and zero for the Electronic components
industry, results which are clearly unrealistic as are many of the other obtained

estimates. Therefore, throughout this chapter | use the y’sin the third column of Table

60



3-1, with the caveat that the relative rank of y may be more informative than the actual

levels.®

Table3-1 Industry-Level Estimates of Embodied Technological
Change in Manufacturing

Sector

NOoO o~ WDNPRE

10
11
12
13
14
15

16

17

18
19
20
21

22
23

24

Sector Title

Food & Tobacco
Textiles and knitting
Apparel

Paper

Printing & publishing
Chemicals

Petroleum refining &
Fuel Oil

Rubber & Plastic
products

Shoes & leather
Lumber

Furniture

Stone, clay & glass
Primary metals

Metal products
Industrial Equipment,
except computers &
office egp.

Computers & other office
equipment

Electrical eqp. except
communications and elec.
components
Communication
equipment

Electronic components
Motor vehicles & parts
Other transportation
equipment

Scientific Instruments
Other instruments

Miscellaneous
manufacturing

SIC (1987 basis)
20 and 21
22
23
26
27
28
29

30

31

24

25

32

33, 3462, 3463

34, exc. 3462,3463
35, exc SIC'sin sector
16

3571,3572,3575,3577,

3578, 3579
36, exc. 366, 367

366

367
371
37, exc. 371

38, exc. 384, 385
384, 385, 382, 386,
387

39

:\\{ (Pnbef Used)
-0.056 (0.021)
0.098 (0.030)
0.004 (0.025)
-0.064 (0.027)
-0.053 (0.023)
-0.004 (0.024)
0.017 (0.039)

0.084 (0.026)

-0.046 (0.052)
0.007 (0.023)
-0.056 (0.028)
0.006 (0.026)
0.080 (0.029)
-0.005 (0.022)
0.031 (0.024)

2.927 (0.202)

0.049 (0.029)

0.141 (0.044)
0.766 (0.059)
-0.064 (0.028)
0.098 (0.033)

-0.023 (0.034)
0.087 (0.039)

0.029 (0.032)

¥ (Py used)
-0.138 (0.018)
-0.048 (0.026)
-0.063 (0.022)
0.050 (0.028)
0.148 (0.027)
0.059 (0.024)
-0.050 (0.035)

-0.031 (0.022)

0.042 (0.054)
0.113 (0.024)
-0.138 (0.029)
0.056 (0.025)
0.054 (0.027)
-0.008 (0.021)
0.119 (0.024)

-0.220 (0.031)

0.020 (0.027)

-0.044 (0.036)

0.008 (0.031)
-0.004 (0.028)
-0.048 (0.034)

-0.089 (0.031)
0.122 (0.039)

0.058 (0.031)

3. The Relationship Between ¥ and I nvestment Asset Shares

2 Correspondingly, rank (Spearman'’s) correlations will be provided in addition to the

ordinary (Pearson’s) correlations.
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In order to impute nonmanufacturing y’'s as well asto evaluate the sensibility of
their rank across industries, it would be nice if there were observable variables that
vary by industry and which are likely to be proportional to the true rates of embodied
technological change. Since y can be thought of as a weighted average of the rates of
embodied technological change for each particular capital asset, the asset mix of an
industry (from the BEA’s Fixed Reproducible Tangible Wealth data) is one possibility.
However, given only 24 sectors, these asset shares had to be combined into a small
number (n<24 is required for identification if y is regressed on asset shares). Idedly,
we would like to aggregate them into a small number of groups that differ according to
the levels of technology. Thus, the disadvantage of using asset shares isthat the
process of aggregation requires some arbitrary decisions on what assets are considered
“high-tech” vs. “low-tech.”

The NIPA uses an equipment asset breakdown consisting of 4 categories: 1)
“Information processing and related equipment,” 2) “Industrial equipment,” 3)
“Transportation and related equipment,” and 4) “Other equipment” (see Table 5.8 -
NIPA). Using this classification scheme, | aggregate the FRTW’ s data on industries
investment in each of 35 equipment assets to investment by NIPA category. For each
industry, the share of total investment in each of the four asset categoriesis calculated
and averaged from 1972-96.

Our estimates of y were then regressed on the four 1972-96 average asset

shares.®* The results of this regression are shown in Table 3-2. The first column

% These shares sumto 1, therefore a constant cannot be included in this regression in
order to maintain full rank in the regressor matrix.
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contains the R? and coefficient estimates from performing OLS regression. The second
contains the results from a quadratic programming algorithm which finds the
coefficients on the asset shares which minimize the sum of squared errors while
constraining each coefficient to be greater than zero. This was done in order to ensure
that imputed vy’ s for nonmanufacturing would be positive (negative y’s are unrealistic).
The estimated coefficients in the unrestricted case are very imprecise and 3 of the 4 are
negative. The only sensible result of this regression is that the coefficient on
“Information processing” is, as one would expect, is positive (though the standard error
isquite large). The linear programming coefficients seem more realistic, however they
are extremely imprecise. Thus, it appears that a relationship between asset shares and vy
cannot be estimated with a sufficiently high degree of precision to be useful for

imputing rates of embodied technological change in nonmanufacturing.

Table 3-2 Regression of ¥ on Investment Asset Shares

Coefficients Coefficients bounded to be > 0
unbounded
Info. Processing 1.818 (0.947) 0.058 (1.027)
Industrial Equipment -2.043 (1.225) 0.168 (1.329)
Transportation and related -1.396 (3.476) 0.019 (3.770)
Other Equipment -3.215 (3.126) 0.000 (3.391)
R? 0.135 -0.018

4. Embodied R& D asa Proxy for Embodied Technology
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A natural choice for avariable that is likely to be related to y would be the
amount of research and development (R& D) that went into developing the technology
that is embodied in an industry’s capital. As Hulten (1996) putsit: “Most advancesin
knowledge are the result of systematic investments in research and development.” So
if R&D is how technology is produced (I provide evidence of thisin Section 6), then
R&D directed towards the equipment assets used by an industry is the main input into
the “production” of its capital-embodied technology. To capture this notion of
“capital-embodied R&D,” | create two aternative indices which are weighted averages
of past and present R& D done on an industry’s equipment capital. Asopposed to
inferring embodied technology from an industry’s asset composition, embodied R&D
has the advantage of being a single metric which reflects both the changing asset mix
of anindustry’s capital and the technological advances (to the extent they are due to
R&D) that have taken place in each asset type. The hope isthat these indices will be
useful predictors of either the level or the change in embodied technology. We can

define the level of embodied technology for investment of vintage t-s in terms of

equation (2-14) as: q,.. = (1 + V)t_s_to (3

1)
Note that from equation (2-14) it is clear that g refersto the level of embodied
technology per unit of investment.>

Theindices | construct in this paper are related yet very different from the

* As discussed in Chapter 2, the proper unit of measurement for |, is nominal
investment deflated by the PCE deflator.
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typical measures of embodied or “indirect” R&D in capital that are used in the
literature on R&D spillovers. The literature on indirect/embodied R&D is concerned
with measuring the extent to which upstream R& D affects the productivity of
downstream industries. Clearly, process-oriented R& D should exclusively benefit the
industry(ies) who utilize the R& D-induced process innovations and should have no
effect on either the measured or real productivity of those industries who purchase the
R&D performer’s product.

However, the effects of product-oriented R&D (which is the mgority of R&D)
are more complex. As pointed out by Scherer (1982) and Griliches (1979), much of
measured downstream benefits of R&D may be due to measurement error in the price
of capital goods. If prices adjusted fully for quality change, real output for capital
producers and real investment for downstream industries would be augmented to reflect
the increased quality embodied in the capital being produced. One would then expect
to observe the mgjority of productivity gains (if there were any) in the capital-
supplying industry and smaller gains in the downstream industries. The downstream
gains that do occur, known as pure rent spillovers, are the result of price competition in
the upstream industry which prevent the nominal price of newly-invented capital from
increasing in proportion to the increase in quality. On the other hand, if prices do not
adjust for quality, then real output of the supplying industry and real investment of
purchasing industries will be understated. In this case, increases in measured
productivity should show up primarily in the downstream industries. Whether the

downstream measured productivity gains are due to mismeasured capital prices or to
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pure rent spillovers, either way these gains reflect investment-specific technological

change since they would cease to appear if the downstream industry did not invest.
For the purposes of comparison and to avoid confusion with more traditional

measures of embodied R&D, it will be helpful to see the measure of indirect R&D in

capital generaly used in the R& D spillover literature:

IRD,(t) =5 B, (1) EIF\%(J{) (3-2)

j
where B;; isindustry j's sales of capital to industry i, RD; isthe R&D stock for industry

j, and Y; isindustry j's output. The R&D stock is generally measured using a perpetual
inventory accumulation of past and present R& D expenditures assuming some rate of
depreciation. RD/Y isreferred to as“R&D intengity.” Thus, investment in each
upstream industry’ s product is multiplied by the R&D intensity of that industry and
then summed across industries. This measure was developed by Terleckyj (1974) and
has been used in numerous studies.*

A problem with the Terleckyj approach isthat R& D spending (and therefore
R&D stock) by an industry is not necessarily equal to the total R&D done on that
industry’s products.  The use of own-R&D is inappropriate if there are non-zero

off-diagonal elements in the interindustry R&D flows matrix -- i.e., if industries

® Y et another avenue through which upstream R& D could cause downstream
investment-specific technological change is knowledge spillovers, i.e. technological
diffusion from supplier to customer facilitated by their business interactions.

® See, e.g., Scherer (1982, 1984); Goto and Suzuki (1989); Los and V erspagen (2000);
Sveikauskas (2000); and Sakurai, Papaconstantinou, and loannidis (1997).
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perform R&D on products other than their own. There are two reasons to expect thisto

be aproblem. As Griliches and Lichtenberg (1984) point out:

(1) Many of the major R& D performers are conglomerates or reasonably widely
diversified firms. Thus, the R& D reported by them is not necessarily “done” in the
industry they are attributed to. (2) Many firms perform R& D directed at processes and
products used in other industries. Thereis asignificant difference between the

industrial locus of a particular R& D activity, its“origin,” and the ultimate place of use

of the results of such activity, the locus of its productivity effects. (p.466)

Evidence of this can be seen in the NSF s annual tables on applied R& D by industry
and by product field which show numerous large off-diagonal elementsin any given
year. Thus, akey innovation of this paper is the use of product-field R&D rather than
industry own-R& D when measuring embodied R&D.

Surprisingly, though the data is readily available, the NSF data on R&D by
product field has rarely been used in economic studies. When it has been used, for
example in Griliches and Lichtenberg’s study, the productivity effects of product field
R&D are sought within the industry which produces that product rather than in
downstream industries.

For the purposes of predicting either g or vy, the Terleckyj measure is
inappropriate because it uses investment flows (B;) rather than investment shares (i.e.
B; divided by total investment of industry i). That is, q is the level of embodied
technology per unit of investment and therefore should be independent of the scale of
an industry’s investment (as should its growth rate). Thus, in the indices described

below, | use investment shares rather than investment flows.
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Thefirst index | construct is based on the premise that an industry’s g in a given
year is simply a weighted average of the level’s of embodied technology in each of the

capital goods the industry purchases. So, let us define the first index, denoted @, as:

DI = 3 %, (1) @,(1) 69

where X,; is the share of industry i's equipment investment spent on capital good p, and
g, isthe level of technology embodied in capital of asset category (product field) p.
We can proxy for ¢, with a perpetual inventory accumulation of past and present R& D
done on that product field (assuming some depreciation rate), normalized to be 1 in the

base year of the prices used to deflate nominal investment:

q,(t) =[(A-d)q,(t-1) +r,()]/q,(t,.) @9

where d is the assumed rate of depreciation and r, is the R& D spending on product field
p, deflated by the PCE deflator. Given that the real marginal product must be equal
across al types of equipment (a necessary condition for the existence of an equipment
capital stock) and the fact that real units are identical to nominal unitsin the base year,
g, must be equal across p in the base year.

It is possible that the productivity of a new capital good depends on the
composition of capital in place in afirm or industry. Under this hypothesis, past
changes in asset mix should affect an industry’s current level of embodied technology.

An index which allows for this possibility is defined by the following equations:
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®?(t) = (1-d) P2 (t =1) +r (1), where
(3-5
13
(1) = 3 X, (O (1)
Here aweighted average of current R& D spending on capital goods is fed into a
perpetua inventory accumulation. So past R& D as well as past changesin the
composition of an industry’s capital determine the current level of ®2.

An interesting issue is whether ®?2 should be a predictor of ¢, the level of
embodied technology, or for vy;, the growth rate of embodied technology. Perhaps the
composition of capital in place affects not how productive the current vintage of
investment is (relative to the base year), but rather how much more productive the
current vintage is than last year’ s vintage. Thisis left as an open question; in sections 6
and 7, both the level and the growth of @2 will be compared to the Solow Residua and

the estimated rates of ;.

5. Data

The principal source for industrial R& D datain the U.S. is the Survey of
Industrial Research and Development, a survey of companies done by the Census
Bureau and financed by the NSF. This survey has been done on an irregular basis
between 1957 and 1997.% Among other things, the NSF asks respondents how much
R&D they spent in each “product field.” The vast majority of these product fields

correspond to categories of equipment. The industry aggregates of this data are

"1t was not conducted in 65, 66, 69, 78, 80, 82, 84, 86, 88, 90, 92, 94, and 96.
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published in the NSF's Funds for Research and Development in Industry.>®
Unfortunately, there are many holes in the data due to non-disclosure of certain values
and changes in the product field classification over time. These holes were filled in by
imputation using available information in adjacent years. Datafor years in which the
survey was not done were interpolated.

Another discontinuity in the data comes from the fact that after 1983, R&D by
product field was no longer imputed for non-respondents of the survey. Fortunately,
the NSF does supply the coverage ratios so that total R& D by product field can be
approximated under the assumption that non-respondents have a similar product field
decomposition of their total R& D as have respondents. After these adjustments were
made to the raw data, what was left was a matrix of applied R&D by product field for
1957-97. For the purposes of this project | was only interested in the R&D applied to
equipment product fields and thus | omit from this matrix rows corresponding to non-
equipment fields (e.g. Chemicals). The field “Electrical Equipment” contains one
subfield, “Electronic Components,” whose applied R& D consists mainly of
semiconductor research. Inthe LRD (aswell asin the NIPA), semiconductors are
considered an intermediate input rather than a capital asset and therefore | subtracted
out al “Electronic Components’ product field R&D from that of “Electrical
Equipment.”

As discussed in Section 4, the type of R&D that causes downstream

productivity gains is the product-oriented type. Unfortunately, the NSF survey does

8 Hard copies of the tables, one for each year of the survey, containing total R&D by
product field, were generousdly compiled and provided by Raymond Wolfe of the NSF.
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not distinguish between product- and process-oriented R&D. Scherer (1984), however,
does provide a detailed industry-level table of the percentages of issued patents,
sampled between June 1976 and March 1977, that were product-oriented. Using
Scherer’stable, | aggregated these percentages to the NSF product field level by taking
weighted averages of the percentages for the component industries that comprise a
product field. For each component industry, the weight was its 1974 R&D divided by
the 1974 R&D for the product field as awhole. 1974 was the appropriate year here
since the sampled patents were applied for, on average, in 1974. 1t seems reasonable to
assume that the split between process- and product-orientation in patentsis similar to
that in R&D and also that this split isrelatively stable over time. Subject to these
assumptions, the resulting share of each product field’s R&D that is product-oriented is
shown in Table 3-3. The shares are quite high with the lowest, 77.5%, occurring in
“Aircraft and parts.” Multiplying these shares by the corresponding product fields

R&D for 1957-97 givesther(t)’s in equations (3-4) and (3-5) above.
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Table 3-3
Concordance between NSF Product Field and BEA Asset Type

Per cent
Product-

NSF Product Field Oriented BEA Asset Type
Other fabricated metal 83.9 Other fabricated metal products
products
Engines and turbines 91.7 Internal combustion engines

Steam engines

Farm machinery and Agricultural machinery, except tractors

98.3

equipment Farm tractors

Construction tractors
Construction, mining, and Construction machinery, except tractors
materials handling 99.1 General industrial, including materials
machinery handling, equipment

Mining and oilfield machinery
M etalwc_)rklng machinery 98.5 Metalworking machinery
and equipment

Mainframe computers

Personal computers

Direct access storage devices

Office, computing, and Computer printers

accounting machines 945 Computer terminals

Computer tape drives

Computer storage devices

Other office equipment
Other machinery, except % Special industry machinery, n.e.c.
electrical Service industry machinery

Electrical transmission, distribution, and
industrial apparatus
81.8 Communication equipment
Household appliances
Other electrical equipment, n.e.c.
Motor vehicles and 949 Autos
equipment ' Trucks, buses, and truck trailers

Electrical equipment

Other transportation 995 Ships and boats

equipment ' Railroad equipment

Aircraft and parts 77.5 Aircraft

Scientific and mechanica 975  Instruments

measuring instruments

Optical, surgical,

photographic, and other 93.2 Photocopy and related equipment

instruments

The other data ingredient necessary for creating the desired embodied R& D
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indices is a capital flows matrix by year. | use the BEA’s unpublished table of nominal
investment by asset type for 62 industries for 1957-97 provided in the Fixed
Reproducible Tangible Wealth in the United States, 1925-1997.%" Firgt, a many-to-one
mapping was made between the BEA’ s asset types and the NSF s equipment product
fields. This mapping is shown in Table 3-3. The mapping was used to convert the
capital flows matrix to one that is by product field rather than by asset type. Thisflows
matrix was then converted into a coefficients (shares) matrix using the industry
investment totals (over all equipment product fields). The elements of this matrix
correspond to the x,;’s in equations (3-3) and (3-5) above.

The x,;’sand r,’s are used, as prescribed by equations (3-3), (3-4), and (3-5), to
construct each of the two indices. The depreciation rate, d, is assumed to equal 15%,
which is commonly used in the R&D literature when direct R&D stocks are
constructed. Thereis also evidence that, at least for R&D directed towards an
industry’s product (rather than its capital), a depreciation rate closer to zero may be
more appropriate (see Griliches and Lichtenberg (1984)). Therefore, as an dternative,
| also construct indices using a 2% depreciation rate. The choice turns out to have very

little effect on the growth of an index or its correlation with the Solow Residual or

° Investment in non-equipment asset types was dropped from the matrix. Of the 37
BEA asset types, only the 35 which referred to equipment assets were kept. Thus, the
embodied R&D indices | construct exclude R&D embodied in structures. Thisis
appropriate since y refers only to embodied technological change in equipment. In
addition, 4 of the 35 equipments assets were dropped from the matrix as well because
they could not be mapped to any NSF product field. These were “Household
Furniture,” “Other Furniture,” “Nuclear Fuel Rods,” and “Other Nonresidential
Equipment.”
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estimated y. For both of these stocks, a unit bucket adjustment is made to “fill in” the
stock for early periods (see Almon (1998), p. 87).

Table 3-4 shows the annual growth rate of ®* (assuming a 15% depreciation
rate) for each industry from 1972-96, ranked in descending order. 1972-96 isthe
relevant period for comparing embodied R&D to y since y refersto the rate of
embodied technological change between 1972-96. The annual growth for the overall
economy, shown at the bottom of the table, has been about 2%. Notice that services,
particularly financial services, tend to have the fastest growth in embodied R& D while
manufacturing industries exhibit far slower growth. This could be because services
have been changing their capital asset mix, relative to manufacturing, towards higher-
tech equipment (e.g. computers), or because the equipment goods that service
industries traditionally invest in have undergone rapid increases in R&D (causing high
growthin g,), or both. More generally, it would be useful to know for the overall
economy, as well as for individual industries, whether the growth in embodied R& D
over the past few decades is driven more by changes in capital composition or growth
in R&D spending.

The following equation provides just such a decomposition:

AP = OY(T,) - D'(T)
= % qu pi (To) + % Axpi mp (To) + % Axpi mqp
[Equation 3-6]
The first term in the decomposition captures the contribution to total change from

changes in R& D embodied in capital goods holding constant the composition of

capital. The second term gives the contribution from changes in asset mix holding
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constant R& D embodied in specific goods. The third is an interaction term, giving the
contribution from the covariance of changesin R&D embodied in goods with changes
in asset mix. Dividing both sides of (9) by ®(T,) yields a growth rate decomposition.

Figure 3-1 graphs this decomposition for the 1972 to 1997 growth rates across
industries. The industries are ordered from left to right according to their total growth
rate. Thefigure also gives the unweighted averages across industries. The chart shows
that the primary driver of increases in embodied R&D, as measured by ®*, has been
increases in R&D spent on equipment assets rather than changes in asset mix. We can
also see that the difference in embodied R&D growth between those industries with
high growth such as services and those with low growth such as manufacturing, is
primarily due to fact that high growth industries channel a higher fraction of their total
investment into goods whose embodied R&D is growing rapidly. It isnot because they
have been changing the composition of the goods in which they invest.

Recall that the g, s that go into the equation for ®* were normalized, as theory
dictates, to equal one in the base year of the price deflator. Thisis because the real
marginal product of investment must be equal across asset types.® This means that by

construction @(t), which isjust aweighted average of the q,'s, will be one in the base

19 Consider a simple Cobb-Douglas production function where there are two types of
capital goods 1 and 2: Y, = KL where K, = K, ,(1-8) + i g* + i2g% In the base year,
the marginal product of a current dollar’s worth of investment is identical to the
margina product of a constant-quality unit of investment as quality is defined relative
to the base year’s level. The marginal product of a current dollar’ s worth of investment
ingood j (i") iseY /K. Equalizing across goods yields g = ¢?. In non-base years, the
equality between nominal and real marginal products breaks down and thus g* need not
equal of.
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year. Therefore, differences across industries in the level of @ only imply
interindustry differences in the growth of embodied R& D relative the base year.

The base year value of index ®?, on the other hand, does not necessarily have to
be equal across industries nor equal to one. Thisistrue whether ®? is proportional to
the true industry ¢, or to the true industry vy;. Neither g, nor y; must be equal across
industries, even in the base year. Nonetheless, since the actual levels of ®2 (t) are only
meaningful in their relation to index values for other years or industries, | normalize ®?
(t) to be one for the average value (over the 1972-96 period) of the index for the overall
private economy. All ®?s are thus relative to the average extent of R& D embodied in
capital economy-wide.

Table3-4 Growthin ®*

Industry Annual Growth in ®* from 1972-96 |
Federal reserve banks 0.060
Security and commodity brokers 0.057
Financia holding and investment offices 0.056
Legal services 0.054
Educational services 0.054
Nonfinancia holding and investment offices 0.050
Insurance carriers 0.048
Other services, n.e.c. 0.045
Insurance agents, brokers, and service 0.041
Trucking and warehousing 0.039
Local and interurban passenger transit 0.037
Pipelines, except natural gas 0.037
Auto repair, services, and parking 0.032
Wholesale trade 0.031
Construction 0.030
Metal mining 0.029
Other depository institutions 0.028
Miscellaneous repair services 0.028
Transportation services 0.027
Industrial machinery and equipment 0.026
Gas services 0.026
Oil and gas extraction 0.026
Business services 0.025
Water transportation 0.025
Electric services 0.024
Leather and leather products 0.024
Amusement and recreation services 0.024
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Personal services

Agricultural services, forestry, and fishing
Tobacco products

Radio and television

Sanitary services

Retail trade

Nonmetallic minerals, except fuels
Telephone and telegraph

Coal mining

Railroad transportation

Real estate

Nondepository institutions

Health services

Motion pictures

Hotels and other lodging places
Petroleum and coal products

Other transportation equipment
Electronic and other electric equipment
Instruments and related products
Printing and publishing

Farms

Lumber and wood products

Apparel and other textile products
Miscellaneous manufacturing industries
Stone, clay, and glass products
Chemicalsand allied products
Furniture and fixtures

Food and kindred products

Paper and allied products

Primary metal industries

Fabricated metal products

Textile mill products

Rubber and miscellaneous plastics products
Motor vehicles and equipment
Transportation by air

TOTAL

0.024
0.023
0.023
0.022
0.021
0.021
0.021
0.021
0.021
0.020
0.020
0.019
0.019
0.018
0.017
0.017
0.016
0.016
0.016
0.016
0.015
0.015
0.014
0.014
0.014
0.014
0.013
0.013
0.013
0.012
0.009
0.006
0.005
0.005
0.003
0.022

Table 3-5 displays the results of the construction of ®2. Column 2 shows the

mean level of the index over the 1972-96 period. The third column givesits annual

growth rate over the same period. The industries are ordered according to their mean

value of ®% For the overall economy, the growth rate of the index was about 3.3%.

The ranking of industries seems quite reasonable. Transportation by air tops the list
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which is not unexpected since a great deal of R&D is done on airplanes.® One can also

see that the service industries tend to be high on thelist. Though services are not

capital-intensive, what investments they do make tend to be in high-tech equipment

such as computers. The bottom of the list also fits with our a priori notions of which

industries tend to use relatively low-tech equipment. The final four are Construction,

Coal Mining, Trucking and Warehousing, and Farms.

Table3-5 Growth and Mean of ®2

INDUSTRY

Telephone and telegraph

Radio and television

Transportation by air

Security and commodity brokers
Legal services

Trucking and warehousing

Insurance agents, brokers, and service
Financia holding and investment offices
Business services

Local and interurban passenger transit
Hotels and other lodging places

Other services, n.e.c.

Insurance carriers

Nonfinancial holding and investment
offices

Wholesale trade

Pipelines, except natural gas

Auto repair, services, and parking
Other depository institutions

Real estate

Health services

Educational services

Amusement and recreation services
Electric services

Federal reserve banks

Miscellaneous repair services
Personal services

Electronic and other electric equipment
Nondepository institutions

Retail trade

Gas services

Mean ®? from 1972-96

1.644
1.596
1.569
1.286
1.284
1.243
1.238
1.184
1.149
1.124
1.122
1121
1.119
1.115

1101
1.075
1.075
1.072
1.044
1.022
1.020
1.017
1.014
1.004
0.986
0.905
0.880
0.865
0.854
0.847

Annual Growth in ®2

from 1972-96
1.673
1.738
-0.100
4.988
4.713
3.997
4.408
4.473
3.222
2.798
3.999
4.796
3.688
3.752

4.436
2.645
4.489
2.802
4.172
3.568
3.348
2.390
1.751
3.094
6.658
4.252
1.801
5.049
4.177
3.393

1 The value of embodied R&D in “Transportation by air” may be artificialy high since
the R&D on aircraft includes R&D on military planes financed by the Defense

Department.
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Industrial machinery and equipment 0.772 3.763

Apparel and other textile products 0.714 2.008
Other transportation equipment 0.699 4.223
Metal mining 0.678 4.189
Agricultural services, forestry, and 0.676 2.899
fishing

Sanitary services 0.660 4141
Construction 0.637 5.665
Motion pictures 0.620 5.939
Instruments and related products 0.579 6.202
Railroad transportation 0.577 5.414
Stone, clay, and glass products 0.565 4.381
Transportation services 0.564 8.177
Primary metal industries 0.548 2.035
Leather and |eather products 0.548 3.755
Tobacco products 0.528 3.595
Printing and publishing 0.525 3.950
Furniture and fixtures 0.523 3.978
Oil and gas extraction 0.520 4.135
Lumber and wood products 0.507 2.293
Petroleum and coal products 0.501 0.581
Chemicalsand allied products 0.499 2.015
Paper and allied products 0.492 0.995
Food and kindred products 0.486 2.566
Miscellaneous manufacturing industries 0.462 4314
Nonmetallic minerals, except fuels 0.438 0.426
Fabricated metal products 0.382 1.817
Textile mill products 0.358 2.379
Coal mining 0.326 3471
Water transportation 0.321 7.174
Farms 0.307 3.947
Motor vehicles and equipment 0.271 2.976
Rubber and miscellaneous plastics 0.265 2.582
products

TOTAL 1.000 3.303

6. IsEmbodied R& D related to Estimates of Embodied

Technology?

In section 5 | argued that ®* should proxy for the level of embodied technology
and therefore its growth rate should proxy for the rate of embodied technological
change (y). | also argued that either the level or the growth rate of ®? should be
proportiona (though not necessarily serve as aproxy) to y. Table 3-6 shows the

ordinary and Spearman’s rank correlations, among the 22 manufacturing industries,
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between ¥ and each of 3 variables: 1) the 1972-96 annualized growth in ®*, 2) the
1972-96 annualized growth in ®?, and 3) the 1972-96 mean of ®2.%° Neither of the
growth rates appear to be correlated with . Yet, the mean of ®? is positively
correlated with v, with an ordinary correlation coefficient of 0.54, which is significant

at the 99% level. Therank correlation is 0.42, significant at the 95% level .

Table 3-6 Correlation of Embodied R& D and ¥

Pearson’s (ordinary) Spearman’s Rank
Correlation with ¥ (p- Correlation with ¥ (p-
value) value)
1972-96 Annualized 0.070 0.201
Growth rate of @* (0.757) (0.370)
1972-96 Annualized -0.248 -0.183
Growth rate of ®? (0.265) (0.416)
1972-96 Mean of ®? 0.506 0.450
(0.016) (0.036)

Viewed as atest of the reasonableness of the industry-specific estimated rates of
embodied technological change, this exercise yields mixed results. It is encouraging
that we have found strong evidence that these estimated rates are positively and
significantly correlated with observable patterns of R&D spent on capital goods. Yet,
the nature of the correlation is not as one would expect. Whether these results reflect
that interindustry differences in true embodied technological change are proportional to

interindustry differences in the average level of embodied R& D (as defined by ®2), or

12 The correlations shown refer to ®* and ®? constructed using a 15% depreciation rate.
Assuming a 2% rate yields very similar results.

3 Another interesting finding, not shown, isthat the growth in ®* has a Pearson’s
correlation with the mean of ®? of 0.53 and a Spearman’ s rank correlation of 0.62, both
of which are significant at the 99% level.
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whether they imply that our y*s are actually capturing an industry’s level of embodied
technology and not its rate of change, is difficult to say.

A third possibility is that the growth rates of embodied R& D, as measured by
growth in either @' or ®?, are badly mismeasured since the time-series dimensions of
both the BEA capital flows tables and the NSF product field R&D tables are highly
suspect. The annual capital flows tables are based on input-output studiesthat 1) are
only done every five years, and 2) are largely based on the occupational composition of
industries, which may fluctuate due to reasons unrelated to capital mix. The NSF data
underlying the annual R&D by product field tables constructed in this paper have many
missing years that were filled in by interpolation as well as other discontinuities that
had to be dealt with. For these reasons the time series dimension of the indices
constructed in this paper may be less reliable than the cross-sectional dimension. This
is especially problematic for ®* because the normalization that causes @' to equal one
in al industries in the base year impliesits interindustry differences in levels are really
determined by the time series movements. Interindustry differencesin the level of @2,
on the other hand, should be fairly reliable though differences across growth rates may
not be. Nonetheless, this intertemporal measurement error can only explain the lack of
correlation that ®* and the growth of ®? have with ¥; it cannot explain why the mean
level of ®* would actually have a positive and significant correlation.

One way of sorting out whether the positive correlation between @ and ¥ is due
to y measuring the level and not the growth rate of embodied technological change or
rather is due to the level of ®? being a good predictor of the true rate of embodied

technological change, isto go back to the data on product-oriented R&D by product
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field and ask whether it isthe level or growth in R&D that predicts technological
change at the product field level. Of course, there are no observables of true
technological change so one must look to the literature for evidence on the rates of
technological change in equipment assets. Gordon’'s (1990) mgjor study of durable
goods provides alternative price indexes for equipment from 1947-1983 which inter
alia attempt to account for quality change. Hornstein and Krusell (1996) and others,
using a 2-sector model of investment and consumption, argue that the growth rate of
Gordon’s aggregate producer durable equipment (PDE) price index relative to the
consumption deflator is equal to the negative of the rate of embodied technological
change. Thus, one can use the rate of relative price decline of each equipment product
field, according to Gordon’ s indexes, as a proxy for the rate of technological changein
that field.

From the 22 PDE categories for which Gordon constructed price indexes, |
construct 13 Tornqvist price indexes corresponding to the 13 equipment product fields.
| then compute the annual growth rates of these prices relative to the PCE deflator from
1957 (the R& D data does not begin until 1957) to 1983. These growth rates can be
compared to the levels and growth rates of the r,’s and g,'s constructed above. It
should be noted that an equipment asset’s relative price may fluctuate not only due to
technological change but also due to substitution effects between equipment assets.
However, one would expect substitution between such broad product fields as those in
Table 3-3 to be quite limited.

Table 3-7 shows the ordinary and rank correlations between the relative decline

of Gordon’s price indexes to three variables defined over the 1957-1983 period: 1)
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growth of g, 2) growth of r,, and 3) mean of r,. The correlations are perfectly
consistent with those found in Table 3-6. Again, it is the mean level of R&D and not
its growth rate that is strongly related to technological growth. The mean of product-
oriented R& D applied to an equipment type (r,) has a negative correlation with the
growth rate of that equipment type'srelative price of -0.504 (significant at the 10%
level) and a negative rank correlation of -0.674 (significant at the 5% level). The

correlations pertaining to other two variables are insignificantly different from zero.

Table 3-7

Correlations between R& D Stocks and Relative Price Change

Pearson’s (ordinary) Spearman’s Rank Correlation
Correlation with the relative with the relative growth rate
growth rate of Gordon's price  of Gordon'’s price indexes (p-

indexes (p-value) value)
Annual growth 0.016 0.206
from 1957-83 in q, (0.958) (0.498)
Annual growth -0.115 0.185
from 1957-83inr, (0.710) (0.546)
Meanr, over 1957- -0.504 -0.674
83 (0.079) (0.012)

7. Relationship Between Embodied R& D and the Solow Residual

To further investigate whether the positive correlation found above between
(average) @2 and ¥ isindicative of atrue relationship between ®? and embodied

technological change, we can see if €ither the growth or level of ®2 is a good predictor



of the Solow Residual.®? If there is embodied technological change, the Solow

Residua (SRD) will be an upwardly biased estimator of true total factor productivity
(TFP) growth. Thishiasislarger the larger isy. Therefore, if the indices are positively
proportiona to the true vy, then they should have a positive effect on SRD.

The panel nature of the measured data on ®* or ®? allows us to separately
investigate the effect of these indices on SRD over the cross-industry dimension
(emphasizing long-run/growth patterns), the time-series dimension (emphasizing short-
run fluctuations), or both.®® The cross-industry relationship can be estimated using a
“between” regression which regresses the intertemporal mean of the dependent variable
on the intertemporal mean of the regressor. A “within” regression isolates the time-
series relationship by regressing the dependent variable net of its intertemporal mean
on asimilarly demeaned regressor. Lastly, | estimate the total effect via afirst-
difference regression: the change in the dependent variable between t and t-1 regressed
on the change in the independent variable. The first-differencing smply allows for the

intercept to vary by industry.

4 Defined asdlog(Y) - ¢ dlog(L) - cdlog(J) - csdlog(S) - (1- ¢, - c;-cs)dlog(M), where
Y isgross output, L islabor, Jis equipment, Sis structures, and M is materials. ¢ is
the share of input i in total costs. Data on real equipment investment, structures
investment, and materials come from the BEA. Equipment and structures capital
stocks were constructed via the perpetual inventory methods using industry-level
physical depreciation schedules derived from the Federal Reserve Board' s Capital
Stock study (Mohr and Gilbert (1996)). Cost shares for equipment and structures are
constructed according to the Hall-Jorgenson user cost of capital formula using data
from BEA. Dataon rea output, labor, and hourly labor compensation come from
either the Annual Survey of Manufacturers (Census), Bureau of Labor Statistics (BLYS),
or the BEA depending on the industry. See Appendix B for alist of data sources for
output.

1> See Griliches and Mairesse (1995) for a discussion of the advantages and
disadvantages of different panel data estimation techniques.
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Table 3-8 shows the results from estimating these three different types of
regressions. The dependent variable in these regressions is the Solow Residual. The
first column lists the independent variable used. The estimated coefficient (and
standard error) on that variable, when al industries are included in the regression, is
shown in the second column. The independent variable (aside from the constant),
which is denoted X in the table, is one of the three variables whose average | compared
to ¥ in Section 6 and Table 3-6. They are the level of ®?, the growth of ®?2, and the
growth of ®. The signs and confidence intervals found in the between regression,
which is the most comparable to the simple correlations of Table 3-6, are quite similar
to those estimated correlations.* Y et again, the mean of ®? is the only variable found
to be positive and significant. This seemsto lend even further support to the hypothesis
that the positive correlation found between ¥y and the mean level of ®? is due to @2
being a good predictor of true embodied technological change, rather than y

inadvertently capturing the level and not the growth in embodied technology.

1 The R? for this regression is 0.22, implying that 22% of the cross-industry variation
in the Solow Residual can be explained by variation in embodied R&D as measured by
@2,
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Table 3-8 Regressions of Solow Residual on Embodied R& D

Estimate of B, (std error): Estimate of B, (std error):

X All Industries (n=55) M anufacturing Subset (n=32)
“Between” Regression: SR—DI = Bo + Bl DTI +€
P2 0.518"" (0.135) 0.544 (0.333)
dlog(®?) -0.139 (0.089) -0.211 (0.144)
dlog(®?) -1.327 (8.312) -21.314 (17.995)
“Within” Regression: SRDit —SR—Di = Bo + Bl mx " _X_.) +E
P2 0.001 (0.002) 0.0055" (0.0027)
dlog(®?) 0.032" (0.018) 0.0214 (0.0217)
dlog(®?) -0.002 (0.021) -0.0010 (0.0238)
Total/First-difference: SRD, —SRD, , = B, +B, [[X, =X, ) +€,
P2 0.030° (0.017) 0.0563" (0.0260)
dlog(®?) 0.035" (0.018) 0.0555™" (0.0212)
dlog(®?Y) 0.017 (0.025) 0.0077 (0.0324)

" - dignificant at the 10% level.
" - dgnificant at the 5% level.
™" - dignificant at the 1% level.

The within and first-difference regressions find no significant effect of these
indices on SRD. This may be due to the intertemporal measurement errors, discussed
above, that are likely in the data on ®* and 2.

On the Solow Residual side of the equation, data, particularly real output data,
outside of manufacturing is generally considered less reliable than manufacturing data.
Thus, the third column gives the estimated coefficients obtained when only

manufacturing industries are included. Now, ®? shows up as positive and significant in
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all three types of regressions (although in the between regression its coefficient is no
longer significant at the 5% level but rather at the 10%). With but one exception, the
growth rate of ®* or ®? again has no significant effect on SRD. The one exception is
the growth rate of ®? in the first-difference regression.

These results are quite consistent with other studies on indirect R& D which
generally find stronger effects on productivity in the cross-section than in the time-
series. Interestingly, the results are also very smilar to the findings of Bartelsman,
Caballero, and Lyons (1994). They find that upstream suppliers activity (as measured
by cost-share-weighted input growth) does not have a significant effect on downstream
productivity in their within estimates but does in their between estimates. It is possible
that upstream activity is simply a good predictor of upstream R&D spending (or more
broadly, upstream innovation), for they are certain to be correlated. Then, under the
joint hypothesis that embodied R& D, as measured by ®2, is proportional to embodied
technological change and that capital good price deflators do not fully account for
quality change, some of what Bartelsman, et a. find may be due to “spillovers’
stemming from this price mismeasurement -- the same spillovers that cause upstream
embodied R&D to have downstream effects on measured productivity.

Given our relative confidence in the measurement of the across-time means of
@2, and their demonstrated correlation with ¥ and the Solow Residual, | then use these
means to impute y’s for nonmanufacturing industries (where y‘s are not available) via

the estimated relationship obtained from a linear regression across manufacturing
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industries of ¥ on a constant and the 1972-96 mean of ®2.%° This regression yielded the
following:

7 =-0.036 + 0.054x(mean ®?); R? = 0.060.
(0.047) (0.051)

The imputed values of y for nonmanufacturing sectors, computed using this
estimated relationship, are shown in Table 3-9. There were five negative imputed
values which were replaced with zero’s. The y’srange from 0 to 11%. The
magnitudes and the cross-sectoral ranking of these rates of embodied technological

change seem quite reasonable.

7 For this regression, | exclude “Computers’ and “Electronic Components’ which have
unrealistic outlier y*s of 2.93 and 0.77, respectively.
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Table 3-9 Imputed y’sfor Nonmanufacturing sectors

Sector Name Y
Agriculture, forestry, and fisheries 0.008
Metal mining 0.025
Coa mining 0.000
Natural Gas and Crude Petroleum extraction 0.011
Non-metallic mining 0.003
Construction 0.021
Railroads 0.016
Air transport 0.106
Other transportation 0.055
Communication services 0.111
Electric utilities 0.056
Gas utilities, and water and sanitary services 0.032
Wholesale trade 0.064
Retall trade, and restaurant and bars 0.041
Finance and Insurance 0.064
Real Estate 0.058
Hotels, and personal and repair services (exc. auto) 0.055
Business services 0.074
Automobile services 0.061
Movies and amusement parks 0.038
Medical services 0.056
Education, social services, membership organizations 0.061

8. Conclusion

Thetitle of this chapter asks “Is embodied technology the result of upstream
R&D?" The answer seemsto be a cautious yes. If the R&D applied to an industry’s
capital goods is not the actual cause of the industry’s embodied technological change, it
is at the very least highly correlated with whatever the true cause or causes are. Thisis
evidenced by the finding that the extent of R&D embodied in an industry’s capita is
highly correlated with both the industry’ s estimated rate of embodied technological

change as well as the industry’ s productivity growth as measured by the Solow
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Residual. Furthermore, the extent of R& D applied to a particular capital good is found
to be highly correlated to the relative decline in the price of that good, providing further
evidence that technological advances in capital are the result of R&D oriented toward
the creation of new capital goods. Asfor the possibility of reverse causation, given the
lags between R&D and innovation it is difficult to imagine how increasesin an
industry’s embodied technology could actually cause increased past and present R&D
spending by upstream capital goods suppliers.

The results of this chapter show that data on upstream product-field R&D can
be used to measure the relative differences among industries in their rates of embodied
technological change, which are an inherently unobservable. Armed with estimates of
embodied technological change in manufacturing industries, where plant-level
longitudinal datais available, | was able to use the constructed measures of embodied
R&D to impute rates of embodied technologica change for nonmanufacturing
industries. Thus, aside from its other contributions, this chapter provides the first
industry-level estimates of embodied technological change spanning the entire private
economy. With these estimates in hand, we are now ready to construct industry-level,
productive equipment capital stocks and then use them to help estimate labor

productivity equations,
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Chapter 4

Embodying Embodiment in IDLIFT

1. Introduction

This chapter discusses proposed changesto IDLIFT, alarge-scale structural
macroeconomic model of the U.S. Firgt, it provides some background into the structure
of IDLIFT and the economic philosophy behind it. It then describes an effort to find a
labor productivity equation for IDLIFT that follows the Neoclassical production theory,

fits the industry-level time-series data well, and has sensible coefficients.

2. Brief Overview of IDLIFT

A. Inforum Modeling in General

Since its founding in 1967 by Clopper Almon, Inforum® has been building, and
encouraging others to build, regression-based structural macroeconomic models based
on input-output relationships between industries. Inforum maintains two large-scale
U.S. macro models (though one is essentially a more detailed extension of the other), a
U.S. demographics projections model, and a bilateral trade model. It also works with
partners from other countries in building and maintaining their own country models
based on the Inforum modeling framework. Many of these are actually linked to the
U.S. models viathe bilateral trade model. Such arich network of international and

interindustry linkages makes Inforum models quite useful for a broad array of policy

! Interindustry Forecasting at the University of Maryland.
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analysis. These linkages are also quite helpful in making successful long-term
forecasts since both trade and input-output coefficients have important low-frequency
movements over time.

Inforum models are members of the family of large-scale, regression-based
macro models that also includes well-known U.S. models built by the Federal Reserve,
Macroeconomic Advisers (formerly Laurence Meyer & Associates), DRI-McGraw-
Hill, and WEFA. The builders of these models all share the belief that for long-term
forecasting and policy analysis, large-scale models (with hundreds of structural
equations and identities) based on economic intuition are preferable to models with far
fewer reduced-form equations based solely on past data. The latter approach was put
forth by Christopher Sims' (1980) influential Econometrica article which summarized
the various arguments against large-scale macro models and introduced vector
autoregression (VAR) as an alternative. This article, combined with the well-known
Lucas (1976) critique, had quite a dampening effect on the production and influence of
structural models, particularly in the 1980's. Though the reputation and usage of these
models has never fully recovered from these theoretical attacks, their responsesto the
valid parts of the criticisms contained in these attacks as well as the lack of any viable

alternatives have kept large-scale macro models alive and well into the new century.®’

2 The VAR approach cannot be considered a viable alternative primarily because the
estimation of a VAR system containing the hundreds, perhaps even thousands, of
variables in many large-scale macro models is presently infeasible, both in terms of
computational ability and theory. In addition, most VAR models used today
incorporate Bayesian a priori assumptions that are arguably as questionable as the
assumptions of the structural model builder. Moreover, “conditional” forecasts, i.e.
those conditional on assumptions regarding policymaker behavior can only be done
with a structural model, making nonstructural approaches like VAR ineffective for
policy analysis (see Diebold (1998)).
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On the opposite end of the spectrum of macroeconomic modeling from VAR
are computable general equilibrium (CGE) models (of which the recent dynamic
stochastic general equilibrium models are members). Not only are the functional forms
of a CGE model’s structural behaviora equations specified a priori by the model
builder, as is the case with large-scale macro models, but the parameters of these
equations are typically specified a priori aswell. Moreover, the “structural equations”
specified in a CGE model are generaly of an altogether different nature than those of a
large-scale macro model. The equations of a CGE model generally consist of the
underlying utility and production functions at the microeconomic level. The
parameters, of whose values CGE modelers believe they have a priori knowledge, are
the fundamental taste and technology determinants.®

Regression-based structural macro models such as Inforun' sthuslie
somewhere between the CGE and VAR modeling approaches. They rely upon the
notion that we, as economists, do have some vauable insight into the mechanisms of
the economy but do not have an exact idea of the quantitative substance of these
mechanisms. Hence, our economic intuition/theory can go along way in helping us
evaluate policy and predict the future course of the economy, yet we must rely on past
data to better quantify our intuition.

The Inforum modeling philosophy differs from other large-scale macro models
primarily in its utilization of input-output information in forming the overall structure

of its models. Their input-output (10) structure is both the blessing and the curse of

3 Calibration exercises are sometimes done to “estimate” these parameters, but this
“estimation” cannot be said to be probabilistic in the sense that structural equations of
large-scale macro models are probabilistically estimated (via regression).
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these models. The curse is the tremendous effort required to maintain an adequate data
foundation. However, as mentioned above, the IO structure allows arich array of
policy questions to be answered with the model, such as the overall effect on the steel
industry of raising interest rates, incorporating the effect of interest rate hikes on the
demand for both consumer and producer durables (e.g. automobiles). The 10 structure
also alows for a bottom-up approach to modeling the economy. That is, economic
variables such as output and prices can be forecast at the industry-level, rather than
economy-wide, and then aggregated to the macro-level. Thus, the IO structure of an

Inforum model allowsit to function in line with how the economy actually behaves.

B. ThelDLIFT Framework in Particular

Inforum’s main model of the U.S. economy is IDLIFT, which is presently in the
process of replacing its predecessor, LIFT (Long-term Interindustry Forecasting
Tool).® In this section, | will discuss the general structure of the IDLIFT model as it
currently stands. For adiscussion of how IDLIFT differs fromthe LIFT model and
planned future changes to the model (aside from those proposed in this dissertation),
see Meade (1999).

The IDLIFT model forecasts output, employment, prices, exports, imports and
interindustry flows for 97 commodity sectors (50 of which are in manufacturing);
personal consumption expenditures (PCE) for 92 categories; equipment investment by

55 industries, construction spending for 19 categories; and the components of value-

*The“ID” stands for Interdyme, the C++ framework developed at Inforum for building
interindustry dynamic macroeconomic models (LIFT was built using Fortran).
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added for 51 industries.” In addition, the model provides a full accounting of the
macroeconomy. Macroeconomic variables such as the personal savings rate or the 3-
month Treasury bill rate are estimated econometrically. Others are determined
according to national accounting identities and still others are given to the model
exogenously.

The overal structure of the model is based on the national accounting system
embodied in the U.S. national income and product accounts (NIPA). Thereisareal
side and aprice side. Onthereal side, each component of final demand (i.e., the usual
C+I+G+X-M) ismodeled at the various levels of disaggregation mentioned above
using structural behavioral equations. The disaggregate, sectoral equations have been
estimated individually (as is the case with the labor productivity equations) or as a
system (such as the PADS demand system for the consumption equations) using mainly
industry-level time series data. Bridge matrices convert each of these final demand
components from their particular level of disaggregation to the 97-sector commodity
level. Sectoral (gross) output is then determined according to the fundamental input-

output equation:

g=Ag+f, (4.1)

where q isa 97x1 vector of output, A isthe intermediate coefficient matrix (also called

the input-output matrix or the requirements matrix), and f is the vector of final demand:

.= HE G, +HS +H

S
97x1 97x92 ~92x1 9755 55x1 97 X19 %g X

) (4.2
+|97><1 + X97x1 _rna7x1 + g97x1'

® These classification systems provide complete coverage of the economy.
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The subscripts indicate the dimension of each matrix or vector. Here c denotes the
consumption vector, eq denotes equipment investment by purchaser, s structures
investment (construction) by type of structure, i inventory change, x exports, mimports,
and g government spending.” H’ is the bridge matrix for component j. A bridge matrix
simply provides the concordance between two different sectoring schemes. All of the
variables in equations (1) and (2) should rightly have time subscripts as well, including
the A and H matrices which vary according to trends in the across-the-row totals. A
detailed discussion of the equations or systems that forecast the components of the final
demand vector is beyond the scope of this chapter.™

Given the forecasted vector of output (g°), employment (number of jobs) by

sector is computed as.

n=q I , (4.3)

(a/¢) ) n

where /is hours worked. An asterisk indicates that a variable is forecasted by the

model. For instance, /is not avariable in the model per se (it is determined by identity

® In the model, government spending is actually decomposed into 5 components such as
state and local spending, defense spending, etc. The macro-level of these components
are generally exogenous to the model; the exogenous macro values are shared-out to
the 97 sector level using the sectors' shares of that component of government spending
from the most recent year of available data.

" For such a discussion, see Meade (1999).
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once [4n]” and n" are forecasted), but the average hours per job (4/n) and labor
productivity (g/4) are. Employment forecasts, together with forecasts of the labor force,
determine the unemployment rate, a key variable in the model. Aside from being
extremely interesting in its own right, the unemployment rate affects many
macroeconomic and industry equations on both the real and the income side of the
model. By extension, then, it is evident that labor productivity is akey driver of the
model (both through its effect on the model’ s unemployment rate and through its own
direct presence in many model equations). The wide-ranging and powerful influence of
the labor productivity equationsin IDLIFT must be kept in mind throughout the
chapter. It isthe main motivation for the work proposed below.

On the income/price side of the model, prices at the 97-sector level are
determined according to equations modeling the markups over unit intermediate and
labor costs. Given this forecasted price row vector p (1x97), value added by
commodity sector is calculated as aresidual using the dual of the fundamental input-

output equation:

p=pA+V. (4.9)

The components of value added (corporate profits, inventory valuation
adjustment, capital consumption adjustment, net interest income, rental income,
indirect taxes, government subsidies, and the big one: labor compensation) are each
modeled separately. The forecasted values of the capital income components
(everything except labor compensation) are then scaled to be consistent with equation
(4.4) and the markup forecasts. Hourly labor compensation is modeled as a function of
the growth in M2/GNP, the growth in labor productivity, and a supply shock (it is
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then multiplied by the forecast of the labor hours requirement, 4, from the real side). So
we can see that labor productivity gets its hands dirty on the income side of the model

aswell.

3. The Problem and Need for Change

With its considerable influence on labor compensation on the income side and
employment and the savings rate on the real side, it should be evident by now that labor
productivity is one of the most important variables in the IDLIFT model (aswell as
virtually any other large-scale structural macro model). Currently, the IDLIFT model’s
labor productivity equations are determined essentialy by time trends and the
difference between industry output and its previous peak, and does not contain any

factor inputs as explanatory variables:
In(q' /1') = B, + Bt, + B;t, + Baup + Bagdown  (s)

where: t, = alinear time trend starting in the first year of data;
t, = asecond time trend, starting in 1972;
qup, = dqg,, when dg, > 0, O otherwise;
gdown, = -dq,, when dg, < 0, 0 otherwise;
da, = In(q) - In(gpeak,,);
gpeak, = q,, if g, > qpeak, ,(1-spill), otherwise = gpeak, ,(1-spill);
spill = depreciation rate of capacity;

and i indexes the 55 industries/sectors.
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Inforum has long had difficulty building into its models a sensible relationship
between investment and labor productivity. Given that labor productivity is the key
driver of the long-run output growth behavior of the model, the lack of an influence
from investment or capital stock islamentable. Virtually any neoclassical-based
growth model attributes a substantial share of output growth to the growth of capital.
Its omission from Inforum models, IDLIFT in particular, is due neither to a disbelief in
neoclassical production theory nor to alack of effort.

Many valiant attempts have been made over the years to develop and estimate
productivity equations based on firm optimization behavior that incorporate the effects
of changes in capital stock. These attempts have generally been foiled by one of two
problems. First, in industry(sector)-level time-series regressions (with which the
IDLIFT equations are typically estimated), the capital coefficient is often found to be
either negative or positive but very close to zero (particularly in service sectors).
Second, because the investment equations in IDLIFT have always been of aflexible
accelerator-type nature (i.e. driven largely by current and lagged changes in output),
the introduction of investment (via capital stock) into the productivity equations
provided a seed for the explosion of output in the model’s forecast. Any exogenous
positive shock to the model caused output to grow, which caused investment to grow,
which caused labor productivity to grow, which caused output to grow (mainly through
productivity' s increasing of the wage rate which lowers the savings rate which thus
spurs consumption, the largest component of final demand),...ad infinitum. The model
has lacked a supply constraint (such as a nonconvex adjustment cost in the investment

equations) to put the brakes on investment and stabilize outpuit.
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For these reasons, IDLIFT’ s labor productivity equations (as well as those of other

Inforum-type models) have heretofore remained essentially a series of time trends.

Inforum’s discontent with this situation has been around since its inception, as

demonstrated here by the words of Almon (1969) describing an early version of

IDLIFT’ s predecessor, LIFT:

Until recently, our model has used exogenous projections of labor productivity which were
based on simple extrapolations of past trend. This practice |eft an awkward holein the middle
of themodel. For on the one hand, the endogenous generation of investment by industry was
one of the distinguishing features of the model; and on the other hand, the growth in labor
productivity essentially determines the overall growth projection given by the model. Even
the most casua observation suggests that capital investment has something to do with the
increase in labor productivity. Therefore, the absence of any connection between thetwo in
the model struck people as a clear indication of ineptitude, or at least indolence on our part.

Thetruthisthat it is easier to recognize that there must be some connection than to
measure the connection. We have made a number of false starts on the problem. ... At length,
we gave up the production approach to labor productivity -- although we retain it for capital
investment -- because we couldn’t make it work as well as the simple time trend equation.
(Italics added).

The above statement was quoted in Meade (1999) who went on to say: “Thirty

years have passed since this remark, and we are no closer to alabor productivity

equation that incorporates capital, research and development or any other significant

influence we believe should be working.” Developing just such an equation was one of

the main motivations for the work presented in Chapters 2 and 3. It is argued below

that the fruit of that work has allowed us to incorporate a Neoclassically-based Iabor

productivity equation into IDLIFT while exceeding the fit and simulation properties of

the former trend-based productivity equation.
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The maintained hypothesis has been that one of the key problems with finding a
successful Neoclassical equation has been mismeasurement of capital due to
unobserved changes in embodied technology. It iswell-known that classical
measurement error causes an attenuation bias on the coefficient associated with the
mismeasured independent variable. In fact, the problemis even worse. The
measurement error in equipment capital that is caused by ignoring embodied
technological change is not random; it is systematically related to the intertemporal
investment distribution. The error will be greater the more an industry’s capital is
comprised of recent vintages. Recent investment will be positively correlated with
other factor inputs such aslabor. Thiswill lead to an upward bias in the estimated
labor elasticity. Furthermore, if constant returns to scale are imposed, this positive bias
in labor elasticity imply alower capital elasticity (in a value-added production
function).

Thus, in order to correct this measurement problem, in the next section | construct
quality-adjusted capital stocks using the y’s found in Chapters 2 and 3 (estimated for
manufacturing sectors, imputed for nonmanufacturing sectors). | then, in Section 5,
estimate various labor productivity equations, some of which attempt to avoid the
measurement error either by using the quality-adjusted capital stocks or by including
the stock of embodied R&D along with unadjusted capital stock as an independent

variable.

4. Constructing Quality-Adjusted Capital Stocks
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At this point, it isimportant to be explicit about the objective | have in mind when
constructing industry-level equipment capital stocks. The objective is not simply to
produce historical time series of capital stocks that adjust for embodied technological
change. If that were the case, one could simply use time series data on historical
investment (from BEA), the estimated rates of embodied technologica change from
Chapters 2 and 3, and physical depreciation (constructed in Chapter 2 using FRB/BLS
methodology) and apply the formula given in Equation (2-14). However, the fact that
these stocks will need to be forecast in the IDLIFT model introduces a complication
into how they must be constructed. The physical depreciation schedules, D,
constructed in Chapter 2 and used to estimate embodied technological change (y) are
functions of both year and age. In order to “forecast” physical depreciation for future
years, one must make some assumption regarding how D, will vary over t in the
future.

What is needed is atime-invariant physical depreciation pattern to apply to the
forecasted investment flows. One would also like this pattern to match as closely as
possible the FRB/BLS physical depreciation schedules since these schedules were used
in estimating v with the plant-level data. Thus, | use the average (over years and
industries) age profile from those schedules (see Figure 2-2).

The average profile has areverse-S shape. What | needed was a function with a
minimal number of parameters that could mimic this reverse-S shape. | found such a
function in the “ cascading buckets’ concept which is frequently utilized by users of the
G regression software package (the package | used to estimate the time-series labor

productivity equations). A cascading buckets system is a combination of several
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“bucket” functions. A single bucket is created by the use of the @cum function in G.
The statement, k, = @cum(k,, i,, 2), defines the variable k, by the following equations:

k=0; k=@1-2k,+i, vt>0 (4-

6)

The reverse-S shape can be obtained by a “cascading” of two or buckets, i.e. by having
the outflow of the first bucket (here, zk, ;) be the inflow (here, i,) into the next bucket,
then the outflow of the second bucket be the inflow into a third bucket, and so on....
The final function is the sum of these buckets.

In fact, even more variety of shape can be obtained by letting the inflow into the
lower (i.e. second, third, ...) bucket “splatter out” or “miss’ some of the lower bucket so
that only (z-¢) k., actualy flowsinto it (and ek, islost). Allowing some “splatter”
turns out to be quite necessary for fitting the average physical depreciation schedule
because without the splatter there would be no decrease in efficiency over the first N-1
years, where N is the number of buckets (i.e. without splatter, nothings falls out of the
bucket system until there is no longer alower bucket to catch the last bucket’s
outflow). A decrease in efficiency beginning in the first year is a property of the age-
efficiency schedule I am trying to fit.

Using the following three-bucket system, | was able to very closely replicate the
age profile implied by the average physical depreciation schedule shown in Figure 2-2:

bl = @cum(bl, drop, A)

b2 = @cum(b2, b1[1]*B, C)

b3 = @cum(b3, b2[1]*A, C)
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where drop isavariable that is one at age 0 and zero thereafter and the notation [1]
indicates alag of 1 period.” Allowing B<A resultsin some of the outflow from b1 to
splatter out or miss b2 allowing for efficiency loss immediately after the first year. |
performed a grid search to find the parameters A,B, and C which resulted in the lowest
sum of squared errors (SSE). The values A=.14, B=.129, and C=.3 led to a SSE <
0.001. Figure 4-1 shows the fitted values from this cascading bucket versus the actual
depreciation schedule. Clearly, thefit is extremely close. This three-bucket system
with the above parameter values became the D, . used in the definition of the
equipment capital stock given in equation (2-14). Now, rather than drop going into the
first bucket, the actual equipment investment (adjusted for embodied technological
change) flowsin:

vi = (egicu/pced)* (1 + y)**

bl = @cum(bl, vi, 0.14)

b2 = @cum(b2, b1[1]*0.129, 0.3)

b3 = @cum(b3, b2[1]*0.14, 0.3)

J=bl+b2+Db3
where eqgicu is equipment investment in current dollar, pced is the PCE deflator, vi is
vintage equipment investment adjusted for embodied technological change assumed to

take place at therate vy, and J is the resulting quality-adjusted equipment capital stock.

5. Alternative Labor Productivity Equations

8 Actually, drop(0) is set equal to 0.989, the value of the average physical depreciation
schedule at age 0. Thisvalueis dightly less than one due to the fact that the FRB
allows for some wear-out in the first year of a capital good's life.
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In this section, | perform a sort of “horse race” on severa aternative equations and
evaluate their performance in terms of average fit and the signs and magnitudes of the
coefficient estimates. This approach of estimating a number of specific equations that
are special cases of amore general model and choosing a single equation for
forecasting based on economic and statistical criteria, is sSimilar to the general-to-
specific modeling approach recommended by David Hendry (2000).” The results
indicate that equations using the quality-adjusted equipment stocks seem to outperform

identical equations which use unadjusted stocks.

A. Equationsin Log-Levels and Including Materials

In this subsection, | estimate 11 different specifications of alabor productivity
equation for each of the 55 sectorsin the IDLIFT investment sectoring scheme.” The
average adjusted R?, average estimated coefficients, and percent of coefficients that are
positive are shown in Figures 4-2 through 4-5. With the exception of the former
IDLIFT specification, all of the specifications are derived from a standard Cobb-

Douglas Neoclassical production function:

Q: = Mi? LiBt NARH (47

® General-to-specific modeling is also known as the L SE methodology. For references
to thisliterature, see Hendry (1997), Hendry (1995), Hendry and Clements (1996),
Hoover and Perez (1999), Ericsson and Marquez (1998), Cook and Hendry (1993). For
a critique of general-to-specific modeling, see Faust and Whiteman (1997).

19 Actually industries 6 (Construction) and 55 (Scrap and used equipment) are omitted
due to lack of data.
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The table below (4-1) gives a guide to the notation used in this equation as well as the

other equationsin this section.

Table4-1 Notation Guide

Variable Abbreviation Elasticity of Output with
respect to the variable

Real Output (log) Q) -
Real Materials, including Energy (log) M (m) C)
Labor (log) L (9

Real Equipment Stock (log) J () o
Real Structures Stock (log) S(9) n
Embodied R&D Index (log) R(r) o
Real Energy Expenditures E (e) --
Elasticity of Energy/Capital w.r.t. Utilization T -

Some specifications attempt to proxy for unobserved variation in capital utilization in
the manner as was done in Chapter 2 (see equations (2-11) and (2-12)). Asdescribed in
Chapter 2, the utilization rate of equipment is assumed to be an increasing function of
the energy-equipment ratio (likewise for the utilization rate of structures). It is
assumed that in order to increase utilization by 1%, one must increase the energy-
equipment ratio by t%. The special case T = ~» means that there is no variation in
utilization; T = 1 means energy use is perfectly proportional to capital services; and t =
0 means an infinitesimal change in the energy-equipment ratio will fully adjust
utilization to the desired level.

The eleven specifications that | compare are as follows (the number preceding
each will be used hereafter as labels):

1) Standard Neoclassical, Cobb-Douglas Production Function:
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q-¢=b, +(B -1)¢ +6m +qj +ns

2) Standard and adjusting to control for utilization using energy:

10, 0@ U a(t- n(t- WD
(=D, 1
q- +%D DE D% @"' AIE‘

Bt Bt ]

3) Standard with constant returns to scale (RTS) imposed:

q-¢=h, +8(m—{) +a() —£) (s ~)

4) Standard with constant RTS and adjusting for utilization using energy:

g-¢=h, +6(m-7) +(a(TT_1)j(j — /) +(n(TT_1)j(s—€) +(a :nj(e—é)

5) Old IDLIFT equation:
/-q=b,+ a*t+ a*t*+ a,*qup + a,*qdown
where qup and gdown are defined in equation (4.5).
6) Same as 1 but with J not adjusted for embodied technological change (i.e. Jis
constructed with y=0 for all sectors).
7) Same as 2 but with J not adjusted for embodied technological change (i.e. Jis

constructed with y=0 for all sectors).
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8) Same as 3 but with J not adjusted for embodied technological change (i.e. Jis
constructed with y=0 for all sectors).
9) Same as 4 but with J not adjusted for embodied technological change (i.e. Jis
constructed with y=0 for all sectors).

10) Same as 8 but also include the log of embodied R&D:

q-{=b, +8(m—-{) +a(] —() +n(s () +o(r )
Here | assume that factor payments must be made to embodied technology just as they
are for traditional capital and any other internal factor of production (i.e. embodied
R&D is not apublic good or externality), therefore constant RTS now means 5+ 0+ «
+n+o=1

11) Same as 10 but adjusting for utilization using energy

q-/=h, +6(m-Y) +(@)(j - 1) +(@j(s—£) +(G :nj(e—ﬁ) +o(r —7)

It should be noted that in this equation the embodied R& D index, unlike the stocks of

equipment and structures, is assumed to have a constant rate of utilization.

Figures 4-2 through 4-5 summarize the results of estimating these 11 equations for
all of the 55 sectorsin IDLIFT (spanning the U.S. private economy). Given that data
mismeasurement is generally considered to be more serious in nonmanufacturing
industries and that the y’s used for constructing equipment stock in these industries are
imputed, it is helpful to look also at the results separately just for nonmanufacturing
sectors. Thus, results for the subset of nonmanufacturing industries are summarized in
Figures 4-6 through 4-9. In the following discussion, | will generally focus on the
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results for al sectors, though | will point out things that are substantially different in

the nonmanufacturing subset.

Severa important findings are apparent from the figures:

« Asshownin Figure 4-2, all but specification 5 have very high adjusted-R*s
(averaged over sectors). Thisresult is due to the presence of intermediate inputs
which have very high explanatory power. Because of the lack of intermediate
inputs, the former IDLIFT labor productivity equation (5) has a much lower
adjusted R? on average than those of the Neoclassical-type equations.

* Including energy to adjust for capital utilization does improve the average adjusted
R?in all specifications (compare 1 vs. 2, 3vs. 4, 6vs. 7, and 8 vs. 9). This
adjustment seems to have a minimal impact on both « and n) (in terms of their
average estimate and their likelihood of being positive) except in specifications 4
and 11 which appear to generate some substantial outliers (see Figures 4-3 and 4-
4) None of the specifications yields an average t greater than 1 (as theory
predicts). However, there appears to be enormous variation in the estimated ©
across industries and for each specification the mgjority of t’s are positive.

* Including embodied R&D and unadjusted J as separate inputs results in a higher
average adjusted R? than when unadjusted J is by itself (compare 10 vs. 8 and 11
vs. 9). Infact, the former also resultsin a dlightly better average fit than when a
quality-adjusted Jaloneisused (compare 10vs. 3and 11 vs. 4). Asshownin
Figure 4-3, the average coefficient on embodied R&D (o) is approximately zero
when utilization is not adjusted for. The combination of having embodied R&D as

a separate regressor and adjusting for utilization appears to cause some nonsensical
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outliers and a great many negative estimated o’s. Compared to specifications 3 or
8, including embodied R&D in addition to unadjusted J (specification 10) reduces
the average value and likelihood of positivity for the equipment elasticity («) and
the structures elasticity (n). Making the same comparison for specifications that
control for utilization (i.e. specifications 4 or 9 vs. specification 11), one finds that
the positivity is again reduced for « and m, but the effect on their average
elasticities is ambiguous due to a number of sizable outliers

Aside from the outliersin e produced with specification 4, the estimated factor
elasticities do not seem to be greatly affected by the adjustment of equipment
capital for embodied technological change.

The average estimate of the materials elasticity (0) is quite high in all
specifications and is almost always positive.

In nearly all cases, the likelihood of positivity for both « and n is higher when
returns to scale are constrained to be one (compare 1 vs. 3, 2vs. 4, 6vs. 8, and 7
vs. 9).

Across all specifications, there is a disturbingly low percentage of estimated factor

elasticities that are positive with the key exception of materials elasticity.

In summary, | find that for the most part adjusting equipment capital for quality

using my y’s substantially improves the fit and sensibility of the labor productivity

equation. Furthermore, controlling for utilization using the energy to capital ratio

improves the fit and raises the estimated elasticities of structures, but it reduces the

elasticities of equipment. Despite some loss of fit, imposing constant RTS seems to
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greatly improve the sensibility of the estimates. The beneficial effects of imposing
constant RTS on « and 1 seem to easily outweigh the cost of a dlightly lowered fit.
Finally, including embodied R& D improves the average fit dightly but has a
substantial deleterious effect on the capital elasticities.

Based on these findings, it seems reasonable to drop from our consideration all but
specifications 3, 4, 10, and 11. That is, we can feel comfortable hereafter imposing
constant RTS and adjusting equipment capital by constructing the stock according to
the y’sfound in Chapters 2 and 3 or by including embodied R&D as an additional
independent variable (although these embodied R& D specifications do seemto yield
less redlistic estimates). Furthermore, adjusting for utilization seemsto be a dlight
improvement over not controlling for it in terms of fit, so | will retain equation 4 for

now despite its tendency to produce outlying unredlistic capital elasticities.

B. Equations Omitting Intermediate I nputs

It is often the case in production function or productivity regressions that
intermediate inputs (materials) dominate the explanatory power of the independent
variables and obscure the effects of the other inputs. As evidenced by the very high
average 0 and enormous mexval’s (marginal explanatory power, not shown) for the
coefficient on materials obtained in the regressions described above, this domination by
materials appears to be the case in our regressions as well. Furthermore, the measures
on real materials used in the above regressions are constructed by taking the column

sum of a constant dollar input-output flow matrix. That is, real materials for industry |

IS mjt = Z amqjt where a;, is element (i,j) in the intermediate coefficient matrix (A
|
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in equation (4.1)). The problem hereisthat we do not observe the true input-output
coefficients, a; (at least inthe U.S. data). Or, more accurately, we do “observe” g but
only at every 5 years when the BEA constructs input-output tables. Coefficients for
years in between are simply interpolated between benchmark-year coefficients. Thus,
shocks in g which affect the dependent variable and are part of the regression
disturbance term are transmitted to the regressor (m-4) causing an upward biasin the
estimator of its coefficient.”

Therefore, | re-ran the regressions corresponding to 3, 4, 10, and 11 omitting the
Am-4) term (these new sans-materials specifications will hereafter be referred to as 3,
4', 10, and 11'). Thiscan be justified theoretically by assuming that materials and
value added have a Leontief relationship asis frequently done in the literature (e.g.,
Basu (1996) and Wilson (2000)). That is, Y= min[M, F(J,SL)]. Assuming firms are
optimizing, thisimplies dlog(Y) = dlog(F(J,SL)). The F() function can be any of
equations (1)-(11) after omitting the term &m-J).

Figures 4-10 through 4-17 summarize the results of these regressions (ignore for
now the specifications labelled 4" and 11", these will be explained below). As
expected, the adjusted R?s fall, though not by much, when materials are left out (see
Figure 4-10). Again the fits are higher when capital utilization is adjusted for. And
again specification (11) yields nonsensical average elasticities (though not in the
nonmanufacturing subset). The specifications that use the quality-adjusted equipment

stocks (3" and 4') yield quite reasonable factor elasticities, particularly the specification

1 Infact, exactly the same problem is true for our measures of real energy expenditures
which are also constructed via slow-moving input-output coefficients multiplied by
industry output.
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which does not include the energy-labor ratio (3'). Compared to the (4)), the non-
utilization adjusted specification (3’) has a somewhat lower percentage of n’sthat are
positive but a much higher percentage of positive o’s. This result does not appear to be
the case in nonmanufacturing though, where (4') dominates (Figure 4-15 and 4-16). In
the two equations that include embodied R&D (10" and 11'), the average o, over al
sectors, isredlistic when | do not adjust for utilization and quite unrealistic when | do.
When utilization is not adjusted for, there is also strong evidence that including
embodied R&D causes the coefficients on unadjusted equipment to turn negative,
particularly in nonmanufacturing.

Though not in the nonmanufacturing subset, the average estimated elasticities for
specification 3' over all sectors are aimost exactly as one would expect. The generally
accepted estimates of |abor and capita’s share in the economy’ s output is 2/3 and 1/3,
respectively, when output is value added and 1/3 and 1/6 when output is gross output
(with materials responsible for the other %2). The capital share is further broken down,
generally, to be 2/3's equipment (which includes embodied R& D) and 1/3 structures.
Thus, one would expect our estimates of the output elasticities with respect to each
input to be somewhat close to these values. This means that when materials are
included, we would expect «(+0) =~ (1/6)*(2/3)=2/18 = 0.111, 1 =~ (1/6)*(1/3)=1/18 =
0.056, p =0.33 and ® = 0.5. When materials are excluded, we expect «(+0) = 2/9 =
0.222, n =1/9=0.111, and B = 0.66. According to the average estimates obtained thus
far, these a priori expectations are met more closely by the regressions which do not

include materials.
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Overadl, asin the previous section where materials were included, specifications 3
and 4' seem to outperform 10" and 11' here. However, before abandoning the idea of
including embodied R&D as a separate regressor, | will explore another method of
adjusting for utilization applied to both the embodied R&D specification (10) and the

specification which uses quality-adjusted equipment stock (3').

C. Alternative Adjustment for Unobserved Variation in Capacity Utilization

Besides using the energy-capital ratio, another method that has been suggested to
control for unadjusted variation in factor utilization is what is actually used in the
current IDLIFT equation. Industry-level variation in utilization is captured by
including the terms qup and gdown which are defined in equation 4.5. The method first
measures capacity with the previous peak level of industry output less some
“depreciation.” The absolute value of the percentage difference between current output
and capacity is then included as a regressor, with positive and negative differences
treated asymmetrically. The rationale behind this method is that when current output is
being stretched beyond the previous peak level, the economy will be pushing up against
capacity constraints, and when output is much below the previous peak, there is excess
capacity not being utilized.

There isthe possibility, however, of reverse causation (i.e. smultaneity, or what

Almon (1998) refers to as the “umbrella effect” ”*) here since industry-level (log) output

12 Almon (1998) cautions against the use of “umbrella’ variables, which in econometric
parlance are smply endogenous variables, as explanatory variables. The name comes
from the analogy to using “the number of people carrying umbrellas to explain
rainfall.” (p. 97).
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is part of both the dependent variable and the regressors qup and gdown. If there isany
measurement error in output, this may bias the coefficients on qup and gdown as well
as artificially inflate the R”s. This possihility is explored using a mixed empirical-
Monte Carlo technique in the next subsection. For now, as an aternative to
specifications 4 and 11, | estimate two analogous equations that are smply
specifications 3' and 10" with qup and gdown as additional independent variables. Call
these specifications 4" and 11".

The results of these estimations are shown in Figures 4-10 through 4-13 for all
sectors and Figures 4-14 through 4-17 for the nonmanufacturing subset. Compared to
their energy-intensity counterparts (4' and 11'), specifications 4" and 11" have dlightly
lower fits but far more reasonable capital elasticities. Compared to their counterparts
that do not adjust for variation in utilization (3' and 10'), these equations are quite
similar in fit and in the capital elasticities (with the exception of 11" which actually has
much more reasonable capital elasticities than 10').

At this point, it seems reasonable to drop from our consideration the specifications
which attempt to adjust for unobserved variations in capital utilization using the
energy-capital ratios (specifications 4' and 11') due to their propensity to yield
nonsensical capital elasticities and to the fact that including qup and gdown as
explanatory variables seems to be a powerful alternative way of adjusting for
utilization. | will also drop the specifications which include embodied R& D and an
unadjusted equipment stock as separate explanatory variables (specifications 10" and
11"). The rationale behind these specifications was that including embodied R&D

separately may be superior in nonmanufacturing industries to using the imputed rates of
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embodied technological change to compute equipment capital. However, these
specifications seem to actually perform much worse in the nonmanufacturing subset
than they do overall. Therefore, hereafter | will consider only specifications 3, 4", and

5.

D. Allowing for Disembodied Technological Change

It is possible that there is some spurious positive correlations between labor
productivity and the factor inputs due to the fact that these variables are all trended
upward. In other words, the above equations should probably also contain a Hicks-
neutral productivity (or disembodied technology) term that is sure to be highly trended.
Therefore, | re-estimated equations 3' and 4" with asingle linear time trend added.

The adjusted R* s for both of these specifications are now slightly better than that
of the current IDLIFT equation (specification 5) at 0.866, 0.867 and 0.853 for
specifications 3, 4", and 5, respectively. The average estimated capital elasticities
decrease somewhat due to the introduction of the time trend though they are till quite
reasonable. For specification 3', the average « falls from 0.22 absent the time trend to
0.01 with it, while the average n rises from 0.15 to 0.17. Similarly, the percentage of
o’ sthat are positive falls from 80% to 52% and the percentage of n’s that are positive
rises from 52% to 63%. For specification 4", « falls from 0.22 to 0.08 on average with
the inclusion of the time trend and the average ) remains at 0.18. The positivity of «
falls from 80% to 59% and that of 1 drops from 61% to 57%. The results are quite

similar in the nonmanufacturing subset.
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From the results of this round of regressions, the most promising specification
appearsto be 4" with atime trend. 3’ with atime trend also seems to be reasonable,
though the average equipment elasticity is probably too low and the equipment
elasticity is somewhat less likely to be positive under 3’ relative to 4". Compared to the
former IDLIFT equation, these specifications have as good a fit and obviously have far
more economic appeal. Most importantly, they capture the productivity gains due to
capital deepening (which, given how capital was constructed here, includes embodied
technological change). Therefore, one of these two specifications, along with the
coefficients found from estimating them, are used for each of the 55 sectors and can
now be incorporated into the IDLIFT model. For a particular industry, which
specification is used is chosen on a case-by-case basis based on the criterion of best fit
and most realistic coefficients. For the sake of clarity, let us explicitly write out
specification 3

q-/=c+ct+af-)+ ns-) (4-8)
and specification 4":

q-/=c+c't+ af -9+ n(s -4+ b’qup + b'gdown (4-9)

E. Mixed Empirical-Monte Carlo Test for Bias

As mentioned above, the fact that qup and qdown are constructed using g which is
also part of the dependent variable for the above regressions, means that if thereis
measurement error in g, the coefficients on qup and gdown will be biased. This can be
seen formally by assuming that there is an i.i.d. measurement error ing: g™ = gmere

+ v, where v~ N(0, 2.5x10%). This saysthat the standard deviation in the
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measurement error of log output is assumed to be one half of one percent, which should

be aslarge asisredlistically possible. So our regression equation (4-9) becomes:
(g™ = L) =c" +ct +a(j —L) +n(s =)
+b0qupmeasured _l_blqdowntmeasured +Ut

t
Notice that v will be contained in the dependent variable as well as qup and gdown

resulting in spurious correlation between these two regressors and the dependent
variable. The bias on the estimator of b’ will be positive and that of b will be negative.
To evaluate the seriousness of this problem, | perform a mixed empirical-Monte Carlo
estimation procedure. In this procedure, | specify the data generating process (DGP)

for the true dependent variable as:
(q— ()™ =2+001*t +017* (| —¢) +016* (s —¢)
+01* qup,™ —01* gdown™ +¢,

where € ~ N(0, 4x10%), so that the standard deviation of thei.i.d. shock to true
productivity is 0.002. The 0.01 and -0.01 assumed coefficients represent the true
relationship between qup and gdown and labor productivity, i.e. absent any spurious
correlation due to the presence of measurement error ing. Using this DGP, | construct
this “true’ dependent variable, then regressit ont, (j-9), (-9, qup™"*, and
gdown™="® each measured with actual historical time series. | repeat this procedure

2000 times and calculate the mean and standard deviation for each coefficient.”

3| arbitrarily choose the “Printing and Publishing” industry for the historical data. The
choice of industry should not affect the coefficient means (and therefore their biases)
but may affect the standard deviations since the sample variance of a variable helps
determine the variance of its coefficient (and, of course, the sample variance of a
variable will be different across industries). To be sure, | repeated the procedure with a
2" industry and obtained similar estimated biases.
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The coefficient means and standard deviations are shown in Table 4.2.

Table4.2 Mixed Empirical-Monte Carlo Results

Coefficient ~ Truevaue Mean Estimate  Std. Deviation  Estimated Bias
c? 2 1.99092 0.23680 -0.00908
ct 0.01 0.00968 0.00842 -0.00032
a 0.17 0.18120 0.28050 0.0112
n 0.16 0.15852 0.03292 -0.00148
b° 0.1 0.10118 0.35719 0.00118
bt -0.1 -0.08530 0.37322 0.0147

The estimated biases are all extremely close to zero. Thus, even assuming avery large
variance for the measurement error in g, coefficient bias due to the presence of qup and

gdown does not appear to be a problem.
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6. Conclusion

The main result of this chapter isthat a Neoclassical labor productivity equation
does exist that can successfully fit the industry-level time-series data and yields
realistic coefficient estimates. Careful attention was paid to the correct measurement of
the equipment capital stock used to estimate this equation. A physical depreciation
pattern was used that closely matches the average physical depreciation schedule
suggested by Federal Reserve capital stock data. This pattern was used in conjunction
with the rates of embodied technological change that were found in Chapters 2 and 3 of
this dissertation. A series of industry-level labor productivity regressions were run
according to many different specifications. The results confirmed that accounting for
embodied technological change in the equipment capital stock measures greatly aidsin
the fit and economic realism of the fitted equations. | also found that controlling for
unobserved variations in capacity utilization in the same manner as was done in the
former IDLIFT equations yields a modest improvement along these dimensions.
Counter-historical smulations can now be run with both the former IDLIFT Iabor
productivity equation as well as equation (4-7). The results of these two counter-
historical simulations can be used to determine the effect that changing the labor

productivity equations has on the macroeconomic variables forecasted by the model.
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Chapter 5

Building the New IDLIFT and Evaluating the Changes

1. Introduction

The general-to-specific modeling approach of the previous chapter allowed us to
narrow our search for one or more specifications for industry-level labor productivity
equations. In Section 2 of this chapter | describe the process by which the best single
equation (i.e. specification plus estimated coefficients) was determined for each
industry. These equations are incorporated into IDLIFT through a series of new C++
routines which take forecasted values of equipment investment, structures investment,
and output and generate values for productivity, hours, and employment, which then
get fed back into the model. These routines are described in Section 3 and Appendix C.
In Section 4, | run both the new model and the old model in order to produce base
forecasts out to 2015.” | then compare the models' responses to permanent and

temporary shocks in equipment investment. Section 5 concludes.

2. Determining Industry-Specific Labor Productivity Equations

In the previous chapter, we evaluated many possible specifications for a general
empirical model of labor productivity based on the criteria of average fit and the

economic realism of the coefficients. The results of that evaluation have enabled us to

! The model using the new, aternative productivity equations will be referred to asthe
“new” model in this chapter while the old/current/pre-existing IDLIFT model will be
referred to asthe “old” model.
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now focus our attention on a small number of specifications in determining the “best”
one for each particular industry (rather than simply the best on average). Obviously,
the specification that yields the best results on average may not necessarily yield the
best results for a particular industry. The choice of specification must be made on an
industry-by-industry basis.

For each industry, | compare the results of estimating specifications 3, 4", and 5
(see Chapter 4 for the equation forms). For a small number of industries, it was clear
that the lagged values of the equipment and structures stocks had more explanatory
power (with reasonable coefficients) than the current values and, thus, the lagged
stocks were used instead. The improved explanatory power afforded by using lagged
stocks can be explained by the industry having a time-to-build requirement greater than
one year and/or by the presence of substantial learning-by-doing effects. For most
industries, even the best specification yielded one or more unrealistic coefficients. For
these industries it was necessary to “softly constrain” the coefficient estimatesto lie
inside aredlistic range. “Soft constraining,” also known as “Thell’s mixed estimation”
or “stochastic constraints,” is a Bayesian regression technique that allows one to
combine a priori theoretical beliefs on parameter values with the values estimated
using the data. A soft constraint essentially adds artificial observations (or a fraction of
an observation) in which the constraint holds with certainty. The a priori expectation
for parameter values and the number of artificial observation to add are chosen by the
econometrician. | only imposed soft constraints if the unconstrained estimated
coefficient was outside the range of [0,0.4] for either capital elasticity, [0,1] for the

coefficient on qup, and [0,-1] for the coefficient on gdown. The theoretically-based, a
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priori expected parameter values that | used as soft constraints were 0.18 for the
elasticity of output with respect to the equipment stock, 0.17 for the structures
elasticity, 0.5 for the coefficient on qup, and -0.5 for the coefficient on gdown.®

Table 5-1 shows the number of industries for which each of the four specifications
was chosen (second column) as well as the number, within each specification, that
required soft constraining (third column). Recall that the regressors in specification 3’
are a constant, time trend, log of the equipment-labor ratio, and the log of the
structures-labor ratio. Specification 4" includes these same regressors in addition to
qup and qdown. Specification 5 is the traditional (current) IDLIFT labor productivity
equation. Let the specification which is equivalent to specification 3’ but with lagged

capital stocks be denoted specification 12.

Table5-1 Specification Choice

Specification Number of industries Number requiring soft constraints
3 19 18
4" 27 25
5 4 2
12 4 4
Totd 54 49

Specification 4" was chosen in exactly one half of the industries. Overall, al but

five industries required some type of soft constraint(s). In nearly all cases, the soft

2 The rationale behind these a priori values for capital elasticities is explained in
Chapter 4, Section 5B. The a priori values for the coefficients on qup and gdown were
chosen simply to be at the halfway point of their respective plausible ranges.
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constraints were quite weak, amounting to only afraction of an artificial observation.

Thus, the equation fits suffered very little due to the use of soft constraints.

3. Incorporating the Alter native Estimated Equationsinto IDLIFT

Incorporating these new labor productivity equations into the IDLIFT model
turned out to far more complicated than it would seem at first. Thetask at hand was to
use the new labor productivity equations to determine productivity and employment, at
the 97-sector level of aggregation, which can feed back into the model. The model can
then use the productivity and employment forecasts to help calculate various other
components of the model such as the unemployment rate and hourly labor
compensation.

The first complication was how to deal with having labor hours, which are
calculated using the productivity equations, on the right-hand side of the productivity
equations. There are at least three options for handling this problem. Thefirst isto
algebraically rearrange each of the specifications containing hours on the right-hand
side so that output is on the right-hand side instead and then estimate the equations in

thisform. For example, specification 3’ can be rearranged from:

q-/=c+clt+aff -9+ ns-9 (5.1)
to:
q—€=D : 5{00 +et +aj +ns @ #7)q (52)
d-a-n{

| tried this approach and found that the capital elasticities implied by the estimated
coefficients were far less sensible than those estimated directly in Chapter 4. Asin
Section 2 above, one could impose soft constraints to force the coefficients into arange
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that would imply reasonable capital elasticities. However, the constraints would have
to be much stronger, i.e., the trade-off between a priori expectations of parameter
values and those estimated by the data would have to lean far more towards the former.
Another option would be to program the equations into the model with hours on the
right-hand side, supply the model with starting values (a guess) for hours, let the
productivity equations calculate new values for hours, and then let the model iterate
until it converges. The third option isto use the estimated equation coefficients found
in Section 2 above, but use them in the algebraically rearranged forms of the
specifications (such as (5.2) above) which have output on the right-hand side. This
option requires no iterative procedure since output has aready been calculated earlier
in the model and thus thisis the option | used.

The next issue that needed to be dealt with was how to get forecasted values of
structures investment at the 55-industry level, the level of disaggregation at which the
productivity equations were estimated. Previoudy, the IDLIFT model generated only
equipment investment by 55 industry and structures investment by type. The 25
types/categories of construction are listed in Appendix D. Rather than developing new
structures investment equations by industry, similar to the equipment investment
equations, | instead exploited the fact that there is (approximately) a clear one-to-many
mapping from some construction types to the industries that purchase those types. For
instance, construction of “Farm buildings’ (construction type 13) can be clearly
attributed to the “Agriculture, forestry, and fisheries’ investment industry (industry 1).
This assumption can be supplied exogenously to the model through what is known as a

“fix.” Fixes are supplied by the model user and override or modify the equation results
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of endogenous variables. Thus, | fix structures investment in industry 1 to “follow”
construction of farm buildings, starting from the last year of historical data for
structures investment by industry (1997). That is, structuresinvestment inyear t, S, is
determined by equalizing S/S,qq; to C/C,q9; for al t>1997, where C is construction in
the corresponding type. Similarly, for cases where one type is associated with many
industries, such as “Industrial” construction which is attributable to all of the
manufacturing industries, | fix structures investment in each industry to follow the
model’ s forecast for construction in that type. Again, industry structures investment
does not equal the value of construction in that type; rather, it starts with the last
historical data point and then moves forward at the same ratio of forecast year value to
last data value that is the case in the forecasts of construction by type. For two
industries (which each have very little investment in structures anyway), no clear match
could be made to a construction type and so structures investment in those industries
was assumed to simply follow aggregate nonresidential construction from their last
data point on.®

Now, with forecast values for structures and equipment investment by 55 industry,
one can calculate structures and quality-adjusted equipment capital stocks to be used in
the productivity equations. Thisis done in the C++ routine, DANBKT.CPP, which is
shown in Appendix C aong with the other new routines. The routine takesin
forecasted values of structures and equipment investment along with the exogenously
supplied rates of embodied technological change and produces stocks. The stocks of

structures are calculated using the traditional perpetual inventory method with

% The two industries are Construction (6) and Air transportation (40).
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depreciation rates computed as the reciprocal of the mean service life of structuresin
that industry (provided by the BEA). The quality-adjusted equipment capital stocks are
calculated using the estimated rates of embodied technological change and the
cascading bucket system described in Section 4 of Chapter 4.

The routine DANPROD.CPP then takes in these stocks along with the model’s
forecasted values of output by 55 industries (which are aggregated from the 97-sector
level) and the coefficient estimates for the productivity equations (including the
estimate of p, the autocorrelation coefficient) and calculates both productivity and
hours for each industry. Since other stages of the model require productivity and hours
at the 97-sector level, these had to be disaggregated to that level. To split 55-industry
hoursto the 97-sector level, | used a one-to many mapping key. The shares used to
split one industry to many sectors were taken from the 97-by-1 hours vector forecasted
by the old IDLIFT productivity equations. Thus, the old productivity equations were
left operational in the model solely for the purpose of providing time-varying shares for
this disaggregation. Productivity at the 97-sector level was then calculated by simply
dividing the output (already generated by the model at this level) by the 97-sector level
hours. Employment at the 97-sector level was calculated by dividing hours by the
model’ s forecasts of average annual hours per worker. The disaggregation and the
calculation of productivity and employment can be seen in the routine REMPLOY .CPP

in Appendix C.

4. Forecast and Simulation Results
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With these new, alternative routines incorporated into the model (along with the
estimates for the productivity equations), one can produce a base forecast that is stable,
i.e. aforecast that does not cause any variable to spiral out of control. In addition,
these new routines were programmed into the model in such away as to allow the
model to calculate productivity, hours, and employment using both the new set of
equations and the old set of equations. The model user can specify which set of
equations he or she would like to feed back into the model. That is, the user can have
the model calculate productivity and hours using the new equations but have those
calculated values in no way affect the rest of the model, and the same for the old
equations. This allows one to generate a base forecast for both the current model (i.e.
the model set to have the old equations forecasts feed back into the model) and the
new model (having the new equations feed back into the model).

Since what we are interested in is how the behavior of the two models differsin
response to changes in economic activity, such as variations in equipment investment,
comparing the two base forecasts to one another is of little interest. What will be of
interest to usin this section is comparing and contrasting the responses of each model
to some exogenous shock to the system. The behavior of each model in response to
such an experiment is the only way to illuminate the effect of changing the IDLIFT’s
productivity equations. Since the key difference between the two modelsis the
presence of a direct influence of capital stock on productivity in the new model, the
interesting shocks to investigate will naturally involve investment.

Moreover, given IDLIFT’ s dependence on many exogenous, user-supplied

assumptions (“fixes"), one cannot fairly compare aforecast from the old model with
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one from the new model. The existing fixes, which either override or modify the
endogenous forecasts produced by the model’ s equations, were specified in such away
asto produce the most sensible forecast using the current model. Alternatively, these
fixes could be specified so as to optimize the sensibility of the new model. However,
having each model have its own optimal fixes would confuse the differencesin the
models results due to different productivity equations with those due to different sets
of fixes. Yet, many of these fixes must be given values for the model to run at all,
therefore turning off al fixesis not an option either. Thus, | run both models using the
fixes in place for the most recent semi-annual Inforum forecast using IDLIFT (see
Inforum (2001)). One important exception is the exclusion of all fixes on industry-
level productivity, industry-level employment, and the aggregate unemployment rate.
Thus, again, comparison of the two models must be between the models' differences
from their own base forecast to a simulation forecast in which a shock was imposed,
and not between the models’ base forecasts.

To produce base forecasts, | ran each model out to 2015. 1997 was the last year of
historical datafor most of the industry-level variables in the model, yet much of the
aggregate data is available through 2000 (or at least through 1998 or 1999) and this
data is imposed on the model through fixes (with the exception of the unemployment
rate as mentioned above).® The new functions generally result in lower labor
productivity and thus higher hours and employment in the base forecast. Thisresult is
true even if the output of these functionsis not fed back into the model, but it is

stronger when feedback does occur. However, this difference in productivity between

* For instance, NIPA data is available on aggregate equipment investment and
residential and nonresidential structures through 2000.

147



the base forecastsis largely due to fixes that act to boost productivity in the current
model and thus is not very interesting.

For each model, | then evaluate the response of the model to a shock in equipment
investment. Specifically, with a set of fixes on equipment investment, | override the
models forecasted vectors of equipment investment with the investment vector from
the base forecast plus 2%. That is, for each industry | multiply the equipment
investment values from the base forecast by 1.02 and force the model to use these new
valuesin all of the functions that make use of equipment investment. Because
aggregate equipment investment is known (from NIPA data) through 2000, | impose
this fix for the years 2001 through 2015.

Figures 5-1 through 5-10 graph, for each model, the deviations over the forecast
period of key macro variables relative to each model’ s base forecast. In both models,
real GDP rises by about a quarter of a percent relative to the base in the first year in
which the 2% higher equipment investment isimposed. From then on the models
diverge substantialy. The old model falls to near the base level in the second year,
oscillates between 0.05% and 0.2% over base through 2008, then seems to settle at
about 0.08% over base. The new model also comes back down closer to base in 2002
but then rises relative to base amost monotonically until the end of the forecast where
it stands at 0.31% over base. This Solowian response of real GDP, i.e. higher and less
variable, to permanently higher equipment investment is what one would have expected
and hoped for from the new model. The increase in labor productivity induced by
higher investment also reduces unit labor costs and this reduction lowers the GDP

deflator. The GDP deflator risesin the old model in response to the demand stimulus
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of higher investment. Because of this, the deviation from base in nominal GDP is
actually higher in the old model. The different responses of the price level also has an
effect on the Treasury hill rate: the deviation from base is generally lower and less
volatile in the new model. The lower interest rates in the new model cause, in part, a
smaller deviation in the savings rate.

In both models, the unemployment rate goes down relative to base due to the
substantial demand stimulus caused by the increase in investment. However, the
deviation is smaller on average in the new model because its increase in labor
productivity has an immediate negative effect on employment. This Ricardian (or
Luddite) effect would have occurred in the old model as well had labor productivity
increased substantially, which it did not.®* This difference in labor productivity
deviations can be seen in Figure 5-10. Labor productivity in the new model grows
steadily to amost 0.4% above its base level by the end of the forecast. Thisis
compared to the old model in which productivity oscillates until it converges to about
0.04% over base. In short, in the new model, the effect of investment on productivity is
ten times what it was in the old model.

The deviationsin labor productivity by industry for the new model are shown in
Table 5-2 below, along with each industry’ s estimated elasticity of output with respect

to equipment capital stock. Asone would expect, the largest deviations can be found in

® In Ricardo’s later works, he developed the notion that the introduction of machinery
can, under certain circumstances such as the sudden introduction of a new type of
machinery, have an adverse effect on employment. In his Notes to Malthus's
Principles, he states:
It might be possible to do almost all the work performed by men with horses,

would the substitution of horses in such case, even if attended with a greater produce,

be advantageous to the working classes, would it not on the contrary very materially

diminish the demand for labor?
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industries which have the largest elasticities of equipment stock. The correlation

between this elasticity and the deviation in labor productivity is approximately zero in

2001 but rises to 0.96 by 2015.

Table5-2 Deviationsin Labor Productivity (Permanent Shock)

Industry
1 Agriculture, forestry and fisheries (3')
2 Metal mining (12)
3 Coa mining (3')
4 Crude petroleum and natural gas (3')
5 Non-metallic mining (4")
6 Construction (4")
7 Food and tobacco products (4")
8 Textile mill products (4")
9 Apparel and other textile products (4")
10 Paper and allied products (4")
11 Printing and publishing (4")
12 Chemicals (12)
13 Plastics and synthetic materials (12)
14 Petroleum refining (4")
15 Rubber and miscellaneous plastics (4")
16 Footwear and leather products (3')
17 Lumber and wood products (3')
18 Furniture (4")
19 Stone, clay and glass products (4")
20 Primary iron and steel (4")
21 Primary nonferrous metals mfg. (4")
22 Metal products (4")
23 Engines and turbines (3')
24 Agricultural, construction & mining mach. (3')
25 Metalworking machinery (5)
26 Specia industry machinery (5)
27 General and miscellaneousindustrial mach. (3')
28 Computers and office equipment (3')
29 Service industry machinery (4")
30 Electrical industrial equipment and app. (4")
31 Household appl., elec lighting & wiring (4")
32 Audio, video and comm. equipment (3')
33 Electronic components (4")
34 Motor vehicles and equipment (3')
35 Aircraft and parts (3')

Equipment
Elasticity

0.288
0.094
0.295
0.359
0.065
0.318
0.206
0.060
0.131
0.133
0.140
0.239
0.207
0.025
0.081
0.326
0.054
0.026
0.058
0.095
0.055
0.064
0.123
0.061
N/A
N/A
0.062
0.125
0.083
0.088
0.306
0.073
0.215
0.086
0.195
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Percent Deviations from Base

2001
0.02
-0.30
-0.05
-0.04
0.02
0.08
0.06
0.09
0.02
0.09
0.22
-0.12
-0.20
0.03
0.31
0.03
-0.04
0.36
0.05
0.16
0.17
0.15
-0.16
-0.18
0.56
0.15
-0.19
-0.23
0.43
0.40
0.29
-0.17
0.01
-0.12
0.00

2005
0.54
-0.09
0.52
0.69
0.06
0.56
0.32
0.08
0.13
0.11
0.09
0.34
0.18
0.01
0.08
0.35
0.06
-0.04
0.06
0.09
0.06
0.05
0.04
-0.11
0.00
0.01
-0.07
-0.04
0.08
0.03
0.48
-0.06
0.32
0.02
0.25

2010
0.83
0.00
0.87
1.05
0.10
0.87
0.48
0.13
0.22
0.21
0.17
0.63
0.44
0.03
0.13
0.63
0.12

-0.03
0.11
0.15
0.09
0.09
0.13

-0.07
0.00
0.00

-0.01
0.04
0.11
0.08
0.72
0.00
0.45
0.10
0.37

2015
0.97
0.03
1.05
121
0.12
1.02
0.57
0.14
0.28
0.27
0.22
0.76
0.54
0.05
0.14
0.79
0.12

-0.02
0.14
0.16
0.10
0.11
0.16

-0.06
0.01
0.02
0.03
0.08
0.12
0.10
0.81
0.03
0.49
0.12
0.40



36 Ships and other transportation eguipment (4") 0.074 -0.03 0.02 0.05 0.06

37 Instruments (3') 0.158 -0.07 0.12 0.22 0.26
38 Miscellaneous manufacturing (4") 0.297 0.06 0.44 0.61 0.65
39 Railroad transportation (12) 0.029 -0.08 -0.04 -0.02 -0.01
40 Air transportation (3') 0.330 0.11 0.82 1.09 1.16
41 Trucking and other transport (3') 0.094 -0.07 0.05 0.11 0.13
42 Communications services (3') 0.183 -0.02 0.37 0.48 0.50
43 Electric utilities (3') 0.349 0.08 0.66 0.93 1.02
44 Gas, water and sanitary services (3') 0.095 -0.07 0.05 0.09 0.11
45 Wholesale trade (4") 0.089 0.10 -0.05 0.03 0.06
46 Retall trade, restaurants & bars (5) N/A 0.02 0.00 0.00 0.00
47 Finance and insurance (4") 0.036 0.04 0.02 0.01 0.03
48 Redl estate and rental (5) N/A 0.04 0.00 0.00 0.00
49 Hotels, repairs except auto (4") 0.132 0.11 0.14 0.20 0.22
50 Business and professional services (4") 0.214 0.15 0.08 0.25 0.32
51 Automotive repair and services (4") 0.031 011 0.01 0.04 0.06
52 Movies and amusements (4") 0.161 0.14 0.23 0.31 0.34
53 Health services (3') 0.348 0.17 0.71 0.92 0.98
54 Educational and socia services and NPO (3') 0.147 0.01 0.23 0.29 0.31

Next | impose a one-time shock on each model of 10% higher equipment
investment (relative to that which isforecast by the model’ s equations) in 2001.
Determination of equipment investment returnsto IDLIFT’s investment equations from
2002 on. The shock is assumed to take place in every industry. Figures 5-11 through
5-21 show the deviations relative to the base for the same macro variables asin the
earlier figures as well as equipment investment (Figure 5-21) and quality-adjusted
equipment stock (Figure 5-22).%* Both models have an initial response of between 1.2
and 1.3 percent in real GDP. After oscillating for several years, the old model returns
nearly to its base level. The new model, however, quickly reaches a steady state at

approximately three-tenths of a percent above its base. Aswith the previous

® Equipment investment here is not adjusted for embodied technological change. Also,
note that though quality-adjusted equipment capital is shown for both models in Figure
5-22, it only has an effect on the other variables (as well as its own future values
through the investment equations) in the new model.
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experiment, the GDP deflator’s deviation is lower in the new model than in the old
model. The GDP deflator converges to the base level over time in the old model
wheressiit falls steadily relative to the base in the new model. Interest rates deviations
move similarly in the two models though they are somewhat less volatile in the new
model. The same istrue for their savings and unemployment rates. In both models,
unemployment initialy drops dramatically in response to the shock, then jumps
dramatically, and finally begins to converge to its base level around 2005. The new
model has less of a drop and subsequent jump because the positive demand stimulus of
raising investment is partially offset by the increase in productivity which has a
negative effect on employment in the short-run (the Ricardian effect), though thisis
dominated by the stimulus as can be seen in Figure 5-17.

As expected, labor productivity in the old model, after oscillating for severa
periods, returns to its base level by 2010 and stays there whereas productivity in the
new model, after also oscillating for afew years, is permanently above its base levels.
This permanent increase in productivity in response to atemporary increase in
investment is the key difference in the behavior of the two models. In the old model, a
one-time jump in aggregate investment only affects labor productivity by directly
increasing every industry’s final demand, which directly increases their output, which
increases their qup which increases their labor productivity. The next year, when
equipment investment comes back down, output will likely be below its previous peak
making qdown go up which will lower labor productivity. This cycle will fade away
over time returning labor productivity to its base level. 1nthe new model, on the other

hand, labor productivity in every industry jumps initially because of both the jump in
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qup and the jJump in the equipment stock. In the following year, productivity comes
back down due to the jump in gdown in the following period but this decline is offset
somewhat by the still-present higher level of equipment stock. Thereisalso astrong
and long-lasting positive effect on equipment investment itself from the initial shock.
This effect has two causes. First, the 2001 jump in investment causes the following
year's desired capital stock (constructed and used in the model’ s investment equations)
to rise which increases the forecast of investment for that year which then increases
desired capital and investment for the next year, and so on. Furthermore, the increase
in final demand in 2001 raises the 2000-01 change in output. Distributed lags in the
change in output are part of the model’s investment equations. Thus, the increased
change in output in 2001 directly increases investment for the following four years
(there are four lags of output change in the investment equations).

The continuing though depreciating presence of that extra 10% of equipment
purchased in 2001, combined with the long-lasting increase in equipment investment
due to the positive feedback from the initial demand stimulus, keeps the quality-
adjusted equipment stock about 2% above its base level from 2005 through the end of
the forecast (see Figure 5-22). The physical depreciation and obsolescence of the extra
10% of vintage-2001 equipment begins to dominate any positive feedback remaining
from the initial stimulus by 2009 and a very slow decline in the equipment stock
begins. Shortly thereafter, labor productivity thus begins to decline very slowly.

The labor productivity deviations from the base forecast of the new model are
shown for each industry in Table 5-3 below, along with each industry’ s estimated

elasticity of output with respect to equipment capital. Aswas the case with the
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permanent shock, the largest deviations are in industries with large elasticities of

equipment stock. The correlation between the estimated elasticity and the deviation in

productivity is-0.07 in 2001 but risesto 0.82 by 2015.

Table5-3 Deviationsin Labor Productivity (One-Time Shock)

Percent Deviations from Base

Equipment

Industry Elasticity 2001 2005 2010 2015
1 Agriculture, forestry and fisheries (3') 0.288 0.32 0.74 0.97 0.96
2 Metal mining (12) 0.094 -1.46 -0.02 006 0.08
3 Coal mining (3') 0.295 -0.15 1.07 1.49 1.63
4 Crude petroleum and natural gas (3') 0.359 0.04 111 1.47 1.56
5 Non-metallic mining (4") 0.065 0.08 0.20 0.16 0.16
6 Construction (4") 0.318 0.45 112 132 1.37
7 Food and tobacco products (4") 0.206 0.32 0.42 0.51 0.54
8 Textile mill products (4") 0.060 0.47 0.17 0.12 0.10
9 Apparel and other textile products (4") 0.131 0.07 0.23 0.21 0.22
10 Paper and allied products (4") 0.133 0.42 0.17 0.22 0.22
11 Printing and publishing (4") 0.140 112 0.27 0.20 0.21
12 Chemicals (12) 0.239 -0.56 0.55 063 061
13 Plastics and synthetic materials (12) 0.207 -1.01 0.40 0.41 0.37
14 Petroleum refining (4") 0.025 0.12 0.02 0.02 0.04
15 Rubber and miscellaneous plastics (4") 0.081 1.03 0.18 014 013
16 Footwear and leather products (3') 0.326 0.19 0.52 0.74  0.79
17 Lumber and wood products (3') 0.054 -0.21 -0.02 014 013
18 Furniture (4") 0.026 1.83 0.16 -0.01 -0.01
19 Stone, clay and glass products (4") 0.058 0.25 0.15 0.12 0.11
20 Primary iron and steel (4") 0.095 0.79 0.20 0.17 0.16
21 Primary nonferrous metals mfg. (4") 0.055 0.86 0.23 0.12 0.09
22 Metal products (4") 0.064 0.78 0.16 011 011
23 Engines and turbines (3') 0.123 -0.81 0.15 0.18 0.17
24 Agricultural, construction & mining mach. (3') 0.061 -0.86 0.03 004 004
25 Metalworking machinery (5) 0.000 2.70 0.24 -0.02 0.00
26 Specia industry machinery (5) 0.000 0.72 -0.05 0.00 0.00
27 Genera and miscellaneous industrial mach. (3') 0.062 -0.94 0.03 0.04 0.06
28 Computers and office equipment (3') 0.125 -1.13 0.21 0.20 0.17
29 Service industry machinery (4") 0.083 2.16 0.29 0.16 0.15
30 Electrical industrial equipment and app. (4") 0.088 194 0.15 014 014
31 Household appl., elec lighting & wiring (4") 0.306 1.30 0.87 0.80 0.77
32 Audio, video and communication equipment (3') 0.073 -0.85 0.04 0.06 0.06
33 Electronic components (4") 0.215 0.02 0.43 038 035
34 Motor vehicles and equipment (3') 0.086 -0.65 0.13 0.16 0.17
35 Aircraft and parts (3') 0.195 -0.01 0.41 0.39 0.37
36 Ships and other transportation egquipment (4") 0.074 -0.15 0.36 0.13 0.12
37 Instruments (3') 0.158 -0.36 0.31 0.32 0.31
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38 Miscellaneous manufacturing (4") 0.297 0.28 0.78 0.66 0.57

39 Railroad transportation (12) 0.029 -0.41 -0.03 -0.01 -0.01
40 Air transportation (3') 0.330 0.51 1.13 1.07 0.95
41 Trucking and other transport (3') 0.094 -0.36 0.07 0.10 0.08
42 Communications services (3') 0.183 -0.08 0.48 048 042
43 Electric utilities (3') 0.349 0.49 1.03 112 1.09
44 Gas, water and sanitary services (3') 0.095 -0.28 0.08 0.15 0.15
45 Wholesale trade (4") 0.089 0.02 0.08 009  0.09
46 Retall trade, restaurants & bars (5) 0.000 0.10 0.02 0.00 0.00
47 Finance and insurance (4") 0.036 0.17 0.00 004 0.07
48 Real estate and rental (5) 0.000 0.20 0.00 0.00 0.00
49 Hotels, repairs except auto (4") 0.132 0.58 0.22 020 019
50 Business and professional services (4") 0.214 2.33 1.03 041 038
51 Automotive repair and services (4") 0.031 0.71 0.01 0.07 0.07
52 Movies and amusements (4") 0.161 0.76 0.38 034 033
53 Health services (3') 0.348 0.93 0.92 096 087
54 Educational and socia services and NPO (3') 0.147 0.14 0.22 0.28 0.26

5. Conclusion

The preceding experiments show that the introduction of the new labor
productivity equationsinto IDLIFT do have substantial effects on the general
equilibrium behavior of the model. With the new equations operating, the
macroeconomic variables of the model exhibit behavior in response to changesin
investment that is more in line with that predicted by the Solow growth model.
Importantly, we do not see the model spira out of control in terms of output or prices
when the new equations are introduced as was feared due to the lack of a supply
constraint in the investment equations. In general, the macroeconomic situation of the
economy is permanently and substantially improved by an increase in equipment
investment, even if it is only a one-time shock, according to the new model. In
contrast, the macroeconomy of the IDLIFT model without the new equations exhibits a

smaller long-run benefit due to a permanent investment increase and little or no long-
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run benefit from atemporary increase. The permanent and reasonable response of the
new model to increases in investment was the goal of this dissertation. We now see
that using a properly constructed capital stock, one can build a neoclassical labor
productivity equation into IDLIFT that alows the model to respond to investment in a

way that is consistent with neoclassical economic theory.
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Chapter 6

Conclusion and Suggestions for Future Research

1. Conclusion

This dissertation sought to bring empirical quantification to bear on an issue
which as heretofore remained mainly a theoretical concern: capital-embodied
technological change. The theory of embodied technological change and its effects on
productivity has along and illustrious history. Y et, measuring the rate of embodied
technological change and the share of total technological change that is embodied isa
relatively new endeavor. The delay was likely due to limitations in econometric
technique, computational ability, and data availahility; lack of concern with
measurement issues in genera in the economics profession; and a pervasive belief
among many economists that mismeasurement of capital is of secondary importance.
In recent years, the proper measurement of capital has become of primary concern to
empirical economists as rapid technological changes such as the development of
computers and related technologies have greatly increased (or at least increased our
perception of) the measurement error obtained from traditional methods of measuring
capital. Inan erain which the generation and use of rapidly evolving technologiesin
capital is awidely recognized feature of the economic landscape, it is no surprise that
the theory and measurement of embodied technological change are receiving renewed
attention.

One area in which ignoring embodied technological change can potentially have

substantial adverse effects is macroeconomic modeling and forecasting. If we want our
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macroeconomic models to behave according to neoclassical production theory, we are
reliant on proper measures of productive capital, that is capital measured in terms of its
efficiency as opposed to a measure of the value of capital or the physical quantity of
capital. Inthisdissertation, | built the relationship between investment, embodied
technological change, and productivity described by neoclassical theory (augmented by
Robert Solow’ s pioneering work on embodiment) into a pre-existing structural
macroeconomic model. In order to quantify this relationship, it was necessary to (1)
estimate the rate of embodied technological (a.k.a. quality) change in each of the
model’ s industries, (2) construct historical time-series data on quality-adjusted
equipment capital stocksin each industry, and (3) estimate labor productivity equations
for each industry using these equipment stocks.

Using adirect, production-side approach, | was able to estimate the rate of
embodied technological change in manufacturing industries, albeit with considerable
imprecision, by exploiting the cross-sectional variation in intertemporal investment
distributions afforded by the large establishment-level Longitudinal Research Database
managed by the U.S. Census Bureau. | was able to obtain increased precision by
restricting the rate of embodied technologica change to be equal across industries.
Under this restriction, embodied technological change in the average U.S.
manufacturing plant (or at least the average plant in our sample which, it is argued,
seems fairly representative of overal manufacturing) is estimated to be approximately
12%, far higher than that suggested by the price-side literature (e.g., Gordon, 1990).
This suggests about two-thirds of total technological change in U.S. manufacturing is

attributable to embodied technological change.
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Unfortunately, such rich data on non-manufacturing establishments does not
exist at present.®* Therefore, amore indirect approach was necessary to get an idea of
the rates of embodied technological change in non-manufacturing industries. This
approach | developed involved measuring the extent of R&D effort embodied in the
capital that an industry uses. Specifically, | gathered data from past National Science
Foundation reports listing, inter alia, total R& D expenditures applied to various
product fields. Many of these product fields are categories of industrial equipment.
Combining the R&D by product field data with investment by equipment category data
from the Bureau of Economic Analysis, | was able to construct industry-level, time-
series indexes of the stock of real R&D spending embodied in an industry’s capital
stock. The level of R&D stock in a product field was shown to be highly correlated
with estimates of the constant-quality price decline in that product field obtained by
Gordon (1990). The level of the index of embodied R& D for manufacturing industries
was shown to be highly correlated with the estimates of embodied technologica change
found in the plant-level study. Furthermore, the index of an industry’s embodied R&D,
averaged over time, relative to other industries was shown to have a positive and
significant effect on the industry’s relative total factor productivity (TFP) as
conventionally measured (i.e. the Solow Residual). Thisisto be expected if the
conventionally measured TFP contains embodied technological change as it will of
course if capital does not contain it. Using these indexes of embodied R&D, | imputed

rates of embodied technological change for non-manufacturing industries using the

! A non-manufacturing longitudinal database is currently being constructed at the
Center for Economic Studies of the U.S. Census Bureau.
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relationship between embodied R& D and the rates of embodied technological change
estimated in Chapter 2 for manufacturing industries.

Once | had estimates of embodied technological change for all industries, it was
arelatively straight-forward endeavor to construct the quality-adjusted equipment
capital stocks for each industry. Following a general-to-specific modeling approach, |
use these equipment capital stocks, along with other production data, to evaluate
various specifications for modeling labor productivity. The goal wasto find a
specification that was based on neoclassical production theory, fit the data at least as
well as the former trend-based specification, and yielded economically sensible
coefficients on average. | was able to narrow the search down using this approach and
then, in Chapter 5, used a Bayesian “soft constraint” approach on an industry-by-
industry basis to settle on alabor productivity equation for each industry. These
equations provided the quantitative link between investment, embodied technological
change, and productivity which was then incorporated into the IDLIFT structural
macroeconomic model.

Having this link in the model greatly enhances its usefulness for policy analyses
and simulations while at the same time increasing its economic rationality.® With two
alternative simulations, | showed that the new model, incorporating this investment-
productivity connection, exhibits behavior in response to either a permanent or a one-
time equipment investment shock that is more consistent with Solow/Neoclassical

growth theory. Many technology-related policy changes can now be simulated using

2 See the quote from Almon (1969) in Chapter 4, Section 3 for why missing this link
forsakes economic rationality.
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the model. The effect of enacting or repealing investment tax credits is an obvious
example. Also, policiesrelating to federal R& D funding, tax incentives for private
R&D, patent protection, the supply of scientists and engineers, and many areas are
likely to have a direct effect on the rates of embodied technological change. The
macroeconomic and industry-level effects of changes in embodied technological

progress can now be easily evaluated with this model.

2. Suggestionsfor Future Research

The literature on embodied technological change and its macroeconomic effects
is relatively sparse, particularly on the empirical front. This sparseness leaves many
areas for future research. One issue that could not be addressed ideally with the current
data and econometric methods is the possibility of reverse causation or simultaneity
biasing the rates of embodied technological change estimated in Chapter 2. The lack of
available time-varying instruments at the plant-level for a sufficiently large number of
plants hampered the ability to use the conventional method of obtaining consistency in
the face of simultaneity bias: instrumental variables. Simultaneity bias has been
receiving increasing attention in recent years and new techniques for handling it are
being developed rapidly. Moreover, the value of establishment-level and firm-level
data is being recognized now more than ever before and this greatly increases the
potential for finding suitable instruments for production function studies.

Another issue that was raised by this dissertation and which remains ripe for

further research is the connection between R&D and embodied technological change.
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In Chapter 3, | argued (and provided evidence) that the embodied technological change
occuring in an industry is determined by (1) the composition of the industry’s
investment over types of equipment, and (2) the amount of R&D that has been spent
over the years by the entire economy on developing those types of equipment. Inthe
process, | constructed a panel data set of R& D by product field and year which can be
used for a plethora of research projects. For example, one could study what
characteristics of a product affect how much R&D is applied by the economy as a
whole on that product. The index of embodied R&D by industry and year may also be
quite useful for purposes other than simply imputing rates of embodied technological
change. A study of its correlation with and effect on other industry-level variables
could be quite illuminating. Furthermore, given data on investment by asset type
(available for a small number of yearsin the Annual Capital Expenditures Survey
(ACEYS)), measures of embodied R&D could also be constructed at the firm-level.
These measures may provide an indication of the embodied technologica change
occuring in agiven firm. A much broader and more in-depth analysis could then be
done relating embodied technological change (or at least embodied R& D) to other
firm-level variables such as wages, labor-skill composition, market value, productivity,
etc..

Asfor the IDLIFT model, there are a number of areas related to the
productivity-investment link that can and should be explored in the future. The most
pressing is probably developing a set of equations to forecast structures investment by
industry. Equations similar to those for equipment investment could be tried out with
the totals of certain industries being controlled by the model’ s forecasts of construction
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by type (for example, total structures investment by all manufacturing industries could
be controlled to “industrial” construction). Another area where future analysis would
be useful is the productivity equationsin the service industries. The data, particularly
the output data, used to estimate these equations is suspect at best and is often smply
imputed from labor hours. Alternative data sources could be explored and the
equations re-estimated for these industries. Most pressing is the equation for retall
trade. Retail trade accounts for aimost as large a share of total employment as all of the
manufacturing industries combined. Y et, the productivity equation for thisindustry
remains one based on time trends and the difference in output from its previous peak
because a specification containing capital did not fit the data well at all.

A more substantial project would be to work on introducing a supply constraint
into the investment equations (or perhaps elsewhere in the model). A supply
constraint, such as a non-convex adjustment cost, could prevent the model from
spiralling out of control in terms of output in very long forecasts. With investment
directly increasing productivity, there is the potential (which will be even greater if and
when retail trade’ s productivity becomes linked to investment) for a demand stimulus
to have the effect of increasing output, which increases investment, which increases
productivity, which increases wages, which increases consumption, which increases
output, and so on in avirtuous circle until output is unredistically high in some or all
sectors. A supply constraint could put the brakes on investment before this spiral gets
going.

There are numerous other avenues of research related to generating embodied
technological change and the immediate and long-run economic consequences of
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embodied technological change. It ishoped that this dissertation will aid in the
pursuance of this research and will itself contribute to the understanding of these

phenomena.
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Appendix A

Variable Construction and Sample Characteristicsfor the Plant-Level Samples

1. Variable Construction

Each of the data samples described in Section 5 of Chapter 2 contain the same
variables. The definitions of gross output, labor, structures capital stock, materials, and
energy are similar to those used in the plant-level literature (see Center for Economic
Studies (2000)). The Real gross output was defined as value of shipments plus
inventory change deflated by the 4-digit SIC shipments deflator in the NBER-CES data
base (see Bartelsman and Gray (1996)). The concept of “production-worker

equivalent hours’ was used for the labor variable:

L = ph +(nw/ pw) ph,

where ph is production worker hours, nw istotal nonproduction worker salaries and
wages, and pw is total production worker salaries and wages. Assuming workers are
paid their marginal product, the second term should capture “production worker
equivalent hours’ contributed by nonproduction workers. Real energy expendituresis
measured as the sum of the costs of fuel and electricity deflated by the NBER-CES
energy deflator. Real materials is the sum of the costs of fuel, electricity, and parts,
deflated by the NBER-CES materials deflator.

The structures capital stock is defined according to the tradition perpetual

inventory definition:
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where T isthe age of the plant, |° is new structures investment (deflated using 3-digit
structures investment deflators from the FRB), and D, is the fraction of structures
investment of vintage t-j that remains productive in year t. We describe below the
construction of these age-efficiency profiles for structures and equipment, D, ;, for each

3-digit SIC industry.

2. Physical Depreciation M easures

We employ the methodology used by BLS and FRB in constructing capita
stocks adjusted for the effects of physical depreciation (for details see Mohr & Gilbert
(1996)). For each vintage of investment we repeat the following procedure. First, the
industry-level capital expenditures are split among 35 asset categories. Thisis
accomplished with an iterative matrix balancing (RAS) technique that employs the
industry-level investment data as column controls and utilizes (aggregate-economy)
NIPA data on asset-level capital expenditures as row controls for the 35 asset
categories. Dataderived from BEA'’s Capital Flows Tables (CFT) provide initial asset-
by-industry investment shares for the iterative procedure.

Second, these asset expenditures by industry are transformed from a current-

dollar to a constant-dollar basis to obtain estimates of real investment by asset type that
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can be compared acrosstime. All assets are deflated using the PCE deflator. Third, we
use mean service lives that are specific to each asset type and adjusted to account for
expected retirements from each asset-type investment bundle around its mean life.
These mean service lives were supplied by BEA except for autos. A discard density
function captures stochastic retirements around these mean lives, whereas a hyperbolic-
(or beta-) decay function captures the effect of physical deterioration due to wear and
tear. We adjust real industry investment by asset type for the joint effects of the decay
and discard processes rather than just the latter. In effect, we create a series for each
asset of the amount of the vintage that will still be productive at age a. Finaly, we
aggregate all assets of the same vintage to derive age-efficiency schedules specific to
vintage and investing-industry.

The BLS-FRB methodology has two important results. First, the age-efficiency
schedule is vastly different from geometric, especialy in the early part of an asset’s
life. Second, the implied rate of physical depreciation is much lower than the economic

depreciation rates produced by the BEA.

3. Sample Characteristics

The special characteristics of the LRD, from which the overall data set was
drawn, combined with the need to have continuous investment histories, necessitate a
thorough analysis of the properties of each of the samples we use. Figures A-1 through
A-13illustrate some of these properties.

The LRD contains data from the Census of Manufacturers (CM) and the Annual
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Survey of Manufactures (ASM). The CM is conducted every five yearsin years ending
in“2" and “7”. It collects data on approximately 300,000-380,000 plants. The ASM is
based on a panel of plants which are sampled from the CM universe and followed for 5
years. Within the 5-year interval of an ASM panel, the Census Bureau also adds to the
panel a sample of plant births for each year. A new ASM panel is selected at the
beginning of the second year after aCM. Thus, the 6 ASM panelsin the current LRD
are 1972-73, 1974-78, 1979-83, 1984-88, 1989-93, and 1994-96. Plants are selected
for the ASM based on their size and their share of industry output. Plants with more
than 250 employees are sampled with certainty while smaller plants are sampled with
probabilities proportional to their size.

Figure A-1 shows, for each year from 1975-96 and on average, the fraction of
all U.S. manufacturing plants that are accounted for by each sample. The timing of
ASM panel selection has a clear effect on the annual sample size of POST72A,
POST72B, and SCREEN. There are substantial drops in sample size in the first year of
each ASM panel (1979, 1984, 1989, and 1994). This can be attributed to the
reselection of the ASM panel in these years which eliminates many plants from the
LRD, though these plants do not necessarily cease operations. Averaged over the
sample period, our primary sample, POST72A, isthe smallest at 1.2% of
manufacturing.®” Including observations from plants that are observed for only two or
three consecutive years (as in POST 72B), we reach an average of roughly 2%. The fact

that the plants in the 1972-96 panel, nearly all of which were born prior to 1972,

! Over the 1975-96 period, there was an average of roughly 365,000 manufacturing
plants with an average of 4402 of them in the POST72A sample.
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generally account for more of total manufacturing than those of POST72B shows that
we sacrifice a great number of observationsin order to avoid having unobserved pre-
1972 investment. The SCREEN sample is able to keep many of these observations, in
addition to including plants born after 1972 that survive for at least four consecutive
years. Thus, it isnot surprising that the SCREEN sample is the largest on average at
approximately 2.8% of manufacturing.

Degspite the relatively small fraction of all manufacturing plants accounted for
by these samples, they represent a much higher share of manufacturing in terms of
gross output (shipments), employment, and investment. Thisis demonstrated for
shipments in Figure A-2.28 As plants born prior to 1972 exit or shrink and plants born
after 1972 enter and expand, the post-1972 samples, POST72A and POST72B, account
for increasingly larger shares of manufacturing, reaching 13.4% of the total value of
shipments by 1996. The expansion of post-1972 plantsis also evident in the mean
shipments, employment, and investment for plants in each sample (and for total
manufacturing). Mean shipments by year is shown in Figures A-3. Again, the
employment and investment graphs (not shown) tell asimilar story. One can see a
general rise over the 1975-96 period for each sample as well as for overall
manufacturing. With the exception of the 1972-96 panel, the samples display a marked
jump in mean activity in the beginning year of each ASM panel (1979, 84, 89, and 94).
Thisis dueto the fact that, for the most part, only large plants (having over 250

employees) are selected to consecutive ASM panels. Thus, smaller plants which were

2 The graphs for employment and investment look quite similar.
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probabilistically selected for one ASM panel are unlikely to be selected for the next
panel. Asall plants, and particularly those that stay in the ASM from one panel to the
next, grow over time, the mean activity of plantsin POST72A, POST72B, and
SCREEN jumps at the start of each ASM panel.

The above effects aso influence the average age, which is shown in Figure A-4.
For plants born after 1972, age is simply the number of years since birth. For plants
born during or prior to 1972, | make use of datafrom the 1975 and 1981 CM’swhich
asked establishmentsto report the year they began operations. This birth year data was
compiled by Davis, Haltiwanger, and Schuh (1996). As expected, the 1972-96 panel is
the oldest sample followed by Screen, POST72A, and POST72B. Quite mechanically,
the 1972-96 panel ages by exactly one year each year of the sample. The other
samples, particularly POST72A and POST72B, have aflatter age profile over time,
even having somewhat of a decline over the 1990's. Unfortunately, there is no way of
knowing the true average age of manufacturing plantsin the U.S.. However, it islikely
to be lower than that of these samples (with the possible exception of POST72B) which
by design tend to have plants that have survived for a substantial period of time.

Figures A-5 through A-8 show the mean (over 1975-96) distribution of

shipments across 2-digit industries of each sample versus that of overall manufacturing
(as reported in the NBER-CES Productivity Database). Each sample appears to be
fairly representative. The over- or under-representation of some industries seemsto be
largely afunction of age. For example, in our primary sample, POST72A, Petroleum

(29) is substantially under-represented, while Food products (20) is over-represented.
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Thisis because Petroleum is dominated (in terms of gross output) by large, old plants
whereas food products has smaller, newer plants (as well as more plantsin general).
Perhaps the best way to evaluate the representativeness of a sampleisin terms
of the dynamic behavior of its members. Thisis done in Figures A-9 and A-10, which
display the growth rates of employment and gross investment for the samples and total
manufacturing (published ASM). The growth rates for the samples refer to pairwise-
continuous share-weighted average growth rates, in other words, the share-weighted
average growth rate for year t is calculated using all (and only) plants that existed in
both t and t-1. The growth rate measure used here is the symmetric and bounded “g”

measure used in Davis, Haltiwanger, and Schuh (1996):

—_ Xit - Xit—l
T T + X)) 2

for any variable X. The (Divisia) share-weighted average of g across all pairwise-

continuous plants, g, is calculated using the share of plant I's X in total

manufacturing’s X:

The SCREEN and the 1972-96 panel samples appear to underestimate the
growth in employment in the 1990's. There also appears to be an underestimation of
the growth in new investment in the POST72A sample in 1976 and in the POST72B
sample from 1976-81. Nevertheless, it is clear that all four samples generally track

aggregate manufacturing fairly closely.
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Appendix B

Industry-Level Real Output Data

This appendix describes the sources of industry-level real output data used in

Chapters 3, 4, and 5. The table below lists the 54 industries and the source of real

output data for each.

TableB-1 Sourcesof Real Output Data

1 Agriculture, forestry and fisheries
2 Metal mining

3 Coa mining

4 Crude petroleum and natural gas
5 Non-metallic mining

6 Construction

7 Food and tobacco products

8 Textile mill products

9 Apparel and other textile products
10 Paper and allied products

11 Printing and publishing

12 Chemicals and selected chemical
products

13 Plastics and synthetic materials

14 Petroleum refining and related products
15 Rubber and miscellaneous plastics
products

16 Footwear and leather products

17 Lumber and wood products

18 Furniture

19 Stone, clay and glass products

20 Primary iron and sted

21 Primary nonferrous metals
manufacturing

22 Meta products

23 Engines and turbines

24 Agricultural, construction & mining
machinery

Value & quantity data from USDA.

Vaue and quantity data from Minerals Y earbook,
Energy Statistics Sourcebook.

Nominal and real output estimated from
unpublished NIPA PCE data

Datafor all manufacturing industries is from the
Annual Survey of Manufacturers and Economic
Census (U.S. Census Bureau). Nominal Output
datais based on reported product shipments.
Price deflators come from BEA's shipments
deflators (Producer Price Index Revised, PPIR),
except computers.
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25 Metalworking machinery

26 Special industry machinery

27 General and miscellaneous industrial
machinery

28 Computers and office equipment

29 Service industry machinery

30 Electrical industrial equipment and
apparatus

31 Household appliances, dec lighting &
wiring

32 Audio, video and communication
equipment

33 Electronic components

34 Motor vehicles and equipment

35 Aircraft and parts

36 Ships and other transportation equipment
37 Instruments

38 Miscd laneous manufacturing

39 Railroad transportation

40 Air transportation

41 Trucking and other transport

42 Communications services

43 Electric utilities

44 Gas, water and sanitary services
45 Wholesale trade

46 Retail trade, restaurants & bars
47 Finance and insurance

48 Redl estate and rental

49 Hotds, repairs except auto

50 Business and professional services
51 Automotive repair and services
52 Movies and amusements

53 Health services

54 Educational and social services and
nonprofit organizations

Same source as for industries 41-52 below.

Nominal and real output based on data from U.S.
Statistical Abstract.

Nominal and real output come from BLS's Office
of Employment Projections. According to the
Nov. 1999 Monthly Labor Review, data sources
for nonmanufacturing industries "include the
Service Annual Survey, National Income and
Product Accounts (NIPA) data on new
construction and personal consumption
expenditures, IRS data on business receipts, and
many other sources. The constant dollar industry
output estimates for the most recent years are
based on BL S employment data and trend
projections of productivity." It is unclear how
the BLS obtainsreal output prior to "recent”
years.

Nominal and real output data based on PCE from
unpublished NIPA.

189



Appendix C
New C++ Routinesfor Calculating Capital Stocks, Productivity, and Hours

The core program of IDLIFT ismodel.cpp. This program contains the main
model loop within which is the real-side loop and the price-side loop. Within the real
side loop is the investment-output loop and within thisloop productivity and
employment are calculated. The schematic below shows the organization of
model.cpp:

For t = godate until t= stopdate:
Model loop: load vectors and matrices, read fixes, initialize output and prices
Real-side |oop:
Call to PCE function
Call to exports function
I nvestment-Output |oop:
Call to equipment investment function
Call to construction function
Call to government spending function
Solve for output given results of above functions
Callsto productivity, hours, and employment functions
(see detail below)
Price/lincome-side loop:
Callsto functions cal culating value added components
Solve for prices given results of value added functions
Calculate aggregate variables

End of model loop: t=t+ 1
Within the calls to the productivity, hours, and employment functions, | placed the new
routines (called UpdateK Buckets(), DanProductivity(), and RevisesEmploy() below)
after calls to the preexisting functions for productivity, average annual hours, and
employment. This section of model.cpp is excerpted below (the new functions arein
bOId). [/ (*****) Productivity and Enpl oynment :

if(t>=prd. LastData() ) {

updat e(out, Qutl ag) ;

Productivity(hrs, prd, Qutlag, gpeak, Qpeaklag, eqi, caphat,
Caphatl ag, pdm iag56, ProductivityEquations, prdtrnd);

}
/] (*****) Average Hours Worked function:
if(t>=yhr.LastData() ) {
AvgHour s(yhr, Qut | ag, Aver ageHour sEquat i ons) ;
othrsf(); // domserv., govt. ent.

/1 Call Enmploy to calculate enploynment, and various identities:
pS = pdn{5];
i f(t>=enp. LastData() ) {

Enpl oy(enp, hrs, prd, yhr, out);

}

if(t>dprd. LastData() ) {
str.fix(t);
Updat eKBucket s(vi, vbkl_, vbk2_, vbk3_, qastk, vbkll ag,
vbk2l ag, vbk3lag, eqicu, DanProductivityEquations,
) str, strcap, Strcap, Qastk);
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i f(t>=dprd. LastData() ) {
DanProductivity(dhrs, dprd, gag, gagpeak, Qagpeakl ag, gastk,
Qastk, strcap, Strcap, iag56, DanProductivityEquations, hrsag);

I/l By setting dhrs.LastData > | ast forecast year, we can get nodel
/1  to compute dprd and dhrs BUT W THOUT feedi ng them back into the
/] nodel .
i f(t>=enp. LastData() && t>=dprd. LastData() && t>=dhrs.LastData() ) {
Revi seEnpl oy(enp, dhrs, hrs, yhr, prd, out, iag56);
}

The vectors calculated by the functions called in this section are: productivity
by 97 sectors (prd), average annual hours by 97 sectors (yhr), employment by 97
sectors (emp), productivity by 55 industries (dprd), structures capital by 55 industries
(strcap), quality-adjusted equipment capital by 55 industries (qastk), and hours by 55
industries (dhrs). A vector name followed by “.LastData()” returns the year which is
the last year for which there is historical data (this information is stored in a separate
file). When or if the new routines feed back into the model can be controlled by setting
the last datayear. Setting the last data year to the first year of the model run will fully
incorporate the new routines into the model. Setting the last data year to ayear greater
than the last year of the forecast will allow the model to calculate dprd but will not
allow this vector to affect the rest of the model; rather, the rest of the model will use the
old productivity, hours, and employment vectors.

Thus, the old productivity and employment functions are called whether or not
the new vectors are feeding back into the model. Besides making the turning on and
off of the new routines extremely simple, having the old functions aways called
provides a convenient and time-varying vector, namely hrs, to be used as a “ split
vector” for disaggregating dhrs (55x1) to the 97-sector level.

The first new function, UpdateK Buckets, takes in the equipment investment and

structures forecasts and calculates capital stocks. Hereisthe code for this function:
I A]Lopl%/ ;S.tructures fixes here so as to exogenously supply str with val ues
str.fix(t);

/] Private Structures Buckets:
arith("In Updat eKBuckets, before STR",t);
for(i=1;i<=NEQ ;i++) {
i f(i>=55) continue;
tenmpstr = str[i];
| agstrcap = Strcap[1][i];
tenpsp = sp[i];
tenpstrcap = (1.-sp[i])*Strcap

1
}strcap[i] = (1.-sp[i])*Strcap[[l]

—_———

/] Private Equi pment Buckets:
/larith("lIn Updat eKBuckets, before EQ:",t);
for(k=1; k<=NEQ ; k++) {
i f (k>=55) conti nue;
tenpapc = apc[t];
tenpeqi cu = eqi cu[ k]

terrpgamna = Pl k][7

tenp = (eqi cu[ ]/apc[t])*exp((t- 1987) *safel og( 1. +P[ K] [7]));
vi[k] = (eqic [k]/apc[t])*exp((t-1987)*safelog(1.+P[k][7]));
vbk1l_[k] = (1.-0.14)*vbkll ag[1][k] + vi[k];

vbk2_[k] = (1.-0.3)*vbk2lag[1][k] + 0.129*vbkll ag[1][k];
vbk3_[k] = (1.-0.3)*vbk3lag[1][k] + 0.3*vbk2l ag[1][k];
gastk[ k] = vbkl_[k] + vbk2_[k] + vbk3_[k];
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The quality-adjusted equipment capital stock (qastk) and structures capital
stock (strcap) vectors are then passed (along with the 55-level output vector (qag) and
the coefficients for the productivity equations, which are stored in a separate file) to the
“DanProductivity” function which calculates productivity and hours at the 55-industry

level. The main section of code for this function is below:
t1 = t-1900:
if (t>=1972)
t2 = t-1971;
else t2 = 0;
if (t>=1992)
t3 = t-1991;
else t3 = 0;

n = P.neq;
/* For each nunmber i, for each equation, gives us the nunber of sectors*/
for(i =1; i <= n; i++){

j = P.sec(i);

which = P.type(i);

i f(j==86)

Aiver=snall;
/] i is the equation #, | is the sector #
i f(j<=0)

conti nue

i f(which>="a" && which <= "f") {
arith(" in Danprod before dq cal cul ations, sector:",j);
Qup=Qdown=0. 0
curgag=qag[j]; )
peakgag=Qagpeak[ O] []];
peakl ag=Qagpeak[ 1] [j];

if(curgag <= 0. || peaklag <= 0) {
cprintf(" \r\n\r\nln Danpr od: Negati ve or zero output in
sector %l:' " curqag=%d2. 1f

| agqagpeak=9%d2. 1f\ n\r",

j.qaglj], Qagpeak[1][j]);
t r oubl e( NEGOUT) ;

dynet ap();
conti nue
}
el se dq = safel og(curgag) - safel og(peakl ag);
/* Difference of Iog of Qutput and Peak output */
arith(" in Danprod after dqg, sector:",j);
i f(dg<0)
Qdown=-1.0*dq; //thats right, in ny eqns gdown is always
positive
el se Qup=dq;
#i f def DBG_PRD
#endi f
}
i f(which=="a")

{
stuff = 1/(1- P[|][2] PLil[3]);
depend = stuff*( P[1][1] + P[|][2] saf el og(qastk[j])
+ P[i][3]*safelog(strcap[j])
+ PliJ[6]*t1 - (P[i][2] + P[i][3])*safelog(curqag) );

}if(v\lmch b)) {

stuff = 1/(1- P[|][ 2]1-PLi1[3]);

depend = stuff*( P[1][1] + P[i][2]*safel og(qastk[j])
t PLil[8]¥safelog(strcapj]) + PLi][4]*Qup + P[i][5]*Qdown
+ P[i][6]*t1 - (P[i][2] + P[i][3])*safelog(curqgag) );

}
i f(which=="c") {
stuff = 1/ (1-P[i][2]-P[i][3]);
depend = stuff*( P[1][1] + P[i][2]*safelog(Qastk[1][j])
+ Pli][3]*safelog(Strcap[1][j])

192



- (PLi][2] + P[i][3])*safelog(curqag) );
}if(whlch ) |

stuff = 1/(1- P[|][ 21-P[i]1[3]);
depend = stuff*( P[1][1] + P[i][2]*safelog(Qastk[1][j])
+ Pli][3]*safelog(Strcap[1][j])
+ Pli][6]*t1 - (P[i][2] + P[i1][3])*safelog(curgag) );

}if(whlch==e){
depend 5[ P][[IE];][ll + PLiJ[3]*t2 + PLi][4]*Qup + P[i][5]*Qdown +
| *

}if(whlch ) {

stuff = 1/(1- P[|][ 21-P[i]1[3]);
depend = stuff*( P[1][1] + P[i][2]*safelog(qastk“])
+ Pli][3]*safelog(strcap[j]) + Ph][
+ Pli][6]*t1 - (P[i][2] + P[i][3])* safelog(curqag) );

}

i f (depend>=7 || depend<=0) {
cprintf("In Danprod, Sector %l depend is CRAAAAAZY!: 9%42.1f\n",
j , depend);
[/ conti nue;

}

Calc = exp(depend);

Act = dprd[]

RCal ¢ = P rhoadj(CaIc dprd[j].,i);

dprd[j] = RCalc;

#i fdef DBG_PRD

fprintf(chk,"Calc = 99.2f Actual = 99.2f RCalc = 99.2f dhrs =
99. 2f\ n\n",

Cal c, Act, RCal c, dhrs[j]);

#endi f

}
dprd. fix(t);
/] Cal cul ate 55-industry hours (DHRS)
dhrs = ebediv(gag, dprd);
return(n);

Finally, the “ReviseEmploy” function simply disaggregates dhrs (55x1) to the
97-sector level. The 97x1 vector hrs, which is calculated using the old productivity
equations, provides the shares to be used to split out dhrsto the more disaggregate
level when there is a one-to-many mapping from the 55-industry level to the 97-sector
level. Theresulting 97x1 vector is now called hrs (overwriting the former hrs vector)
and 97-sector prd is now recalculated as out (97%1) divided by hrs. From this point
on, RevisesEmploy takes hrsand prd and calculates employment just as the old
“Employ” function would have with the old vectors and the rest of the model proceeds
with these new vectors for hrs, prd, and emp.
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Appendix D

Private and Public Construction Categories

1 1 unit res. structures

2 2 or more unit structures
3 Mobile homes

4 Additions & aterations

5 Hotels,motels,dormitories
6 Industrial

7 Offices

8 Stores,restaurants,garages
9 Religious

10 Educational

11 Hospital & institutional
12 Miscellaneous NR bldg
13 Farm buildings

14 Mining exploration shafts& wells
15 Railroads

16 Telephone & telegraph
17 Electric light & power
18 Gas & petroleum pipes
19 Other structures

20 Highways & streets

21 Military facilities

22 Conservation

23 Sewer systems

24 Water supply facilities
25 Brokers' commission
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Percent of Elasticities that are Positive

Figure 4-4,

00T

00T

00T

00T

00T

00T

00T

00T

86

86

89

091
8G

09

79

777777777777777777

R R R R A L

Ly
79 I
16

777777777777777777

89

rrrrrrrrrrrrrrrrr

A

Ly
Ly

rrrrrrrrrrrrrrrrrr

09

rrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrr

72

rrrrrrrrrrrrrrrrrrrrr

i}

)74

89

114

11

10

Specification

Theta mAlpha = Eta * Beta Sigma\



Dan Wilson
114


T

9AllISOd uoinoeid |

abelany O

uonesiydadg

L

90°T-

990 090

TN

9.0

890

6¢°0-

090

0T0

q'T-

L m.O|

- G0

(abesn ABi1auz "3a'm uonezijin jo Ajonse|3) nej abesaay ‘G- ainbi4

ST

115


Dan Wilson
115


60 80 L0 90 S0 70 €0 20 T0
6€6°0 wswdinba pajsnipe-Aurenb Buisn S Y 1ueIsuod Inoyum sejbnog-qgqod
1560 ABiaua /m uonezinn Joj Bunsnipe pue uswdinba paisnipe-Alujenb Buisn S| ¥ uLISUOD INoYUM Se|Bnog-qqod
1260 swdinba pasnipe-Anrenb Buisn Sy wueisuod yum seibnog-qqo)
8€6°0 ABisua /m uonezinn Joy Bunsnipe pue Juswdinba paisnipe-Aljenb Buisn Sy ueISuod yum seibnog-qgqod
652°0 uonenba 1417l PIO
1€6°0 wawdinba [euonipesn Buisn S 1Y JuLISUOI INoyUM se|Bnog-qqod
£Y6°0 ABiaua /m uonezinn o) Bunsnlpe pue wuawdinba reuonipen Buisn S| Y ULISUOD INOYIM Se|Bnog-qgqoDd
126°0 juswdinba jeuonipes Buisn S 1Y JueISuod yum se|bnoa-qgqod
626°0 ABiaua /m uonezinn Joj Bunsnlpe pue juswdinba peuonipen Buisn S Y ULISUOD Yum sebnog-qqo)
6£6°0 awy paipoqws Buipnjoul pue uswdinba [euonipel Buisn S 1Y ueIsuod yum sejbnog-qqod
256°0 ABiaua /m uonezinn oy Bunsnlpe 1nq mojag QT uonealdads se awes

(BurinjoejnuewiuopN) pasenbs-y pajsnipy abelaay ‘g-f ainbi4

0T

1T

116


Dan Wilson
116


QT

saniose|g abelony

T S0 0 S0-
.ﬁ&ﬁm | T
feild 2
= £
¥ 2|
bbb i 9
Rtesessl L -
88 | 8
ewbis@ p i 6
elod [&
0T
el 4s
eydivm _| _!.:.,w_w 1T 1
elayl

(BurinjoejnuewiuopN) sanionse|3 abeiaay ‘- ainbi4

uonesyvadg

117


Dan Wilson
117


Percent of Elasticities that are Positive (Nonmanufacturing)

Figure 4-8,
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FIGURE A-4

Average Age of Sample Plants By Year
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