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Abstract:
This paper provides an exploratory analysis of whether data on the research and

development (R&D) spending directed at particular technological/product fields can be used to
measure industry-level capital-embodied technological change.  Evidence from the patent
literature suggests that the R&D directed at a product, as the main input into the “innovation”
production function, is proportional to the value of the innovations in that product.  I confirm this
hypothesis by showing that the decline in the relative price of a good is positively correlated with
the R&D directed at that product.  The hypothesis implies that the technological change, or
innovation, embodied in an industry’s capital is proportional to the R&D that is done
(“upstream”) by the economy as a whole on each of the capital goods that a (“downstream”)
industry purchases.  Using R&D data from the National Science Foundation, I construct
measures of capital-embodied R&D.  I find they have a strong effect on conventionally-measured
TFP growth, a phenomenon that seems to be due partly to the mismeasurement of quality change
in the capital stock and partly to a positive correlation between embodied and disembodied
technological change.  Finally, I find the cross-industry variation in empirical estimates of
embodied technological change accord with the cross-industry variation in embodied R&D.
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1.  Introduction

In order to properly model long-run productivity growth, at least within the framework of
Neoclassical production theory, one must accurately measure capital accumulation.  To this end,
one must understand the extent to which new capital is more productive (i.e., more
technologically advanced) than old capital.  This is the issue of capital-embodiment. 
Distinguishing between embodied (or investment-specific) and disembodied technological
change has long been an important goal in economics, as has the dual problem of distinguishing
between obsolescence and physical depreciation on the price/cost-side.  The channel through
which most economic public policies work is business investment; thus separately identifying
these phenomena is crucial to determining how much of aggregate labor productivity growth is
affected by the economy’s investment decisions and is thereby promotable by public policy.

Because of its important policy implications, a great deal of empirical research has sought
to estimate the rate of embodied technological change, i.e., the rate at which the quality of capital
goods is improving, and its contribution to overall labor productivity growth.  Hulten (1992);
Hornstein and Krusell (1996); Greenwood, Hercowitz, and Krusell (1997); Cummins and
Violante (2001) and others have shown that given certain assumptions one can interpret the
decline in the price of a constant-quality unit of investment relative to a consumption deflator as
the rate of embodied technological change.  The contribution of embodied technological change
to output and productivity growth can then be measured via growth accounting techniques and/or
model simulation.  Researchers in this field generally use the price indexes constructed by
Gordon (1990) to form their constant-quality price deflator for investment.  Depending on certain
assumptions, the implied rate of embodied technological change is between 3 and 4 percent.

Other researchers have estimated embodied technological change through regression
analysis using production data.  Nelson (1964); McHugh and Lane (1983, 1987); and Bahk and
Gort (1993) include the average age (or vintage) of capital as an additional regressor with the
usual factor inputs in a production regression in order to capture the effects of embodiment on
productivity.  Sakellaris and Wilson (2001) go one step further and essentially include the entire
historical investment distribution, net of physical depreciation, in place of a preconstructed
capital stock in an otherwise straightforward production regression.  The variation in historical
investment distributions across manufacturing plants allows us to estimate the increased effects
on productivity of newer vintages of investment relative to older vintages, i.e., embodied
technological change.  The production-side approach to estimating embodied technological
change has tended to yield much higher estimates, generally around 10 to 15 percent.

Given such a wide range of estimates using different approaches, it seems appropriate for
the literature to stop and ask: What exactly is embodied technological change and where does it
come from?  And if we can identify the source(s) of it, can we use this information to evaluate
whether estimates of embodied technological change in the literature make sense?  

In particular, a number of recent studies have moved beyond the aggregate estimation of
embodied technological change and derived estimates at the industry-level.  The question of
which industries are experiencing the greatest gains in terms of the technological progress of
their capital goods is naturally of great interest to policymakers as well as academics.  But how
does one know whether it is sensible for one industry to have a higher estimated rate of embodied
technological change than another.  An inspection of capital flows tables may be able to tell us
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2Throughout this paper, the term “innovation” will used as a synonym for technological
change.

3There is a large literature seeking to measure the effects of R&D on productivity. 
However, the R&D variable that is generally used is R&D done by the firm, industry, or
economy for which productivity is being measured.  There is also a growing literature on the
productivity effects of R&D spillovers -- that is, R&D done by other firms that are “close” to the
firm/industry in question in terms of distance, industry, production process, input-output
linkages, etc..  Though interesting in their own right, these types of R&D effects are likely to
only affect disembodied technological change and thus are separate from the embodied effects of
R&D discussed in this paper.  

which industries invest in goods that are considered “high-tech” (e.g., Stiroh (2001)) or
“innovative,” but other than subjective priors, we have no way of quantifying the innovation
embodied in an industry’s capital goods.2

In order to evaluate the realism of estimated rates of embodied technological change and
explore the sources of this kind of innovation, I propose an index that captures the amount of
research and development (R&D) embodied in an industry’s capital.  I then investigate the
effectiveness of this index in explaining embodied technological change.  The index is a
weighted average of the past and present R&D performed on the (upstream) capital goods that
are purchased by a (downstream) industry.  To construct this index, I create a data set containing
R&D by product field from 1957 to 1997, using various releases of the National Science
Foundation’s Research and Development in Industry.  This data is then combined with
Commerce Department data on industry investment by asset type.  The product field R&D data
allows me to avoid measurement problems associated with using R&D by performing industry.

In the following section, I present the basic theoretical underpinnings for using R&D data
to capture embodied technological change.  In section 3, I discuss the data, the construction of
the index of capital-embodied R&D, and the ranking of industries according to this index.  The
notion that technological change in any given product (capital goods in this case) is the result of
past and present R&D directed at the invention and/or development of that product is the
backbone of this paper and thus it is tested in Section 4 by comparing the R&D embodied in a
capital good with another proxy of technological change:  the decline in the good’s quality-
adjusted price relative to the price of consumption.  I search for some reduced-form relationships
between embodied R&D and various measures of total-factor productivity (TFP) in Section 5. 
Finally, in Section 6, I estimate the relationship between embodied R&D and various industry-
level estimates of embodied technological change in the literature.  Embodied R&D turns out to
be positively and significantly related to both conventionally-measured TFP and estimates of
embodied technological change, implying that the R&D done “upstream” by producers of capital
goods is responsible for the measured productivity growth of “downstream” customer industries.3

2.  Embodied R&D as a Proxy for Embodied Technology
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4See p.62 and Figure 5-3.  Scherer’s finding is derived from results in Harloff, Scherer,
and Vopel (1998).

To answer the question of whether the capital of one industry is undergoing faster
technological change than that of another industry, one needs to quantify the innovation
embodied in an industry’s capital stock.  Related studies often associate innovation embodied in
an industry's capital with the extent to which the industry invests in "high-tech" capital as
measured in capital flows tables.  Though such a technique is useful for determining the
productivity impact of investment in a particular type of capital (e.g., computers and
telecommunications equipment), it is far less useful for determining the productivity impact or
innovation of investment in capital-embodied technology in general.  Identifying embodied
technology with high-tech investment shares requires a subjective determination of what capital
types are high-tech versus low-tech and discards any gradation in technology within the high-tech
and low-tech classes.  The index I propose below, on the other hand, uses objective data to
capture the technology embodied in a capital good.

Evidence for using R&D as an indicator of innovation value
A natural choice for a variable that is likely to be related to the true rate of embodied

technological change would be the amount of research and development (R&D) that went into
developing the technology that is embodied in an industry’s capital.  As Hulten (1996) puts it:
“Most advances in knowledge are the result of systematic investments in research and
development.”  In fact, Scherer (1999) finds that a firm’s R&D spending has a roughly one-to-
one correspondence with its own valuation of the resulting patent(s), implying that a doubling of
R&D results in a doubling of technological change as measured by the value of new patents.4 
Earlier studies have also found that R&D in a particular technological field is proportional to 
technological change as measured by either simple patent counts (Jaffe (1986)) or citation-
weighted patent-counts (Trajtenberg (1990)).  

So if R&D is the main input into the innovation production function (I provide further
evidence of this below), then R&D directed toward the equipment assets used by an industry is
the main input into the “production” of its capital-embodied innovation (specifically, the
production of the productive value of its capital-embodied innovation).  To capture this notion of
“capital-embodied R&D,” I create a weighted average of past and present R&D done on an
industry’s equipment capital.  As opposed to inferring embodied technology from an industry’s
asset composition, embodied R&D has the advantage of being a single, continuous, and objective
metric which reflects both the changing asset mix of an industry’s capital and the technological
advances (to the extent they are due to R&D) that have taken place in the underlying capital
goods.  The hope is that this index of embodied R&D will be a useful predictor of embodied
technological change.

Theoretical Basis for Downstream Productivity Benefits of R&D
The theoretical basis for a relationship between R&D expenditures directed at capital

goods upstream and productivity benefits in the downstream customer industries rests on
spillovers from product-oriented R&D, spillovers that are both real and figments of measurement
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5Of course, both the supplying and the purchasing industries would have substantial
measured and real average labor productivity gains: the supplying industry due to the increase in
output and the purchasing industry due to capital deepening in terms of quality units.

6Yet another avenue through which upstream R&D could cause downstream investment-
specific technological change is knowledge spillovers, i.e. technological diffusion from supplier
to customer facilitated by their business interactions.

error.  Clearly, process-oriented R&D should exclusively benefit the industry(ies) who utilize the
R&D-induced process innovations and should have no effect on either the measured or real
productivity of those industries who purchase the R&D performer’s product.  

However, the effects of product-oriented R&D (which is the majority of R&D) are more
complex.  As pointed out by Scherer (1982) and Griliches (1979), much of the measured
downstream benefits of R&D may be due to measurement error in the price of capital goods.  If
prices adjusted fully for quality change, real output for capital producers and real investment for
downstream industries would be augmented to reflect the increased quality embodied in the
capital being produced.  One would then expect to observe the majority of (total factor)
productivity gains, if there were any, in the capital-supplying industry and smaller TFP gains in
the downstream industries.5  These smaller downstream gains that would occur in this case,
known as pure rent spillovers (pure in the sense that they are not due to mismeasurement), are
the result of price competition in the upstream industry which prevents the nominal price of
newly-invented capital from increasing in proportion to the increase in quality (i.e., they are the
result of the flow of consumer surplus downstream).  On the other hand, if prices are not adjusted
for quality, then real output of the supplying industry and real investment of purchasing
industries will be understated.  In this case, increases in measured TFP should show up primarily
in the downstream industries.  Regardless of whether the downstream measured productivity
gains are due to mismeasured capital prices or to pure rent spillovers, these gains reflect
investment-specific technological change since they would cease to appear if the downstream
industry did not invest.6

Traditional Measures of Indirect R&D
The index I construct in this paper is related yet very different from the usual measures of

embodied or “indirect” R&D in capital that are used in the literature on R&D spillovers.  For the
purposes of comparison and to avoid confusion with other measures of indirect R&D, it will be
helpful to consider the measure of indirect R&D in capital generally used in the R&D spillover
literature:

       (1)IRD t B t
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where Bji is industry j's sales of capital to industry i, RDj is the R&D stock for industry j, and Yj

is industry j’s output.  The R&D stock is generally measured using a perpetual inventory
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7See, e.g., Goto & Suzuki (1989), Sveikauskas (2000), Scherer (1982, 1984), and Sakurai,
et al. (1997).

8These numbers come from the NSF data described in this paper and manufacturing
shipments data from the Bureau of Economic Analysis (BEA).

accumulation of past and present R&D expenditures assuming some rate of depreciation.  RD/Y
is referred to as “R&D intensity.”  Thus, investment in each upstream industry is multiplied by
the R&D intensity of that industry and then summed across industries.  This measure was
developed by Terleckyj (1974) and has been used in numerous studies.7

A problem with the Terleckyj approach is that R&D spending (and therefore R&D stock)
by an industry is not necessarily equal to the total R&D done on that industry’s products. The
use of own-R&D is inappropriate if there are non-zero off-diagonal elements in the interindustry
R&D flows matrix -- i.e., if industries perform R&D on products other than their own.  There are
two reasons to expect this to be a problem.  As Griliches and Lichtenberg (1984) put it:  

(1) Many of the major R&D performers are conglomerates or reasonably widely diversified firms. 
Thus, the R&D reported by them is not necessarily “done” in the industry they are attributed to. 
(2) Many firms perform R&D directed at processes and products used in other industries.  There is
a significant difference between the industrial locus of a particular R&D activity, its “origin,” and
the ultimate place of use of the results of such activity, the locus of its productivity effects. (p.466)

Evidence of this can be seen in the NSF’s annual tables on applied R&D by industry and by
product field which show numerous large off-diagonal elements in any given year.  Thus, a key
innovation of this paper is the use of product-field R&D rather than industry own-R&D when
measuring embodied R&D.  

Surprisingly, though the data is readily available, the NSF data on R&D by product field
has rarely been used in economic studies.  When it has been used, for example in Griliches &
Lichtenberg’s study, the productivity effects of product field R&D are sought within the industry
which produces that product rather than in downstream industries.

Aside from the misidentification of industry R&D with product R&D, for the purposes of
measuring embodied technological change, the Terleckyj measure is inappropriate because it
uses investment flows (Bji) rather than investment shares (i.e., Bji divided by total investment of
industry i).  That is, the rate of embodied technological change should be independent of the
scale of an industry’s investment.  Thus, in the index described below, I use investment shares
rather than investment flows.  

Should the R&D Directed at a Product Be Scaled?
Another element of the Terleckyj measure that is inappropriate for  capturing embodied

technological change is the scaling of R&D by dividing it by the sales of the R&D-performing
industry.  Recall that the patent evidence mentioned above shows that the value of a specific
innovation is correlated with the R&D spent on the innovation, not the R&D spending divided by
sales.  For example, in 1997 the U.S. economy devoted about three times as much R&D to 
computers as it did to scientific and measuring instruments, while the sales of the computer
producing industry were about twice those of scientific and measuring instruments.8  Should a
dollar’s investment in scientific and measuring instruments then be considered as embodying
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three times or 1.5 times the technology as is embodied in a dollar’s worth of scientific
instruments?  I argue the appropriate answer is three.  Why should the technological value of a
given expenditure on computers be the less for the size of the computer industry, and by
implication, be reduced by increases in demand for computers?

An Alternative Index of Embodied R&D
Let us first define embodied technological change in the context of the standard definition

of the productive capital stock.  Let Jit be the stock of equipment capital in industry i in year t:

       (2)
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where:
Ii,t-s = Real investment in vintage t-s equipment (deflated using a non-hedonic deflator);
Di,t,t-s = the fraction of one dollar’s worth of vintage t-s investment that is still used in 

production in year t;
�i = the rate of embodied technological change;
t = current year (so t-s denotes vintage);
t0 = numeraire year in which level of embodied technology is 1.

Dt,t-s captures physical depreciation (wear and tear) and often appears in its more familiar but

restrictive geometric form:  Dt,t-s = (1 - �)s.  The extra term may seem foreign but in0(1 )t s tγ − −+
fact it is always there in any capital stock construct.  Conventionally, this term reflecting
embodied technological change is assumed to be subsumed in the quality-adjusted price deflator
for investment.  However, if embodied technological change is defined as the quality change in
capital goods relative to consumption goods, then one can separate out this term by deflating
investment by a consumption deflator.  Separating identifying �, the rate of embodied
technological change, in our definition helps us focus on our attention on how embodied
technological change affects the overall capital stock and thereby productivity.

The index I construct is based on the premise that an industry’s � in a given year is
simply a weighted average of the embodied technological change in each of the capital goods that
the industry purchases:

       (3)it pit pt
p

x� �� ��
where xpi is the share of industry i's equipment investment spent on capital good p, and �p is the
rate of embodied technological change in capital type (product field) p.  I hypothesize that �pt is
proportional to the stock of R&D directed, by all sources (including international sources), at
capital type p, Rpt:
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       (4)pt ptA R� � �

where A is a factor of proportionality.  
This equation assumes constant returns to R&D.  If there were increasing returns as is

assumed in many endogenous growth models (e.g., Romer (1990), Grossman and Helpman
(1991, Ch. 4)), then Rpt would be replaced in the above equation by (Rpt)

2 where � is greater than
one.  Conversely, it is possible that because of coordination failures and secrecy, as economy-
wide R&D devoted to a product type increases, more and more researchers engage in duplicate
research activities and thus there are decreasing returns to R&D (Kortum, 1993).  There is, in
fact, some empirical evidence of decreasing returns at the firm-level.  However, this evidence
does not account for the positive industry- and economy-wide spillovers beyond the R&D-
performing firms.  There may be substantial complementarities involved with research on a
particular subject suggesting increasing returns to R&D.  Yet, the empirical research that is most
relevant for assessing the returns of R&D to innovation value in a technological field is the
patent research mentioned above (particularly Scherer (1999)), which suggests constant returns.  
Nonetheless, there is no conclusive evidence in the literature regarding �, thus applying Occam’s
Razor, I proceed under the simplest assumption, � = 1.

Equation (4) essentially treats Rpt as exogenous.  In reality, Rpt is the sum of R&D
spending (in product field p) by every firm in the economy.  Each firm chooses R&D spending
based on the size of the market for that field’s products and the technological opportunities in the
field.  For example, if the market for IT goods is increasing, then profit-maximizing research
firms will increase IT research.  Since productivity in the IT-using industries will help determine
the size of the market for IT goods, it will affect how much R&D is targeted toward IT goods. 
So in this way, downstream productivity can affect upstream R&D.  However, current
productivity in using industries will mostly affect future upstream R&D and current upstream
R&D will mostly affect future TFP.  Therefore, in the regressions of current downstream TFP on
past and present upstream R&D presented in section 5, endogeneity bias should not be a serious
problem.

It should also be noted that empirically I will assume that the distribution of R&D
spending across product fields is approximately the same outside the U.S. as it is inside the U.S.. 
Thus, Rpt as measured in the U.S. is proportional to Rpt as would be measured globally if such
data existed, which it does not.  This assumption is unrealistic if both the international
distribution of R&D across product fields is significantly different from the U.S. distribution and
American industries import a substantial share of their equipment capital.

I measure this stock of R&D as a perpetual inventory of past and present R&D
expenditures:

       (5), 1(1 )pt p t ptR d R r�� � �

where d is the assumed rate of depreciation and rp is the R&D spending on product field p,
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9Hard copies of the tables, one for each year of the survey, containing total R&D by
product field, were generously compiled and provided by Raymond Wolfe of the NSF.

deflated by the PCE deflator.  Thus, let us define an index of capital-embodied R&D in industry i
as:

,        (6)it pit pt
p

g x R��
which implies:

       (7)it itA g� � �

The implications of equation (7) will be discussed and evaluated in Sections 5 and 6.

3.  Data

The principal source for industrial R&D data in the U.S. is the firm-level Survey of
Industrial Research and Development conducted by the Census Bureau and financed by the NSF. 
This survey began in 1957.  However, to reduce the burden on respondents, certain data items
such as R&D by product field have generally only been requested in odd years.  The exceptions
to this are that product field detail was not collected for 1965 and 1969 and was only collected
for even years in the intervals 1958-64 and 1968-76.  The vast majority of these product fields
correspond to categories of equipment (e.g., farm machinery, computers, aircraft, etc.).  The
industry aggregates of the survey data are published in the NSF’s Funds for Research and
Development in Industry.9

Imputation of Missing Data Values
Unfortunately, there are many holes in the aggregate data due to nondisclosure of certain

values and changes in the product field classification over time.  Holes were due to one of several
factors.  First, R&D was collected for the “Professional and scientific instruments” field but not
separately for its subfields “Scientific and mechanical measuring instruments” and “Optical,
surgical, photographic, and other instruments” until 1987.  I used the average split between these
two subfields between 1987 and 1997 and applied it to the pre-87 totals for the two fields. 
Second, in eight of the 28 years in which the survey was conducted, the value for R&D in motor
vehicles could not be disclosed for reasons of confidentiality.  In these cases, values were
imputed using the share of motor vehicle R&D to total transportation equipment R&D in the
nearest adjacent year.  Third, in 1957 R&D data was collected for the broad field of “Machinery”
but not separately for the six product fields within machinery.  The value of R&D for each
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10Unfortunately, the share of R&D that is product-oriented from Cohen and Walsh (2000)
is not available at a disaggregated level or it could be used rather than the disaggregate patent-
based share from Scherer (1984).

product field was imputed using the machinery total and the 1958 share of the product field’s
R&D in total machinery R&D.  Finally, product field R&D for years in which the survey was not
done were interpolated using values from the closest adjacent years.  These interpolations and
imputations may lower the informational content from intertemporal movements in the data but
should have little or no effect on the cross-product field relationships. 

Another discontinuity in the data comes from the fact that in 1985, R&D by product field
was no longer imputed for nonrespondents of the survey.  Fortunately, the NSF does supply the
coverage ratios so that total R&D by product field can be approximated under the assumption
that nonrespondents have a similar product field decomposition of their total R&D as have
respondents.  After these adjustments were made to the raw data, what was left was a matrix of
applied R&D by product field for 1957-97.  For the purposes of this project I was only interested
in the R&D applied to equipment product fields and thus rows corresponding to nonequipment
fields (e.g., Chemicals) are omitted from the matrix.  The field “Electrical Equipment” contains
one subfield, “Electronic Components,” whose applied R&D consists mainly of semiconductor
research.  In the LRD (as well as in the NIPA), semiconductors are considered an intermediate
input rather than a capital asset and therefore I subtracted out all “Electronic Components”
product field R&D from that of “Electrical Equipment.”

Netting Out Process-Oriented R&D
As mentioned in Section 2, the type of R&D that causes downstream productivity gains is

the product-oriented type.  Unfortunately, the NSF survey does not distinguish between product-
and process-oriented R&D.  Scherer (1984), however, does provide a detailed industry-level
table of the percentages of issued patents, sampled between June 1976 and March 1977, that
were product-oriented.  Using Scherer’s table, I aggregated these percentages to the NSF product
field level by taking weighted averages of the percentages for the component industries that
comprise a product field.  For each component industry, the weight was its 1974 R&D divided by
the 1974 R&D for the product field as a whole. The appropriate year here was 1974 because the
sampled patents were applied for, on average, in 1974.

There is some potential that these patent-based product-orientation percentages may not
be appropriate measures of the product-orientation of R&D.  Survey findings by Levin,
Klevorick, Nelson, and Winter (1987) and Cohen and Walsh (2000) indicate that patents are less
effective for processes than products in appropriating the returns to innovative activity. 
Therefore, product innovations may be more likely to be patented and the share of R&D devoted
to product innovations may be less than the corresponding share for patents.  In fact, Scherer
(1984) finds that approximately 74% of patents are product-oriented whereas Cohen and Walsh
(2000) find the share of R&D that is product-oriented to be only 67%.10  It is difficult, however,
to know whether this difference is persistent and accurate or whether it is due to the different
time periods covered, the different data collection techniques (patent citations versus survey
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11The standard error around mean share of R&D that is product-oriented, 66.7%, is 9.6%. 
Thus, this 67% is not statistically significantly different from 74%.

12Investment in non-equipment asset types was dropped from the matrix.  Of the 37 NSF
product fields, only the 13 which referred to equipment assets were kept.  Thus, the embodied
R&D index I construct excludes R&D embodied in structures.  This is appropriate since � refers
only to embodied technological change in equipment .

responses), or statistical error.11  Thus, I use the patent-based shares from Scherer because of
their disaggregate availability (the R&D-based shares are not available at the industry-level). 
Nonetheless, for robustness, all of the analyses of this paper were also done without adjusting for
the process/product splits and the results did not substantively change.

Summary of Data on R&D by Product Field
The resulting share of each product field’s R&D that is product-oriented (subject to the

above assumptions) is shown in the second column of Table 1.  The shares are quite high with
the lowest, 77.5%, occurring in “Aircraft and parts.”  Multiplying these shares by the
corresponding product fields’ R&D for 1957-97 gives the rpt’s in equation (5).  To give an
impression of the variation in rpt across capital types, Figure 1 displays their 1997 levels as well
as their average over 1957-97 for each capital type.  One can see that Electrical Equipment,
Aircraft and Parts, Office Computing and Accounting Machines (OCAM), and Motor Vehicles
and Equipment are the targets of the majority of the U.S. economy’s equipment-oriented R&D. 
Specifically, these four types of equipment account for just over three-quarters of the total over
the 13 types.  This implies that industries which invest heavily in these four types of equipment
should exhibit high rates of embodied technological change (which is in fact what I find in
Section 5).  Figure 1 also shows that, according to the most recent year of data (1997), Electrical
Equipment and Motor Vehicles receive much more real R&D today than they have on average
over the past four decades, whereas real R&D on Aircraft and Parts has fallen.  In fact, real R&D
directed to Aircraft and Parts was as low in 1997 as it was in any year over the past 40 years and
has fallen rapidly since its peak in 1987.

Data on Investment by Capital Type
The other data ingredient necessary for creating the desired embodied R&D index is a

capital flows matrix by year.  I use the BEA’s unpublished table of nominal investment by asset
type for 62 industries for 1957-97 provided in the Fixed Reproducible Tangible Wealth in the
United States, 1925-1997.12  First, a many-to-one mapping was made between the BEA’s asset
types and the NSF’s equipment product fields.  This mapping is shown in Table 1.  The mapping
was used to convert the capital flows matrix to one that is by product field rather than by asset
type.  This flows matrix was then converted into a coefficients (shares) matrix using the industry
investment totals (over all equipment product fields).  The elements of this matrix correspond to
the xpit’s in equation (6) above.

Results of the Construction of the Embodied R&D Indexes
The xpi’s and rp’s are used, according to equations (5) and (6), to construct git, the index of
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13The value of embodied R&D in “Transportation by air” may be artificially high since
the R&D on aircraft includes R&D on military planes financed by the Defense Department.

capital-embodied R&D.  The depreciation rate, d, is assumed to equal 2%.  This assumption is
based on evidence that the depreciation rate for direct R&D stocks is close to zero (see Griliches
and Lichtenberg (1984)).  To ensure the robustness of my analyses, I also construct the R&D
stocks using two alternative depreciation rates: 15%, as is commonly assumed in the literature,
and 12%, the rate estimated by Nadiri & Prucha (1996).  The choice turns out to have virtually no
effect on the analyses in this paper.  A unit bucket adjustment is made to “fill in” the stocks for
early periods (see Almon (1998), p. 87).

The table in Appendix B summarizes the results of constructing git for each of the 62
industries in the BEA investment data set.  The industries are ordered according to their mean git

over the 1957-97 period which is shown in Column 2.  The ranking of industries seems quite
reasonable.  The Telephone and Telegraph industry tops the list with an average value of capital-
embodied R&D that is nearly double the economy-wide average.  This is not at all surprising
given this industry’s high shares of investment in electrical equipment and OCAM. 
Transportation by air also has very high embodied R&D due to its heavy investment in aircraft.13 
Trucking and Warehousing is also near the top thanks mostly to its high share of investment in
Motor Vehicles.  Emulating the historical decline in R&D directed at Motor Vehicles, the index
of embodied R&D for Trucking and Warehousing has also declined over time (not shown).  One
can see that the service industries tend to be high on the list.  Though service industries are not
capital-intensive, what investments they do make tend to be in high-tech equipment such as
computers and communications equipment.  

The bottom of the list also fits with our a priori notions of which industries tend to use
relatively low-tech equipment.  The bottom five are Farms, Water Transportation, Coal Mining,
Motor Vehicles and Equipment, and Rubber and Miscellaneous Plastic.  The fact that the Motor
Vehicle industry has a low value of embodied R&D despite the historically very high levels of
R&D directed at the production of Motor Vehicle products is not only sensible but helps to
illustrate the distinction between technological change embodied in an industry’s product versus
that embodied in its capital.  The R&D across the economy directed at motor vehicles and related
equipment has generated rapid innovation in this type of capital good.  And the Motor Vehicle
industry may very well have benefitted from this disembodied technological change
(disembodied in the sense that it is not embodied in the industry’s own capital stock) by being
able to increase its prices to reflect their higher quality product.  But the industry does not
observe high embodied technological change because it does not itself invest in motor vehicles
nor any other “innovative” capital equipment.  In fact, the Motor Vehicle industry invests mostly
in metalworking machinery which one can see from Figure 1 has historically received the least
amount of R&D.

4. Does the R&D directed at a Capital Good Explain its Technological
Change?
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The use of git as an indicator of embodied technological change rests on the premise,
formalized in equation (4), that technological change in a capital type is proportional to the stock
of R&D directed at that capital type.  This is a nontrivial statement.  Evidence for this hypothesis
is based on identifying technological change via patent counts and/or the perceived value of new
patents.  Given that much innovation is never patented, it seems worthwhile to confirm this
hypothesis using alternative, non-patent-based indicators of technological change  prior to using
the constructed R&D stocks to measure downstream embodied R&D.  Additionally, one would
like to confirm that the hypothesis holds equally well at the more aggregate level of the NSF
equipment product fields.  Of course, there are no observables of true technological change so
one must look to the literature for evidence on the rates of technological change in equipment
assets.

Gordon’s (1990) major study of durable goods provides alternative price indexes for
equipment from 1947-1983 which inter alia attempt to account for quality change.  Hornstein
and Krusell (1996) and others, using a 2-sector model of investment and consumption, argue that
the growth rate of Gordon’s aggregate producer durable equipment (PDE) price index relative to
the consumption deflator is equal to the negative of the rate of embodied technological change. 
Thus, one can use the rate of relative price decline of each equipment product field, according to
Gordon’s indexes, as a proxy for the rate of technological change in that field.  It should be noted
that an equipment asset’s relative price may fluctuate not only due to technological change but
also due to substitution effects between equipment assets.  However, one would expect
substitution between such broad product fields as those in Table 1 to be quite limited.

From the 22 PDE categories for which Gordon constructed price indexes, I constructed
13 Törnqvist price indexes corresponding to the 13 equipment product fields.  I then compute the
annual growth rates of these prices relative to the PCE deflator from 1957 (the R&D data does
not begin until 1957) to 1983.  These growth rates can be compared to the average (or total)
amount of R&D directed each capital type.  I also investigate whether there is any relationship
between technological change and the growth rate of R&D.

Table 2 shows the ordinary and rank correlations between the average relative growth of
Gordon’s price indexes to three variables defined over the 1957-1983 period: (1) mean of Rp (the
stock of R&D), (2) annual growth of Rp, and (3) annual growth of rp.  The correlations are
perfectly consistent with the hypothesis that an asset’s technological change is proportional to the
stock R&D directed at that asset.  It is the mean level of R&D and not its growth rate that is
strongly related to technological growth.  The average stock of R&D applied to an equipment
type has a negative correlation with the growth rate of that equipment type’s relative price of      -
0.504 (significant at the 10% level) and a negative rank correlation of -0.674 (significant at the
5% level).  The other two variables are not significantly different from zero.  

The significant correlation between the 1957-83 averages of the R&D stocks and the
price declines is illustrated in Figure 2 which presents a scatter plot of these two series.  The label
next to each data point is the initials of the product field corresponding to that point (see Table 1,
Column 1 for the product field titles).  There is clearly a strong relationship here though there are
some minor outliers.  For instance, Motor Vehicles and Equipment have experienced only a
modest decline in relative prices despite high R&D, and the two Instruments-related product
fields (SMMI and OSPOI) experienced large relative price declines despite modest R&D.  In
general, these results provide strong support for the hypothesis of equation (4).
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14The original Solow Residual (Solow (1957)) uses revenue shares rather than cost shares
and requires, inter alia, an assumption of perfect competition in product markets in order to be
interpreted as total-factor productivity growth.  The cost-based Solow Residual, on the other
hand, is robust to imperfect competition (see Hall (1990)).

15Recall that the index is independent of the total amount of investment done by an
industry.  Rather, they depend on the R&D done on each capital type and the industry’s
investment composition across capital types.  Therefore, there is no danger of reverse causation
from productivity shocks (affecting SRD) simultaneously affecting the embodied R&D index
through their effect on total investment.

5.  Is TFP Invariant to Embodied R&D?

To begin investigating whether there is a relationship between the R&D embodied in an
industry’s capital stock and the industry’s embodied technological change, I test whether git is a
good predictor of the Solow Residual (SRD).  Consider the generally established definition of the
cost-based Solow Residual, first established by Hall (1990)14:

       (8)0( ) ( ) ( ) ( ) (1 ) ( )L J S L J SSRD Q c L c J c S c c c M
H�

�� � � � � � � � � � � �

where � is the log first-difference operator, ci is the cost share of input i, Q is real output, L is
labor input, M is materials, S is structures, J is equipment as defined in equation (2), and � is the
rate of embodied technological change.  A distinguishing feature between the cost-based Solow
Residual (hereafter simply the Solow Residual or SRD) and true total factor productivity (TFP)
growth is that the rate of embodied technological change is assumed to be zero in the former. 
The growth rate of equipment capital (J) is an increasing function of �; therefore, true TFP
growth is decreasing in �.  If there is embodied technological change, the Solow Residual will be
an upwardly biased estimator of true total factor productivity (TFP) growth.  Furthermore, this
bias increases with �.  Therefore, if the embodied R&D index is positively proportional to the
true �, then it should also have a positive effect on SRD.15

Using industry-level data from the BEA and other sources, I construct cost-based Solow
Residuals for 54 industries spanning the U.S. private economy.  Appendix A describes the data
and the construction of SRD.  I constructed Solow Residuals myself rather than using available
data sources on TFP so as to ensure that embodied technological change was not already being
partially accounted for in the underlying construction of the capital stock.  As can be seen in
equation (2) and the definition of SRD above, the property that �=0 must be built into the
construction of the capital stock through the use of a consumption price index to deflate nominal
investment and the non-use of depreciation data that partially reflects obsolescence (as do the
BEA economic depreciation rates).  By contrast, available data on TFP such as that from the
Bureau of Labor Statistics (BLS) or Jorgenson and Stiroh (2000) make some effort to at least
partially account for capital quality changes.  Below I compare the results of relating SRD to git

versus relating these measures of TFP to git.



14

16See Griliches & Mairesse (1995) for a discussion of the advantages and disadvantages
of different panel data estimation techniques.

The panel nature of the measured data on git allows us to separately investigate its effect
on SRD over the cross-industry dimension (emphasizing long-run/growth patterns), the time-
series dimension (emphasizing short-run fluctuations), or both.16  The cross-industry relationship
can be estimated using a “between” regression which regresses the intertemporal mean of the
dependent variable on the intertemporal mean of the regressor.  A “within” regression isolates the
time-series relationship by regressing the dependent variable net of its intertemporal mean on a
similarly demeaned regressor.  Lastly, I estimate the total effect via a first-difference regression:
the change in the dependent variable between t and t-1 regressed on the change in the
independent variable.  The first-differencing simply allows for the intercept to vary by industry.

Table 3 shows the results from estimating these three different types of regressions.  The
dependent variable in these regressions is the Solow Residual.  The second column reports
results for regressions using the full set of industries.  Since the output of many industries is
notoriously difficult to measure, I follow Griliches (1994) in distinguishing between
“measurable” and “unmeasurable” industries.  Industries considered to be measurable are those
in Agriculture, Mining, Manufacturing, Transportation, Communications, and Utilities.  To
ensure that my results are not affected by this output measurement error, I repeat the regressions
using the subset of measurable industries.  The results using this subset are given in the third
column.  The results generally show a positive a significant relationship between embodied R&D
and the Solow Residual.  The results are strongest for the between regressions.  The R2 for the
full sample between regression is 0.21, implying that 21% of the cross-industry variation in the
Solow Residual can be explained by variation in embodied R&D as measured by git. 

The within and first-difference regressions also find a positive effect of embodied R&D
on SRD, though the relationship is only significant in the subset of well-measured industries.  
The weaker relationship found in these regressions may be due to intertemporal measurement
errors that are likely in the data on git.  The annual capital flows tables used in constructing git are
based on input-output studies that (1) are only done every five years, and (2) are largely based on
the occupational composition of industries, which may fluctuate due to reasons unrelated to
capital mix.  In addition, the NSF data underlying the annual R&D by product field tables
constructed in this paper have many missing years that were filled in by interpolation as well as
other discontinuities that had to be dealt with.  For these reasons the time series informational
content (or signal-noise ratio) of git may be less reliable than the cross-sectional content.  

These results are quite consistent with other studies on indirect R&D which generally find
stronger effects on productivity in the cross-section than in the time-series.  Interestingly, they are
also very similar to the findings of Bartelsman, Caballero, and Lyons (1994).  They find that
upstream suppliers' activity (as measured by cost-share-weighted input growth) does not have a
significant effect on downstream productivity in their within estimates but does in their between
estimates.  It is possible that upstream activity is simply a good predictor of upstream R&D
spending (or more broadly, upstream innovation), for they are certain to be correlated.  Then,
under the joint hypothesis that embodied R&D, as measured by git, is proportional to embodied
technological change and that capital good price deflators do not fully account for quality change,
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17The BLS TFP data is at the 2-digit SIC level (20 industries), but data is not available for
two industries, leaving TFP series for 18 industries.  These industries have a one-to-one mapping
with the Jorgenson and Stiroh industries and the BEA industries for which git is available, with

some of what Bartelsman, et al. find may be due to “spillovers” stemming from this price
mismeasurement – the same spillovers that cause upstream embodied R&D to have downstream
effects on measured productivity.

Are Existing Measures of TFP invariant to Embodied R&D?
As I explained above, I chose to construct my own measures of the Solow Residual rather

than use available data on total factor productivity growth because, to the extent that TFP is
measured correctly, it may be invariant to embodied technological change and therefore git,
something that is not true for the Solow Residual.  Or, at the least, if TFP is affected by
embodied R&D, the effect should not be due to quality mismeasurement in the capital stock. 
Thus, the above regressions were really a one-sided test: if SRD as measured above is not
affected by git, either git is a poor indicator of embodied technological change or embodied
technological change is zero, which is highly unlikely.  But if SRD is affected by git, and we have
determined that it is, we do not know if this is solely because embodied technological change is
“corrupting” the residual (i.e., is captured in SRD) or if is also partly because embodied and
disembodied technological change are correlated in reality.  Looking at actual measures of
disembodied technological change, i.e., TFP, can help us determine if the relationship between git

and SRD is partly a real phenomenon.
Jorgenson and Stiroh (2000) construct measures of TFP for 33 industries which are

generally aggregates of the 62 industries listed in Appendix B.  Regressing the sample average
from 1960-96 for each industry and regressing it on git (after aggregating it up to the 33 industry
level by simple averaging of the many git’s within each aggregate industry) yields the following
results:

, 33 industries ( ) 2
0
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  , R 0.01

Rate of TFP (0.38) t
i

i
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= + = 
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So embodied R&D seems to have no effect on Jorgenson and Stiroh’s measure of TFP. 
However, it could be that both git and this measure of TFP are noisy, or mismeasured in an
idiosyncratic way, making a significant relationship unlikely.

To check if this result is driven by idiosyncratic measurement error in the data, I repeat
the above regression using the subsample of manufacturing industries, where measurement error
should be far less problematic.  This yields the following results:
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Embodied R&D turns out to have a positive and significant coefficient suggesting that the
insignificance found in the full sample may simply be due to noise.  This can be further
confirmed by repeating the regression using the TFP data set constructed by the Bureau of Labor
Statistics (BLS) multifactor productivity group.17  Doing this, I find a coefficient on embodied
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the exception that the BLS industry set does not separate Transportation Equipment (SIC 37) into
Motor Vehicles (371) and Other Transportation Equipment (372-379) as is done in the other two
sets.

R&D of 1.82, which is significant at the 10% level, and an R2 of 0.16.  Thus, there does appear to
be a robust relationship between the embodied R&D index in this paper and the available data
measures of either TFP or the Solow Residual.

Explanations for a positive relationship between embodied R&D and available TFP measures
Capital-embodied R&D may be positively related to these measures of TFP either

because capital quality change is not being correctly accounted for and so it wrongly ends up in
the TFP residual, or because embodied R&D is correlated with other variables that are correlated
with TFP.  For instance, an industry’s capital mix (and therefore git) may be correlated with labor
quality which, if the TFP data does not adequately account for labor quality changes, could be
correlated with the TFP measure.  There may also be true knowledge spillovers within an
industry from technology-heavy investment to actual disembodied/total-factor productivity
growth stemming from the business interactions between suppliers and customers.

Table 4 shows the correlation matrix, for the manufacturing subsample, for the following
variables: git, BLS TFP growth, Jorgenson and Stiroh’s TFP growth, growth in the Jorgenson and
Stiroh’s capital composition component, and growth in their labor quality/composition
component.  It turns it that not only is TFP growth positively correlated with embodied R&D, but
capital composition is as well, with a correlation coefficient of 0.66.  Notice also that according
to the Jorgenson and Stiroh data, changes in capital composition are positively correlated with
TFP.  These findings suggest a non-measurement-error explanation for the positive relationship
between TFP measures and embodied R&D.  It seems likely that these measures of TFP do
account for part, though not all, of capital quality growth by accounting for changes in industries’
capital composition.  This is why we find a positive correlation between embodied R&D and
Jorgenson and Stiroh’s capital composition change.  Furthermore, it is likely that industries with
higher embodied technological change tend to have higher disembodied technological change as
well.  This explains the high positive correlation between Jorgenson and Stiroh’s capital
composition change and their TFP growth and the even higher positive correlation between
embodied R&D and their TFP growth.  There is a small but significantly positive correlation
between git and Jorgenson and Stiroh’s labor quality growth, but it is too small to explain the
high correlation between git and TFP.  Thus, I conclude that the positive relationship found here
between embodied R&D and TFP is a real phenomenon, not merely an artifact of
mismeasurement.

A Note on Potential Endogeneity Bias
In production or productivity regressions, the possibility of productivity shocks

simultaneously affecting the independent variables and therefore biasing the coefficients is often
a concern.  It must be noted, however, that in the case of the regressions above, such endogeneity
bias is unlikely.  A productivity (or, equivalently, disembodied technology) shock, whether it is
transitory or persistent, may cause a firm/industry to increase total investment but, assuming the
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18The estimates of embodied technological change from Cummins and Violante are from
an earlier version of their paper that does not use R&D as an input in the equation that extends
Gordon’s price indexes to 2000.  The authors have since added the stock of R&D directed at each

capital mix was optimal before the shock, the shock will not cause the capital mix to change
according to any homogenous production function.

As was mentioned in Section 2 regarding equation (4), it is also possible that a
productivity shock in a subset of industries will cause increased demand for the types of capital
goods that are disproportionately used by those industries.  Firms may respond to this increase in
demand by increasing R&D on those capital goods.  If this response of upstream R&D firms to
downstream productivity shocks takes place within the same period, or if productivity shocks are
sufficiently persistent, this could yield an upward  bias in our coefficient on git.  However, these
possibilities are unlikely.  First, changes in the R&D stock of upstream firms in response to
observed increases in demand are likely to be slow both because current investment is a small
fraction of the total stock and because R&D projects often involve lengthly planning.  Second,
the positive relationship between git and TFP growth holds up in the first-difference regressions
which control for permanent productivity differences across industries.

6. Is Embodied R&D Proportional to Estimates of Embodied Technology?

The previous two sections provided strong evidence that this paper’s measures of capital-
embodied R&D are proportional, at least at the industry-level, to true embodied technological
change.  It is natural to ask, then, how well do industry-level estimates of embodied technological
change correlate with these measures of embodied R&D?  Since the maintained hypothesis of
this paper is that embodied R&D is proportional, not equal, to embodied technological change
(recall the scale factor A in equation (7)), git cannot be used to evaluate whether a given estimate
of embodied technological change is too high or too low.  However, it can be used to answer the
important question of which industries have the highest rates of embodied technological change
and which the lowest.  Thus, it provides a kind of “measuring stick” by which to judge the
reasonableness of any set of industry-level rates of embodied technological change.

One set of industry-level estimates of embodied technological change is provided in this
issue by Cummins and Violante (2001).  These authors extend the 19 capital goods’ price
indexes constructed by Gordon (1990), which cover the period 1947-83, from 1984-2000.  Then,
as was done in Section 4 of this paper, they divide the price indexes by a consumption deflator
and compute that ratio’s percentage decline to arrive at the rate of technological change in each
capital good type.  Finally, each industry’s embodied technological change is calculated by
averaging the relative price declines over capital goods using the industry’s investment shares,
from the BEA data on investment by type, as weights.  The ordinary correlation, across the 62
industries in the BEA data, between the average annual rate of embodied technological change
between 1957 and 1997 as measured by Cummins and Violante, and the average embodied R&D
index, git, averaged over 1957-97, is 0.52, which is significant above the 99% level.  The two sets
have a corresponding rank correlation of 0.61 – also significant above 99%.18  The strong
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capital good to their price equations because of the high correlations I find in this paper between
technological change and the R&D stock.

correlations are not surprising given that the high correlation found in Section 4 between the
relative declines in Gordon’s price indexes and the R&D directed at capital goods, and given that 
both git and  Cummins and Violante’s measures of embodied technological change used the same
BEA data for industry investment shares.  Nonetheless, the high correlations do seem to indicate
that the Cummins and Violante estimates are realistic in their industry ordering.

As mentioned in the introduction, this price-based approach to estimating embodied
technological change is not the only one.  Sakellaris and Wilson (2001) develop a production-
side approach that estimates embodied technological change using U.S. plant-level data on
output, inputs, and the historical distributions of investment.  The estimating equation is
essentially a typical Cobb-Douglas gross-output production function in terms of labor, materials,
structures stock, and equipment stock.  However, the equipment stock, rather than being
measured a priori, is specified as a parameterized stream of past investments adjusted for
physical depreciation using the measures of physical depreciation constructed by the Federal
Reserve Board in the process of constructing their industry-level capital stock series.  Each
vintage of past investment has a vintage weight assigned to it and investment is deflated using a
consumption deflator so that each vintage weight should pick up the productivity in terms of
consumption units of that vintage relative to some base vintage.  The vintage weights are
assumed to follow a geometric pattern and the geometric rate at which these weights increase,
which is by definition the rate of embodied technological change, is estimated simultaneously
with the other production function parameters.  Sakellaris and Wilson find a rate of embodied
technological change in manufacturing of 11.6% between 1972 and 1996.

Using the same data and an analogous regression equation, I extend Sakellaris and
Wilson’s results by allowing the rate of embodied technological change to vary by industry.  The
22 industries for which I estimate embodied technological change are all within manufacturing
and their level of aggregation is between the 2- and 3-digit SIC levels.  The estimated rates are
shown in Table 5.  The estimates seem sensible, though somewhat imprecise, for the most part
with the exception of some slightly negative estimates and unrealistically high values in
Computers and Electronic components.  The negative values are not too disturbing given their
rather high standard errors.  They also occur in industries where one might expect low levels of
embodied technology.  The very high rates in Computers and Electronic Components are most
likely a result of the use of the BEA’s 4-digit level output (shipments) deflators.  These deflators
come from the BLS with two key exceptions: computers and semiconductors (semiconductors
are a subcategory of Electronic Components).  I have also tried estimating the model using the
Personal Consumption Expenditures (PCE) deflator (which has some theoretical justification as
discussed in Sakellaris and Wilson (2001)).  Yet, this results in strongly negative �’s for these
two industries which is clearly unrealistic.

Overall, 15 industries have positive estimates of embodied technological change (nine
which are significant) and nine industries have negative estimates (five significant).  Aside from
Computers and Electronic components, the industries of Communication equipment, Textiles,
and Non-Motor Vehicle Transportation Equipment have the highest estimates.  Paper, Motor
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19To generate series of �̂ and git at a comparable industry level, I simply assign the same
git to each of the subindustries in the few cases where there are subindustries within the industry
for which � is estimated.  When more than one of my industries map to a single BEA industry, I
take a share-weighted average of the multiple �̂‘s to create a �̂ for the more aggregate BEA
industry, using investment shares as weights.  The resulting comparable industry classification
has 22 industries.

vehicles, and Food and Tobacco have the lowest estimates. 
There is approximately a one-to-one mapping between these 22 manufacturing industries

and the 21 manufacturing industries in the classification scheme used in the BEA investment
data.  I generate a set of �̂‘s and git’s that are at a comparable industry level and then calculate
their average over the 1957-97 period.19  The ordinary correlation over  industries between the
average embodied R&D index and the estimated rate of embodied technological change is 0.49
and the rank correlation 0.44, both significant above the 95% level.  Thus, these production-
based estimates of embodied technological change are positively and significantly correlated with
observable patterns of industry investment and R&D spent of capital goods.  Viewed as a test of
the reasonableness of these production-based estimates of embodied technological change in
terms of how industries compare to one another, this exercise yields encouraging results.

7.  Conclusion

The title of this paper asks “Is embodied technology the result of upstream R&D?”  The
answer seems to be a cautious yes.  If the R&D applied to an industry’s capital goods is not the
actual cause of the industry’s embodied technological change, it is at the very least highly
correlated with whatever the true cause or causes are.  Evidence presented in this paper supports
previous research that found that R&D spending within particular technological or product fields
is the primary driver of technological change in those fields.  Though this line of research
develops various proxies for the value of technological change, i.e., the output of research
activities, such as patent counts (weighted and unweighted), patent value, and firm market value,
the true output of research is obviously much harder to measure than the inputs such as R&D.  

Given that these output proxies of innovation are likely to have large and variable errors
in predicting the true values of innovation, the approach of this paper was to use an input, R&D
directed at specific technological fields, as a predictor of these values.  It was judged that R&D
would have a tighter link to the value of innovation than output variables that either do not take
into account positive spillovers beyond the R&D-performing firm, as in the case of firm market
value, or, in the case of patent variables, may not even apply for most innovations.  In fact, based
on a recent survey of manufacturing firms, Cohen, Nelson, and Welsh (2000) find that patenting
tends to be the least important of the many mechanisms firms use to appropriate returns from
R&D spending.  Nonetheless, the use of R&D directed at capital goods as the predictor of
innovation values is prototypical.  Hopefully, better measures of the output of the inventive
process will be developed and this paper can serve as a guide for using these measures to
measure embodied technological change.
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Appendix A - Construction of the Solow Residual

The Solow Residual (SRD) is defined as:

dlog(Y) - cLdlog(L) - cJdlog(J) - cSdlog(S) - (1- cL- cJ-cS)dlog(M),

where Y is gross output, L is labor, J is equipment, S is structures, and M is materials.  ci is the
share of input i in total costs.  Data by industry on real equipment investment, structures
investment, and materials come from the BEA.  Equipment and structures capital stocks were
constructed via the perpetual inventory methods using industry-level physical depreciation
schedules derived from the Federal Reserve Board’s Capital Stock study (Mohr and Gilbert
(1996)).  Cost shares for equipment and structures are constructed according to the Hall-
Jorgenson user cost of capital formula using data from BEA.  The rate of return used in the user
costs was the AAA corporate bond rate minus the rate of CPI inflation.   

Data on real output, labor hours, and hourly labor compensation in manufacturing
industries come from the Annual Survey of Manufacturers (Census).  Labor hours and hourly
labor compensation for all other industries come from the Bureau of Labor Statistics (BLS).  In
BLS data, labor hours are adjusted to reflect changes in education and skills of the workforce.  In
the Census data, labor hours are adjusted for quality by augmenting the hours of non-production
workers by the ratio of their wages to those of production workers.  Thus, there quality is
captured only to the extent that worker skill/quality is reflected in wages.  Real output data for
most nonmanufacturing industries is from the BLS’s Office of Employment Projections
(exceptions listed below).  According to the November 1999 Monthly Labor Review, data
sources for nonmanufacturing industries “include the Service Annual Survey, National Income
and Product Accounts (NIPA) data on new construction and personal consumption expenditures,
IRS data on business receipts, and many other sources.  The constant dollar industry output
estimates for the most recent years are based on BLS employment data and trend predictions of
productivity.”  It is unclear how the BLS obtains real output prior to “recent” years.

Real output data for Construction , Health Services, and Educational and Social Services
are based on PCE for the corresponding categories in the unpublished NIPA.  Data on real output
in the mining industries is from the Minerals Yearbook, Energy Statistics Sourcebook.  That for
Agriculture, Forestry and Fisheries is from the USDA.  Finally, quantity and price data for output
of Air Transportation is based on data from the U.S. Statistical Abstract.
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Appendix B – Industry Indexes of Embodied R&D

INDUSTRY (i) Mean git over 1957-97
Telephone and telegraph 1.951
Transportation by air 1.930
Radio and television 1.872
Trucking and warehousing 1.378
Legal services 1.377
Business services 1.329
Security and commodity brokers 1.323
Local and interurban passenger transit 1.306
Hotels and other lodging places 1.268
Insurance agents, brokers, and service 1.259
Electric services 1.232
Financial holding and investment offices 1.218
Pipelines, except natural gas 1.197
Real estate 1.196
Wholesale trade 1.189
Other services, n.e.c. 1.188
Auto repair, services, and parking 1.185
Insurance carriers 1.175
Nonfinancial holding and investment offices 1.148
Health services 1.132
Other depository institutions 1.124
Amusement and recreation services 1.112
Miscellaneous repair services 1.078
Educational services 1.057
Personal services 1.019
Electronic and other electric equipment 1.016
Federal reserve banks 1.010
Nondepository institutions 0.994
Retail trade 0.931
Gas services 0.916
Apparel and other textile products 0.842
Other transportation equipment 0.823
Industrial machinery and equipment 0.817
Metal mining 0.816
Agricultural services, forestry, and fishing 0.809
Construction 0.727
Sanitary services 0.688
Railroad transportation 0.685
Motion pictures 0.644
Instruments and related products 0.623
Primary metal industries 0.622
Stone, clay, and glass products 0.607
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Leather and leather products 0.591
Transportation services 0.588
Oil and gas extraction 0.584
Printing and publishing 0.578
Tobacco products 0.572
Furniture and fixtures 0.564
Petroleum and coal products 0.561
Lumber and wood products 0.557
Food and kindred products 0.555
Paper and allied products 0.554
Chemicals and allied products 0.548
Nonmetallic minerals, except fuels 0.543
Miscellaneous manufacturing industries 0.507
Fabricated metal products 0.443
Textile mill products 0.408
Farms 0.374
Water transportation 0.372
Coal mining 0.357
Motor vehicles and equipment 0.318
Rubber and miscellaneous plastics products 0.296
ECONOMY-WIDE 1
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Table 1

NSF Product Field

    Percent     
    Product-   
   Oriented BEA Asset Type

Other fabricated metal products
(OFMP)

83.9
Other fabricated metal products

Engines and turbines (ET) 91.7
Internal combustion engines
Steam engines

Farm machinery and equipment
(FME)

98.3
Agricultural machinery, except tractors
Farm tractors

Construction, mining, and
materials handling machinery
(CMMHM)

99.1

Construction tractors
Construction machinery, except tractors
General industrial, including materials
handling, equipment
Mining and oilfield machinery

Metalworking machinery and
equipment (MME)

98.5
Metalworking machinery

Office, computing, and
accounting machines (OCAM)

94.5

Mainframe computers
Personal computers
Direct access storage devices
Computer printers
Computer terminals
Computer tape drives
Computer storage devices
Other office equipment

Other machinery, except
electrical (OMEE)

96
Special industry machinery, n.e.c.
Service industry machinery

Electrical equipment (EE)
81.8

Electrical transmission, distribution, and
industrial apparatus
Communication equipment
Household appliances
Other electrical equipment, n.e.c.

Motor vehicles and equipment
(MVE)

94.9
Autos
Trucks, buses, and truck trailers

Other transportation equipment
(OTE)

99.5
Ships and boats
Railroad equipment

Aircraft and parts (AP) 77.5 Aircraft
Scientific and mechanical
measuring instruments (SMMI)

97.5
Instruments

Optical, surgical, photographic,
and other instruments (OSPOI)

93.2
Photocopy and related equipment
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Table 2

Pearson’s (ordinary) Correlation
with the relative growth rate of

Gordon’s price indexes (p-value) 

Spearman’s Rank Correlation
with the relative growth rate of

Gordon’s price indexes (p-value)

Cumulative rp over
1957-83

-0.504 (0.079) -0.674 (0.012)

Annual growth from
1957-83 in Rp

0.016 (0.959) 0.262 (0.388)

Annual growth from
1957-83 in rp

-0.117 (0.704) 0.179 (0.558)
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Table 3

All Industries (n=54) Measurable Industries 
Subset (n=43)

“Between” Regression: 0 1i i iSRD B B g �� � �

Estimate of B1 (std. error) 0.554*** (0.151) 0.539*** (0.187)

R2 0.205 0.169

“Within” Regression:  � �0 1iit it i itSRD SRD B B g g �� � � � �

Estimate of B1 (std. error) 0.002 (0.001) 0.004** (0.002)

R2 0.006 0.004

Total/First-difference:  � �1 0 1 1it it it it itSRD SRD B B g g �� �� � � � �

Estimate of B1 (std. error) 0.028 (0.019) 0.031* (0.019)

R2 0.001 0.002
* - significant at the 10% level.
** - significant at the 5% level.
*** - significant at the 1% level.
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Table 4

Embodied
R&D

BLS TFP Jorgenson &
Stiroh (2000)

TFP

Jorgenson &
Stiroh (2000)

Capital
Composition

Jorgenson &
Stiroh (2000)

Labor
Composition

Embodied
R&D

1

BLS TFP 0.40 1

Jorgenson &
Stiroh (2000)
TFP

0.50 0.78 1

Jorgenson &
Stiroh (2000)
Capital
Composition

0.66 0.50 0.48 1

Jorgenson &
Stiroh (2000)
Labor
Composition

0.24 0.15 -0.04 0.06 1

Note: Variables are average annual growth rates for 18 manufacturing industries.



Table 5

Sector Sector Title SIC (1987 basis) �̂

1 Food & Tobacco 20 and 21 -0.056 (0.021)
2 Textiles and knitting 22 0.098 (0.030)
3 Apparel 23 0.004 (0.025)
4 Paper 26 -0.064 (0.027)
5 Printing & publishing 27 -0.053 (0.023)
6 Chemicals 28 -0.004 (0.024)
7 Petroleum refining & Fuel Oil 29 0.017 (0.039)
8 Rubber & Plastic products 30 0.084 (0.026)
9 Shoes & leather 31 -0.046 (0.052)

10 Lumber 24 0.007 (0.023)
11 Furniture 25 -0.056 (0.028)
12 Stone, clay & glass 32 0.006 (0.026)
13 Primary metals 33, 3462, 3463 0.080 (0.029)
14 Metal products 34, exc. 3462,3463 -0.005 (0.022)
15 Industrial Equipment, except computers &

office eqp.
35, exc SIC's in sector 16 0.031 (0.024)

16 Computers & other office equipment 3571,3572,3575,3577,3578,
3579

2.927 (0.202)

17 Electrical eqp. except communications and
elec. components

36, exc. 366, 367 0.049 (0.029)

18 Communication equipment 366 0.141 (0.044)
19 Electronic components 367 0.766 (0.059)
20 Motor vehicles & parts 371 -0.064 (0.028)
21 Non-motor vehicle transportation equipment 37, exc. 371 0.098 (0.033)
22 Scientific Instruments 38, exc. 384, 385 -0.023 (0.034)
23 Other instruments 384, 385, 382, 386, 387 0.087 (0.039)
24 Miscellaneous manufacturing 39 0.029 (0.032)



Figure 1 - R&D by product category
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FIGURE 2 - R&D vs. Relative decline in Price (1957-83)
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