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1. OBSERVATION 
A prime p has a Fibonacci Primitive Root g if g is a primitive root of p that 

satisfies 
(1) g2 & 1 + g (mod p) . 

Some propert ies of the F . P . R.fs a re proven or conjectured in [ l ] . Another property that was 
not noticed then is given in the following. 

Theorem. If p = 3 (mod 4) has g as a F . P . R. , then g - 1 and g - 2 a re also 
primitive roots of p. 

Examples. From [ l , Table 1, p. 164]. 
p = 11 has 8, 7, 6 as primitive roots; 
p = 19 has 15, 14, 13 as primitive roots; 
p = 31 has 13, 12, 11 as primitive roots. 

Proof. Since 
gig - 1) = 1 (mod p) , 

g - 1 i s the inverse of g (mod p) and therefore is a primitive root of p if g i s . Next, 

(g - l ) 2 = g2 - 2g + 1 = -g 4- 2 (mod p) 

from (1) and, since p = 4k + 3, 

Therefore, 

(g - l ) 2 k + 1 = -1 (mod p) 

(g - 1) s g - 2 (mod p) , 

and since 2k + 3 is prime to 4k + 2, g - 2 is also a primitive root of p. 

2. ASYMPTOTIC DENSITY 

What ratio r of all p r imes p = 3 (mod 4), asymptotically speaking, have such a 
triple of primitive roots? By [ l , p. 167] it is immediate that the proper conjecture is 

? 
1 8 (2) r = ±1 A = 0.35427 39286 91876 

where A is Art in 's constant. By the discussion in [ l ] there i s little doubt that (2) i s true 
even though it i s not now provable. 
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3. OTHER TRIPLES 

Another cri terion, entirely different, for three consecutive primitive roots i s this, cf. 
[2 , p. 80, Ex. 61] . If 

p = 8k + 7 and q = 4k + 3 
are both pr ime, then 
(3) p - 2, p - 3, p - 4 
are primitive roots of p. 

This i s easily proven. As an example, p = 23 (having q = 11) has 21, 20, 19 as 
primitive roots. 

Now, what pr imes p simultaneously satisfy both sufficient conditions, and thereby have 
both tripLes, that in (3) and the 

(4) g, g - 1, g - 2 

triple above? It is easily seen that any such p must satisfy p = 119 (mod 120) and there-
fore that the run (3) extends, at least , to 
(5) p - 2, p - 3, p - 4 , p - 5, p - 6. 

The smallest example is p = 359 with primitive roots 

(4a) 106, 105, 104, also 103, 
and 
(5a) 357, 356, 355, 354, 353 . 

The next example is p = 479 with 
(4b) 229, 228, 227, also 226, 
and the powerful run 
, h) 477, 476, 475, 474, 473, also 
K 0) 472, 471, 470, 469, 468, 467. 

The run of 11 in (5b) is due to the fact that 479 is a "negative square. " See [ 3 , Table II, 
p. 436] and the discussion there for an explanation of this las t point. 
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