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1. INTRODUCTION 

We define the Pellian numbers by means of 

P0 = 0, P. = 1, P ^ = 2P + P - (n > 1) . 
u * ' n + x n n _ i 

By a Pellian representation of the positive integer N we mean a representation of the form 

(1.1) N = €iPi + e2P2 + e3P3 + - • • , 

where the e. a re non-negative integers. If the e. a re res t r ic ted to the values 0, 19 not 
all integers N are representable. Indeed we have the sequence of "missing" numbers; 

4, 9, 10, 11 , 16, 21, 22, 23, 24, 25, 26, 27, 28, 8 , s . 

On the other hand we prove that every positive integer N is uniquely representable in 
the form (1.1) where the e. satisfy the following conditions: 

€i = 0 or 1; e. = 0, 1 or 2; 
(1.2) * 

if e. = 2 then e. - = 0 . i i - l 

It follows that the sequence of "missing" numbers is infinite. 
When (1.2) is satisfied we call (1.1) the canonical representation of N. Let A, denote 

the set of integers N such that 

e i = . . . = V l = 0, e k * 0 . 

and let B, denote the set of integers N such that 

e i = ••• = e
k _ i = °> \ = 2 -

As in the previous papers of this ser ies [ l , 2, 3, 4 ] , we shall characterize the sets A. , BjJ 
in t e r m s of certain arithmetic functions. As we shall see below, the discussion is considerably 
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more elaborate than that in the case of Fibonacci representations. The number of functions 
necessary to describe the sets A, , B, is grea ter than that needed for the corresponding 
Fibonacci results; moreover some of the relations a re more intricate. 

To begin with, if N has the canonical representation (1.1) we define 

(1.3) e(N) = e2Pi + e3P2
 + e4p3 + B" 

a n d 
(1.4) p(N) = q P 2 + e2P3 + e3P4 + . . - - . 
Then 

however, for some n, 
e(p(n)) = n (n = 1, 2, 3, . . . ) 

p(e(n)) £ n . 

Note that the right member of (1.3) need not be canonical. 
Next we define the following six functionst 

a(n) = [N/2 11], b(n) = [(2 + N / 2 ) I I ] 

d(n) = [(1 + Nf2)n], d'(n) = [\{2 + ^ 2 ) n ] , 

5(n) = b(n) + d(n), e(n) = complement of 5(n) . 

Two (strictly monotone) functions fj_, f2 from N to N are complementary if the sets 

ft(N), f2(N) 

constitute a disjoint partition of N, the set of positive integers. In part icular a, b; d, d?; 
6, e a re complementary pai rs of functions. 

Of the numerous relations satisfied by these functions we mention in part icular the 
following: 

b(n) = a(n) + 2n, d(n) = a(n) + n , 

ab(n) = a(n) + b(n), d'(2n) = b(n) , 

d(n) = a(b(n) - d ' ( n ) ) f a2b(n) = 2b(n) = 1, 

e(2n) = e(2n - 1) + 1 = d(n), d'(b(n)) = din), 

a(n + 1) = e(n) + n + 1, b(n + 1) = p(n) + n + 3, 

e(d(n)) = n, e(b(n)) = a(n), e(6(n)) = d(n), 

p(d(n)) = 5(n), p(<5(n)) = d(6(n)). 

The sets A, , B, are described by the following formulas: 
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At « d(N) - 1 , 

A 2k " d 6 k " l e CB) ( k - 1 , 2, 3, • • • ) , 

A2k+1 " ^ ^ ( k " l s 2 ' 3 » ' " > > 
B 2 k - d f i ^ d C g ) (k - 1, 2, 3,. . - ) , 

B2k+1 = fik(i® (k - 1, 29 3, . . . ) . 

This summarizes the first half of the paper8 In the remaining sections of the paper we 
discuss various other functional relations. For the most par t these relations are motivated 
by the introduction of certain supplementary functions f, ff; g, gf now to be defined. To be-
gin withj we note that the function 

s(n) « ab(n) - ba(n) 

takes on only the values 19 2; similarly the function 

t(n) » adf(n) - dfa(n) 

takes on only the values 0, 1. We define fs f by means of 

s(f(n)) = 1, s(f'(n)) = 2 ; 

similarly we define g, g' by means of 

t(g(n)) - 0, t(g '(n)) » 1 . 

Thus f, f; g, g! are complementary pa i r s . 
Alternatively we may define these functions by means of 

a2(f(n)) = 1, a2 ( f (n)) ~ 0 (mod 2) 
and 

a(g(n)) s? 1, a(g»(n)) s 0 (mod 2) . 

In addition, the complementary pair c, c? should also be mentioned: 

c(n) « b(n) - df(n) ; 
as noted above, 

d(n) « a(c(n)) . 

Of the relations satisfied by these functions we note the following: 
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g(n) = a(f(n)) , P(n) = d(f(n)) 

b(ftn)) - a ( f (n)) = 1 

d(n) (n = P (k)) 
c f ( n ) = ^d(n) - 1 (n - f(k)) 

c(n) = j d'(n) +l (n = M 
1 d'(n) (n = g'(k)) 

a(cf(n)) = cf(n) .+ n - 1 = d'(2n - 1) 

c(n) = e(a(n)) -f' 1 

e(c'(n) + l ) = n . 

The las t section of the paper contains some theorems involving the functions of cr,r defined 
as follows by means of (1.1); 

cr(N) s et + e2 + e3 + • • • (mod 2) 

T(N) S k (mod 2) (N G Afe) . 

In part icular we show that 

b(N) = {n | a(n) = 0, r(n) = l } 

g(N) = {n j a(n) = r(n)} 

= ( n j a(n - 1) = 0} , 

dg(N) = {n(n G (d), a(n) = l } 

dgUN) = {n|n G (d), a(n) = 0} . 

For the convenience of the reader a summary of formulas appears at the end of the pa-
per , as well as several numerical tables. 

It should be remarked that most of the theorems in this paper were suggested by num-
erical data. Thus further numerical data may well suggest additional theorems, particularly 
in the case of some of the functions defined in the la t ter par t of the paper and not explicitly 
mentioned in this Introduction. 

2. THE CANONICAL REPRESENTATIONS 

As above, the Pellian numbers P are defined by 
n J 

(2.1) P 0 = 0, Pi = 1, P = 2P n + P 0 , 
7 u » i » n n_i n_2 

so that 
P2 = 2, P 3 =. 5, P 4 = 12, P 5 = 29, P 6 = 70, ••• . 
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We consider sequences 
(2.2) (€lf e2, . . . . e n ) 

of length n, where the e. satisfy the conditions 

(i > 1) 

453 

(2.3) 
(et = 0 or 1; e. = 0, 1, 

I if e. = 2 then e. 1 = 0 v i l - l 

It i s easily seen by induction on n that the number of sequences (2.2) is precisely 
P - . We prove next that if N is given by 

N = eiPi + • • - + e P , 1 1 n n * 

where the e. satisfy the conditions (2.3), then N < P - . For otherwise we would have 

N - e P - e , P . ^ P . - e P - e , P 1 n n n-1 n-1 n+1 n n n -1 n-1 
= (2 - e )P + (1 - € - )P - ^ P -n n n-1 n-1 n-1 

which eventually leads to a contradiction. See Keller [7] for s imilar resul ts . 
Theorem 2.1. Every positive integer N can be written uniquely in the form 

(2.4) N = eiPi + e2P2 + ' # ' t 
where 

(et = 0 or 1; e. = 0, 1 or 2; 
(2.5) 

if €. = 2 then e. . 

Proof. In view of the preceding r emarks , it is enough to prove that no integer N can 
have more than one representation (2.4), because if this can be established, the P - num-
bers corresponding to the sequences (2.2) of length n will be precisely 

0 , 1 , 2 , . . . . P n + 1 - 1 

Now suppose N is given by 

N = €tPi + . . . + € P , e ^ 0 , i i n n n 

N. where the e. satisfy (2.5). Then P ^ N < P - , so that n is uniquely determined by 
Now by considering N - e P we see that e itself is determined uniquely by N. Hence, 
by induction, the theorem is proved. 

In a s imilar manner we can prove the following theorem. 
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Theorem 2.2. Every positive integer N can be written uniquely in the form 

(2.6) N « fyPj + S2P2 + • • • , 
where 

( 6. = 0, 1 o r 2 (i = 1, 2, 3, • - . ) 

( i f 6t = • - . = 6 £ 0, 6. ± 0, then i 
(2.7) 

is odd. 

The form (2.4) will be called the f irs t canonical representation for N (or simply the 
canonical representation); the form (2.6) will be called the second canonical representation. 

It will be convenient to abbreviate the formula 

N = €tPi + e2P2 + e3P3 + - • . 
as follows: 

N = • £ie2e3 . . . . 

We shall say that N is a missing number if e. = 2 for some i. Hence the missing 
numbers a re those which a re not the sum of distinct Pell numbers. 

Theorem 2.3. The number of missing numbers l ess than P - i s equal to P - - 2 n . 
Moreover if 

N = e0 + 2ex + . . . + 2 k e k (e. = 0, 1) 

is the binary representation of N, then 

RN = €0 P l + £ l P 2 + . . . + e k P k + 1 

i s the N number that can be represented as a sum of distinct Pell numbers. 
Proof. The number of sequences 

Ui , e2, ' • • , e n ) 

in which each e. = 0 or 1 is clearly 2 . Since the total number of sequences is P - , it 
follows that the number of sequences containing at least one 2 is P - - 2 n . 

For the second half of the theorem it suffices to observe that the proof of Theorem 2.1 
shows that RN is a strictly monotone function of N. 

The first few missing numbers are 

(2.8) 4, 9, 10, 11 , 16, 21 , 22, 23, 24, 25, 26, 27, 28, ••• . 

Let N have the f irst canonical representation 

N = etPt + e2P2 + e3P3 + . . . . 
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We define the functions e(N), p(N) by means of 

(2.9) e(N) = e2Pl + e3P2 + e4P3 + ••-
and 
(2.10) p(N) = €iP2 + e2P3 + e3P4 + • • . . 

Theorem 2.4. The functions e and p satisfy the following identities; 

(2.11) p(n) = e(n) + 2n 

(2.12) e(p(n)) = n 

(2.13) e(p(n) + 1) = n 

(2.14) e p(n) + 2 = n + 1 . 

Moreover e and p are monotone. 

Proof. Let n be given canonically by 

n = °ei<E2e3 ••• . 
Then by definition 

p(n) = -Oe^e^ ••• 
and 

e(n) = • e2€3e4 • • • . 

Hence (2.11), (2.12), (2.13) follow at once. If e2 < 2, p(n) + 2 is given canonically by 

p(n) + 2 = .0(ei + l)€2e3 • •• 

and (2.14) follows. Now suppose e2 = 2. Then et = 0 and 

p(n) + 2 = (e3 + 1)P4 + e4P5 + • • • . 

As before this is canonical if e4 < 2 and (2.14) follows. Otherwise we continue until, for 
some k, e . < 2, and again (2.14) follows. 

To prove the monotonicity of e and p , we again take the canonical representation 

n = *€i£2e3
 0 8 9 . 

if et = 1, then 
n - 1 = e0e2e3 ** * , 

so that e(n - 1) = e(n). If €j = 0 and e2 ^ 0, then 
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n - 1 = -Keg - 1)^3 "•• 

and e(n - 1) = e(n) - 1. If 

(2.15) et = e2 = • . . = e ^ = 0 , ek £ 0 , 
then, for k odd, 

(2.16) n - 1 = eP2 + 2P4 + . . . + 2P k _ x + ( ^ - l ) P k + €k + 1 P k + 1 + ••• 
and 

e(n - 1) = 2Pt + 2P, + . . . + 2 P k _ 2 + (C Q - D P ^ + e k + 1 P k + . . . . 

This gives e(n - 1) = e(n). If in (2.15) k is even, we have 

(2.17) n - 1 = P l + 2P3 + • . . + 2 P n _ 1 + (efc - l )Pf c + ^ + ••• 
and 

e(n - 1) = 2P2 + . . . + 2 P k _ 2 + (Cj£ - D P ^ + e ^ + . . . , 

which gives e(n - 1) = e(n) - 1. 
This proves that e is monotone and therefore, by (2.12), p is also monotone. 
A s a corollary we have the following theorem. 
Theorem 2.5. For any n, the equation e(x) = n has at most three solutions. 
Proof. Assume 

e(xt) = e(x2) = e(x3) = e(x4) 
with 

X! < X2 < X3 < X4 . 

It follows from the definition of p that any n must be of at least one of the three forms p(j), 
p(j) + 1 or p(j) + 2. Take n = x2. Then by Theorem 2.4 we have 

e(xt) £ e(x4) . 

3. NEWMAN-SKOLEM PAIRS 

By a Newman-Skolem pair we shall mean a pair of functions (a,b) defined on the posi-
tive integers N and satisfying the conditions 
(3.1) a(N) U b(N) = N , 

(3.2) a(N) n b(N) vacuous , 

(3.3) a, b str ict ly monotone. 

Hence a and b a r e complementary functions. The Newman-Skolem pair (a,b) defined 
uniquely by the condition 
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b(n) = a(n) + n 
was introduced in [ 5 ] . 

We shall say that (a, b) is ordered if 

(3.4) a(n) < b(n) (n = 1, 2, 3 , • ••) 

and that (a,b) is separated if (a,b) is ordered and 

(3.5) b(n + 1) > b(n) + 1 (n = 1 , 2 , 3 , • • • ) . 
Define 

(3.6) d(n) = b(n) - n . 

Theorem 3.1. If (a, b) is separated then 

ad(n) = b(n) - 1 
and 
(3.8) a(d(n) + l ) = b(n) + 1 . 

Proof. By (3.5) we must have, for some k, 

b(n) - 1 = a(k), b(n) + 1 = a(k + 1) . 

Hence the k + n numbers 

a( l ) , a(2), • • • , a(k); b( l) , • • - , b(n) 

comprise all the numbers l e s s than or equal to b(n), so that 

k + n = b(n), k = b(n) - n = d(n) . 

This evidently completes the proof of the theorem. 
Theorem 3.2. If (a,b) is separated then 

(3.9) a(n + 1) = a(n) + 2 *± n G (d) , 

where (d) denotes the range of the function d. 
Proof. Since (a,b) is separated it is c lear that, for any n, either a(n + 1) = a(n) + 1 

o r a(n + 1) = a(n) + 2. Also we have 

d(n + 1) = d(n) = b(n + 1) - b(n) - 1 > 1 , 

so that d is str ictly monotone. 



458 PELLIAN REPRESENTATIONS [Nov. 

Now assume 
n ^ d(k) (k = 1, 2, 3, • • • ) . 

Then, for some k, 
d(k) + 1 < n < d(k + 1) . 

If a(n + 1) = a(n) + 2 then a(n) + 1 = b(j) for some (j). But 

b(k) + 2 = a(d(k) + l ) + 1 £ a(n) + 1 < ad(k + 1) + 1 = b(k + 1) , 

so that a(n) + 1 = b(j) is impossible. 
Theorem 3.3. If (a, b) is separated and 

d(n + 1) > d(n) + 1 (n = 1, 2, 3, • • • ) 
then 

a(d(k) - 1 ) = b(k) - 2 (d(k) > 2) . 
Proof. Since 

d(k) - 1 $ d(j) (j = 1, 2, 3, • • • ) , 
by Theorem 3.1, 

b(k) - 1 = ad(k) = a(d(k) - l ) + 1 . 

Theorem 3.4. If (a,b) is a Newman-Skolem pair and if, for all n, we have 

ba(n) < ab(n) < b(a(n) + l ) , 
then 
(3.10) ab(n) * a(n) + b(n) . 

Proof. Using the hypothesis we see that the a(n) + b(n) numbers 

b(l) , b(2), • • - , ba(n); a( l ) , a(2), • • • , ab(n) 

coincide with the numbers l ess than or equal to ab(n). Hence (3.10) follows at once. 
It is well known that if a9p a re positive irrational numbers satisfying 

(3.11) 1 + 1 = 1, a < p , 

the pair (a, b) defined by 

(3.12) a(n) = j > n ] , b(n) = [ jSn ] 

is a separated Newman-Skolem pair . For the remainder of this paper we define 
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a(n) = [ N / 2 I I ] 

b(n) = a(n) 4- 2n * [(2 + ^J2)n] 

d(n) = b(n) - n = [(1 + >j2)n] 

d'(n) = [1(2 + N/2)n]. 

Thus (a,b) and (d \d) a re separated Newman-Skolem pa i r s . Making use of the preceding 
theorems we get 

Theorem 3.J5, The functions &., b , d, d? as defined above, satisfy the following 
relations: 

ad(n) = b(n) - 1 

a(d(n) + l ) = b(n) + 1 

a(d(n) - l ) = b(n) - 2 

d ' (atn)) = d(n) - 1 

d?(a(n) + 1) = d(n) + 1 

a(n + 1) = a(n) + 2 *z» n E (d) 

df(n + 1) * d'(n) + 2 •=* n £ (a) . 

Here we have let (f) denote the range of the function f. 
Theorem 3.6. For all positive integers n, we have 

(3.13) ab(n) = a(n) + b(n) . 
Proof. Since 

a(n) < \/2"n < a(n) + 1 , 
we see that 

2a(n) + \l2 a(n) < ^ ( 2 n + a(n)) < 2(a(n) + l ) + N/2 (a(n) + l ) . 

Hence 5 taking greatest integers , 

b(a(n)) < ab(n) < b(a(n) -1- l ) . 

Equality is obviously impossible. Hence, by Theorem 3.4, we get (3.13). 
Suppose (df ,d) is any separated Newman-Skolem pair and suppose f is any increas -

ing function. Let d'f = b and let a be such that (a,b) is a Newman-Skolem pair. Then 
since d!(N) b(N), it follows that d(N) a(N). Hence there exists an increasing function 
c such that 

(3.14) d(n) = ac(n) . 

Now, since (df,d) is separated, we have 
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d'(d(n) - n ) = d(n) - 1 . 
Hence, among the numbers 

1, 2, 3, . . . , d(n) , 

there are exactly j members of b(N), namely 

d'f(l), d'f(2), • • • , d'f(j) 9 

where j is the largest integer such that 

f(j) < d(n) - n . 

We may write (symbolically) 

(3.15) j = [ ^ M _ U i ] . 

The remaining d(n) - j members in 

{ l , 2, 3, . . . , d(n)} 

are members of a(N), so that 

d(n) = a(d(n) - j ) , 
that i s 

(3.16) c(n) = d(n) - [ d ( n )
f ~ n ] 

Theorem 3.7. For the functions a, b , c, dT previously defined, we have 

(3.17) d(n) = a(b(n) - dT(n)) . 

Proof. Since df(2n) = b(n), the above remarks apply with f(n) = 2n. Hence 

c(n) = d(n) - [ ^ ^ ] = b(n) - n - [ ^ ] 

But 

-+ [*¥•] - » + DH - •+ [4s] 
= [1(2 + N/2)n] = d>(n) , 

so that 
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c(n) = b(n) - d»(n) . 

This evidently completes the proof of the theorem. 

4. RELATIONS BETWEEN a, b, d, df AND e AND p 

Theorem 4.1 . The functions a, b , c and p a re related by the following formulas: 

(4.1) a(n + 1) = e(n) + n + 1 

(4.2) b(n + 1) = p(n) + n + 3 . 
These formulas imply 
(4.3) e(n) = [ (\l2 - l)(n + 1) ], e(0) = 0 

(4.4) p(n) = [N/2 (n + 1) ] + n - 1, p(0) = 0 . 

Proof. It is c lear by induction that (asb) is the unique Newman-Skolem pair satisfying 

(4.5) b(n) = a(n) + 2n (n = 1, 2, 3, •• •) . 
Now let 

af(n + 1) = e(n) + n + 1 
and 

bf(n + 1) = p(n) + n + 3 . 

We shall show that (a',bf) is a Newman-Skolem pair satisfying 

(4.6) bf(n) = aT(n) + 2n . 

This will evidently prove the theorem. 
By (2.11) we have 

p(n) = e(n) + 2n. 
Hence 

bT(n + 1) - a'(n + 1) = p(n) - e(n) + 2 = 2n + 2 s 

so that (4.6) is satisfied. 
Since, by Theorem (2.4), 

e(p(n)) = e(p(n) + l ) = n, e(p(n) + 2 ) » n + l , 
we get 

a?(p(n) + 2 ) = p(n) + n + 2 = bT(n + 1) - 1 

and 
af(p(n) + 3) = p(n) + n + 4 = bT(n + 1) + 1. 
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Hence the ranges of a* and bT are disjoint. Fur thermore we see that 

a ' ( l ) , a'(2), • • - , a»(p(n))+ 2 ; b ' ( l ) , b'(2), • • • , b'(n + 1) 

a re p(n) + n + 3 distinct numbers l ess than or equal to 

b!(n + 1) = p(n) + n + 3 . 

Hence all numbers in this range must be included and the theorem is proved. 
Theorem 4.2. We have, for all n, 

(4.7) e(b(n)) = a(n) , 

(4.8) e(d(n)) = n . 

Proof. By Theorems 3.5 and 4.1 we have 

b(n) + 1 = a(d(n) + l ) = d(n) + 1 + e(d(n)) . 

Hence, since b(n) - d(n) = n, we get (4.8). 
Since d(n) = [(1 + \f2)n]9 it follows that 

d'(n) = [\(2 + N/2)n] . 
Hence 

df(2n) = b(n) . 
In part icular 

b(n) ^ d(N) , 
so that, by Theorem 3.2, 

a(b(n) + 1) = ab(n) + 1 . 
Then 

b(n) + 1 + e(b(n)) = a(n) + b(n) + 1 
and therefore 

e(b(n)) = a(p) . 

This completes the proof of the theorem. 
Fur ther relations between a, b, d, dT, e and p will be established in the next section. 

5. THE SETS A. AND B, k k 

We define the sets A, and B, as follows: 

(5.1) Ak = {N J q = ••• = ek_x = 0, ek * o} , 
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(5.2) B k = ( N | q = • . . = ek_x = 0, ^ = 2} , 
where 
(5.3) N = • qe2£3 °8 * 
is the canonical representation of N. 

We also define 
(5.4) 6(n) = b(n) + d(n) = 2a(n) + 3n 

and define e(n) by the requirement 

(5.5) (e?5) is a Newman-Skolem pair . 

Theorem 5.1. Let the non-negative integer n have the canonical representation 

(5.6) n = • ete2ez 88B . 
Then 
(5.7) d(n + 1) - 1 = p(n) + 1 = "l€t€2ez

 6 e e . 
Hence 
(5.8) Ai = d(N) - 1 . 

Proof. The theorem follows from the relations 

b(n + 1) = d(n + 1) + n + 1 = p(n) + n + 3 . 

Since it is c lear that (e,5) is a separated Newman-Skolem pair , it follows from Theorem 
3.1 that 
(5.9) e(2d(n)) = 5(n) - 1 

(5.10) e(2d(n) + l ) = 6(n) + 1 . 

Since 6(n) - n = 2d(n), it follows from Theorem 3.3 that 

(5.11) e(2d(n) - l ) = 6(n) - 2 . 
Moreover we have 

d2(n) = d(n) + ad(n) = d(n) ^ b(n) - 1 = 6(n) - 1 , 
so that 
(5.12) e(S(n) - l ) = d(n) . 
Also we have 

3 + d + pd = b(d + 1) = 2(d + 1) + a(d + 1) = 2d + 2 + b + 1 , 
so that 
(5.13) pd(n) = d(n) + b(n) = S(n) . 
Applying e9 we get 
(5.14) e6(n) = d(n) . 
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Now using (4.1) and (4.2) we get 

pS = d(6 + 1) - 2 = (6 + 1) + a(6 + 1) - 2 

= (6 + l ) + (6 + l + e ) - 2 = d + 26 

= 6 + 6 + e(6 - 1) = 5 + aS = dS , 
so that 
(5.15) p6 = d S . 

Theorem 5.2. We have 
(5.16) B2 = d2(M) 

(5.17) B 2 k + 1 = 6kd(H) (k = 1, 2, 3, . . . ) 

(5.18) B 2 k = d ^ d O S ) (k = 2, 3, 4, • • • ) . 

Proof. It is only necessary to prove (5.16) since (5.17) will then follow by (5.13) and 
(5.15). 

Applying Theorem 5.1 to d(n + 1) - 1 we obtain 

d2(n + 1) - 1 = ' l l q e 2 e 3 . . . , 
so that 

d2(n + 1) = «02 ete2ed ••" . 

This evidently proves (5.16) and therefore the proof of Theorem 5.2 is complete. 
Note that if n has the canonical representation 

n = -exe2ez ••• , 
then 
(5.19) d(n + 1) - 1 = tle^ez ••• 

i s also canonical. Since 6(n) = 2d(n) + n, it follows that 

(5.20) 6(n + 1) - 1 = -02 e1e2e3 ••• 
and 
(5.21) d(6(n + 1)) - 1 = .102 €t€2 ••• 
a re both canonical. 

Theorem 5.3. We have 
(5.22) AA = d(N) - 1 

(5.23) A 2 k = d5k"1e(N) (k = 1, 2, 3, • • • ) 

(5.24) A 2 k + 1 = 6ke(N) (k = 1, 2, 3, • • •) . 

Proof. We have already proved (5.22). It will therefore suffice to establish 
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(5.25) A2 = d€(N) . 

Now A2 consists of all N in the canonical form 

N = -0 <E2e3e4 •-• (e2 ± 0) . 

Hence A2 - 1 consists of all N in the canonical form 

N = -1 ( e 2 - l ) e 8€4 . - . (e8 £ 2) . 

Fur thermore d(N) - 1 consists of all N in the canonical form 

N = . l f 2 f 3 f 4 . . . 

and by (5.21), dS(N) - 1 consists of all N in the canonical form 

N = .102 

Therefore since d(N) - 1 is the disjoint union of d5(N) - 1 and de(N) - 1, we see that 

de(N) - 1 = A2 - 1 , 
that i s , 

A2 = de(N) . 

This completes the proof of the Theorem. 
Theorem 5.4. We have 

(5.26) d(N) = U A 2 k 

00 
(5.27) (N) = U A 2 k + 1 

(5.28) (N) = d(N) U (d(N) - l ) . 

Proof. Since every integer is of the form 6 e(n) for some k ^ 0, (5,26) and (5.27) 
follow from the previous theorem. Since e(N) is the complement of 6(N)S (5.28) follows 
from (5.22) and (5.26). 

We have seen above that 

(5.29) e(N) = d(N) U (d(N) - l ) . 

Hence the numbers in e(N) a r e , in order , 
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d(l) - 1, d( l) , d(2) - 1, d(2), d(3) - 1, d(3), 

It follows that 
(5.30) e(2n) = d(n), e(2n - 1) = d(n) - 1 . 
Applying e, we have 
(5.31) e(e(n)) = [n/2] . 

The following remark concerning the second canonical form is useful. If 

n = • ±*if2f3 • • • (second canonical) 
then 

d(n) = • 0 i^h • • • (first canonical) 
and 

6(n) = -00 f1f2f3 • • • (first and second canonical) . 

6. ADDITIONAL RELATIONS INVOLVING a AND b 

Theorem 6.1. We have 
(6.1) a2b = 2b - 1 . 

For the proof we require 
Theorem 6.2. The integer n is in (d) if and only if 

(6.2) J 5 _ ( => 2 - N/2 , 
( 1 + N/2 I 

where (a) denotes the fractional par t of the real number a . 
Proof. Let 

n = d(k) = [(1 + N/2)k] , 
so that 

(1 + \f2)k - 1 < n <: (1 + N/I)k, k i _ . < 5 _ < k . 
1 + N/2 1 + N/2 

This is equivalent to 

J n I > 1 ^— = 1 - (N/2 - 1) = 2 - N/2 . 
I 1 + N/2 J 1 + N/2 

Proof of Theorem 6.1. It follows from 

a(n) = [NJ2"n] 
that 
(6.3) n - 2 < a2(n) < n - 1 . 
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It therefore suffices to show that 

467 

(6.4) a2b(n) = 1 (mod 2) (n = 1 , 2 , 3 , • • • ) 

Assume that there exists an integer k such that 

that is 

Then 

for some integer j . Hence 

so that 
(6.5) 
By Theorem 6.2, 

that is 

Hence 

a2b(k) = 0 (mod 2) , 

a(2d(k)) = 0 (mod 2) . 

[2N/2d(k)] = 2j 

2j < 2N/2 d(k) < 2j + 1 , 

5 <? Ni2d(k) < j + \ , 

(N/2d(k)} <; | . 

\ ^ m ^ \ - 2 - ^ 2 , 
I 1-+ N/2 

{(\ /2 - l)d(k)} > 2 - N/2 

{N/2d(k)} > 2 - ^ 2 . 

This contradicts (6.5) and so completes the proof of the theorem. 
It follows from ab = a + b that 

Put 
(6.6) 
Then 

b k = 

b2 = ab + 2b = a + 3b , 

b3 = ab + 3b2 

= a + b + 3(a + 3b) 

= 4a + 10b , 

b4 = 4(a + b) + 10(a + 3b) 

= 14a + 34b . 

= u, a + v, b , ui = 0, vi = 1, u 15 v2 

uk+1 = u , (a + b) + v, (a + 3b) 

= (uk + v k ) a + (uk + 3vk)b 

so that 
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(6.7) 

It follows that 

Then 

u k + l = \ + vk 
Vk-KL = \ + 3 v k 

V 2 " 4uk-KL + 2 u k = ° 
vk+2 - 4vk-KL + 2 v k = ° ' 

u(x) = 2 ukxk = x2 + £) (4vi - 2v2> 
= x2 + (4x - 2x2)U(x) , 

so that 

We find that 

U(x) 
1 - 4x + x2 

(6.8) 

where 

k-1 flk-l 
\ " or - j3 

a = 2 + N/2", 

uk . 

VKL - uk 

•'2 - N / 2 . 

Theorem 6.3. The function b is evaluated by means of (6.6) and (6.8), 
In the next place, 

ab = a + b , 

(ab)2 = a2b + bab 

= 2a2b + 2ab 

= 2(2b - 1) + 2(a + b) 

= 2a + 6b - 2 , 

(ab)3 = 2a2b + 6bab - 2 

= 8a2b + 12ab - 2 

= 8(2b - 1) + 12(a + b) - 2 

= 12a + 28b - 10 , 

(ab)4 = 56a + 136b - 50 . 
Put 

(6.9) 

Then 

(ab) = ufea + v k b - t̂ . , 

ut = vt = 19 <4 = 0, u2 = 2, v2 = 6, t2 = 2 

,k+l (ab) = u, a2b + v, bab - t, 
= (u, + v, ) a2b + 2v, ab - t, k 
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(uk + vk)(2b - 1) + 2vk(a + b) - t̂ . 

2vka + (2uk + 4vk)b - (uR + vR + y 

vk+l 

uk+l " 
2u, + 4v, k k 

2v, 

4 v k + 4 v k - l 

<k-• + 1 . 
u k + v k + *k 

Let 
Qo = Qi = I t Q2 = 3, Q3 = 7, Q k + 1 = 2Qk .+ Q k _ 1 

It is easily verified that 
(6.10) Q k = P ^ + P k 

k 

p k 

[%_ 

0 

0 

l 

i 

i 

i 

2 

2 

3 

3 

5 

7 

4 

12 

17 

5 

29 

41 

6 

70 

99 

We find that 
(6.11) 

(6.12) 

u k = 2 Q k _ l 9 

t - I (2
k+1p 

\ ~ 7 {2> Pk+1 

k̂ . 

2k-V 

3-2 P k - 2) . 

469 

Theorem 6.4. The function (ab) is evaluated bymeansof (6.9), (6.10), (6.11) and (6.12). 

It follows from 

that 
(7.1) 

7. THE FUNCTIONS f, ff, g, gf, c, c ! 

a(n) = [N/2 n ] , b(n) = [(2 + \l2)n] 

ab(n) - ba(n) = 1 or 2 (n = 1, 2, 3, • 

We may accordingly define the pair of complementary functions f, ff by means of 

(7.2) ab(n) - ba(n) 

An equivalent definition is 

(7.3) 

1 ( n E (f)) 
2 ( n £ (ft)) )) 

a2f (n) = 1 (mod 2) 
j a2f (n) = 0 (mod 2) 

It is also easily verified that 

(7.4) ad?(n) - d'a(n) = 0 or 1 (n = 1, 2, 3, • • • ) 

Hence we may define the pair g, gf by means of 
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(7.5) ad'(a) - d - a t n ) = j j | j | g } j 

It is somewhat more convenient to take as definition 

(n) = 1 (mod 2) 
( 7 , 6 ) 1 ag ' (n ) = 0 (mod 2) ' 

We shall show that (7.5) and (7.6) are equivalent. 
For brevity put 

(7.7) s = ab - ba, t = ad' - d T a . 
It is easily verified that 
(7.8) s(n) = 2n - a2(n) 

from which the equivalence of (7»2) and (7.3) is immediate. 
It is also immediate from (7.3) and (7.6) that 

(7.9) g = af . 
In the next place 

t = adT - dTa = adT - a - n + 1 , 

ta = adfa - a2 - a + 1 

= a(d - 1) - a2 - a + 1 

= b - a 2 - a - l 

ta(n) = 2n - a2 - 1 , 

(7.10) 

Also 

J taf = a2f + 1 = 0 (mod 2) , 
{ tafT = a2fT + 1 = 1 (mod 2) . 

tb = ad'b - db + 1 

= a8 - ab - b + 1 

= d + 5 - a - 2 b + l 

= b + 2 d - a - 2 b + l 

(7.11) = 1 (mod 2) 

It foUows from (7.10) and (7.11) that 

(7.12) t(n) E 0 (mod 2) £± n G (g 

This evidently establishes the equivalence of (7.5) and (7.6). 
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Note that the pair g8 gf is not separated. 
Theorem 7.1. We have 

(7.13) df = ff o 

The proof of this theorem requires a number of prel iminary resul t s . 
Theorem 7.2 

(7.14) bf - 1 = dg . 
Proof. 

bf - dg - 1 = af + 2 f - a g - g - l 

= 2f - a2f - 1 = 0 . 
Theorem 7.3 

(7.15) n G ( f ) ^ { ^ n } < 4 : . 
is/2 

Proof. By (7.2) or (7.3) 
n E (f) - ^ a2n = 2n - 1 . 

Consider 
[ N / 2 [N/"2 n ] l = 2n - 1, 2n - 1 < \/2 [ \ / 2 n ] < 2n . 

Put k = [is/I^.n], so that 
\ / 2 n - 1 < <s/Ik < 2n 

N/ 2 n - — < k < N/ 2" n 
^ 2 

0 < N j 2 n - k < - ~ L , 
N/2 

that is 

(7.16) {>s/2n} < - ^ . 
N/2 

Hence if n G (f), Eq. (7.6) is satisfied. 
Next let n £ (ft), so that a2(n) = 2n - 2. Consider 

[ N/2 [N/"2 n ] l = 2n - 2 

2n - 2 < N / I [ < S / 2 I I ] < 2n - 1 

2n - 2 < N/2k < 2n - 1 ( k = [ \ / 2 n ] ) 

\ ( 2 n - ^ 2 < k < <s/2n - — 
^ 2 

- i - < N/2 n - k < N/2 , 
N/2 

that is 
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(7.17) { N / 2 n} > - i : 
N/2 

Hence if n e (f!), Eq. (7.17) is satisfied. 
Combining (7.16) and (7„17), we get (7.15). 
Proof of Theorem 7.1. By Theorem 6.2, n £ (d) if and only if 

— I 
1 + N/2 ) 

(7.18) \ 2 I > 2 - N/2 

Put 
(1 + \/2)f = df + e; 

by Theorem 7.3, we have e < 1/N/*2. Moreover 

f - d f
 +

 e 

1 + N/2 1 + N/2 

= J + , _ d L _ + _ L 
1 + N / 2 ) 1 + N/2 

where 

Then 

[—-1 
Li + N/2J 

df / + _ £ _ = 1 , 
1 + N / 2 ) 1 + NJ2 

{N/2 df} + £(N/2 - 1) = 1 , 

{^2df} > 1 - ^ 1 = - L , 
N/2 N/2 

so that 
(7.19) (df) C (ff) . 

We shall now show that 
(7.20) (p) C (df) . 

Let n satisfy {N/*2 n} > 1 / N / 2 , SO that n £ (p). Then, by (7.18), n £ (d), that is 

n = d(k) = [(1 + N/2)k] , 
for some integer k. Thus 

(1 + N/2)k = n + {N/2k} 

(1 + N/2")k + ( N / I - Dn = N / 2 H + { N/2 k} 
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(1 + ^ 2 ) k + (N/2 - l)d(k) = ad(k) + { ^ n } + {N/2 k} > b(k) - l + - L + {^2k} 
^ 2 

N/2 k - (2 - \|2)d(k) + 1 > — + {N/2 k} 
\/2 

N/2k - (2 - N / 2 ) ( ( 1 + v/2)k - {<\/2k}) + 1 > - i - + {N/2 k} 
N/2 

(2 - N/2) {N/2 k} + 1 > - i - + {\/2 k} 
N/2 

^ - ^ > (N/2 - l){Nj2k} 
N/2 

4 : > {vilk} . 
N/2 

Therefore k G (f), n G (df). 
This proves (7.20) and so completes the proof of the theorem. 
Theorem 7.4. We have 

(7.21) bf - af = 1 . 

Proof. By (7.14), Eq. (7.21) may be replaced by 

(7.22) aff = dg = daf , 

which by Theorem 7.1 is the same as 
(7.23) adf = daf . 
Now 

ad - da = b - 1 - a2 - a 

= 2n - 1 - a2 , 

adf - daf = 2f - 1 - a2f = 0 . 

This proves (7.23) and therefore proves (7.21). 
Theorem 7.5. The pair (f,ff) is separated. 
Proof. By (7.13) 

P(p) = df(n) > f(n) , 

so that the pair (f,f!) is ordered. Since the pair (df ,d) is separated, it follows that 

f'(n + 1) - f (n) = df(n + 1) - df(n) > 1. 
Define 

(7„24) c(n) = b(n) - df(n) , 
so that by (3.17) 
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(7.25) 

(7.26) 

(7.27) 
Now 

Theorem 7.6. 

PELLIAN REPRESENTATIONS 

d = ac . 
We have 

f» = acf = caf . 
Proof. It suffices to show that 

Theorem 7.7 

acf - caf = 0 . 

ac - ca = d - ba + dfa 

= d - a 2 - 2 a + d - l , 

acf - caf = 2df - 2af - a2f - 1 

= 2f - a2f - 1 = 0 . 

[Nov. 

(7.28) ] ( n i l 
n 6 (g-) * {-£-[ < 1 

( N / 2 ) 2 

Proof. Let n £ (g), so that a(n) = 1 (mod 2). Then 

K 2 n ] = 2k - 1 

2k - 1 < V I n < 2k 

k - i < - i - < k , 
* N/2 

so that . . 

Next le t n G (gT) so that a(n) = 0 (mod 2). Then 

W i n ] = 2k 

2k < \l~2n < 2k + 1 

k < - " - < k + i , 
V2 * 

so that 

2 " 
n ' < i 

^2 

This completes the proof of the theorem. 
Theorem 7.8 

(7.29) g' = a ( | a g » ) + 1 . 
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Proof. This is equivalent to 
dgi - l = b(^ag') 

which in turn is equivalent to 
(7.30) d'ag' = b ( | ag ' ) . 

Since df(2n) = b(n)s Eq. (7.30) follows at once. 
Theorem 7.9 

, 7 o-n (d'(2n) = 2d'Ca) + 1 ( n £ (g) ) 
K ' |d ' (2n) = 2d'(n) ( n E (g»)) 

Theorem 7.10 
(7.32) adf(n) = 2d'(n) - n . 

I bg = 2dfg + 1 
| bgT = 2d'g? 

We show first that Theorems 7.9 and 7.10 are equivalent. Since df(2n) = b(n), (7.31) 
may be replaced by 

(7.33) 

while (7.3) may be replaced by 

(7 34) l a d ? g = 2 d ' g " g . 
u ' o 4 f c ' | ad 'g f = ad*gf - g? 

Since, by (7,5), 
adfg = d'ag, ad'g1 - d'ag' = 1 , 

(7.34) is the same as 

/ 7 OC\ I d ! a g = 2 d ?g " S 
{'•33) \ /Iforvt ^ 2 d ? g f - gf " 1 " 

(d'ag 
j d ? a g f 

But dTa = d - 1, so that (7.35) becomes 

dg - 1 = 2d'g - g 
( 7 ' 3 6 ) \ dg? = 2d*g' - g' 

which is the same as (7.33), This proves the equivalence of (7.31) and (7.32). 
We shall now prove (7.32). We have first 

adfa = a(d - 1) = b - 2 

2d?a - a = 2(d - 1) - a = b - 2 , 
so that 
(7.37) adfa = 2dfa - a . 
Secondly 

ad?b = a8 = b + 2d 

2d?b - b = 2 S - b = b + 2d 9 

so that 
(7.38) adfb = 2d!b - b . 



476 PELLIAN REPRESENTATIONS [Nov. 

Clearly (7.37) and (7.38) imply (7.32). 
Theorem 7.11. We have 

(7.39) c'(n) + n - 1 = d'(2n - 1) , 

where cT(n) and c(n) are complementary. 
Proof. Put 

e~(n) = d'(2n - 1) - (n - 1) 

= [ l (2 + N / 2 ) ( 2 n - l ) ] - ( n - 1 ) 

= n + — (2n - 1)I = T(l + ^2)n - — 1 
L N/2 J L ^2 J 

Thus 

Since 

It follows from (7.15) that 

(7 40) c(n) = ! d ( n ) ( n G ( f f ) ) 
U , 4 U ; CW |d (n) - 1 ( n E tf)) ' 

In order to prove that c"(n) = cf(n), it will suffice to show that c and c" are comple-
mentary. Now, by (7.31), 

c(n) = f d'(n) +1 (n G fe) } 
CW | d ' ( n ) (n E (gf)) ' 

(c) = (d'g + 1) U (d'g') 

(c) = (df) U (df - 1) 

d'g + 1 = d'af + 1 = df 

df - 1 = d'af = d'g , 

(c) = (df) U (d'g') 

(c) = (dg') U (d'g) . 

(c) U (c ) = (df) U (df) U (d'g) U (d'g') 

= (d) U (d') = N 

while (c) n (c") is vacuous. This completes the proof of the Theorem. 
Theorem 7.12. We have 

(7.41) acf(n) = c'(n) + n - 1 . 

In view of (7.39), (7.41) i s the same as 

(7.42) ac'(n) = d'(2n - 1) . 

Proof of (7.41). By (7.40), 

i t follows that 

Therefore 
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ct(n) = | d { n ) ( n G ( f , ) ) 
M n ) jd(n) - 1 (n G (f)) ' 

so that 

Thus 

( c ' F = df 
j c ' f = df - 1 

It follows that 

and therefore 

ac 'P = adff = bff - 1 
ac'f = a(df - 1) = bf - 2 ' 

ac 'F - c!f? = bf! - 1 - dff = ff - 1 
ac'f - cff = bf - 2 - (df - 1) = f - 1 

acf(n) - cf(n) = n - 1 . 
Theorem 7.13. We have 

(7.43) a2c?(n) = 2c'(n) - 1 . 
Proof. By (7.32), 

adf(2n - 1) = 2df(2n - 1) - (2n - 1) . 
Then by (7.42), 

a2cf(n) = ad'(2n - 1) = 2ac'(n) - (2n - 1) . 

Combining this with (7.41), we get 

a2c«(n) = 2(cf(n) + n - 1) - (2n - 1) 

= 2cf(n) - 1 

Theorem 7.14. There exists a strictly monotone function 6 such that 

(7.44) cf = ffi . 
Proof. This resul t is implied by 

(7.45) ff = eg . 
To prove (7.45) we take 

ft = df = acf . 
Since 

ac - ca = ab - ba - 1 = s - 1 , 
it follows that 

acf - caf = 0 . 
Hence 

ff = caf = eg. 

Theorem 7.15. There exists a strictly monotone function i/> such that 

(7.46) f«/r = d» . 
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Proof. This is an immediate consequence of fT = df. 
Theorem 7.16. There exists a strictly monotone function h such that 

(7.47) fh = b . 

Proof. Since f» = df = acfs it follows that (P) C (a) and therefore (b) C (f) . 
Theorem 7.17. We have 

(7.48) iM2n) = h(n) . 
Proof. By (7.46), 

ft//(2n) = df(2n) = b(n) 
and (7.48) follows at once. 

Theorem 7.18. We have 
(7.49) c = ea + 1 . 

Proof. We recall that 
e(2n) = €(2n - 1) + 1 = d(n) . 

Also 
\ a(n) = 1 (mod 2) & n E (g) 
j a(n) = 0 (mod 2) *=+ n E (gf) 

1. Let n = g(k). Then 

ea(n) + 1 = d ( | ( a (n ) + l)J = d(±(ag(k) + l ) \ 

= d ( | ( a 2 f (k ) + l ) j = df(k) 
so that 
(7.50) eag + 1 = df . 

2. Let n E (gT) and put 

a(n) = [\IIn] = 2k, k L̂ J 
By (7.28) 

teH 
We have 

e.a(n) + 1 = d ( | a ( n ) ) + 1 = d(k) + 1 

= k + [\l!k] + 1 

LN/2 J + 2 \N/2 " (N/2)/ ( " 2 Nil] 

~ n + L N/2 J 

+ 1 
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On the other hand 

d'(n) = [|(2 + N/2)n] = n + [ "VI 

so that 
(7.51) eagf + 1 = dfgf . 
Combining (7.50) and (7.51) we get 

(ea + 1) = (df) U (dfgf) = (c) ; 

the las t equality appeared in the proof of Theorem 7.11. 
Theorem 7.19. We have 

(7.52) e(cf(n) + l ) = n . 
Proof. By (7.40) 

jc ' f (n) = df(n) - 1 
I c ' P (n) = dff(n) 

so that 

Since 

it follows that 

Therefore 

{ 

c'f(n) + 1 = df(n) 

c ' f (n) + 1 = df(n) + 1 

df + 1 = d2f + 1 = 6f , 

/cff(n) + 1 = df(n) 

(c f f (n) + 1 = 6f(n) 

e(e'f(n) + 1 ) = f(n) 

e(c'f '(n) + l ) = df(n) = P (n) 

This evidently proves (7.52). 
Remark. c!(n) + 1 ^ d(n). 
Theorem 7.20. We have 

(7.53) tf = dfg = d'af 
iff = df? 

Proof. We have 

(7.54) c'(n) = f"(l + N/2)II - — 1 
L N/2J 

and 

{N/2f} < | , { ^ 2 f } > - L 
N/2 

Hence 

Since 
{ 

c'f = df - 1 

c'f = df! 
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d'g = d'af = df - 1 , 
(7.53) follows at once. 

Theorem 7.21, We have 
(7.55) c»(n) < d(n) < c'(n) + 1 < p(n) 
and 
(7.56) e(k) = n if and only if k E [d(n), p(n) + l ] . 

The interval [d(n), p(n) + l ] contains exactly three integers-if n G (d) and contains exactly 
two integers if n (E (d»). 

Proof. Inequalities (7.55) come from 

d(n) = [(1 + *j2)n] 

together with (4.4) and (7.54). To prove (7.56) we use 

e(d(n)) = e(p(n) + l ) = n 
and 

p(n) + 2 = d(n + 1) . 

The final statement in the theorem follows from 

d(n + 1) - d(n) = 3 if and only if n G (d) . 

8. THEOREMS INVOLVING a AND r 

Let 
(8.1) n = ftPi + f2P2 + f3P3 + • • • 

be the f irs t canonical representation of n. Define cr(n) by means of 

(8.2) a(n) = fi + f2 + f3 + • • • (mod 2) . 
If 

f l = . . . . f ^ = o, fk + 0 , 

put 
(8.3) r(n) s k (mod 2) . 

We may assume that cr(n), r(n) tal^e on the values 0, 1. 
It follows from (8.1) that 

p(n) = • 0 f1f2f3 « . . . 
Since 

p. = k (mod 2) 
it follows that 
(8.4) n + p(n) = a(n) (mod 2) . 
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Since 

b(n + 1) = n + p(n) + 3 
we get 

(8.5) a(n + 1) = b(n + 1) s a(n) + 1 (mod 2) . 

In the next place, by Theorem 5.4, 

(8.6) (d) = ( n | r ( n ) = o} 
so that 
(8.7) (d») = (n j r (n ) = l } 

Since (b) C (dT) it follows that 

(8.8) r (b(n)) = 1 (n = 1 , 2 , 3 , - ) . 
By (8.5) 

(8.9) a(b(n)) = a(b(n) + l ) = ab(n) = 0 (mod 2) . 

On the other hand, for n such that a(n) G (d?)? 

a(a(n)) + 1 = a(a(n) + 1) = a2(n) + 1 . 
Since (d!) C (f) , 

a2(n) = 2n - 1 = 1 (mod 2) 
and therefore 
(8.10) cr(a(n)) = 1 (a(n) £ (d»)) . 

Combining (8.8), (8.9) and (8.10), we get the following. 
Theorem 8.1. The set (b) is characterized by 

(8.11) (b) = ( n | a ( n ) = 0, T(n) = l} . 
Put 

(8.12) A = {n | r (n ) = i, P"(n) = j} (i , j = 0,1) 
Thus by (8.11) 
(8.13) (b) = A l j 0 , (a) = A 0 j 0 U A ^ U A ^ . 

Theorem 8.2. We have 
(8.14) AQ j 0 = (ad'g') 

(8.15) A 0 1 = ( a f ? ) = ( a d f ) 

(8.16) A 1 x = (ac») = (adP) U (ad'g) . 
Proof. 

1. Let n G (a) PI (df). By (8.10), a(n) = 1; also by (8.7), r(n) = 1. Therefore 

(8.17) (a) H (d») C AX1 . 

481 
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2. Next let n £ (d), so that r(n) = 0. Since d = ac and (c) = (df) U (d'g!), we 
have 
(8.18) (d) = (adf) U (ad'g') . 
Since n G(d), 

0(n) = a(n + 1) + 1 = a(n) + 1 . 
Let n = a(k)9 k G (df). Then 

cx(a(k)) = a2(k) + 1 = 1 . 
Hence 
(8.19) (adf) C AQ x . 

Now let n = a(k), k £ (d'g'h Then 

a(a(k)) = a2(k) + 1 = 0 , 
so that 
(8.20) (ad'F) C AQ j 0 . 

Since 
(a) = ((a) fl (d»)) 'U (ac) 

- ((a) H (d')) U (adf) U (ad'g») , 

it follows that the inclusion sign C in (8.17), (8.19) and (8.20) may be replaced by equality. 
This completes the proof of the theorem. 

Theorem 8.3. We have 
(o 9-n jtf(n) = T(D) (n G (g) ) 
K*'Z1) |CT(n) + r(n) = 1 ( n G (g»))' 

Proof. Since g = af, (g) C (a) but (g) (£ (afT). Consequently, by the last theorem, 

((g) = AQ Q U Ax x 

(8'22) l<*> = \ l U A^o 

and (8.21) follows at once. 
Theorem 8.4. We have 

(8.23) a(n - 1) = 0 <=* n G (g) . 
Proof. By (7.6), 

a(n) E 1 (mod 2) ^ n G (g) . 
Since 

a(n - 1) « a(n) + 1 (mod 2) , 
(8.23) follows at once. 

Theorem 8.5. We have 

f(dg) = { n | n £ (d), a(n) = l} 
(8.24) 

((dg) 

l(dgf ) = { n | n e (d), a(n) = 0} 
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Proof. Since (d) C (a) and 

r(n) = 0 (n G (d)) , 
it follows from Theorem 8.2 that 

(d) = AQQ U AQ1 = (ad'g') U (af) . 
Thus 
(8.25) (dg) U (dg') = (ad'g') U (af») . 

Now assume that 
n G (af1), n G (dg?) - (acg») . 

It follows that there exists an integer k such that 

k G ( f ) , k G (cg») . 
But 

so that 
ff = df = acf = caf = eg , 

k G (eg), k G (eg') , 
which is impossible. 

Next assume that 

n G (dg), n E (ad'gf) . 
Then there is a k such that 

k G (eg), k G (d'g») . 
But 

eg = caf = acf = df , 
so that 

k G (dg), k G(d'g») , 

which is impossible. It therefore follows from (8.25) that 

(dg) = (af»). (dg») = (ad'g') , 

This completes the proof of the theorem. 
Theorem 8.6. We have 

= { n | n G (6), a(n) = l } 
(8.26) 

«) = { n | n G (6), a(n) = o} 

Proof. Since 

00 

(6) = U A 
x 2k+l 

and ed = d, Theorem 8.6 is an immediate corollary of Theorem 8.5. 
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SUMMARY OF FORMULAS 

1. p(n) = 2n + e(n) 

2. e(p(n)) = e(p(n) + l ) = n 

3. e(p(n) + 2 ) = n + 1 

4. a(n + 1) = e(n) + n + 1 

5. b(n + 1) = p(n) + n + 3 

6. d(n + 1) = p(n) + 2 

7. ad(n) = b(n) - 1, a(d(n) + l ) = b(n) + 1, a(d(n) - l ) = b(n) - 2 

8. ed(n) = n 

9. eb(n) = a(n) 

10. d2(n) = 6(n) - 1 

11. eS(n) = d(n) 

12. e2S(n) = n 

13. e(6(n) - l ) = d(n) 

14. e2(S(n) - l ) = n 

15. ab(n) = a(n) + b(n) = 2d(n) 

16. db(n) = bd(n) + 1 

17. ad - da + 1 = ab - ba 

18. a6(n) = d(n) + 6(n) 

19. a(n) = e(b(n) - l ) = ead(n) 

20. ebd(n) = b(n) - 1 

21. dfa(n) = d(n) - 1 

22. d'(a(n) + l ) = d(n) + 1 

23. e(2d(n)) = 6(n) - 1 

24. e(2d(n) + l ) = 6(n) + 1 

25. e(d(n) - l ) = n - 1 

26. e(a2(n) + a(n)) = a(n) 

27. e(b(n) - l ) = a(n) 

28. a(d(n) - l ) = b(n) - 2 

29. e(2n) = d(n), €(2n - 1) = d(n) - 1 

30. e(e(n)) = [n/2.] 



1972] PELLIAN REPRESENTATIONS 485 

31. e(n) - e(n - 1) = l ^ n E (d) 

32. a(n + 1) = a(n) + 2 • *=* n E (d) 

33. df(n + 1) = d'(n) + 2 z± n e (a) 

34. d(n) = ac(n), c(n) = b(n) - df(n) 

(k = 1, 2S 3S - . . ) 

(k = 1, 2, 3, • • • ) 

(k = 1 , 2 , 3 , " . ) 

(k = 1 , 2S 35 . - • ) 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

At = d(JJ) - 1 

A 2k = d a k " l e ( K ) 

A 2 k + 1 = akc(N) 

B2k = d 6 k " l d ® 

B2k+1 = ^ 
00 

d(N) = U A 2 k 

00 

S(N) = U A 2 k + ] 

42. €(N) = d(N) U (d(N) - l ) 

43. a2b = 2b - 1 

44. n E (d) & | 2 _ ( > 2 - N/2 
( 1 + ^ 2 ) 

k 
45. b = u, a + v. b , 

where 

k+1 _ fik+l 

46. ab = ukn + v^b - t̂ . , 

where 

\ = ^ V i - vk = *~\* t " 7 (2k+lpk+l - 3'2kpk - 2> • 
and 

% = p
k
 + p k - i • 

47. s = ab - ba 

48. af(n) = 1, af'(n) = 2 

49. a2f(n) = 1, a2f'(n) = 0 (mod 2) 

50. t = adf - d'a 

51. tg(n) = 0, tg'{n) = 1 

52. ag(n) = 1, agT(n) s 0 (mod 2) 
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52. g = af 

54. df = f» 

55. df - dg = 1 

56. n G (f) ^ { N / I I I } < — 

57. bf - a£» = 1 

58. f = acf = caf 

59. n e (g) ** I — f < i 
I N/2 J 2 

60. g» = a(^agf) + 1 

(d'(2n) = 2d'(n) + 1 ( n G (g)) 
61. 

ldT(2n) = 2d'(n) ( n G (g')) 

62. adf(n) = 2df(n) - n 

63. acf(n) = c'(n) + n - 1 = d'(2n - 1) 

rfd(n) ( n G (P)) 
64. c'(n) = / 

(d(n) + 1 ( n G (f)) 

((c) = (df) U (d'g») 
65. { 

( ( c ) = (df) U (d'g») 

66. a2c'(n) = 2c'(n) - 1 

67. cT = f0 

68. dT = fi/i 

69. fh = b 

70. i//(2n) = h(n) 

71. c = ea + 1 

72. e(cT(n) + l ) = n 

(c!f = dfg = d!af 
73. { 

(c ' f = df 

74. (b) = ( n | a ( n ) = 0, r(n) = l } 

75. A = { n | r ( n ) = i, a(n) = ]} (:i,j = 0,1) 

76. A0 > 0 = (ad'g') 

77. AQ1 = (af) = (adf) 
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78. Ax x = (aC) = (adf<) U (ad'g) 

79 i( Otn) = r(n) ( n E (g)) 

| 0 ( E ) = r(n) = 1 ( n G (gf)) 

80. a(n - 1) = 0 ^ n e (g) 

(dg) = { n j n G (d), a(n) = l } 

(dgf) = { n | n G (d)9 a(n) = o} 

((eg) = { n l n E (5), a(n) = l } 
82. / 

f(Sg') = { n | n £ (5), a(n) = 0} 

81. 
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Table 1 

n 

a 

b 

d 

d? 

e 

P 

1 

1 

3 

2 

1 

0 

2 

1 

5 

2 

2 

6 

4 

3 

1 

5 

2 

10 

3 

4 

10 

7 

5 

1 

7 

3 

17 

4 

5 

13 

9 

6 

2 

10 

4 

22 

5 

7 

17 

12 

8 

2 

12 

6 

29 

6 

8 

20 

14 

10 

2 

14 

7 

34 

7 

9 

23 

16 

11 

3 

17 

8 

39 

8 

11 

27 

19 

13 

3 

19 

9 

46 

9 

12 

30 

21 

15 

4 

22 

11 

51 

10 

14 

34 

24 

17 

4 

24 

12 

58 

11 

15 

37 

26 

18 

4 

26 

13 

63 

12 

16 

40 

28 

20 

5 

29 

14 

68 

13 

18 

44 

31 

22 

5 

31 

15 

75 

14 

19 

47 

33 

23 

6 

34 

16 

80 

15 

21 

51 

36 

25 

6 

36 

18 

87 

16 

22 

54 

38 

27 

7 

39 

19 

92 

17 

24 

58 

41 

29 

7 

41 

20 

99 

18 

25 

61 

43 

30 

7 

43 

21 

104 

19 

26 

64 

45 

32 

8 

46 

23 

109 

20 

28 

68 

48 

34 

8| 

48 

24 

116 

Table 2 

n 

a 

ab 

ba 

s 

f 

f! 

1 

1 

4 

3 

1 

1 

2 

2 

2 

8 

6 

2 

3 

7 

"7 
4 

14 

13 

1 

4 

9 

~T 
5 

18 

17 

1 

5 

12 

5 

7 

24 

23 

1 

6 

14 

6 

8 

28 

27 

1 

8 

19 

7 

9 

32 

30 

2 

10 

24 

8 

11 

38 

37 

1 

'11 

26 

9 

12 

42 

40 

2 

13 

31 

10 

14 

48 

47 

1 

15 

36 

11 

15 

52 

51 

1 

16 

38 

12 1 

16 

56 

54 

2 

17 

41 
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Table 3 

n 

a 

d? 

adf 

dfa 

t 

g 

gT 

1 

1 

1 

1 

1 

0 

1 

2 

2 

2 

3 

4 

3 

1 

4 

3 

3 

4 

5 

7 

6 

1 

5 

6 

4 

5 

6 

8 

8 

0 

7 

9 

5 

7 

8 

11 

11 

0 

8 

10 

6 

8 

10 

14 

13 

1 

11 

12 

7 

9 

11 

15 

15 

0 

14 

13 

8 

11 

13 

18 

18 

0 

15 

16 

9 

12 

15 

21 

20 

1 

18 

17 

10 

14 

17 

24 

23 

1 

21 

19 

11 

15 

18 

25 

25 

0 

22 

20 

"T2I 
16 

20 

28 

27 

1 

24 

23 

Table 4 

n 

c» 

e 

6 

dr 

* 
e 

h 

1 e'+l 

1 

1 

2 

1 

1 

1 

1 

2 

2 

2 

4 

3 

3 

3 

2 

2 

5 

5 

3 

6 

5 

5 

5 

4 

3 

7 

7 

4 

8 

7 

6 

6 

5 

4 

9 

9 

5 

11 

9 

8 

8 

6 

6 

12 

12 

6 

13 

10 

9 

10 

7 

7 

14 

14 

7 

16 

12 

11 

11 

8 

8 

17 

17 

8 

18 

14 

13 

13 

9 

9 

19 

19 

9 

21 

15 

15 

15 

10 

11 

22 

22 

10 

23 

17 

17 

17 

12 

12 

25 

24 

11 

25 

19 

18 

18 

13 

13 

27 

26 

12 

28 

20 

20 

20 

14 

14 

29 

28 
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