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1. INTRODUCTION

We define the Pellian numbers by means of

Pg=0, P =1, P =2P +P

n+l = 1).

1

By a Pellian representation of the positive integer N we mean a representation of the form
(1-1) N = €1P1 + €2P2 -+ €3P3 F oo,

where the €; are non-negative integers. If the €, are restricted to the values 0, 1, not

all integers N are representable. Indeed we have the sequence of "missing' numbers:
4, 9, 10, 11, 16, 21, 22, 23, 24, 25, 26, 27, 28, *°° .,

On the other hand we prove that every positive integer N is uniquely representable in

the form (1.1) where the € satisfy the following conditions:

g =0 or 1 e. = 0,1 or 2
(1.2)
if €i=2 then € , = 0.

i-1
It follows that the sequence of "missing' numbers is infinite.
When (1.2) is satisfied we call (1.1) the canonical representation of N. Let Ak denote

the set of integers N such that

€ = ere = Ek—l = 0, €k ?g 0.
and let Bk denote the set of integers N such that
€ = eos = ek—l = 0, Ek = 2,

As in the previous papers of this series [1, 2, 3, 4], we shallcharacterize the sets Aps By)
interms of certain arithmetic functions. As we shall see below, the discussion is considerably
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more elaborate than that in the case of Fibonacci representations. The number of functions
necessary to describe the sets Ak’ Bk is greater than that needed for the corresponding
Fibonacci results; moreover some of the relations are more intricate.

To begin with, if N has the canonical representation (1.1) we define

(1.3) e(N) = &Py + Py + ¢P3 + <+
and
(1.4) pN) = Py + Py + Py + ++- .
Then

e(pm) = n h=1,2 3, )

however, for some n,

p(e@) # n.

Note that the right member of (1.3) need not be canonical.
Next we define the following six functions:

am) = [N2n], bm) = [(2 + N2)n]
dm) = [@ + NZ)n], aw =[5+ VD),
6n) = b@) + d(n), @) = complementof &6(n) .

Two (strictly monotone) functions f;, f; from N to N are complementary if the sets
fi(g)s f2('1i)

constitute a disjoint partition of N, the set of positive integers. In particular a, b; d, d';
5, € are complementary pairs of functions.

Of the numerous relations satisfied by these functions we mention in particular the
following:

b@) = a(n) + 2n, dn) = a@ +n,

ab) = a(@) + b@), d'@n) = b),

dm) = a(b(m) - d'(m), a?b(n) = 2b() = 1,
e@n) = e(2n-1)+1 =d@), d'(b@) = &),

an+1) = e(n) +n+1, bm+1) =phn +n+3,
e(d@))
p(d®)

n, e(b@) =awm, e(6@) = d@),
o), p(6) = d(o(m)).

The sets Ak’ Bk are described by the following formulas:
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A1=d(N)—'1:

Ay = 46" Le( =1,2 8 ),
gy = 0% k=1,2 3 ),
By, = d6°7aqo k=123 ),
Byyy = 074 (s = 1,2 8 ).

This summarizes the first half of the paper. In the remaining sections of the paper we
discuss various other functional relations., For the most part these relations are motivated
by the introduction of certain supplementary functions f, f'; g, g' now to be defined. Tobe-
gin with, we note that the function

s(n) = ab(®) - ba(n)
takes on only the values 1, 2; similarly the function
tn) = ad'(n) - d'a(n)
takes on only the values 0, 1. We define f, f' by means of
s(fm) = 1, s(frm) = 2;
similarly we define g, g' by means of

t(g(n)) = 0, t(z'@) = 1.

Thus f, f'; g, g' are complementary pairs.

Alternatively we may define these functions by means of

m

a¥(f(m)) = 1, a®(f'(n)) 0 (mod 2)

and

H

a(g) = 1, a(g' @) 0 (mod 2) .

In addition, the complementary pair c, ¢' should also be mentioned:

cln) = b(n) - d'(n);

as noted above,

d) = afc®) .

Of the relations satisfied by these functions we note the following:
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gm) = a(f() , fl(n) = d(f(m)
b(f)) - a(f'@) = 1

d(n) (n = (k)
c'(n) = d =
% n) -1 (n = f(k))
c) = { ol (n = g)
d' (n) (n = g'W)

a(c'm) = c¢'@ +n -1 =d'(2n - 1)
cn) = e(am) +1

e(c'(m) + 1) =n .

The last section of the paper contains some theorems involving the functions of 0,7 defined
as follows by means of (1.1):

ON) = € + €5 + €3 + «++ (mod 2)
7(N) = k (mod 2) N e Ak) .
In particular we show that
bN) = {n]ow =0, 7@ =1}
g = {n|om = r@)}
={njom-1) =0},

dg®) = {njp € @, o@ =1}
dg') = {njp € @, o@ =0} .

For the convenience of the reader a summary of formulas appears at the end of the pa-
per, as well as several numerical tables.

It should be remazrked that most of the theorems in this paper were suggested by num-
erical data. Thus further numerical data may well suggest additional theorems, particularly
in the case of some of the functions defined in the latter part of the paper and not explicitly

mentioned in this Introduction.

2. THE CANONICAL REPRESENTATIONS

As above, the Pellian numbers P are defined by

(2.1) Py, = 0, P =1, P = 2P + P
so that
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We consider sequences

(2.2) (€1, €94 o+, €p)

of length n, where the € satisfy the conditions

g = 0 or 1; €. =0,1,2 (> 1)
(2.3) !
if ¢, = 2 then ¢, =0,
i i-1
It is easily seen by induction on n that the number of sequences (2.2) is precisely
Pn 41 We prove next that if N is given by

N = €1P1 + e + EHPn N
where the € satisfy the conditions (2.3), then N < Pn+1' For otherwise we would have

- - = - -
. EmPn En-1Pn—1 Pn+1 enPn €n—1Pn-1

= - - =
2 en)Pn + (1 € P P s

n-1""n-1 n-1

which eventually leads to a contradiction. See Keller [7] for similar results.

Theorem 2.1. Every positive integer N can be written uniguely in the form

(2.4) N = Py + Py + *** ,
where

(2.5)

if €, =2 then € . =0

{€1=001‘1; €, = 0,1 or 2;
i
i i-=1

Proof. In view of the preceding remarks, it is enough to prove that no integer N can
have more than one representation (2.4), because if this can be established, the Pn 4 Dum-

bers corresponding to the sequences (2.2) of length n will be precisely

Now suppose N is given by
N=€1P1+'-'+EnPn, € 740,

where the € satisfy (2.5). Then P =N<P ., s0

Now by considering N - enPn we see that €n itself is determined uniquely by N. Hence,

that n is uniquely determined by N.

by induction, the theorem is proved.

In a similar manner we can prove the following theorem.
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Theorem 2.2. Every positive integer N can be written uniquely in the form

(2.6) N = 8Py + 5yPy + +o» ,
where
(5.:0,101‘2 (i=1:2:39"')
(2.7) !
if O = o0 = Gi—l # 0, Gi # 0, then i is odd.

The form (2.4) will be called the first canonical representation for N (or simply the

canonical representation); the form (2.6) will be called the second canonical representation.

It will be convenient to abbreviate the formula

N = €1P1 -+ €2Pz -+ €3P3 + o
as follows:

N = s E{€9€g oo o

We sghall say that N is a missing number if € = 2 for some i. Hence the missing

numbers are those which are not the sum of distinct Pell numbers.
n

is equal to Pn+ -2,

Theorem 2.3. The number of missing numbers less than Pn " 1

1
Moreover if
k

N = € + 26 +-o» +27¢ (ei=0,1)

is the binary representation of N, then

Ry = €Py + Py + o0 + ekP

N k+1

is the Nth number that can be represented as a sum of distinct Pell numbers.

Proof. The number of sequences
(€19 €9y "0, en)

in which each € = 0 or 1 is clearly 2", Since the total number of sequences is Pn
I

ni1 ~ 2 -

For the second half of the theorem it suffices to observe that the proof of Theorem 2.1

it
+10 1t
follows that the number of sequences containing at least one 2 is P

shows that RN is a strictly monotone function of N.

The first few missing numbers are
(2.8) 4, 9, 10, 11, 16, 21, 22, 23, 24, 25, 26, 27, 28, *-- .

Let N have the first canonical representation

N = Py + Py + €3Pg + oo,
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We define the functions e(N), p(N) by means of

(2.9) e(N) = €P; + Py + ,Pg + *¢-
and
(2.10) P(N) = €Py + €P3 + e3Py + <+ .

Theorem 2.4. The functions e and p satisfy the following identities:

(2.11) pn) = e() + 2n
(2.12) e(p) =n
(2.13) e(p@) +1) = n
(2.14) epn) +2 =n+1.,

Moreover e and p are monotone.

Proof. Let n be given canonically by

N = +€€x€z e

Then by definition

p(n) USTSYSRRE

and
e(n) = s €€z€y v,

Hence (2.11), (2.12), (2.13) follow at once. If €, < 2, p(n) +2 is given canonically by

p) + 2 = «0(e + 1)egeg o=+
and (2.14) follows. Now suppose €3 = 2. Then ¢ = 0 and

p(n) + 2 = (63 + 1)P4 + €4P5 + e
As before this is canonical if €, < 2 and (2.14) follows. Otherwise we continue until, for
some k, ok < 2, and again (2.14) follows.
To prove the monotonicity of e and p, we again take the canonical representation
n = °€y€g€3 °°° .

if ¢ =1, then

n-1=°0eege ",

sothat e(n -1) = e(n). If ¢ =0 and € # 0, then
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n-1=-:1(¢ - 1)ege--
and e(n -1) =em) - 1. If

(2.15) € = € = ss0 = € =0, ek#O,
then, for k odd,

(2.16) n-1=ePy+ 2P+ e + 2P

kl+(ek-1)Pk+e

k+1Pk+1 *e
and

e(n - 1) = 2P; + 2P5 + «++ + 2P o * (en - 1)Pk-1 Pt
This gives e(m - 1) = e(n). Ifin (2.15) k is even, we have

(2.17) n-1 =P1+2P3+"'+2Pn—1+(€k_1)Pk+€ + e

k+1Pk+1
and

e(n - 1) = 2Py + «++ +2P__ +(ek-1)Pk_1+ek+1Pk+- ,

k-2

which gives e(n - 1) = e(n) - 1.

This proves that e is monotone and therefore, by (2.12), p is also monotone,

As a corollary we have the following theorem.

Theorem 2.5. For any n, the equation e(x) = n has at most three solutions.

Proof. Assume

e(xy) = e(xy) = e(x3) = elxy)
with
X < Xy < X3 < x4 .

It follows from the definition of p that any n must be of at least one of the three forms p(j),
pG) +1 or p() +2. Take n = xy. Then by Theorem 2.4 we have

e(xy) # elxy) .

3. NEWMAN-SKOLEM PAIRS

By a2 Newman-Skolem pair we shall mean a pair of functions (a,b) defined on the posi-

tive integers N and satisfying the conditions

(3.1) aM) U b(N) = N ,
(3.2) a(N) N b(N) vacuous ,
(3.3) a, b strictly monotone.

Hence a and b 4are complementary functions. The Newman-Skolem pair (a,b) defined

uniquely by the condition
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b) = a(m +n
was introduced in [5].
We shall say that (a,b) is ordered if
(3.4) a(n) < b(n) mh=1,2,3,°°)
and that (a,b) is separated if (a,b) is ordered and
(3.5) b +1) > bn) +1 m=1,2,38, ).
Define
(3.6) d@n) = b(n) - n.
Theorem 3.1. If (a,b) is separated then
ad(n) = b)) -1
and
(3.8) a(d@ + 1} = b() + 1.
Proof. By (3.5) we must have, for some k,
b)) - 1 = a(k), bm) +1 = ak +1).
Hence the k +n numbers
a(]-)s a(Z), 0y a-(k); b(l)s c0y b(n)
comprise all the numbers less than or equal to b(n), so that

k + n = b(n), k = bn) - n = d@).

This evidently completes the proof of the theorem.

Theorem 3.2. If (a,b) is separated then

(3.9) aln +1) = am) +2 =2n € @,

where (d) denotes the range of the function d.

Proof. Since (a,b) is separated it is clear that, for any n, either a( +1)

or a(n +1) = a(n) + 2. Also we have
dn +1) =d@ = bn +1) - b -1 2 1,

so that d is strictly monotone,

457

a(n) +1
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Now assume
n # dk) k =1,2,3,°).
Then, for some k,
dk) +1 < n < dk +1).

If aln +1) = a(p) + 2 then a(®) +1 = b(j) for some (j). But

bk) +2 = a(dk) +1)+1 £ a@ +1 < adk +1) +1 = bk + 1),

so that a(n) +1 = b(j) is impossible.
Theorem 3.3. If (a,b) is separated and

din +1) > dn) + 1 m=1,2 38 ")
then
a(dk) - 1) = bk) - 2 (ak) > 2).
Proof. Since
dk) - 1 # d() G=1,238 "),

by Theorem 3.1,
bk) - 1 = ad(k) = a(dk) - 1) +1.

Theorem 3.4. If (a,b) is a Newman-Skolem pair and if, for all n, we have
ba() < ab@m) < b(am) +1),
then
(3.10) ab(n) = a(n) + b(n) .
Proof. Using the hypothesis we see that the a(n) + b(n) numbers

b(1), b(2), ***, bam); a(), a(2), **+, ab(n)

coincide with the numbers less than or equal to ab(n). Hence (3.10) follows at once.

It is well known that if «,B are positive irrational numbers satisfying

(3.11) -§+%=1, @ < B,
the pair (a,b) defined by
(3.12) a() = [oen], b() = [pn]

is a separated Newman-Skolem pair. For the remainder of this paper we define

[Nov.
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a) = [N2n]

b(n) a) + 2n = [(2 + 2)n]

I

d@ = b(m) -n = [ + N2)n]
d'() = [}(2 + N2Z)n].

Thus (a,b) and (d',d) are separated Newman-Skolem pairs. Making use of the preceding
theorems we get

Theorem 3.5. The functions a, b, d, d' as defined above, satisfy the following
relations:

ad(n) = bn) - 1

1

a(dm) +1) = b +1
a(d(m) - 1)
d'am)) = dm) - 1

d'(am +1) = dm) +1

b(n) - 2

an +1) = a®) + 2 = n

@

=
dn +1) =dmh +2 2n € (@.

Here we have let (f) denote the range of the function f.

Theorem 3.6. For all positive integers n, we have

(3.13) ab(n) = a(n) + b(n) .
Proof. Since

a(n) < N2n < a@m) + 1,
we see that

2a(n) + NZam < ~NZ(2n +am) < 2(ak) + 1) + N2 (ak@) + 1).

Hence, taking greatest integers,

b(a@) < ab) < blam) +1) .

Equality is obviously impossible. Hence, by Theorem 3.4, we get (3.13).
Suppose (d',d) is any separated Newman-Skolem pair and suppose f is any increas-
ing function. Let d'f = b and let a be such that (a,b) is a Newman-Skolem pair. Then

since d'(N) b(N), it follows that d(N) a(N). Hence there exists an increasing function
¢ such that

(3.14) d(n) = ac).

Now, since (d',d) is separated, we have
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d'(d) - n) = d@) - 1.
Hence, among the numbers
1, 2, 3, *tty d(n) ’
there are exactly j members of b(N), namely
arf@),  dif@, -, d'fG,
where j is the largest integer such that

fGG) = d@) - n.

We may write (symbolically)

(3.15) j= [iiin)f—'ﬂ] .

The remaining d(n) - j members in
{13 2, 3, *00, d(n)}

are members of a(N), so that

dm) = a(dwm) - j),
that is

(3.16) o) = d@) - [d—(”)—f_'—f-‘]

Theorem 3.7. For the functions a, b, ¢, d' previously defined, we have
(3.17) dm = a(b(m) - d'@)) .

Proof. Since d'(2n) = b(n), the above remarks apply with f(n) = 2n. Hence

o = ) - [LL=2] = b - - [222]

n+[¥-] n+[%[2n]] = n+[N/2§n]

[l +N2n] = dw,

But

so that
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cm) = b - d'() .

This evidently completes the proof of the theorem.

4. RELATIONS BETWEEN a, b, d, d' AND e AND p

Theorem 4.1. The functions a, b, ¢ and p are related by the following formulas:

(4.1) apn +1) = elm) +n +1

4.2) bn +1) = p(n) + n + 3.

These formulas imply

(4.3) e = [(N2 - )(n + 1) ], e0) =0
(4.4) pn) = [N2@+1)]+n -1, p(0) =0.

Proof. It is clear by induction that (a,b) is the unique Newman-Skolem pair satisfying

(4.5) b(n) = afn) + 2n mn=1,2,3°").
Now let

a'n +1) = e +n + 1
and

b'n +1) = pn) +n + 3.

We shall show that (a',b') is a Newman-Skolem pair satisfying

[}

(4.6) b'(n) = a'(n) + 2n.
This will evidently prove the theorem.
By (2.11) we have
p) = e(n) + 2n.

Hence

It

b'n +1) - a'(n + 1) pn) - e(n) +2 = 2n + 2,

so that (4.6) is satisfied.
Since, by Theorem (2.4),

e(p(n)) = e(p) + 1) = n, e(p) + 2) =n+1,
we get

1t
]

a'(p(n) + 2) p) +n + 2 b'a +1) -1

and

pn) +n + 4 b'n + 1) + 1.

1
I

a'(p) + 3)
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Hence the ranges of a' and b' are disjoint.

Furthermore we see that

a'(1), a'(2),

©o al(p@)+ 25 b'@), b'(2), -+, b +1)

are p(n) +n + 3 distinct numbers less than or equal to

b'm + 1) = pn) +n + 3.

Hence all numbers in this range must be included and the theorem is proved.
Theorem 4.2. We have, for all n,

(4.7) e(b(n))

e(dm))

a(n) ,
(4.8)

]
=1

Proof. By Theorems 3.5 and 4.1 we have

b(n) +1 = a(dm) + 1)

d) + 1 + e(d@)) .

Hence, since b(n) - d(n) = n, we get (4.8).
Since d(n) =[@ + ~2)n], it follows that

drn) = [3@ + N2)n] .
Hence

d'(2n) = b(n)

In particular

bn) € dN) ,
so that, by Theorem 3.2,

a(b() + 1)

abm) + 1.
Then

]

b) + 1 + e(b(m) = a() + b@) +1

and therefore
e(bm)) = awm) .

This completes the proof of the theorem.

Further relations between a, b, d, d', e and p will be established in the next section.

5. THE SETS Ak AND Bk

We define the sets Ak and Bk as follows:

(5.1) A, ={N|g =+ =¢, =0,

k-1 " o # 0},
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(5.2) Bk = {N' € = co0 = ek—l =0, ek = 2} ,
where
(5.3) N = - €1€9€3 °**

is the canonical representation of N.

We also define
(5.4) 6m) = b(m) + dm) = 2a@m) + 3n
and define €(n) by the requirement

(5.5) (€,6) is a Newman-Skolem pair.

Theorem 5.1. Let the non-negative integer n have the canonical representation

(5.6) N = *€j€g€z e o

Then

(5.7) din +1) -1 = pn) +1 = *leeyeg " ° o
Hence

(5.8) Ay = d(N) -1,

Proof, The theorem follows from the relations
b(n +1) =dn+1) +n+1 =p@n) +n+ 3.

Since it is clear that (e,0) isaseparated Newman-Skolem pair, it follows from Theorem
3.1 that
(5.9) e(2dm) = 6@ - 1

(5.10) e(2dm) +1) = 6(n) + 1.

Since &(n) - n = 2d(n), it follows from Theorem 3.3 that

(5.11) e(2d) - 1) = 6(n) - 2.
Moreover we have
d?(n) = d@) + ad(n) = d@m) # b)) -1 = 6@ -1,

so that
(5.12) e(6) - 1) = aw) .
Also we have

3+d+pd =bd+1) =2d+1) +ad+1) =2d+2+b+1,
so that
(5.13) pd(m) = d(@m) + bn) = O6@®) .
Applying e, we get
(5.14) eb(n) = dm) .
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Now using (4.1) and (4.2) we get

pd =d(d +1) -2 = (6+1) +ad+1) -2
= 0 +1)+O0+1+e)-2=4d+20
=0+ O0+ed-1) = 6+ad =dbé ,
so that
(5.15) pd = dob.
Theorem 5.2. We have
(5.16) By, = d*(N)
k =] LY
(5.17) Byl 0 d() k =1, 2,3, )
(5.18) By, = a6 L & =2, 3,4, ).

Proof. It is only necessary to prove (5.16) since (5,17) will then follow by (5.13) and
(5.15).
Applying Theorem 5.1 to d(n +1) -1 we obtain

d*n + 1) -1 = +1l€€pegeen
so that
A + 1) = 02 gegegtc

This evidently proves (5.16) and therefore the proof of Theorem 5.2 is complete.

Note that if n has the canonical representation
n = ‘616263 cee
then

(5.19) din +1) -1 = rlejegeg e

is also canonical. Since 0(n) = 2d(n) +n, it follows that

(5.20) On +1) -1 = <02 geqeg*
and
(5.21) d(6(n + 1)) -1 = +102 ggeg - +»

are both canonical.

Theorem 5.3. We have

(5.22) Ay = d) -1
(5.23) Ay = 40 tew k =1,2 8 )
(5.24) Ay = 0% (= 1,2, 8 ).

Proof.. We have already proved (5.22). It will therefore suffice to establish
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(5.25) Ay = de(N) .

Now A, consists of all N in the canonical form
N = «0 €yegeyq» - (e # 0).
Hence A, -1 consists of all N in the canonical form
N = 1 (eg-1)egeq+- (e5 # 2) .
Furthermore d(N) - 1 consists of all N in the canonical form
N = o1 ffsf) ooe
and by (5.21), d&(N) - 1 consists of all N in the canonical form
N = <102 gyg5°-- .
Therefore since d(N) - 1 is the disjoint union of d6(N) -1 and de(N) - 1, we see that
de(N) -1 = Ay -1,
that is,
Ay, = de(N) .

This completes the proof of the Theorem.

Theorem 5.4. We have

o0
(5.26) dN) = U Ay
1
o0
(5.27) N =U Ay o
1
(5.28) ™ =d U (d - 1).

Proof. Since every integer is of the form ék e(n) for some k= 0, (5,26) and (5.27)
follow from the previous theorem. Since €(N) is the complement of 5@), (5.28) follows
from (5.22) and (5.26).

We have seen above that

(5.29) e = d U (d@ - 1).

Hence the numbers in €(N) are, in order,
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a@) -1, 4@, d@ -1, d@), 4B -1, dE), .

It follows that

(5.30) e(2n) = d(n), €(2n - 1) = dn) - 1.
Applying e, we have
(5.31) e(em)) = [n/2]

The following remark concerning the second canonical form is useful. If

n = «fjfpfgece (second canonical)
then
d) = +0 fyfyfy e (first canonical)
and
Om) = <00 fyfyfy oo (first and second canonical) .

6. ADDITIONAL RELATIONS INVOLVING a AND b

Theorem 6.1, We have
(6.1) a%b = 2b - 1.,
For the proof we require

Theorem 6.2. The integer n is in (d) if and only if

(6.2) g——ﬂ—:$> 2 -NZ ,
1+ N2
where (o) denotes the fractional part of the real number o .
Proof, Let
n = dk) = [1+N2)k] ,
so that
@ +NEk -1 <n < @+ Nk, k- —L < B <,

1+ N2 1+ N2

This is equivalent to

%——-‘1—2>1-——1———=1-(~/§-1)=z-~/§.
1+ N2 1+ N2

Proof of Theorem 6.1. It follows from

am) = [N2n]
that

(6.3) n-2=<=sa%n =n-1.
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It therefore suffices to show that

(6.4) a’b(n) = 1 (mod 2) n=1,23°°).

Assume that there exists an integer k such that

a’k) = 0 (mod 2) ,
that is
a(2d(k)) = 0 (mod2).
Then
[2NZdk) ] = 2j
for some integer j. Hence
2j < 2NZdk) < 2j+1,

j = N2dk)

A
[
+
ool

so that

5 1
(6.5) {NZaw} < 1.
By Theorem 6.2,

,—-d—(li)—s > 2 -2,
1+ N2

that is
{(NZ - 1)d®)} = 2 - N2 .
Hence

{NZaw} = 2 - NZ .

This contradicts (6.5) and so completes the proof of the theorem.
It follows from ab = a +b that
b = ab + 2b = a + 3b,
b3 = ab + 3b2
= a+b+3(a+3b)
= 4a + 10b,

bt = 4(a + b) + 10(a + 3b)

= 14a + 34b .
Put
(6.6) bk =y a +ka’ wy = 0, v =1, u =1, vy = 3.
Then
k+1 _
b = uk(a + b) + vk(a + 3b)

= (uk + vk)a + (uk + 3vk)b R

so that
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U,

k+1 =uk+v

(6.7)

It follows that

{uk+2 - 4uk+1 + Zuk =0
Vit ~ 4vk+1 t2v =
Then
0 )
_ E ; k _ o z : k
Ux) = W X = x° 4 (4uk_1 - ?.uk_z) X
1 3
= x% + (4x - 2x*)U(x) ,
so that
2
Ux) = X .
1 - 4x + x2
We find that
1 gl
(6.8) w = —aF Vig T W - W
where
a =2+ N2, B =2 -2,

Theorem 6.3. The function bk is evaluated by means of (6.6) and (6.8),
In the next place,

ab = a+b,

(ab)?

1

a’b + bab

]

2a2b + 2ab

1]

2(2b - 1) + 2(a +b)

2a +6b -2,

(ab)®

2a%b + 6bab - 2

]

8a%b + 12ab - 2

8(2b - 1) + 12(a + b) - 2

12a + 28b - 10,

(ab)t = 56a + 136b - 50 .
Put

(6.9) (@ab)¥

uka+vkb—tk,

y =v =1, 4 = 0, u = 2, vy = 6, th = 2.
Then

(ab) = u a?h + v, bab -t

_ 2 _
= (uk+vk)ab+2vkab tk

[Nov.



1972] PELLIAN REPRESENTATIONS 469

= (uk + vk)(zb - 1) + 2vk(a + b) - I:k

2vka + (2uk + 4vk)b - (uk +ty o+ tk) s

so that
U = 2
Vierp = 2uk + 4vk = 4Vk + 4Vk_1
bert, = % TR T -
Let

Q=@ =1, Q=3 Q=071 Qi = 2Q +Q 4
It is easily verified that
(6.10) Qk = P

Kk 0 1 2 5 12 29 70

Q‘k 1 1 3 7 17 41 99

We find that
_ ook-1 _ ook-1
(6.11) W = 2 Qk—l’ Ve = 2 Qk

@ _325p - 9.

1
(6.12) k=7 Praa k

Theorem 6.4. The function (ab)k is evaluated by means of (6.9), (6.10), (6.11) and (6.12).

7. THE FUNCTIONS f, f', g, g', ¢, ¢’

It follows from
a(m) = [N2n], bm) = [(2 + N2)n]
that
(7.1) ab(n) - ba(m) = 1 or 2 mh=1,2,3,+).

We may accordingly define the pair of complementary functions f, f' by means of

(7.2) ab(n) - ba(m) = 3; 8}1 g gz)% .
An equivalent definition is
a’f(n) = 1 (mod 2)

(7.3) %
af'(n) = 0 (mod 2)

It is also easily verified that

(7.4) ad'(n) - d'a(n) = 0 or 1 h=1,23 °°).

Hence we may define the pair g, g' by means of
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o = 3 (28,

It is somewhat more convenient to take as definition

1 (mod 2)
0 (mod2 °

n

ag(n)
(7.6) s ag'(n)

We shall show that (7.5) and (7.6) are equivalent.
For brevity put

(7.7) s = ab - ba, t = ad' - d'a.
It is easily verified that
(7.8) s(n) = 2n - a%(n)

from which the equivalence of (7.2) and (7.3) is immediate.
It is also immediate from (7.3) and (7.6) that

(7.9) g = af.
In the next place
t =ad'-da=ad -a-n+1,

ta = ad'a - a2 - a + 1
=ad-1) -a%2-a+1
=hb-a%2-a-1 ,

tan) = 2n - a2 -1 ,

{ — a2 -
jtaf = as +1 = 0 (mod?2),
(7.10) | taf' = a’f' +1 =1 (mod2) .
Also
tb = ad'b - db + 1
=ad-ab-b +1
=d+8-a-2b+1
=b+2d -a-2b+1
(7.11) = 1 (mod 2) .
It follows from (7.10) and (7.11) that
(7.12) th) = 0 (mod2) 2 n € (g) .

This evidently establishes the equivalence of (7.5) and (7.6).
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Note that the pair g, g' is not separated.
Theorem 7.1. We have
(7.13) daf = fr.

The proof of this theorem requires a number of preliminary results.
Theorem 7.2
(7.14) bf -1 = dg.
Proof.
bf -dg -1 =af +2f -ag -g -1

of - a%f -1 =0 .,

I

Theorem 7.3

(7.15) n € () 2{~N2Zn} < —‘\Il— .

Proof. By (7.2) or (7.3)
ne (f).2an =2n-1.

Consider

[qa [\/En]] - on -1, on -1 < NE[NEn] < 2n.

Put k = [N2:n], so that
N2n -1 < N2k < 2n

'\/§n—i_< k < AN2n

N2
0 < N2n -k < —l: ,
N2
that is
(7.16) (NZn} < L .
N2

Hence if n € (f), Eq. (7.6) is satisfied.
Next let n € (f'), so that a%(n) = 2n - 2. Consider

[N/E[N/?n]:l = 2n - 2
2n - 2 < NZ2[N2n] < 2n -1
2n - 2 < N2k < 2n -1 (k = [N2n])

NZn - N2 < k < «/En—i_

NZ

L < yZn-k< NE,

N2

that is

471
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(7.17) {JZn} > 2

Hence if n € (f'), Eq. (7.17) is satisfied.
Combining (7.16) and (7.17), we get (7.15).
Proof of Theorem 7.1. By Theorem 6.2, n & (d) if and only if

(7.18) 3 2 $> 2 - NZ
1+ N2

1+ N2 = df + €
by Theorem 7.3, we have € <1/N2. Moreover

£ = df + €

1+nN2 1+ 2

=J+;df_$+ e_,
1+ N2 1+ N2

where
;- [_df__ ,
1+ N2
Then
g df i g € =1,
1+ N2 1+ N2
{(NZdf} + eWZ -1) =1,
{,\[Edf} >1_§[_.§'T1 =L_ ,
N2 N2
so that
(7.19) af) ¢ ) .
We shall now show that
(7.20) (") C @ .

Let n satisfy {N2n} > 1/N2, sothat n € (f'). Then, by (7.18), n € (d), thatis

n=dk =[Q+N2)k],
for some integer k. Thus

@+ N2k =n+ {N2k}

@+ N2k + (NZ-1n = N2n + {N2k}
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1+ N2k + (WZ - Ddk) = ad®) + {NZn} + {NZK} > b -1 + = + [Tk}
N2

NZk - 2 - ND)dK) +1 > -1+ (JZK}
N2
NZk - 2 - ND)(@ + N2k - (WIK}) +1 > =+ (V2K}
N
@ - N2 (NZK} +1 > v (V2K
NE

NZ-1s gz (K
N2

L > (V3K .
NE

Therefore k € (f), n & (df).
This proves (7.20) and so completes the proof of the theorem.

Theorem 7.4. We have
(7.21) bf - aft = 1,
Proof. By (7.14), Eq. (7.21) may be replaced by

(7.22) aft = dg = daf,

which by Theorem 7.1 is the same as

(7.23) adf = daf.
Now
ad -da =b-1-2a%-a
=2n-1- a2,
adf - daf = 2f - 1 - a%f = 0 .

This proves (7.23) and therefore proves (7.21).
Theorem 7.5. The pair (f,f') is separated.
Proof. By (7.13)
f'n) = df@) > f(),

so that the pair (f,f') is ordered. Since the pair (d',d) is separated, it follows that

ffa +1) - f'(n) = df(@ + 1) - df(n) > 1.
Define
(7.24) c) = b(n) - d'(),
so that by (3.17)
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(7.25) d

= ac.
Theorem 7.6, We have
(7.26) f' = acf = caf .
Proof. It suffices to show that
(7.27) acf - caf = 0.
Now
ac - ca = d - ba + d'a

=d-at-2a+d-1,
acf - caf = 2df - 2af - a%f - 1

=2f -a’% -1 =0 .
Theorem 7.7

n € (@ = {_n:; < %
(7.28) v
7.28 :
n € (gv) = {_n_' < .%
NEf

Proof. Let n €(g), sothat a(n) =1 (mod 2). Then

[N2n] = 2k - 1

2k -1 < N2n < 2k

so that

Next let n € (g') so that a(n) = 0 (mod 2). Then

[N2n] = 2k

2k < N2n < 2k + 1

so that
{i <1
|vzf) 2

This completes the proof of the theorem.
Theorem 7.8

(7.29) g = a(fag) +1 .



1972] PELLIAN REPRESENTATIONS

Proof. This is equivalent to

dg' - 1 = b(jag")

which in turn is equivalent to

(7.30) drag' = b(lag") .

Since d'(2n) = b(n), Egq. (7.30) follows at once.

Theorem 7.9

‘ dr(2n) = 2d'(n)
(7.31) d'(2n) = 2d'(n)
(7.32) ad' (n)

We show first that Theorems 7.9 and 7.10 are equivalent.

may be replaced by

bg
(7.33) bg'
while (7.3) may be replaced by
9 ad'g
(7.34) ad'g!
Since, by (7.5),
ad'g = d'ag,
(7.34) is the same as
dlag =
(7.35) {d:agv =

But d'a = d -1, so that (7.35) becomes

+ 1 n € (g)
n € (g
= 2d'(n) - n.

= 2d'g +1
= 2d'g'

=2d'g -¢g
= adlg' - gl

ad'g' - d'ag' =1 ,

2d'g - g
2d'gt - g -1

1 =2dg-g

dgv — Zd'g" - g'

(7.36) {dg B

which is the same as (7.33)., This proves

the equivalence of (7.31) and (7.32).

We shall now prove (7.32). We have first

ad'a =
2d'a - a =
so that
(7.37) ad'a
Secondly
ad'b =
2d'b - b =
so that

(7.38) ad'b

ad - 1)

]
o

1
N

2d - 1) -a =b -2,

= 2d'a - a.

ad = b + 2d

26 -b =Db+2d,

= 2d'b - b.

Since d'(2n) = b(n),

475
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Clearly (7.37) and (7.38) imply (7.32).
Theorem 7.11. We have
(7.39) ¢'n) +n-1=4d4@n-1),

where c'(n) and c(n) are complementary.

Proof. Put
cn) = d'@n -1) - @-1)
= [12(2 +N2)@2n-1)]-(-1)
= [n +-:—L:(2n—1)] = [(1+\/§)n—i]
N2 N2
It follows from (7.15) that
— . Yaw) n £ (f1))

(7.40) cl) = {d(n) -1 in e ®)

In order to prove that c(n) = c'(n), it will suffice to show that ¢ and ¢ are comple-
mentary. Now, by (7.31),

c() = {d‘(n) 1 {n € (g>;

d*(n) n € (g"
Thus
() = d'g +1) U (d'g")
() = @M U @df - 1)
Since

d'lg +1 = draf +1 = df

af - 1 = daf = d'g ,
it follows that
(c)

()

@ u @eg
dgn U d'g)

Therefore

(©) U (e) = @) u @ U @dg U @g)

]

@ U @ =N

while (c) N (¢) is vacuous. This completes the proof of the Theorem.
Theorem 7.12. We have

(7.41) ac'n) = ¢'(n) +n - 1.
In view of (7.39), (7.41) is the same as

(7.42) ac'n) = d'(2n - 1) .

Proof of (7.41). By (7.40),
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d(n) n € (')
! =
'@ = 4w - 1 zne ®)
so that
(crer = ap
}crf =df -1 °
Thus
ac'f' = adf' = bf' -1
ac'f = a(@df - 1) = bf - 2 °
It follows that
ac'ft - ¢'f' = bft -1 - dfr = f' - 1
ac'f —c¢'f =Dbf -2 - @df-1) =f -1

and therefore
ac'(n) - c'm) =n -1,

Theorem 7.13. We have
(7.43) a%'(n) = 2c'(n) - 1.

Proof. By (7.32),

ad'(2n - 1) = 2d'2n - 1) - (2n - 1) .
Then by (7.42),
a’c'(n) = ad'(2n - 1) = 2ac'(n) - (2n - 1) .

Combining this with (7.41), we get

a%c'(n) = 2(c'm) +n - 1) - (2n - 1)

]

2¢c'(n) - 1 .
Theorem 7.14. There exists a strictly monotone function 6 such that

(7.44) c' = fo .
Proof. This result is implied by
(7.45) f' = cg.
To prove (7.45) we take
ft = df = acf .
Since '
ac -ca =ab-ba-1=s5-1,
it follows that
acf - caf = 0.
Hence
ft = caf = cg.

Theorem 7.15. There exists a strictly monotone function ¢ such that

(7.46) fg =a .
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Proof. This is an immediate consequence of f' = df.,

Theorem 7.16. There exists a strictly monotone function h such that

(7.47) fh = b .

Proof. Since f' = df = acf, it follows that (') C (a) and therefore (b) C (f).

Theorem 7.17, We have
(7.48) Y(2n) = hin) .

Proof. By (7.46),

fy(2n) = d'(2n) = b(n)

and (7.48) follows at once.

Theorem 7.18, We have
(7.49) c =¢€a+1l,

Proof. We recall that

€(2n) = €(2n - 1) +1 = d@n).

Also

fam)
) a(n)

1. Let n = g(k). Then

1 (mod2) =n € (g
0 (mod2) =n € (g1

o

ealn) +1 = d(lz(a(n) + 1)) = d(%(ag(k) + 1))
= d(%(azf(k) + 1)) = df(k) ,
so that
(7.50) eag +1 = df .

2, Let n & (g') and put
a(n) = [N2n] = 2k, K = [_n_]

{_n_}<1
vz) 2

d(3am) +1 = dk) +1

By (7.28)

We have

can) + 1

k+ [WN2k]+1

[l m( i) boeladf
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On the other hand
@@ = [1@ + NDn] = n +[_P:] ,
N 2
so that
(7.51) eag! + 1 = dig' .
Combining (7.50) and (7.51) we get
(ea +1) = df) U dg) = (@ ;

the last equality appeared in the proof of Theorem 7.11,
Theorem 7.19. We have

(7.52) e{c'®) +1) =n.
Proof. By (7.40)

c'f(n) = diw) - 1
{c'f'(n) = df'(n) ?
so that
4‘ c'f(n) + 1 = df(n)
?lc'f'(n) +1 = di'(n) + 1 '
Since

dft +1 = d% +1 = Of,
it follows that

c'fm) +1 = df(n)
{c'f’(n) +1 = oftm)
Therefore
e(c'fn) + 1) = @)
e(c'f'(n) + 1) = df(n) = f(n)
This evidently proves (7.52).
Remark. c'(n) +1 # d(n).
Theorem 7.20. We have
c'f = d'g = d'af
(7,53) {C'f’ = dft °
Proof. We have
(7.54) ct(n) = [(1 +~N2)n - i_]
N2
and
(Nzg) <1, (Vzm} > X .
2 NE
Hence
(c'f =df - 1
ic'f = dff .

Since
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dtg = daf = df - 1,
(7.53) follows at once.
Theorem 7.21, We have

(7.55) c'n) < dm) = c'(n) +1 £ pm)
and
(7.56) e(k) = n ifandonlyif k € [dm), p) +1].

The interval [d(n), p(n) +1] contains exactly three integers-if n & (d) and contains exactly
two integers if n & (dY).

Proof. Inequalities (7.55) come from
d) = [ + N2)n]
together with (4.4) and (7.54). To prove (7.56) we use

e(dm)) = e(p) +1) =n
and
pln) + 2 = d + 1) .

The final statement in the theorem follows from
din +1) - d(n) = 3 if and onlyif n € ().

8. THEOREMS INVOLVING o AND 7

Let
(8.1) n = f1P1 + fZPZ + f3P3 + oo

be the first canonical representation of n. Define g(n) by means of

(8.2) on) = £ + £, + f5+ - (mod2).
If

f1=...=fk—1=0’ fk7£0,
put
(8.3) Tn) = k (mod 2) .

We may assume that o(n), 7(n) take on the values 0, 1.
It follows from (8.1) thaf
p(n) = <0 fifyfz ... .
Since
P = k (mod 2)
it follows that
(8.4) n + p(m) = o(m) (mod2).
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Since
b +1) = n + p) + 3
we get
(8.5) aln +1) = bn+1) = o) +1 (mod 2) .

In the next place, by Theorem 5.4,

(8.6) @ ={n|r0) = 0}
so that
(8.7) @ = {nfrm) = 1}

Since (b) C (d') it follows that

(8.8) r{b@) =1 n=1,2,3,°).
By (8.5)

(8.9) o{b)) = a(b() + 1) = ab® = 0 (mod 2).

On the other hand, for n such that a(n) & @),

oa) +1 = a(al) + 1) = a%@n) + 1.
Since @) C ),
2’n) = 2n -1 = 1 (mod 2)
and therefore
(8.10) ofam) =1 (at) € @) .

Combining (8.8), (8.9) and (8.10), we get the following.
Theorem 8.1. The set (b) is characterized by

(8.11) ) = {njow =0, 7 = 1}.
Put
(8.12) Ay = {njr) =i, o = j} i,j = 0,1)
Thus by (8.11)
(8.13) ® = A o (@ = Ajo U Aj U AL

Theorem 8.2. We have

(8.14) AO,O = (ad'g")

(8.15) AO,l = (aff) = (adf)

(8.16) A11 = (ac") = (adf') U (ad'®) .
Proof.

1. Let n& (a) N (d'). By (8.10), o) = 1; also by (8.7), 7(n) = 1. Therefore

(8.17) (@ N @) C A1,1 .
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2. Nextlet n &€ (d), sothat t(n) = 0. Since d =ac and (c) = df) U d'g'), we
have )
(8.18) d) = (add) U (ad'g") .
Since n € (d),
0 =am@ +1) +1 = a@ +1 .
Let n = a(k), k € (df). Then

ofak)) = a’k) +1 = 1.
Hence
(8.19) (adf) C AO,l .
Now let n = alk), k&€ (d'g'). Then
o(ak)) = a%k) +1 = 0 ,
so that
(8.20) (ad'f') C AO,O .
Since

1l

(@ = (@ N @)y f@c

(@ N @) U (@df) U (ad'g) ,

1l

it follows that the inclusion sign C in (8.17), (8.19) and (8.20) may be replaced by equality.
This completes the proof of the theorem.

Theorem 8.3. We have

o(n) = 7(n) (n € (@
(8.21) {o'(n) + 1) = 1 (n € (g')}'

Proof. Since g = af, (g) C (a) but (g) ¢ (af'). Consequently, by the last theorem,

{(g) =800 Y g

(8.22) _
) = Agq U A

and (8.21) follows at once.
Theorem 8.4, We have
(8.23) On -1) = 02 n € (g .
Proof. By (7.6),
afp) =1 (mod2) = n € (g).
Since
on - 1) = a(n) +1 (mod 2),
(8.23) follows at once.

Theorem 8.5. We have

{ (dg)
(8.24)
(dg')

{nln € (), O(n)

1]
[
—~

{n!n e (), O(n)

0}
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Proof. Since (d) C (a) and
(@) = 0 (n € @),
it follows from Theorem 8.2 that
(@ = Ao,o U A0,1 = (ad'g’) U (af') .
Thus
(8.25) (dg) U @dg) = (ad'gn U (af").
Now assume that

n € (af"), n & (dg") = (acg".

It follows that there exists an integer k such that

k € (), k € (cg').
But
fl' = df = acf = caf = cg,
so that .
k € {cg), k G (eg),
which is impossible.
Next assume that
n € (dg), n € (ad'g").
Then there is a k such that
k e (cg), k & d'g) .
But
cg = caf = acf = df,
so that

k & (dg), k & (dgh,
which is impossible. It therefore follows from (8.25) that
(dg) = (af"), dg") = (ad'g") .

This completes the proof of the theorem.

Theorem 8.6. We have

(5.2 {(6@

i
1

{nin € ¥, oW
{nin e (6, o)

1}
0}

(Og?)

Proof. Since

© = 2k+1

= (C8
>

and ed = d, Theorem 8.6 is an immediate corollary of Theorem 8.5.
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10.
11.
12.
13.
14.
15.
16.
17,
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.

PELLIAN REPRESENTATIONS

SUMMARY OF FORMULAS

p) = 2n + e(n)

e(p@) = e(p) +1) =n
e(p +2) =n+1

ah +1) = em) +n +1
b(n +1) = pln) +n + 3
din +1) = pn) + 2

ad(n) = b() - 1, a(dm) + 1) = b@) + 1,
ed(n) = n

eb(n) = a(n)

d?@m) = 6(n) - 1

ebm) = dn)

e%6(n) = n

e(6n) - 1) = dn)

e?(6() - 1) = n

ab(n) =

a() + b(n) = 2d()

db() = bdn) + 1

ad - da

+1

= ab - ba

ab(n) = d@) + O@m)

a(n)

ebd(n) =

e(b() - 1) = ead(n)

bm) - 1

d'a(n) = d@n) - 1

d'(a) +1) = d@) +1

€(2d@) = 6@ - 1

e(2d) + 1) = 6(n) + 1

e(d(m) -

e(22(m) + a(n))

e(bm) -

1)

1)

n-1
= a(n)

a(n)

a(d( - 1) = bm) - 2
€(2n) = d(n),
e(em) = [n/2]

€@2n - 1) = dn) -1

a(dm) - 1) = b) - 2

[Nov.
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3l. em) -em -1 =1&n € (d)

32. alm +1) = al) +2 & n € (d)

33, dn+1) =d@m+2 &n € ()

34. d@ = ac(), c(@ = b@) - d'@®)

35. Ay = d(N) - 1

36. A, = dék"le(m) k =1,2,3, )
3T, Ay, = 0@ k = 1,28 )
s8. By = a0 tagy = 1,2 3, ++°)
39. By = ékd(m k =1,2,3,: )
0
40. d(N) = L1J Ay
o0
41, o) = LlJ —_—
42, € =dE U (d@ - 1)

43, a% = 2b -1

44, ne(d)zi 2 §>2-«1§

1+ N2
kK _
45, b —uka+vkb,
where
s _ B
W= T VT Y "W @ T 2FNZ B =242
k _
46, ab —ukn+vkb—tk,
where
k-1 k-1 1 . k+1 k
We = 2T Qg Ve T2 Qe G T 7@ TPy - 32P - 3,
and
Q = P+ Py

47. s = ab - ba

48, af(n) = 1, af'(n) = 2

49. a¥%@) = 1, a’f'(n) = 0 (mod 2)
50, t = ad' - d'a

51, tgn) = 0, tg'm) =1

52, agm) = 1, ag'n) = 0 (mod 2)
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53,
54.

55.

56.

57.

58,

59.

60.

61.

62.

63.

64.

65.

66.
67.
68.
69.
70.
71.

72.

73.

74.
75.
76.

e

PELLIAN REPRESENTATIONS
g = af
df = f
df - dg = 1

n € () 2{NZn} < —l—_
N2

bf - aft = 1

fr acf = caf

]

e()=§l$<l
B V=S S

g' = a(fag) +1

dzn) = 2d'() +1 (n € ()
{d‘(Zn) = 2d'(n) (n € @)
ad'(m) = 2d'(n) - n

ac'w) = c¢'(n) +n -1 =d'@n - 1)

’d(n) (n € (")
c'(n) =

lam) +1 (n € @)
) = @ U @g

() = (df")y U (d'g")

a’c'(n) = 2'(n) - 1

c' = fg
a = £y
fh = b
¥(2n) = h()
c = €ea+1

e(c') +1) =n

‘c'f = d'g = d'af

et = ag

®) = {njow@ =0, 70 = 1}

Ay = {n|7) =i, ol = j} (i,j = 0,1)
0,0 = (ad'g)

A, . = (af') = (adf

[Nov.
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78, A1,1 = (ac') = (adf') U (ad'g)
i ’CT(n) = 7(n) (n € @)
"o = ) =1 (n € @)
80. oln-1) =0 =n C (g
o (d® ={njn € @, o@ =1}
. }@gﬂ = {n|n € @, o) = 0}
. (6g) = {nl n € (), o) = 1}
" {(5@) = (ajn € @, oW = 0}
Table 1
n 2| 3| 4| 5| 6| 7| 8| o|10]11|12|13]14]15 |16 (17| 18| 19] 20
a 2| 4| 5| 7| 8| 9111214 |15|16|18|19 |21 {22 |24 | 25| 26| 28
b 6(10]13| 17| 20| 23 | 27| 30| 34|37 |40 |44 | 47|51 |54 |58 | 61| 64| 68
d 4| 7| 9{12| 14|16 19|21 |24 | 26| 28|31 |33|36 |38 |41 | 43| 45| 48
ar 3| 5| 6| 8| 10|11 )13 |15|17|18| 20|22 23|25 |27 |29 | 30| 32| 34
e 1| 1] 2| 2| 2| 3] 3| 2| a| 4| 5| 5| 6] 6| 7| 7| 7] 8] s
P 5| 7(10] 12] 14|17 |19 22| 24| 26| 290 31| 34|36 |39 {41 | 43| 46| 48
2| 3| 4| 6| 7| 8| 9l11|12]13)14]15]16|18 19 {20 | 21| 23| 24
10 |17 | 22| 29| 34 [ 39 |46 | 51 |58 | 63| 68| 75|80 |87 |92 |99 |104 | 109 | 116
Table 2
nl1 sl 4| 5| 6| 7| 8| 9l10]11]12
al 1 4| s 7| 8] 9f11|12|14|15]16
ab| 4 14| 18| 24 | 28| 32| 38 |42 | 48 | 52 | 56
ba| 3 13| 17| 23| 27| 30 | 37 | 40 | 47 | 51 | 54
s|1 il 1] 1) 1 2] 1| 2| 1| 1] 2
£l 1 4 5| 6| 8| 10f11{13]|1516]17
]2 9| 12| 14|19 24|26 | 31|36 |38 |41
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4.

5.

PELLIAN REPRESENTATIONS Nov. 1972
Table 3

n|1(2|3]4) 5| 6| 7| 8] 9]10}11}12

afll{2|4|5| 7 8 9|11|12|14|15]16

dr|1({3|5|6]| 8[10|11]13|15|17]18] 20

ad'| 1|4 | 7811114 )15(18 |21 ]| 24| 25| 28

dlal] 113|6|8|11(13]15]|18| 20| 23| 25] 27

t]0j1j1j0| O 1] Of Of 1] 1| O 1

g1 1]4]|5]7] 8]111114|15]118) 21| 22|24

g'|2|3]|6|9(10]12]13|16|17]|19]|20] 23

Table 4

n | 1}2|3|4| 51 6] 7| 8] 9]10(11}12

ct | 1|4]|6|8|11 |13 |16 |18 ]| 21|23 | 25| 28

c 213|517 9110 |12 |14 |15[17(19] 20

6 | 1{3]5]6| 8] 9|11 |13|15|{17]|18] 20

d | 1|3|5|6| 810 |11 {13 |15(17|18] 20

g | 1]2|4]|5] 6] 7] 8] 9]|10]|12|13| 14

€ | 11234 6| 7] 8] 9}|11]12]13|14

h | 2157|912 |14 |17 |19 22| 25| 27| 29

c'+1 | 2|5 |7]9|12 |14 |17 |19} 22| 24| 26| 28
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