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Abstract. We refer to the generalized Fibonacci sequence (M
(c)
n )n≥0, where M

(c)
n+1 =

cM
(c)
n +M

(c)
n−1 for n > 0 with M

(c)
0 = 0, M

(c)
1 = 1, for c = 1, 2, . . . as the c-metallonacci

numbers. We consider the tiling of an n-board (an n × 1 rectangular board) with
c colours of 1/p × 1 tiles (with the shorter sides always aligned horizontally) and
(1/p, 1 − 1/p)-fence tiles for p ∈ Z+. A (w, g)-fence tile is composed of two w × 1

sub-tiles separated by a g× 1 gap. The number of such tilings equals (M
(c)
n+1)p and we

use this result for the cases p = 2, 3 to devise straightforward combinatorial proofs of
identities relating the metallonacci numbers squared or cubed to other combinations of
metallonacci numbers. Special cases include relations between the Pell numbers cubed
and the even Fibonacci numbers. Most of the identities derived here appear to be new.

1. Introduction

The metallic means (also known as the metallic ratios) are defined by

φ(c) = c+
1

c+
1

c+
1

c+
1

c+
.. .

=
c+
√
c2 + 4

2
, c = 1, 2, . . . , (1.1)

as the c = 1, 2, 3 cases are known, respectively, as the golden, silver, and bronze means

(or ratios). Since limn→∞M
(c)
n+1/M

(c)
n = φ(c), where M

(c)
n satisfies the generalized Fibonacci

recurrence relation,

M (c)
n = cM

(c)
n−1 +M

(c)
n−2 + δn,1, M

(c)
n<1 = 0, (1.2)

in which δi,j is 1 if i = j and 0 otherwise (and φ(c) is the larger root of the recurrence relation

auxiliary equation, λ2−cλ−1 = 0), we will refer to the sequence (M
(c)
n )n≥0 = 0, 1, c, c2 +1, . . .

as the c-metallonacci numbers. The c-metallonacci numbers for c = 1, . . . , 20 are, respec-
tively, the Fibonacci numbers (Fn), the Pell numbers (Pn), and sequences A006190, A001076,
A052918, A005668, A054413, A041025, A099371, A041041, A049666, A041061, A140455,
A041085, A154597, A041113, A178765, A041145, A243399, and A041181 in the OEIS [15].

Comparing the identity Fjn = LjFj(n−1) + (−1)j+1Fj(n−2) +Fjδn,1 [7], where Lj is the j-th
Lucas number (Lj = Lj−1 + Lj−2 + 2δj,0 − δj,1, Lj<0 = 0), with (1.2) we see that

M
(Lj)
n = Fjn/Fj , if j is odd and positive. (1.3)

We will later use M
(4)
n = 1

2F3n, the j = 3 instance of (1.3), in relating the Pell numbers to the
even Fibonacci numbers.
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There are Fn+1 ways to tile an n-board using squares and dominoes [5], where an n-board is
an n×1 rectangular board divided into n equal cells numbered 1 to n. If there are c colours of

square tiles available, the number of tilings is M
(c)
n+1. To obtain a combinatorial interpretation

of (M
(c)
n+1)

p for integer p larger than 1, we tile an n-board using fence tiles in addition to
ordinary (1-piece rectangular) tiles. A (w, g)-fence is a tile composed of two sub-tiles (called
posts) of dimensions w × 1 separated by a gap of width g [9].

For p ∈ Z+, the number of ways to tile an n-board using 1/p × 1 tiles (with the shorter
sides always aligned with the long direction of the board and which we will denote by r) and
(1/p, 1− 1/p)-fences (which we will denote by f) is F pn+1 [11]. This result is easy to generalize
to the case where there are c colours of r to choose from as we now show in the following
lemma and theorem (which are, respectively, special cases of the bijection given in the proof of
Theorem 2.2 in [1] and Corollary 2.2 therein). As in [11], we regard each cell as being divided
into p equal slots which can be filled with either an r or a post.

Lemma 1.1. There is a bijection between the tilings of an n-board using 1/p × 1 tiles (r) of
which there are c colours available and (1/p, 1− 1/p)-fences (f) and the tilings of an ordered
p-tuple of n-boards using squares available in c colours and dominoes, where p, c ∈ Z+.

Proof. If an r (left post of an f) occupies the j-th slot of cell k, place a square of the same
colour (domino) starting on cell k of the j-th n-board. As the posts of a fence occupy two
consecutive j-th slots they correspond to a single domino in the j-th board of the p-tuple. The
process is clearly reversible and so the mapping is a bijection. �

Theorem 1.2. Let Bn be the number of ways to tile an n-board using 1/p×1 tiles which come

in c colours and (1/p, 1− 1/p)-fences, where p, c ∈ Z+. Then Bn = (M
(c)
n+1)

p.

Proof. There are M
(c)
n+1 ways to tile an n-board using squares of which there are c different

colours and dominoes [5]. From Lemma 1.1, Bn is the same as the number of ways to tile an
ordered p-tuple of n-boards using squares of c possible colours and dominoes. �

Although we will not use it in our proofs of identities, for completeness we present the
following generalization of Theorem 6.2 in [11] which gives an alternative combinatorial inter-

pretation of (M
(c)
n+1)

p. The proof mirrors that of the original theorem; the only difference is
that in the bijection, an r of a particular colour corresponds to a (1/2p, (1− 1/p)/2)-fence of
the same colour.

Theorem 1.3. For p, c ∈ Z+, the number of ways to tile an n-board using (1/2p, (1−1/p)/2)-

fences of which there are c possible colours and (1/2p, 1− 1/2p)-fences is (M
(c)
n+1)

p.

To obtain identities via combinatorial proof we use the result that all tilings of n-boards can
be expressed as tilings using metatiles. A metatile is a grouping of tiles that exactly covers an
integral number of cells and cannot be split to make smaller metatiles [8]. The concept of a
metatile is only useful if the tiles have gaps (as is the case with fences) or are of non-integer
length; otherwise the tiles themselves are metatiles.

When tiling with r and f , the simplest types of metatile are a single cell filled with r (which
we denote by rp) and the gapless arrangement of p interlocking fences (fp) which we refer to as
a bifence (trifence) in the p = 2 (p = 3) case [10, 11]. Since each r can be any one of c colours,
the number of types of rp metatile is cp. The lengths of rp and fp are 1 and 2, respectively.

We refer to a metatile that contains both r and f as being mixed [10]. There is an infinite
number of possible mixed metatiles. In the case p = 2, there are four infinite families of mixed
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metatiles and each mixed metatile contains two r, one in the first cell and the other in the
final cell of the metatile [10, 12]. The number of mixed metatiles of a given length when there
are c possible colours for the r is therefore straightforward to determine as we will show at

the start of Section 2 before using the result to obtain various identities involving (M
(c)
n )2.

In Section 3 we consider the family of Pascal-like triangles whose (n, k)-th entries are the
number of tilings of an n-board that use k fences in the p = 2 case. The entries are used in
one of the identities we prove in Section 2 and we identify Riordan arrays the triangles are
simply related to.

When tiling with r and f in the p = 3 case, there are no easily discernible families of mixed
metatiles. Enumeration of the number of mixed metatiles of a given length requires a different
approach; in [11] we managed to do this (when c = 1) by considering the possible endings of
a mixed metatile and obtaining recursion relations for the numbers of metatiles with a given
ending and length. On combining the recursion relations one finds that the total number
of mixed metatiles with a given length is a multiple of a Pell number. We apply the same
procedure adapted for the more general case of r occurring in different colours in Section 4,
and use the resulting expression to derive identities in Section 5.

2. Identities involving the metallonacci numbers squared

In the p = 2 case, the four families of mixed metatiles expressed symbolically are r(ff)jfr
(e.g., cells 4–5 and 14–17 in Fig. 1), fr(ff)jr (e.g., cells 6–7 and 18–21), r(ff)j+1r (e.g., cells
8–10), and fr(ff)jfr (e.g., cells 11–13) where j ≥ 0 and their respective lengths are 2j + 2,
2j + 2, 2j + 3, and 2j + 3 [10, 12]. Given that each r can be one of c colours this means that
there are 2c2 mixed metatiles of each length l = 2, 3, . . ..

In some of the proofs we use the concept of a filled fence which is a fence with its gap filled
by an r and thus has the symbolic representation fr. It is not a metatile by itself since its
length is 3/2. There is a filled fence at the start and/or end of all but one of the four families
of mixed metatiles.

The identities in this section are generalizations of various identities in [10, 12], reduce to
them when c = 1, and are proved in a similar way.

Lemma 2.1. For all n ∈ Z and c ∈ Z+,

Bn = δn,0 + c2Bn−1 + (2c2 + 1)Bn−2 + 2c2
n∑
l=3

Bn−l, Bn<0 = 0. (2.1)

Proof. Consider tiling an n-board with r and f in the p = 2 case. As in [5, 9], we condition on
the final metatile; if this final metatile is of length l then there are Bn−l ways to tile the rest
of the board. In the present case there are c2 metatiles of length 1 (r2), 2c2 + 1 metatiles of
length 2 (i.e, rfr, frr, and f2), and 2c2 metatiles of each length l ≥ 3. The δn,0 results from

5 10 141 2 3 4 6 7 8 11 13 17 18 21

r2 f 2 rfr frr frfrrf 2r rf 2fr frf 2r

Figure 1. A 21-board tiled with all metatiles of length less than 5 (but ex-
cluding those differing only by the colour of the r tiles) when p = 2. Dashed
lines indicate the boundaries between metatiles. The symbolic representation
is shown above the metatile and the cell numbers below.
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the fact that if l = n there is one way in which the metatile fills the board and so we require
B0 = 1. �

For the rest of the paper we write Mn rather than M
(c)
n for ease of reading.

Identity 2.2. For all n ∈ Z and c ∈ Z+,

M2
n = δn,1 + c2M2

n−1 + (2c2 + 1)M2
n−2 + 2c2

n−1∑
l=3

M2
n−l.

Proof. After replacing n by n− 1 in (2.1), the identity follows from Theorem 1.2. �

When c = 1, Identity 2.2 reduces to Identity 4.1 in [10].

Identity 2.3. For all n ∈ Z and c ∈ Z+, M2
n = δn,1 − δn,2 + (c2 + 1)(M2

n−1 +M2
n−2)−M2

n−3.

Proof. Subtracting (2.1) with n replaced by n−1 from (2.1), replacing n by n−1 in the result,
and then using Theorem 1.2 gives the identity. �

Identity 2.4. For n ≥ 0 and c ∈ Z+,

M2
n+1 − c2n = 2

n−2∑
k=0

k+1∑
i=1

(1 + δi,k+1/2c
2)c2(n−k−1)M2

i . (2.2)

Proof. How many ways are there to tile an n-board using at least 1 fence? Answer 1 : Bn−c2n
since this corresponds to all tilings except the all-r tiling. Answer 2 : condition on the location
of the last fence. Suppose this fence lies on cells k+ 1 and k+ 2 (k = 0, . . . , n− 2). Then cells

k + 3 up to n must be filled with r and there are c2(n−k−2) ways this can be done. If just a
bifence lies on cells k+ 1 and k+ 2 then there are c2(n−k−2)Bk ways to tile the remaining cells.
The other possibility is that cell k + 2 is at the end of a mixed metatile and, as there are 2c2

mixed metatiles of length 2 or more, there are then 2c2(Bk+2−2 +Bk+2−3 + · · ·+B0)c
2(n−k−2)

ways to tile the board. Hence, equating the two answers,

Bn − c2n =
n−2∑
k=0

2c2(n−k−1)(B0 +B1 + · · ·+Bk−1 + (1 + 1/2c2)Bk).

The identity then follows from Theorem 1.2. �

Identity 2.5. For n ≥ 0 and c ∈ Z+,

M2
2n+2 = c2

(
1 +

n∑
k=1

(
M2

2k+1 + 2
2k∑
i=1

M2
i

))
. (2.3)

Proof. How many ways are there to tile an (2n+ 1)-board? Answer 1 : B2n+1. Answer 2 : an
odd-length board must have at least one r and the final r must be on an odd cell since the
cells to the right must be filled with bifences which are of length 2. Condition on the location
of the last r. Suppose that the last r is in cell 2k + 1 (k = 0, . . . , n). Either it is part of an r2

metatile in which case there are c2B2k ways to tile the board, or, if k = 1, . . . , n, it is part of
a mixed metatile and so there are 2c2(B2k+1−2 +B2k+1−3 + · · ·+B0) ways to tile the board.
Hence

B2n+1 =

n∑
k=0

c2B2k + 2c2
n∑
k=1

(B0 +B1 + · · ·+B2k−1).

The identity then follows from Theorem 1.2 and the fact that M1 = 1. �
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Identity 2.6. For all n, c ∈ Z+, M2
n+1 = (c2 + 2)M2

n −M2
n−1 + 2(−1)n.

Proof. The n = 1 case can be verified by substituting in the values of M0, M1, and M2. For
n > 1, we identify a near bijection between (i) the tilings of an n-board and an (n− 2)-board
and (ii) the tilings of c2 +2 (n−1)-boards. There is an obvious bijection between the tilings of
the n-board that end with r2 (of which there are c2Bn−1) and the first c2 (n− 1)-boards. We
let Bn denote the bijection between the tilings of an n-board that end in a fence and are not the
all-bifence tiling and the tilings of an (n−1)-board which is not the all-bifence tiling. If the n-
board ends in a bifence, find the final r; if it is inside a filled fence, remove the fence, otherwise
replace the r and the bifence to the right of it by a filled fence. This gives all r-containing
tilings of an (n − 1)-board that end with a fence. The tilings ending in r are obtained from
the n-board tilings ending in a filled fence by removing the fence. This leaves the tilings of
the n-board that end with an r (but not r2). Not counting this final r, find the final r in the
tiling (as there must be at least one other r) and then obtain the corresponding (n− 1)-board
by using the same procedure as for n-boards ending in a fence. This generates all tilings of the
final (n−1)-board ending in a free r. The bijection between the remaining r-containing tilings
of this board (i.e., those ending in a fence) and the all r-containing tilings of an (n− 2)-board
is simply Bn−1. When n is even, the n and (n − 2)-boards both have an all-bifence tiling
and so Bn + Bn−2 = (c2 + 2)Bn−1 + 2. When n is odd, the second and third (n − 1)-boards
have all-bifence tilings which do not correspond to any of the r-containing tilings of the n or
(n− 2)-boards and so we must subtract 2. Thus overall, Bn +Bn−2 = (c2 + 2)Bn−1 + 2(−1)n,
and the required identity is obtained from using Theorem 1.2. �

Identity 2.7. For n ≥ 0 and c ∈ Z+,

M2
n+1 = δn mod 2,0 + c2

n∑
k=1

kM2
n+1−k.

Proof. How many tilings of an n-board contain at least two r? Answer 1 : Bn when n is odd
and Bn − 1 when n is even since the all-bifence tiling only occurs for even n. Answer 2 :
following the method introduced in [4], we condition on the location of the second r. As the
symbolic representation of all non-bifence metatiles end in r, if the k-th cell in the n-board
contains the second r, the symbolic representation of the tiling of the first k cells must end in
r. This leaves one r that may be placed anywhere among the k−1 fences and so there are c2k
ways to tile these first k cells. There are Bn−k ways to tile the rest of the board. Summing
over all possible k gives

∑n
k=1 c

2kBn−k. After equating this to Answer 1 the identity follows
from Theorem 1.2. �

To generalize Identity 2.7 we first need the following definition and lemma. Let H
(q)
n be

the number of tilings of an n-board where the number of r (in this case half-squares) is 2q.

Thus for n ≥ 1, H
(0)
n is 1 if n is even (the all-bifence tiling) and 0 if n is odd. We must have

H
(q)
n = 0 if n < q and for convenience we set H

(0)
0 = 1.

Lemma 2.8. For n ≥ q > 0 and c ∈ Z+,

H(q)
n = H

(q)
n−2 + c2q

(
n+ q − 1

2q − 1

)
. (2.4)

Proof. The symbolic representation of a tiling must end in either r or ff . If it ends in r, we
are free to place the remaining 2q − 1 half-squares and n − q fences in any order; this gives

c2q
(
n+q−1
2q−1

)
possibilities overall. If it ends in ff , there are H

(q)
n−2 ways to tile the remaining

cells. �

DECEMBER 2022 9



THE FIBONACCI QUARTERLY

We will show in Section 3 that H
(q)
n is, for n ≥ q ≥ 0, the (n, q)-th entry of a Riordan array.

Identity 2.9. For q > 0, n ≥ q, and c ∈ Z+,

M2
n+1 =

q−1∑
j=0

H(j)
n + c2q

n∑
k=q

(
k + q − 1

2q − 1

)
M2
n+1−k.

Proof. How many tilings of an n-board contain at least 2q half-squares? Answer 1 : the total

number of tilings minus the tilings that contain less than 2q half-squares, i.e., Bn−
∑q−1

j=0H
(j)
n .

Answer 2 : we condition on the location of the 2q-th half-square. If it occurs in the k-th cell,
the symbolic representation of the tiling up to that cell must end in r. There are

(
k+q−1
2q−1

)
ways

to order the remaining 2q − 1 half-squares and k − q fences and Bn−k ways to tile the rest of
the board. Summing over all possible k and equating the result to Answer 1 gives

Bn −
q−1∑
j=0

H(j)
n = c2q

n∑
k=q

(
k + q − 1

2q − 1

)
Bn−k,

and the identity follows from Theorem 1.2. �

Identity 2.10. For n > 3 and c ∈ Z+, M2
n+1 = c2M2

n + 2(c2 + 1)M2
n−1 + c2M2

n−2 −M2
n−3.

Proof. For n > 3, how many tilings of an n-board are there? Answer 1 : Bn. Answer 2 :
condition on the end tiles. If the first and last tiles are both r there are Bn−1 ways to tile the
remaining cells in between. If the first tile is an r and the tiling ends with a filled fence or
vice versa there are Bn−2 ways to tile the remaining cells. If the tiling starts and ends with
a filled fence, there are Bn−3 ways to tile the remaining cells. In the cases so far, there is an
r at both ends so we must include a factor of c2 when counting the tilings. The remaining
possibility is that the tiling starts or ends with a bifence. In each case this leaves Bn−2 tilings
for the remaining cells. However, we have counted tilings that start and end in a bifence (of
which there are Bn−4) twice and so we must subtract these to leave, on equating both answers,
Bn = c2Bn−1 + 2(c2 + 1)Bn−2 + c2Bn−3 −Bn−4. The identity follows from Theorem 1.2. �

In the following identity we use the fact that the number of ways to tile an n-board using

only r2 and f2 is M
(c2)
n+1 since this is equivalent to tiling an n-board with squares which come

in c2 varieties and dominoes [6, 5]. When c = 2, using (1.3), the identity relates P 2
n to F3n.

Identity 2.11. For n ≥ 0 and c ∈ Z+,

M2
n+1 = M

(c2)
n+1 + 2c2

n−2∑
k=0

n−k∑
l=2

M
(c2)
k+1M

2
n+1−k−l.

Proof. How many ways are there to tile an n-board using at least 1 mixed metatile? Answer 1 :

Bn−M (c2)
n+1 since M

(c2)
n+1 is the number of ways to tile an n-board without using mixed metatiles.

Answer 2 : condition on the position of the first mixed metatile. If it lies on cells k+ 1 to k+ l

where k = 0, . . . , n− l and l = 2, . . . , n− k, there are 2c2M
(c2)
k+1Bn−k−l ways to tile the board.

Summing over all possible k and l and equating to Answer 1 gives

Bn −M (c2)
n+1 = 2c2

∑
k≥0, l≥2,
k+l≤n

M
(c2)
k+1Bn−k−l.

After re-expressing as a double sum, the identity then follows from Theorem 1.2. �
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3. Pascal-like triangles for the p = 2 case

As in [8, 12], we form Pascal-like triangles by tabulating [ nk ], the number of tilings of an
n-board that use k fences (see Fig. 2 for the c = 2 case). The choice [ 00 ] = 1 is justified in the
proof of Identity 3.7.

Identity 3.1. For n ≥ 0 and c ∈ Z+,

M2
n+1 =

n∑
k=0

[
n
k

]
. (3.1)

Proof. The right-hand side of (3.1) is the sum of row n which gives all possible ways to tile
an n-board. The result then follows from Theorem 1.2. �

Identity 3.2. For n ≥ k ≥ 0 and c ∈ Z+,[
n
k

]
= c2(n−k)

m∑
j=k−m

(
n− j
j

)(
n− (k − j)
k − j

)
,

where m = min(bn/2c, k).

Proof. From Lemma 1.1, [ nk ] is also the number of square-domino tilings (with c colours
of squares to choose from) of an ordered pair of n-boards that use k dominoes in total. The
number of ways to tile an n-board with j dominoes (and n−2j squares that come in c colours)

is cn−2j
(
n−j
j

)
. If one of the n-boards has j dominoes the other will have k − j dominoes and

n−2(k− j) squares. Hence there are cn−2jcn−2(k−j)
(
n−j
j

)(n−(k−j)
k−j

)
ways to tile the n-boards if

the first board has j dominoes. Evidently j cannot exceed k or bn/2c and so m ≥ j ≥ k −m.
We then sum over all possible values of j. �

The next three identities can be obtained directly from Identity 3.2. However, the combi-
natorial proofs we give instead are quick and intuitively appealing.

Identity 3.3. For n ≥ 0 and c ∈ Z+, [ n0 ] = c2n.

Proof. This corresponds to the all-r tiling of an n-board. �

Identity 3.4. For n ≥ 0 and c ∈ Z+, [ nn ] is 1 if n is even and is 0 otherwise.

Proof. A bifence is of length 2 (and is composed of 2 fences). Thus the fence-only tiling can
only occur when n is even. �

n \ k 0 1 2 3 4 5 6 7 8
0 1
1 4 0
2 16 8 1
3 64 64 16 0
4 256 384 176 24 1
5 1024 2048 1408 384 36 0
6 4096 10240 9472 3968 736 48 1
7 16384 49152 57344 32768 9472 1280 64 0
8 65536 229376 323584 235520 93952 20096 2080 80 1

Figure 2. The start of a Pascal-like triangle with entries [ nk ] when c = 2. It
is also the start of the row-reversed (1/(1− x2), 4x/(1− x)2) Riordan array.
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Identity 3.5. For n ≥ 1 and c ∈ Z+, [ n1 ] = 2(n− 1)c2(n−1).

Proof. Only the rfr and frr metatiles contain 1 fence. Both metatiles are length 2. There
are n − 1 ways to place a length-2 metatile on an n-board (with the remaining n − 1 cells
occupied by r2 metatiles). �

Identity 3.6. For n ≥ q ≥ 0 and c ∈ Z+, [ n
n−q ] = H

(q)
n .

Proof. The result follows from the definition of H
(q)
n since [ n

n−q ] is also the number of tilings
containing 2q half-squares. �

Identity 3.7. For n, k ∈ Z and c ∈ Z+,[
n
k

]
= δn,0δk,0 − δn,1δk,1 + c2

[
n− 1
k

]
+

[
n− 1
k − 1

]
+ c2

[
n− 2
k − 1

]
+

[
n− 2
k − 2

]
−
[
n− 3
k − 3

]
, (3.2)

where [ nk ] = 0 if n < k or k < 0.

Proof. We condition on the last metatile. If that metatile is of length l and contains j fences,
there are [ n−lk−j ] ways to tile the remaining cells using k − j fences. Considering all possible
metatiles gives [

n
k

]
= δn,0δk,0 + c2

[
n− 1
k

]
+

[
n− 2
k − 2

]
+ 2c2

∞∑
j=1

[
n− j − 1
k − j

]
. (3.3)

If n = l and k = j there is exactly one way to tile the whole board (i.e., by using that single
metatile) and so we make [ 00 ] = 1. Replacing n by n−1 and k by k−1 in (3.3) and subtracting
the result from (3.3) gives (3.2). �

A (P (x), Q(x)) Riordan array is a lower triangular matrix whose (n, k)-th entry is the
coefficient of xn in the series for P (x)(Q(x))k where P (x) = P0 + P1x + P2x

2 + · · · and
Q(x) = Q1x + Q2x

2 + · · · [14, 3]. The k-th column gives the power series for P (x)(Q(x))k

and so a Riordan array can be regarded as a geometric series of generating functions with the
first (k = 0) column giving the coefficients of the generating function P (x). The n-th element
along the leading diagonal is P0Q

n
1 . Some familiar examples of Riordan arrays are the (1, x)

Riordan array which is the (infinite dimensional) identity matrix and the (1/(1−x), x/(1−x))
Riordan array which is Pascal’s triangle.

A row-reversed (P (x), Q(x)) Riordan array has the elements up to and including the main
diagonal of each row of the (P (x), Q(x)) Riordan array placed in reverse order [2]. As we shall
prove shortly, an example of such an array appears in Fig. 2. For a row-reversed array, it is
the expansion of P (x) that appears along the main diagonal and the geometric series with
common ratio Q1 starting at P0 that is the leftmost column. With the obvious exception of
Pascal’s triangle (due to its symmetry), a row-reversed Riordan array is not, in general, a
Riordan array.

In recent work, we have shown that various tiling problems have close links with Riordan
arrays or row-reversed Riordan arrays [12, 13, 2]. The following theorem is a restatement of
part of Theorem 33 in [2].

Theorem 3.8. Suppose a triangle is constructed by letting the (n, k)-th entry be the number
of ways to tile an n-board that use k fences. The triangle is a row-reversed Riordan array if
and only if there is (i) a metatile of length 1 that lacks fences and (ii) for all metatiles l − s
is 0 or 1, where l is the length of the metatile and s is the number of fences it contains.
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When tiling with r and f in the p = 2 case, there is a metatile of length 1 lacking f which is
r2. Each metatile contains either 0 or 2 r and so the total length of the posts of the fences in
the metatile is l or l− 1, respectively. This is also the number of fences (as the total length of
the posts of one fence is 1) and hence l − s is always 0 or 1. Thus each member of the family
of triangles is a row-reversed Riordan array.

Theorem 3.9. If R(n, k) is the (n, k)-th entry of the (1/(1−x2), c2x/(1−x)2) Riordan array
then for any c ∈ Z+, [

n
k

]
= R(n, n− k). (3.4)

Proof. We have already established that the triangle is a row-reversed (P (x), Q(x)) Riordan
array and so we just need to find P (x) and Q(x). Following the procedure given in Remark 36
of [2] (or Example 1 in [13]), P (x) is the generating function of the leading diagonal of the
triangles which is 1/(1 − x2). To find Q(x), letting [ nk ]′ be the (n, k)-th entry of the row-
reversed triangle, we row-reverse (3.2) (by replacing [ n−mk−l ] by [ n−m

n−m−k+l ]
′ and then replacing

k by n− k) which gives[
n
k

]′
= δn,0δk,0 − δn,1δk,0 + c2

[
n− 1
k − 1

]′
+

[
n− 1
k

]′
+ c2

[
n− 2
k − 1

]′
+

[
n− 2
k

]′
−
[
n− 3
k

]′
,

replace [ n−ak−b ]′ by xaPQk−b, and divide by PQk−1. This leaves Q = c2x+xQ+c2x2+x2Q−x3Q
from which Q = c2x/(1− x)2. �

Notice that since R(n, k) = H
(k)
n (which follows from Identity 3.6 and Theorem 3.9), we now

have a combinatorial interpretation of the (n, k)-th element of the (1/(1 − x2), c2x/(1 − x)2)
Riordan array: the number of tilings of an n-board using 2k vertically placed half-squares that
come in c colours and (12 ,

1
2)-fences.

4. Metatiles when p = 3

When p = 3, let µl be the number of mixed metatiles of length l, and µ
[σ]
l be the number

of mixed metatiles of length l that have slot content σ in the final cell where σ is a length-3
binary string with 0 (1) representing an r (a post). From the mixed metatiles in Fig. 3 taken
in order we see that

µ
[001]
2 = µ

[010]
2 = µ

[100]
2 = c4, µ

[011]
2 = µ

[101]
2 = µ

[110]
2 = c2. (4.1)

Lemma 4.1. For l ∈ Z and c ∈ Z+,

µ
[σ]
l =

{
2cµ

[σ]
l−1 + µ

[σ]
l−2 + c4δl,2 + c3δl,3, σ ∈ {001, 010, 100},

2cµ
[σ]
l−1 + µ

[σ]
l−2 + c2δl,2 − c3δl,3, σ ∈ {011, 101, 110},

(4.2)

where µ
[σ]
l<2 = 0.

r3 f 3 f 2r2frfrrf 2rfr4rfr3r2fr2

110101011100010001111000

Figure 3. A 15-board tiled with metatiles of length less than 3 when p =
3. Symbolic representations are shown above the metatiles and final cell slot
contents σ are given below. Dashed lines show boundaries between metatiles.
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Proof. Given a metatile of length l − 1 with some r in the final cell, we can create a metatile
of length l by replacing one (or more) of the r by, in each instance, the left post of a fence.
The corresponding right post(s) will then lie in the l-th cell and the metatile is completed by
filling any empty slot in that cell with an r. It is then easily seen that for l > 2,

µ
[001]
l = c(µ

[100]
l−1 + µ

[010]
l−1 + µ

[110]
l−1 ), µ

[010]
l = c(µ

[100]
l−1 + µ

[001]
l−1 + µ

[101]
l−1 ),

µ
[100]
l = c(µ

[010]
l−1 + µ

[001]
l−1 + µ

[011]
l−1 ), µ

[011]
l = µ

[100]
l−1 /c, µ

[101]
l = µ

[010]
l−1 /c, µ

[110]
l = µ

[001]
l−1 /c.

Notice that we gain (lose) a factor of c when the number of r in the metatile increases (de-

creases) by one. From the above equations, their symmetry, and (4.1), we have µ
[001]
l =

µ
[010]
l = µ

[100]
l , µ

[011]
l = µ

[101]
l = µ

[110]
l , and thus for l > 3, µ

[001]
l = 2cµ

[001]
l−1 + µ

[001]
l−2 . This

gives us µ
[011]
l = 2cµ

[011]
l−1 + µ

[011]
l−2 for l > 3 as well. Using symmetry, (4.1), µ

[σ]
3 = 2c5 + c3 for

σ ∈ {001, 010, 100}, µ[σ]3 = c3 for σ ∈ {011, 101, 110}, and the fact that there are no mixed
metatiles of length less than 2 leads to the result (4.2). �

Lemma 4.2. For l ∈ Z and c ∈ Z+,

µl = 2cµl−1 + µl−2 + 3c2(c2 + 1)δl,2, µl<2 = 0. (4.3)

Proof. Sum (4.2) over the 6 possible σ. �

On comparing (1.2) with (4.3) we obtain

µl = 3c2(c2 + 1)M
(2c)
l−1 , l ∈ Z. (4.4)

From (4.2), for l ∈ Z and c ∈ Z+,

µ
[σ]
l =

{
c4M

(2c)
l−1 + c3M

(2c)
l−2 , σ ∈ {001, 010, 100},

c2M
(2c)
l−1 − c

3M
(2c)
l−2 , σ ∈ {011, 101, 110}.

(4.5)

5. Identities involving the metallonacci numbers cubed

The identities we present in this section are generalizations of those in [11] and reduce to
the latter identities when c = 1.

Lemma 5.1. For all n ∈ Z and c ∈ Z+,

Bn = δn,0 + c3Bn−1 + (3c4 + 3c2 + 1)Bn−2 +
n∑
l=3

µlBn−l, (5.1)

where Bn = 0 for n < 0.

Proof. As in the proof of Lemma 2.1, the result follows from conditioning on the last metatile.
There are c3 metatiles of length 1 (r3), 1+µ2 of length 2 (f3 and the mixed metatiles of length
2), and µl metatiles of length l for each l ≥ 3. �

Identity 5.2. For all n ∈ Z and c ∈ Z+,

M3
n = δn,1 + c3M3

n−1 + (3c4 + 3c2 + 1)M3
n−2 + 3c2(c2 + 1)

n−1∑
l=3

M
(2c)
l−1M

3
n−l. (5.2)

Proof. The result follows from Lemma 5.1, (4.4), and Theorem 1.2. �

Identity 5.3. For all n ∈ Z and c ∈ Z+,

M3
n = δn,1 − 2cδn,2 − δn,3 + (c3 + 2c)(M3

n−1 −M3
n−3) + (c4 + 3c2 + 2)M3

n−2 −M3
n−4. (5.3)
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Proof. Representing (5.1) by E(n), in the equation E(n)− 2cE(n− 1)−E(n− 2) we re-index
two of the sums and rearrange to give

Bn = δn,0 − 2cδn,1 − δn,2 + (c3 + 2c)Bn−1 + (c4 + 3c2 + 2)Bn−2 − (c3 + 2c)Bn−3 −Bn−4

+
n∑
l=5

(µl − 2cµl−1 − µl−2)Bn−l.

The sum vanishes by virtue of (4.3) and, after changing n to n − 1, we obtain the required
result on using (4.4) and Theorem 1.2. �

Identity 5.4. For n ≥ 0, c ∈ Z+, and j = 0, 1,

M3
2n+j+1 = δj,0 + c3δj,1 +

n∑
k=1

(
c3M3

2k+j + 3c2(c2 + 1)
2k∑
i=1

M
(2c)
2k+j−iM

3
i

)
. (5.4)

Proof. How many ways are there to tile a (2n + j)-board using at least one r? Answer 1 :
B2n+j − δj,0 since only the all-trifence tiling has no r and this only occurs for even-length
boards. Answer 2 : the final r must lie on an even (odd) cell if j is 0 (1) since the cells after
this, if any, must be filled with trifences (which are each two cells long). Condition on the
location of the final r. Suppose it is in cell 2k + j (k = δj,0, . . . , n). Either it is part of r3

and so there are c3B2k+j−1 ways to tile cells 1 to 2k + j, or it is part of a mixed metatile and
so there are µ2B2k+j−2 + µ3B2k+j−3 + · · · + µ2k+jB0 ways to tile them. In the latter case,
evidently, k cannot be zero. Hence, equating the answers,

B2n+j − δj,0 = c3
n∑

k=δj,0

B2k+j−1 +
n∑
k=1

(µ2k+jB0 + µ2k+j−1B1 + · · ·+ µ2B2k−2+j).

Then, after simplifying, (5.4) follows from (4.4) and Theorem 1.2. �

Identity 5.5. For n ≥ 0 and c ∈ Z+,

M3
n+1 − c3n =

n−2∑
k=0

c3(n−k−2)
(
M3
k+1 + 3c2(c2 + 1)

k∑
i=0

M
(2c)
k+1−iM

3
i+1

)
. (5.5)

Proof. How many ways are there to tile an n-board using at least 1 fence? Answer 1 : Bn−c3n
since this corresponds to all tilings except the all-r tilings. Answer 2 : condition on the location
of the last fence. Suppose this fence lies on cells k+1 and k+2 (k = 0, . . . , n−2). Either there is

a trifence covering these cells and so there are c3(n−k−2)Bk ways to tile the board, or the cells are
at the end of a mixed metatile and so there are c3(n−k−2)(µ2Bk+2−2+µ3Bk+2−3+· · ·+µk+2B0)
ways to tile it. Hence, equating the two answers,

Bn − c3n =
n−2∑
k=0

c3(n−k−2)(Bk + µk+2B0 + µk+1B1 + · · ·+ µ3Bk−1 + µ2Bk).

The identity then follows from (4.4) and Theorem 1.2. �

The proof of the following identity is entirely analogous to the proof of Identity 2.11 (or
Identity 3.6 in [11]).

Identity 5.6. For n ≥ 0 and c ∈ Z+,

M3
n+1 = M

(c3)
n+1 + 3c2(c2 + 1)

n−2∑
k=0

n−k∑
l=2

M
(2c)
l−1M

(c3)
k+1M

3
n+1−k−l. (5.6)
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Before proving the remaining identities we need the following lemma.

Lemma 5.7. For q = 0, 1, 2, 3 and c ∈ Z+, there are (cMn)qM3−q
n−1 ways to tile an n-board

with r (which comes in c colours) and f if the number of r in the final cell is q.

Proof. We use the bijection described in the proof of Lemma 1.1. For each final cell slot
containing an r (a post), there corresponds an n-board tiled with dominoes and c possible
colours of square that ends in a square (domino) for which there remain Mn (Mn−1) possible
tilings. �

Identity 5.8. For n > 0 and c ∈ Z+,

(cMn)2Mn−1 =

n−1∑
k=1

(
c4M

(2c)
k + c3M

(2c)
k−1

)
M3
n−k.

Proof. How many ways are there to tile an n-board that ends with the right post of a fence
which is immediately preceded by two r? Answer 1 : as the final cell contains 2 r, by
Lemma 5.7, there are (cMn)2Mn−1 ways. Answer 2 : the number of possible final metatiles of

length l is µ
[001]
l . Hence if the final metatile has length l, there are µ

[001]
l Bn−l ways to tile the

board. Summing over all possible l = 2, . . . , n and equating to Answer 1 gives

(cMn)2Mn−1 =

n∑
l=2

µ
[001]
l Bn−l.

Replacing l by k + 1 and then using (4.5) and Theorem 1.2 gives the identity. �

Identity 5.9. For n > 0 and c ∈ Z+,

cMnM
2
n−1 =

n−1∑
k=1

(
c2M

(2c)
k − c3M (2c)

k−1

)
M3
n−k.

Proof. How many ways are there to tile an n-board that ends with the right post of a fence
which is immediately preceded by an r which is itself preceded by another right post? An-
swer 1 : as the final cell contains a single r, by Lemma 5.7, there are cMnM

2
n−1 ways. Answer 2 :

the number of possible final metatiles of length l is µ
[101]
l and so the number of ways to tile

the board is
∑n

l=2 µ
[101]
l Bn−l. Replacing l by k+ 1, equating the answers, and then using (4.5)

and Theorem 1.2 gives the identity. �

Our final identity is obtained by summing the previous two. It can also be obtained directly
by asking how many ways there are to tile an n-board that ends with the right post of a fence
which is immediately preceded by an r.

Identity 5.10. For n > 0 and c ∈ Z+,

Mn+1MnMn−1 = c(c2 + 1)

n−1∑
k=1

M
(2c)
k M3

n−k.

Putting c = 1 into the identities in this section give us the identities obtained in [11].
Putting c = 2 gives us relations between the Pell numbers cubed and F3n, the even Fibonacci
numbers, as a result of (1.3) and (4.4). For example, from Identity 5.10 we have, for n > 0,

Pn+1PnPn−1 = 5
n−1∑
k=1

F3kP
3
n−k. (5.7)

which could be regarded as the dual of Identity 3.10 in [11].
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6. Discussion

One can arrive at identities involving (M
(c)
n )p for larger values of p in an analogous way to

what was done here in the p = 3 case. However, the (p − 1)-th order recursion relations one
obtains for the number of mixed metatiles, unlike in the p = 3 case, do not correspond to any
known sequences as far as we can see.

We showed that when p = 2, the triangle counting the number of ways to tile an n-board
using k fences is a row-reversed Riordan array. By Theorem 3.8 this will not be the case for
p > 2 as the fp metatile has l − s = 2− p < 0.
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