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Abstract. Let f(x) = xk + a1x
k−1 + · · · + ak be a monic polynomial of degree k ≥ 2

with distinct roots {xi|i = 1, . . . , k}. Let f ′(x) be the derivative of f(x), Pn = xn
1 /f

′(x1) +
xn
2 /f

′(x2) + · · · + xn
k/f

′(xk) and Qn = xn
1 + xn

2 + · · · + xn
k ; Pn is a generalized Fibonacci

sequence and Qn is a generalized Lucas sequence. We have a Girard-Waring type formula for
Pn:

Pn =
∑

j1,...,jk

(−a1)
j1(−a2)

j2 · · · (−ak)
jk · (j1 + j2 + · · ·+ jk)!

j1! j2! · · · jk!

where the indices j1, j2, . . . , jk satisfy j1 + 2j2 + · · ·+ kjk = n− k + 1.
We have formulas for the generating function for Pn, and Qn:

GP (x) = (1/x)/f(1/x), GQ(x) = (1/x)f ′(1/x)/f(1/x).

1. Introduction

1.1. Fibonacci Numbers And Lucas Numbers. The famous Fibonacci numbers Fn is a
sequence of integers, start with 0 and 1. Then the subsequent numbers are equal to the sum
of the two previous numbers. The Lucas numbers Ln are a companion sequence of Fibonacci
numbers. It starts with 2 and 1. Then the subsequent numbers are equal to the sum of the two
previous numbers. In other words, they satisfy the recurrence relation: s(n) = s(n−1)+s(n−2)
for n ≥ 2.

Then x2 − x − 1 = 0 is the characteristic equation for both Fn and Ln. Let α and β be
the roots of this equation. We then have Binet’s formulas for Fibonacci numbers and Lucas
numbers.

Theorem 1.1.

Fn =
αn − βn

α− β
=

αn

α− β
+

βn

β − α
. (1.1)

Ln = αn + βn. (1.2)

Both Fn and Ln have very elegant sum formulas.

Theorem 1.2.

Fn =
∑

i≥0,j≥0,i+2j=n−1

(i+ j)!

i! j!
. (1.3)

Ln =
∑

i≥0,j≥0,i+2j=n

n(i+ j − 1)!

i! j!
. (1.4)
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1.2. Girard-Waring Formula. Let f(x) =
∑k

i=0 aix
k−i be a monic polynomial of degree

k ≥ 2 with roots {xi | i = 1, . . . , k} so that f(x) =
∏k

i=1(x − xi). There is a well-known
Girard-Waring formula for the power sums of the roots [1].

Theorem 1.3.
k∑

i=1

xni =
∑

{ji≥0}ki=1,
∑k

i=1 iji=n

n(
∑k

i=1 ji − 1)!∏k
i=1 ji!

k∏
i=1

(−ai)ji . (1.5)

1.3. Motivation. As suggested in [1], we may consider
∑k

i=1 x
n
i as a generalization of the

Lucas numbers. Inspired by [1], we have tried to find a generalization of Fibonacci numbers
and to have a sum formula which is analogous to the Girard-Waring formula. This is the
motivation of this research. In the literature, there are many generalizations of the Fibonacci
sequence and the Lucas sequence with different names and different assumptions [1, 3, 4, 6, 7].
We finally decide on a generalization of Fibonacci numbers which is presented in this paper.
This definition includes many previously known generalizations of Fibonacci numbers, Pell
numbers, the tribonacci sequence, etc., as special cases. In our definition, we use the derivative
f ′(x). This derivative also appears naturally in the generating functions and identities for
generalized sequences.

In this paper we will also study the generating functions for this generalization.
This paper is organized as follows:
Section 2 - Definition of the generalized Fibonacci sequence.
Section 3 - Formulas of generating functions for the generalized Fibonacci sequence and the

generalized Lucas sequence.
Section 4 - Sum formula for the generalized Fibonacci sequence.
Section 5 - An identity where Qn is a sum of entries for Pn.

2. Definition

Let f(x) =
∑k

i=0 aix
k−i = 0 be a monic polynomial of degree k ≥ 2 with roots {xi | i =

1, . . . , k} where {ai | i = 0, . . . , k} are not necessarily integers. We assume that f(x) has simple
roots {xi | i = 1, . . . , k}, a0 = 1 and ak 6= 0. We will define sequences Pn and Qn in terms of
powers of {xi | i = 1, . . . , k}. Let f ′(x) be the derivative of f(x).

Definition 2.1. Let the generalized Fibonacci sequence Pn be defined by the equation

Pn =
k∑

i=1

xni
f ′(xi)

. (2.1)

Let the generalized Lucas sequence Ln be defined by the equation

Qn =

k∑
i=1

xni . (2.2)

3. Generating Functions

By definition, an (ordinary) generating function of the sequence {si | i = 0, . . .} is a formal
series

Gs(x) =
∞∑
i=0

six
i.
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In this section, as in the introduction, let f(x) =
∑k

i=0 aix
k−i be a monic polynomial of

degree k ≥ 2, a0 = 1 and ak 6= 0 with simple roots. We will prove formulas for generating
functions for the sequences Pn, Qn.

3.1. GP (x). We will need the following lemma which can be proved easily using partial frac-
tions.

Lemma 3.1.

1

f(x)
=

k∑
i=1

1

f ′(xi)
· 1

x− xi
. (3.1)

Proof. By assumption,

f(x) =

k∏
i=1

(x− xi).

Consider the partial fraction for f(x),

1

f(x)
=

k∑
i=1

yi
x− xi

,

where the yi are to be determined. Multiply both sides by f(x):

k∑
i=1

yif(x)

x− xi
= 1.

It follows that
k∑

i=1

yi

k∏
j=1,j 6=i

(x− xj) = 1.

For each i = 1, . . . , k, let x = xi,

yi

k∏
j=1,j 6=i

(xi − xj) = 1

It follows that

yi =
1∏k

j=1,j 6=i(xi − xj)
=

1

f ′(xi)
.

This proves the Lemma 3.1. �

Theorem 3.2. The generating function for the sequence Pn is given by

GP (x) = x−1/f(x−1). (3.2)
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Proof. By Lemma 3.1,

GP (x) =

∞∑
n=0

Pnx
n

=
∞∑
n=0

(
k∑

i=1

xni
f ′(xi)

)
xn

=

k∑
i=1

1

f ′(xi)

( ∞∑
n=0

(xix)n

)

=
k∑

i=1

1

f ′(xi)
· 1

1− xix

= x−1
k∑

i=1

1

f ′(xi)
· 1

x−1 − xi

=
x−1

f(x−1)
.

�

Corollary 3.3. With above notations, Pn is a sequence with initial values

P0 = 0, . . . , Pk−2 = 0, Pk−1 = 1,

satisfying the recurrence relation

Pn = −
k∑

i=1

aiPk−i.

Proof. By assumption, f(x) =
∑k

i=0 aix
k−i.

GP (x) = x−1/f(x−1)

= x−1/(

k∑
i=0

aix
−k+i)

= xk−1/(
k∑

i=0

aix
i)

= xk−1 + b1x
k + b2x

k+1 + · · · ,
for some b1, b2, . . . Now it is clear that

P0 = 0, . . . , Pk−2 = 0, Pk−1 = 1.

The recursive relation is obvious from the definition. �

3.2. GQ(x). We will need the following lemma which can be proved easily using logarithmic
differentiation.

Lemma 3.4.
f ′(x)

f(x)
=

k∑
i=1

1

x− xi
. (3.3)
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Proof. By assumption,

lnf(x) = ln

(
k∏

i=1

(x− xi)

)
=

k∑
i=1

ln (x− xi).

Take derivatives on both sides:
f ′(x)

f(x)
=

k∑
i=1

1

x− xi
.

�

Theorem 3.5.

GQ(x) =
x−1f ′(x−1)

f(x−1)
. (3.4)

Proof.

GQ(x) =
∞∑
n=0

(
k∑

i=1

xni

)
xn

=

k∑
i=1

∞∑
n=0

(xix)n

=
k∑

i=1

1

1− xix

= x−1
k∑

i=1

1

x−1 − xi

=
x−1f ′(x−1)

f(x−1)
,

by Lemma 3.4. �

4. Sum Formula For P

4.1. Multinomial Theorem. We will need the following multinomial theorem [2] to prove
our main theorem.

Theorem 4.1. For a positive integer k and a non-negative integer n, let {y1, . . . , yk} be k
variables. Then ( k∑

i=1

yi

)n

=
∑

n≥ji≥0,
∑k

i=1 ji=n

n!∏k
i=1 ji!

k∏
i=1

yjii . (4.1)

4.2. Main Theorem. The sum formula for Pn is the following

Theorem 4.2. Let f(x) =
∑k

i=0 aix
k−i be a monic polynomial of degree k ≥ 2 with simple

roots. Then

Pn =
∑

{ji≥0}ki=1,
∑k

i=1 iji=n−k+1

(
∑k

i=1 ji)!∏k
i=1 ji!

k∏
i=1

(−ai)ji . (4.2)
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Proof. For convenience, let

Λ(j1, . . . , jk) =
(
∑k

i=1 ji)!∏k
i=1 ji!

.

By assumption, f(x) =
∑k

i=0 aix
k−i, and by Theorems 3.2 and 4.1,

GP (x) = x−1/f(x−1)

= x−1/(

k∑
i=0

aix
−(k−i))

= xk−1/(
k∑

i=0

aix
i)

= xk−1/(1− (

k∑
i=1

(−ai)xi))

= xk−1
∞∑

m=0

(
k∑

i=1

(−ai)xi
)m

= xk−1
∞∑

m=0

 ∑
∑k

i=1 ji=m

Λ(j1, . . . , jk)

k∏
i=1

((−ai)xi)ji


= xk−1

∞∑
m=0

 ∑
∑k

i=1 ji=m

Λ(j1, . . . , jk)
k∏

i=1

(−ai)jixiji


=

∞∑
m=0

 ∑
∑k

i=1 ji=m

Λ(j1, . . . , jk)

k∏
i=1

(−ai)ji

x
∑k

i=1 iji+k−1.

By comparing the coefficient of xn, we get our formula:

Pn =
∑

∑k
i=1 iji=n−k+1

Λ(j1, . . . , jk)

(
k∏

i=1

(−ai)ji
)
.

�

5. An Identity

Let g(x) =
∑k

i=0 bix
k−i be a polynomial and let {si | i = 0, . . .} be a sequence. For

convenience, let g(sn) =
∑k

i=0 bisn+k−i,

Theorem 5.1. Let f(x) =
∑k

i=0 aix
k−i be a monic polynomial of degree k ≥ 2 and ak 6= 0

with simple roots. Let Pn be the generalized Fibonacci sequence and Qn be the generalized Lucas
sequence. Then

Qn = f ′(Pn).
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Proof.
∞∑
n=0

Qnx
n = GQ(x)

=
x−1f ′(x−1)

f(x−1)

= GP (x)f ′(x−1)

=
∞∑

m=0

Pmx
m

k−1∑
i=0

(k − i)aix−(k−i−1)

=

∞∑
m=0

k−1∑
i=0

(k − i)aiPmx
m−k+i+1.

By comparing the coefficients of xn on both sides, we get

Qn =
k−1∑
i=0

(k − i)aiPn+k−i−1 = f ′(Pn).

�

Example 5.2. Let
f(x) = x3 − 6x2 + 11x− 6.

P (A000392) : 0, 0, 1, 6, 25, 90, 301, 966, 3025, 9330, . . .
Q(A001550) : 3, 6, 14, 36, 98, 276, 794, 2316, 6818, 20196, . . .

GP =
x2

1− 6x+ 11x2 − 6x3
, GQ =

3− 12x+ 11x2

1− 6x+ 11x2 − 6x3

Qn = 3Pn+2 − 12Pn+1 + 11Pn.
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